UNIVERSITY OF COPENHAGEN

Departrment of Computer Science
= o TR

Faculty of Science

Intermediate-Code Generation

Cosmin E. Oancea

cosmin.oancea@diku.dk

Department of Computer Science
University of Copenhagen

December 2012

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Structure of a Compiler
Programme text

)
Lexical analysis Binary machine code
! T
Symbol sequence Assembly and linking
| T
Syntax analysis Ditto with named registers
! T
Syntax tree Register allocation
| T
Type Checking Symbolic machine code
3 T
Syntax tree Machine code generation
J T Py
Intermediate code generation| — Intermediate code .

C.Oancea: Intermediate Code 12/2012 2 /39

UNIVERSITY OF COPENHAGEN Department of Computer Science

@ Why Intermediate Code?
@ Intermediate Language
@ To-Be-Translated Language

© Syntax-Directed Translation
@ Arithmetic Expressions
@ Statements
@ Boolean Expressions, Sequential Evaluation

© Translating More Complex Structures
@ More Control Structures
@ Arrays and Other Structured Data
@ Role of Declarations in the Translation

C.Oancea: Intermediate Code 12/2012 3 /39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Why Intermediate Code

@ Compilers for different platforms and languages can share parts

Fortran \ ARM
Pascal / Intermed.Code » X86_64
= ab

@ Machine-independent optimisations are possible

@ Also enables interpretation. ..

C.Oancea: Intermediate Code 12/2012 4 /39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Intermediate Language IL

@ Machine Independent: no limit on register and memory, no
machine-specific instructions.

@ Mid-level(s) between source and machine languages (tradeoff):
simpler constructs, easier to generate machine code

@ What features/constructs should IL support?

e every translation loses information;
e use the information before losing it!

@ How complex should IL's instruction be?

e complex: good for interpretation (amortizes instruction-decoding
overhead),
e simple: can more easily generate optimal machine code.

C.Oancea: Intermediate Code 12/2012 5 /39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Intermediate Language

Here: Low-level language, Prg — Fcts

but keeping functions Fets — Fet Fets | Fet
dp 5 Fct — Hdr Bd

(Proce_ ures). _ Hdr ~ — functionid(Args)

Small instructions: Bd — [Instrs]

@ 3-address code: one Instrs — Instr ; Instrs | Instr
Operatlon per Instr — id := Atom | id := unop Atom
expression | id := id binop Atom

P ' |id := M[Atom] | M[Atom] := id

@ Memory read/write (1) | LABEL label | GOTO label

(address is atom). | IF id relop Atom
THEN label ELSE label

@ Jump labels, ¢oTo and | id := CALL functionid(Args)
conditional jump (IF). | RETURN id

@ Function calls and Atom — id | num

Args — id, Args|id

returns

C.Oancea: Intermediate Code 12/2012 6 /39

UNIVERSITY OF COPENHAGEN Department of Computer Science

The To-Be-Translated Language

We shall translate a simple procedural language:
@ Arithmetic expressions and function calls, boolean expressions,
@ conditional branching (if),

@ two loops constructs (While and repeat until).

Syntax-directed translation:

@ In practice we work directly on the abstract-syntax tree ABSYN
(but here we use a generic-grammar notation)

@ Implement each syntactic category via a translation function:
Arithmetic expressions, Boolean expressions, Statements.

@ Code for subtrees is generated independent of context
(i.e., context is a parameter to the translation function) ®

C.Oancea: Intermediate Code 12/2012 7 /39

UNIVERSITY OF COPENHAGEN Department of Computer Science

@ Why Intermediate Code?

© Syntax-Directed Translation
@ Arithmetic Expressions

© Translating More Complex Structures

SO

<

C.Oancea: Intermediate Code 12/2012 8 /39

UNIVERSITY OF COPENHAGEN Department of Computer Science
p

Translating Arithmetic Expressions

Expressions in Source Language
Exp — num|id

@ Variables and number literals, | unop Exp
@ unary and binary operations, I 5?%}3;2;39 Exp

@ function calls (with argument list). Exps — Exp| Exp . Exps

Translation function:

Transg, :: (Exp, VTable, FTable, Location) -> [ICode]

@ Returns a list of intermediate code instructions [ICode] that ...
@ ...upon execution, computes Exp's result in variable Location.

