
Machine-Code Generation for Functions

Cosmin Oancea
cosmin.oancea@diku.dk

Department of Computer Science
University of Copenhagen

December 2012



University of Copenhagen Department of Computer Science

Structure of a Compiler
Programme text

↓
Lexical analysis Binary machine code

↓ ↑
Symbol sequence Assembly and linking

↓ ↑
Syntax analysis Ditto with named registers

↓ ↑
Syntax tree Register allocation

↓ ↑
Type Checking Symbolic machine code

↓ ↑
Syntax tree Machine code generation

↓ ↑
Intermediate code generation −→ Intermediate code

2 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

1 Problem Statement and Terminology

2 Caller-Saves Strategy

3 Callee-Saves Strategy

4 Mixed Strategy (Caller + Callee Saves)

5 Global Variables, Call by Reference, Aliasing

3 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Problem Statement

So far we have generated code for a single function:

A function call is simply translated to a CALL instruction.

Register allocation is performed on a single-function body.

We have assumed that all variables are local.

We have assumed that the function’s parameters and result are
passed via named variables (symbolic registers).

How to implement these in machine language?

4 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Call Stack

We use a stack to store the information that connects the caller to
the callee when a function call occurs:

The return address is stored on the stack.

The registers’ content is stored on the stack before the call and
is restored (in registers) after the call.

Parameters and return value are also passed on the stack.

Spilled variables are also stored on the stack.

Local array/records are also typically allocated on the stack.

Finally, non-local variables can be allocated on the stack.

5 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Activation Records

Each function allocates a piece of memory on the stack to keep
associated information. This piece of storage is called function’s
activation record or frame.

The hardware / operating system will dictate a calling convention
that would standardize the layout of the activation record (so that we
can call function across different compilers and languages).

However, some languages use extended calling conventions, such that
only “simple” functions can be called from other languages, i.e.,
foreign-function interface.

6 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

1 Problem Statement and Terminology

2 Caller-Saves Strategy

3 Callee-Saves Strategy

4 Mixed Strategy (Caller + Callee Saves)

5 Global Variables, Call by Reference, Aliasing

7 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Caller-Saves: Activation-Record Layout

The caller does the work of saving and restoring registers.

· · ·
Next activation records
Space for storing local variables for spill
or preservation across function calls
Remaining incoming parameters
First incoming parameter / return value

FP −→ Return address
Previous activation records
· · ·

The frame pointer, FP, indicates the beginning of the activation
record.

With this layout, the stack grows up in memory.

8 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Prologue, Epilogue and Call Sequence

The code of a function starts with a prologue, that (i) retrieves
parameters from the stack and places them in variables (registers),
and (ii) may save the registers to be preserved.

The code of a function ends with an epilogue that places the return
value back on stack, and may restore in registers the values saved in
the prologue, and then returns control to the calling function.

A CALL instruction is replaced with a call sequence, which places
arguments on stack, saves the registers to be preserved, saves the
return address, calls the function and moves the returned value from
the stack to a variable (register), restores the saved registers.

What the prologue, epilogue and call sequence do exactly depends on
the calling convention.

9 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Caller-Saves: Prologue and Epilogue

Assume a function with name function-name and parameters
parameter1 . . . parametern. The result is calculated in variable result.

We assume that the caller saves the registers: caller-saves.

Prologue


LABEL function-name
parameter1 := M[FP + 4]
· · ·
parametern := M[FP + 4 ∗ n]

code for the function body

Epilogue

{
M[FP + 4] := result
GOTO M[FP]

We used here IL instructions, but typically, the prologue, epilogue
and call sequence are introduced directly in machine language.

10 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Caller-Saves: Call Sequence
Consider call x := CALL f (a1, . . . , an).

Assume that RO . . .Rk are used for local variables.
framesize is the size of the current activation record.

M[FP + 4 ∗m + 4] := R0
· · ·
M[FP + 4 ∗m + 4 ∗ (k + 1)] := Rk
FP := FP + framesize
M[FP + 4] := a1
· · ·
M[FP + 4 ∗ n] := an
M[FP] := returnaddress
GOTO f
LABEL returnaddress
x := M[FP + 4]
FP := FP − framesize
R0 := M[FP + 4 ∗m + 4]
· · ·
Rk := M[FP + 4 ∗m + 4 ∗ (k + 1)] 11 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

1 Problem Statement and Terminology

2 Caller-Saves Strategy

3 Callee-Saves Strategy

4 Mixed Strategy (Caller + Callee Saves)

5 Global Variables, Call by Reference, Aliasing

12 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Callee-Saves: Activation Records

The callee makes all the work of saving and restoring registers.