@ Case analysis on Exp's abstract syntax tree (ABSYN).

C.Oancea: Intermediate Code 12/2012 9 /39

UNIVERSITY OF COPENHAGEN Department of Computer Science
p

Symbol Tables and Helper Functions

Translation function:

Transg, :: (Exp, VTable, FTable, Location) -> [ICode]

Symbol Tables

vtable : variable names to intermediate code variables

ftable : function names to function labels (for ca11)

Helper Functions
lookup: retrieve entry from a symbol table
getvalue: retrieve value of source language literal
getname: retrieve name of source language variable/operation
newvar: make new intermediate code variable

newlabel: make new label (for jumps in intermediate code)

trans_op: translates an operator name to the name in IL.

C.Oancea: Intermediate Code 12/2012

UNIVERSITY OF COPENHAGEN Department of Computer Science

Generating Code for an Expression

Transg, : (Exp, VTable, FTable, Location) -> [ICode]
Transe, (exp, vtable, ftable, place) = case exp of

num v = getvalue(num)
[place := v]

id x = lookup(vtable, getname(id))
[place := x]

unop Exp; place; = newvar()

code; = Transg,(Exps, vtable, ftable, placer)
op = trans_op(getname(unop))
code; @ [place := op place]

Exp: binop Exp> place; = newvar()
place; = newvar()
code; = Transg,(Exps, vtable, ftable, placer)
code; = Transg,(Exps, vtable, ftable, place;)
op = trans_op(getname(binop))
code; @ code, @ [place := place; op places]

v,
&

C.Oancea: Intermediate Code 12/2012 11 / 39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Generating Code for a Function Call

Transe, (exp, vtable, ftable, place) = case exp of ...
id(Exps) (codei,[a1,...,an]) = Transeqps(Exps, vtable, ftable)
fname = lookup(ftable, getname(id))
code; @ [place := CALL fname(as,...,an)]

Transg.,s returns the code that evaluates the function’s parameters,
and the list of new-intermediate variables (that store the result).

Transgps @ (Exps, VTable, FTable) -> ([ICode], [Location])
Transe.s(exps, vtable, ftable) = case exps of
Exp place = newvar()
coder = Transg,(Exp, vtable, ftable, place)
(codey, [place])
Exp , Exps place = newvar()
code; = Transe,(Exp, vtable, ftable, place)
(codey, args) = Transe.,s(Exps, vtable, ftable)
code; = code; @ code;
args) = place :: args ""“
(codes, args:) °

3551
v N

C.Oancea: Intermediate Code 12/2012 12 / 39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Translation Example

Assume the following symbol tables:
@ vtable =[x — v0, y +— vl, z+— v2]
o ftable = [f — _F_1]

Translation of Exp with place = t0:

tl:=vO0
@ Exp—x-3 t2:=3
t0:=t1 —t2
tl1:=3
t4 :=vO0
th i =vl
® Exp=3+f (x-y,2) t3:=t4 — t5
t6 (= v2
t2:= CALL _F_1(t3,t6)
t0:=tl1 4 t2
®
[
C.Oancea: Intermediate Code 12/2012 13 / 39

UNIVERSITY OF COPENHAGEN Department of Computer Science

@ Why Intermediate Code?

© Syntax-Directed Translation

@ Statements

© Translating More Complex Structures

C.Oancea: Intermediate Code 12/2012 14 / 39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Translating Statements

Statements in Source Language

°
Sequence of statements Stat - Stat: Stat

@ Assignment | id := Exp
o _ | if Cond then { Stat }
e Conditional Branching | if Cond then { Stat } else {Stat}
_ | while Cond do { Stat }
@ Loops: while and repeat | repeat { Stat } until Cond

(simple conditions for now) Cond — Exp relop Exp

We assume relational operators translate directly (using trans_op).

Translation function:

Transss: :: (Stat, VTable, FTable) -> [ICode]

@ As before: syntax-directed, case analysis on Stat

@ Intermediate code instructions for statements

C.Oancea: Intermediate Code 12/2012 15 / 39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Generating Code for Sequences, Assighments,. ..