· · ·
Next activation records
Space for storing local variables for spill
Space for storing registers that need to
be preserved
Remaining incoming parameters
First incoming parameter / return value

FP −→ Return address
Previous activation records
· · ·

Difference: separate space for saved and spilled registers.

13 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Callee-Saves: Prologue and Epilogue

Prologue



LABEL function-name
M[FP + 4 ∗ n + 4] := R0
· · ·
M[FP + 4 ∗ n + 4 ∗ (k + 1)] := Rk
parameter1 := M[FP + 4]
· · ·
parametern := M[FP + 4 ∗ n]

code for the function body

Epilogue


M[FP + 4] := result
R0 := M[FP + 4 ∗ n + 4]
· · ·
Rk := M[FP + 4 ∗ n + 4 ∗ (k + 1)]
GOTO M[FP]

Difference: R0 . . .Rk are saved in prologue and restored in epilogue.

14 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Callee-Saves: Call Sequence

FP := FP + framesize
M[FP + 4] := a1
· · ·
M[FP + 4 ∗ n] := an
M[FP] := returnaddress
GOTO f
LABEL returnaddress
x := M[FP + 4]
FP := FP − framesize

Difference: R0 . . .Rk are not stored here.

15 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Caller-Saves vs. Callee-Saves

So far, no big difference, but:

Caller-saves need only save the registers containing live variables.

Callee-saves need only save the registers that are used in the
function’s body.

Can use a mixed strategy: some registers are caller-saves and others
are callee-saves.

16 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Caller-Saves vs. Callee-Saves

So far, no big difference, but:

Caller-saves need only save the registers containing live variables.

Callee-saves need only save the registers that are used in the
function’s body.

Can use a mixed strategy: some registers are caller-saves and others
are callee-saves.

16 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

1 Problem Statement and Terminology

2 Caller-Saves Strategy

3 Callee-Saves Strategy

4 Mixed Strategy (Caller + Callee Saves)

5 Global Variables, Call by Reference, Aliasing

17 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Use of Registers for Parameter Passing

If parameters are passed on the stack, they must be transfered from
registers to stack and shortly after from stack to registers again.

The idea is to transfer some parameters and return value via registers:

Subset of caller-saves registers (typically 4-8), used for parameter
transfer (to be rarely preserved across call).

A caller-saves register (often the same) is used for the result.

The remaining parameters are transferred on the stack as shown.

Often the return address is also transferred in a register.

18 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Typical Register Breakdown

With a 16-register processor:

Register Saved by Used for
0 caller parameter 1 / result / local variable

1-3 caller parameters 2 - 4 / local variables
4-12 callee local variables
13 caller temporary storage (unused by register allocator)
14 callee FP
15 callee return address

Typically there are more callee-saves than caller-saves registers.

19 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Activation Records for Register-Passed Parameters

· · ·
Next activation records
Space for storing local variables for spill
and for storing live variables allocated to
caller-saves registers across function calls
Space for storing callee-saves registers
that are used in the body
Incoming parameters in excess of four

FP −→ Return address
Previous activation records
· · ·

20 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Prologue and Epilogue for Register-Passed Params

Prologue



LABEL function-name
M[FP + offsetR4] := R4 (if used in body)
· · ·
M[FP + offsetR12] := R12 (if used in body)
M[FP] := R15 (if used in body)
parameter1 := R0
parameter2 := R1
parameter3 := R2
parameter4 := R3
parameter5 := M[FP + 4]
· · ·
parametern := M[FP + 4 ∗ (n − 4)]
code for the function body

Epilogue


R0 := result
R4 := M[FP + offsetR4] (if used in body)
· · ·
R12 := M[FP + offsetR12] (if used in body)
R15 := M[FP] (if used in body)
GOTO R15

21 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Calling Sequence for Register-Passed Parameters

M[FP + offsetlive1 ] := live1 (if allocated to a caller-saves register)
· · ·
M[FP + offsetlivek ] := livek (if allocated to a caller-saves register)
FP := FP + framesize
R0 := a1
· · ·
R3 := a4
M[FP + 4] := a5
· · ·
M[FP + 4 ∗ (n − 4)] := an
R15 := returnaddress
GOTO f
LABEL returnaddress
x := R0
FP := FP − framesize
live1 := M[FP + offsetlive1 ] (if allocated to a caller-saves register)
· · ·
livek := M[FP + offsetlivek ] (if allocated to a caller-saves register)

22 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Interaction with Register Allocator
Register Allocation Can:

Preferably place the variables that are not live after the function
call in caller-saves registers (so that they are not saved).