Transs:s+ : (Stat, Vtable, Ftable) -> [ICode]
Transs:.:(stat, vtable, ftable) = case stat of
Stat; ; Stat, code; = Transs..:(Stati, vtable, ftable)
code, = Transs:.:(Stats, vtable, ftable)
code; @ code;
id := Exp place = lookup(vtable, getname(id))
Transeq, (Exp, vtable, ftable, place)

(rest coming soon)

@ Sequence of statements, sequence of code.

@ Symbol tables are inherited attributes.

C.Oancea: Intermediate Code 12/2012

UNIVERSITY OF COPENHAGEN Department of Computer Science

Generating Code for Conditional Jumps: Helper

@ Helper function for loops and branches

@ Evaluates Cond, i.e., a boolean expression,
then jumps to one of two labels, depending on result

Transcons : (Cond, Label, Label, Vtable, Ftable) -> [ICode]

Transcond(cond, labels, labely, vtable, ftable) = case cond of

Exp; relop Exp, t; = newvar()
t, = newvar()
code; = Transg.,(Exp1, vtable, ftable, t1)
code; = Transg.,(Expz, vtable, ftable, t,)
op = trans_op(getname(relop))

code; @ code, @ [IF t; opt, THEN label; ELSE labelr]

@ Uses the IF of the intermediate language

@ Expressions need to be evaluated before
(restricted IF: only variables and atoms can be used)

C.Oancea: Intermediate Code

12/2012

3551
v D)

o
’J

17 / 39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Generating Code for If-Statements

@ Generate new labels for branches and following code

@ Translate 1f statement to a conditional jump

Transs:.:(stat, vtable, ftable) = case stat of

if Cond label, = newlabel()

then Stat; /abelr = newlabel()
code; = Transcond(Cond, label;, labelr, vtable, ftable)
code, = Transs,:(Stat, vtable, ftable)
code; @ [LABEL /abel;] @ code, @ [LABEL /abelf]

if Cond label; = newlabel()
then Stat; /abelr = newlabel()
else Stat, label. = newlabel()
coder = Transcond(Cond, label;, labels, vtable, ftable)
code, = Transs:.:(Staty, vtable, ftable)
codes = Transs:.:(Staty, vtable, ftable)
code; @ [LABEL /abel;] @ code, @ [GOTO /abelc]
@ [LABEL /abel;] @ code; @ [LABEL /abel.]

C.Oancea: Intermediate Code

12/2012 15/ 3

UNIVERSITY OF COPENHAGEN Department of Computer Science

Generating Code for Loops

@ repeat-until loop is the easy case:
Execute body, check condition, jump back if false.

@ while loop needs check before body, one extra label needed.

Transs:.:(stat, vtable, ftable) = case stat of
repeat Stat /abelr = newlabel()
until Cond label; = newlabel()
code; = Transs:.:(Stat, vtable, ftable)
code; = Transcond(Cond, label;, labelr, vtable, ftable)
[LABEL /abelf] @ code; @ code, @ [LABEL /abel:]
while Cond labels = newlabel()
do Stat label; = newlabel()
labelr = newlabel()
code; = Transcond(Cond, label;, label, vtable, ftable)
code, = Transs:.:(Stat, vtable, ftable)
[LABEL /abels] @ code;
@ [LABEL /abel;] @ code, @ [GOTO /abels]
@ [LABEL /abelf]

C.Oancea: Intermediate Code 12/2012 19 / 39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Translation Example

@ Symbol table vtable: [x — vy, y — vi, z +— v
@ Symbol table ftable: [getInt — 1ibI0_getInt]

v.0 :=3
v_1 := CALL 1ibIO_getInt()
v2 =1
LABEL 1_s
t1l :=v.1
t2 :=0
IF t.1 > t.2 THEN 1.t else 1_f
LABEL 1.t
t3 :=v_.1
t4 =1
vl :=t3 - t4
t b = v.2
t6 :=v.O0
v2 :=tbh *x t_6
GOTO 1_s
LABEL 1_f
C.Oancea: Intermediate Code 12/2012

X := 3;
y := getInt();
z = 1;
while y > O
y =y - 1;

Z = zZ %X

20 / 39

UNIVERSITY OF COPENHAGEN

Department of Computer Science

@ Why Intermediate Code?

© Syntax-Directed Translation

@ Boolean Expressions, Sequential Evaluation

© Translating More Complex Structures

C.Oancea: Intermediate Code 12/2012

21 /39

UNIVERSITY OF COPENHAGEN

Department of Computer Science

More Complex Conditions, Boolean Expressions

Boolean Expressions as Conditions

@ Arithmetic expressions used as Cond — |E>;_P relop Exp
Xp
Boolean ot Cond
e Logical operators (not, and, or) | Cond and Cond
| Cond or Cond

@ Boolean expressions used in

) _ Exp — ...| Cond
arithmetics

We extend the translation functions Transg,, and Transcong:

@ Interpret numeric values as Boolean expressions:
0 is false, all other values true.

@ Likewise: truth values as arithmetic expressions

C.Oancea: Intermediate Code 12/2012

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Numbers and Boolean Values, Negation

Expressions as Boolean values, negation:

Transcong : (Cond, Label, Label, Vtable, Ftable) -> [ICodel
Transcond(cond, labels, labely, vtable, ftable) = case cond of

Exp t = newvar()
code = Transg.,(Exp, vtable, ftable, t)
code @ [IF t # O THEN /abel; ELSE labelf]

notCond Transcond(Cond, labels, label;, vtable, ftable)

Conversion of Boolean values to numbers (by jumps):

Transg, : (Exp, Label, Label, Vtable, Ftable) -> [ICodel
Transex(exp, vtable, ftable, place) = case exp of

Cond label; = newlabel()
label, = newlabel()
t = newvar()
code = Transconqd(Cond, label, label,, vtable, ftable) e
[t :=0] @ code @ [LABEL /abeh, t:=1] @ [LABEL labeh, place :=t]

C.Oancea: Intermediate Code 12/2012 23 / 39

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Fasto Implementation for Conditionals/Comparisons

Fasto Implementation

fun compileExp e vtable place = case e of

| Fasto.If (el,e2,e3,pos) =>
let val thenLab="..." val elselLab="..." val endLab="...
val codel = compileCond el vtable thenLab elselab
val code2 = compileExp e2 vtable place
val code3 = compileExp e3 vtable place
in codel @ [Mips.LABEL thenLab] @ code2 @ [Mips.J endLab] @
[Mips.LABEL elselab] @ code3 @ [Mips.LABEL endLab] end

and compileCond c vtable tlab flab = case c of
Fasto.Equal (el,e2,pos) =>

let val t1 = "..." wval t2 ="..."
val codel = compileExp el vtable ti1 %
val code2 = compileExp e2 vtable t2

in codel @ code2 @ [Mips.BEQ (t1,t2,tlab), Mips.J flab] end .

v

C.Oancea: Intermediate Code 12/2012 24 / 39

UNIVERSITY OF COPENHAGEN

Sequential Evaluation of Conditions

Moscow ML version 2.01 (January 2004)
Enter ‘quit();’ to quit.

>

fun £ 1 = if (hd 1 = 1) then "one" else "not one";

val £ = fn : int list -> string
£ [;

Uncaught exception:

Empty

In most languages, logical operators are evaluated sequentially.

\2

o If By = false, do not evaluate By in B1&&B, (anyway false).

e If By = true, do not evaluate B, in Bi||Bz (anyway true).

fun g 1 = if not (null 1) andalso (hd 1 = 1) then "one" else "not one";
val g = fn : int list -> string

g [1;

val it = "not one" : string

C.Oancea: Intermediate Code

12/2012

UNIVERSITY OF COPENHAGEN

Department of Computer Science

25 / 39

Department of Computer Science

Sequential Evaluation by “Jumping Code”

Transconsd : Cond, Label, Label, Vtable, Ftable) -> [ICodel
Transcond(cond, labels, labely, vtable, ftable) = case cond of

Cond; labelpexs = newlabel()
and codey=Transcond(Condi, labéelnex:, labelr, vtable, ftable)
Cond, coder=Transcond(Conda, label:, labelr, vtable, ftable)
code; @ [LABEL /abel,ext] @ coder

Cond labelnexs = newlabel()
or codei=Transcond(Condh, label:, label,ext, vtable, ftable)
Cond> codex=Transcond(Conda, label;, labels, vtable, ftable)
coder @ [LABEL /abelnext] @ coder

@ Note: No logical operations in intermediate language!
Logics of and and or encoded by jumps.