Determine which caller-saves registers need to be saved by the
caller before the function call.

Preferably place the variables that are live after the function call
in callee-saves registers (i.e., the called function might not save
them if those registers are not used).

Determine which callee-saves register need to be saved by the
callee, i.e., used in the callee’s body.

Eliminate the unnecessary copying of data to and from local vars.

The strategy used most often: use caller-saves only for the variables
that are not live after the function call, hence they need not be saved.
This simplifies the call sequence.

23 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Interaction with Register Allocator
Register Allocation Can:

Preferably place the variables that are not live after the function
call in caller-saves registers (so that they are not saved).

Determine which caller-saves registers need to be saved by the
caller before the function call.

Preferably place the variables that are live after the function call
in callee-saves registers (i.e., the called function might not save
them if those registers are not used).

Determine which callee-saves register need to be saved by the
callee, i.e., used in the callee’s body.

Eliminate the unnecessary copying of data to and from local vars.

The strategy used most often:

use caller-saves only for the variables
that are not live after the function call, hence they need not be saved.
This simplifies the call sequence.

23 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Interaction with Register Allocator
Register Allocation Can:

Preferably place the variables that are not live after the function
call in caller-saves registers (so that they are not saved).

Determine which caller-saves registers need to be saved by the
caller before the function call.

Preferably place the variables that are live after the function call
in callee-saves registers (i.e., the called function might not save
them if those registers are not used).

Determine which callee-saves register need to be saved by the
callee, i.e., used in the callee’s body.

Eliminate the unnecessary copying of data to and from local vars.

The strategy used most often: use caller-saves only for the variables
that are not live after the function call, hence they need not be saved.
This simplifies the call sequence.

23 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Typical Function-Code-Generation Strategy
1 Generate code for the function’s body using symbolic registers

for named variables, but using numbered registers in the call
sequence for parameters.

2 Add the prologue and epilogue code for moving numbered
registers (and stack locations), i.e., parameters, into symbolic
registers, i.e., named variables (and the opposite for the result).

3 Call the register allocator on this expanded function body.
RegAlloc is aware of the register division: caller vs callee saves,
Allocates live-across-call variables only in callee-saves regs,
Finds both the set of used callee-saves regs and of spilled vars.

4 Add to the prologue and epilogue the code for saving/restoring
the callee-saves regs that RegAlloc said to have been used in the
extended function body + updating FP (including space for
saved regs and spilled vars).

5 Add a function label at prologue’s start and a jump at then end.

24 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

1 Problem Statement and Terminology

2 Caller-Saves Strategy

3 Callee-Saves Strategy

4 Mixed Strategy (Caller + Callee Saves)

5 Global Variables, Call by Reference, Aliasing

25 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Treating Global Variables

Global variables: allocated in memory at statically-known addresses.

Generated reading/writing code is similar to that of spilled variables:

x := M[addressx ]
instruction that uses x

x := the value to be stored in x
M[addressx ] := x

Various temporary variables (registers) may be used.

If a global variable is frequently used in a function, then copy-into a
register in the beginning, and copy-out to memory at the end.

Copy-in/out across fun calls + extra care in the presence of aliasing.

Morale: Use global variables sparingly, local variables are preferred.

26 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Call By Reference

The update to a function parameter is visible after the return point.
Also applies to fields of records, unions, array’s elements, etc.

Code generation typically treats such parameters as pointers.

Call by reference give rise to aliasing.

Morale: cheaper to update a variable via the returned value, rather
than passing it by reference: x = f(x); is cheaper than f(&x);.

27 / 28C.Oancea: Functions 12/2011



University of Copenhagen Department of Computer Science

Aliasing

Aliasing: if the same memory location can be accessed via two
different named variables.

This can occur when the language allows references, either

between two references pointing to the same place,

between a global variable and a reference to this.

If two names may alias, then

before reading from one save the other to memory,

if writing into one, then read the other again from memory
before using it.

Can be sometimes optimized be means of aliasing analysis.

28 / 28C.Oancea: Functions 12/2011


	Problem Statement and Terminology
	Caller-Saves Strategy
	Callee-Saves Strategy
	Mixed Strategy (Caller + Callee Saves)
	Global Variables, Call by Reference, Aliasing