@ Alternative: Logical operators in intermediate language
Cond = Exp = Exp binop Exp

Translated as an arithmetic operation. Evaluates both sides!

C.Oancea: Intermediate Code

12/2012

UNIVERSITY OF COPENHAGEN Department of Computer Science
p

© Translating More Complex Structures
@ More Control Structures
@ Arrays and Other Structured Data
@ Role of Declarations in the Translation

C.Oancea: Intermediate Code 12/2012 27 / 39

UNIVERSITY OF COPENHAGEN Department of Computer Science
p

More Control Structures

Control structures determine control flow: which instruction to
execute next

A while-loop is enough ...but ...languages usually offer more.

Explicit jumps: Stat — label=_ " cidered harmful | (Dijstra 1968)
| goto fabe

Necessary instructions in the intermediate language.
Need to build symbol table of labels.
Case/Switch: Stat — case Exp of [Alts |

Alts — num: Stat | num : Stat, Alts
When exited after each case: chain of if-then-else

When “falling through” (f.ex. in C): if-then-else and goto.

Break and Continue: Stat — break | continue

(break: jump behind loop, continue: jump to end of loop body).
Needs two jump target labels used only inside loop bodies
(parameters to translation function trans_stat) ®

C.Oancea: Intermediate Code 12/2012 28 / 39

UNIVERSITY OF COPENHAGEN Department of Computer Science

@ Why Intermediate Code?

© Syntax-Directed Translation

© Translating More Complex Structures

@ Arrays and Other Structured Data

C.Oancea: Intermediate Code 12/2012 29 / 39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Translating Arrays (of int elements)

Extending the Source Language

@ Array elements used as an expression Exp — ... |ldx
Stat — ...|ldx = Exp

@ Assignment to an array element ldx - id[Exp |

@ Array elements accessed by an index
(expression)

Again we extend Transg,, and Transsia;.

@ Arrays stored in pre-allocated memory area, generated code will
use memory access instructions.

@ Static (compile-time) or dynamic (run-time) allocation.

NS * S1Q8

<

C.Oancea: Intermediate Code 12/2012 30 / 39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Generating Code for Address Calculation

@ vtable contains the base address of the array.

@ Elements are int here, so 4 bytes per element for address.

Transiyx (index, vtable, ftable) = case index of
id[Exp] base = lookup(vtable, getname(id))
addr = newvar()
code1 = Transg,(Exp, vtable, ftable, addr)
code, = code; @ [addr := addr=4, addr := addr+ base]
(codes, addr)

Returns:
@ Code to calculate the absolute address . ..

@ of the array element in memory (corresponding to index), ...

3551
v D)

@ ...and a new variable (addr) where it will be stored.

C.Oancea: Intermediate Code 12/2012 31 /39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Generating Code for Array Access

Address-calculation code: in expression and statement translation.

@ Read access inside expressions:

Transep(exp, vtable, ftable, place) = case exp of

Idx (code1, address) = Transix(ldx, vtable, ftable)
code1 @ [place := M[address]]

@ Write access in assignments:

Transs:.:(stat, vtable, ftable) = case stat of

ldx :== Exp (codei, address) = Transq(Index, vtable, ftable)
t = newvar()
code, = Transeg.,(Exp, vtable, ftable, t)
code; @ code, @ [M[address] := t]

C.Oancea: Intermediate Code 12/2012 32 /39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Multi-Dimensional Arrays

Arrays in Multiple Dimensions

@ Only a small change to previous

: Exp — ...|ldx
grammar: Idx can now be recursive.

Stat — ...|ldx := Exp
@ Needs to be mapped to an address in ~ ldx — id[Exp| | ldx[Exp]
one dimension.

dim,
BB PR
BB

&

syl

@ Arrays stored in row-major or column-major order. &

Standard: row-major, index of alk][1] is k - dimy + |
(Index of b[x] [1]1[m] is k - dimy - dimy + | - dimy + m)

dim
I-

@ Address calculation need to know sizes in each dimension.
symbol table: base address and list of array-dimension sizes.

3557,
SAESION

o Need to change Transiy, i.e., add recursive index calculation. g™
([]

C.Oancea: Intermediate Code 12/2012 33 /39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Address Calculation in Multiple Dimensions

Transax (index, vtable, ftable) =
(code, t, base, [|) = Calcig(index, vtable, ftable)
code, = code; @ [t:=tx4 t:=t+ base]
(codey, t)

Recursive index calculation, multiplies with dimension at each step.
Calciax(index, vtable, ftable) = case index of

id[Exp] (base, dims) = lookup(vtable, getname(id))
addr = newvar()
code = Transg,,(Exp, vtable, ftable, addr)
(code, addr, base, tail(dims))

Index[Exp] (codei, addr, base, dims) = Calcjq.(Index, vtable, ftable)
d = head(dims)
t = newvar()
code> = Transg.,(Exp, vtable, ftable, t)
codez = code; @ code, @ [addr := addr % d, addr := addr + t| 4%
(codes, addr, base, tail(dims)) ®

C.Oancea: Intermediate Code 12/2012 34 /39

UNIVERSITY OF COPENHAGEN

Department of Computer Science

@ Why Intermediate Code?

© Syntax-Directed Translation

© Translating More Complex Structures

@ Role of Declarations in the Translation

C.Oancea: Intermediate Code 12/2012

35 /39

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Declarations in the Translation

Declarations are necessary

@ to allocate space for arrays,
@ to compute addresses for multi-dimensional arrays,

@ ...and when the language allows local declarations (scope).

Declarations and scope

@ Statements following a declarations
Stat — Decl; Stat
can see declared data. Decl —> int id

@ Declaration of variables and arrays | int id[num]
@ Here: Constant size, one dimension

Function trans_decl : (Decl, VTable) -> ([ICode], VTable)

@ translates declarations to code and new symbol table.

C.Oancea: Intermediate Code 12/2012

UNIVERSITY OF COPENHAGEN Department of Computer Science

Translating Declarations to Scope and Allocation
Code with local scope (extended symbol table):

Transs:.:(stat, vtable, ftable) = case stat of
Decl ; Stat; (codei, vtable1) = Transpe.(Decl, vtable)
code, = Transs:.:(Staty, vtable1, ftable)
code; @ codes

Building the symbol table and allocating:

Transpecs : (Decl, VTable) -> ([ICode], VTable)
Transpec/(decl, vtable) = case decl of
int id t; = newvar()
vtable; = bind(vtable, getname(id), t;)
([], vtabler)
int id[num] t; = newvar()
vtable; = bind(vtable, getname(id), t;)
([t1 := HP, HP := HP + (4 % getvalue(num))], vtable;)

3557,
SAESION

...where HP is the heap pointer, indicating first free space in a managed heap at @
runtime, to provide memory to the running programme. »

C.Oancea: Intermediate Code 12/2012

37 /39

UNIVERSITY OF COPENHAGEN Department of Computer Science

Other Structures that Require Special Treatment

@ Floating-Point values:
Often stored in different registers
Always require different machine operations
Symbol table needs type information when creating variables in
intermediate code.

@ Strings
Sometimes just arrays of (1-byte) char type, but variable length.
In modern languages/implementations, elements can be char or

unicode (UTF—8 and UTF-16 variable size!)
Usually handled by library functions.

@ Records and Unions
Linear in memory. Field types and sizes can be different.
Field selector known at compile time: compute offset from base.

C.Oancea: Intermediate Code 12/2012 38 / 39

UNIVERSITY OF COPENHAGEN

Structure of a Compiler
Programme text

!

Lexical analysis

]

Symbol sequence

!

Syntax analysis

]

Syntax tree

1
Type Checking

]

Syntax tree

]

Intermediate code generation

Department of Computer Science

Binary machine code

/I\
Assembly and linking

/]\

Ditto with named registers

/I\

Register allocation

/]\

Symbolic machine code

/]\

Machine code generation

/I\

— Intermediate code

C.Oancea: Intermediate Code 12/2012

3551
v D)

39 /39

	Why Intermediate Code?
	Intermediate Language
	To-Be-Translated Language

	Syntax-Directed Translation
	Arithmetic Expressions
	Statements
	Boolean Expressions, Sequential Evaluation

	Translating More Complex Structures
	More Control Structures
	Arrays and Other Structured Data
	Role of Declarations in the Translation

