

- G:SaSB
 - S
 - В
- $B \rightarrow$ $Bb \mid b$ (alternative notation)
- Context-free grammars describe (context-free) languages over their terminal alphabet Σ .
- · Each nonterminal describes a set of words.
- Nonterminals recursively refer to each other. (cannot do that with regular expressions)

Example, Derivation of Words $G:S \rightarrow aSB(1)$ • Starting from the start symbol S,... • words of the language can be derived... • by successively replacing nonterminals with right-hand sides. $S \stackrel{1}{\Rightarrow} \underline{\mathsf{a}} \underline{\mathsf{S}} \underline{\mathsf{B}} \stackrel{1}{\Rightarrow} \underline{\mathsf{a}} \underline{\mathsf{a}} \underline{\mathsf{S}} \underline{\mathsf{B}} B \stackrel{5}{\Rightarrow} \underline{\mathsf{a}} \underline{\mathsf{a}} \underline{\mathsf{S}} \underline{\mathsf{b}} B \stackrel{1}{\Rightarrow} \underline{\mathsf{a}} \underline{\mathsf{a}} \underline{\mathsf{a}} \underline{\mathsf{S}} \underline{\mathsf{B}} b B$ $\stackrel{2}{\Rightarrow}$ aaa $BbB \stackrel{4}{\Rightarrow}$ aaa $BbbB \stackrel{5}{\Rightarrow}$ aaa $Bbbb \stackrel{5}{\Rightarrow}$ aaabbbb

UNIVERSITY OF COPENHAGEN

Derivation Relation

Definition (Derivation ⇒)

Let $G = (\Sigma, N, S, P)$ be a grammar.

The <u>derivation relation</u> \Rightarrow on $(\Sigma \cup N)^*$ is defined as follows:

- For an $X \in N$ and a production $(X \to \beta) \in P$ of the grammar, $\alpha_1 X \alpha_2 \Rightarrow \alpha_1 \beta \alpha_2$ for all $\alpha_1, \alpha_2 \in (\Sigma \cup N)^*$.
- Describes one derivation step using one of the productions.
- Can indicate used production by a number $(\stackrel{k}{\Rightarrow})$.
- Can indicate left-most (or right-most) derivation $(\stackrel{k}{\Rightarrow}_{l}, \stackrel{k}{\Rightarrow}_{r})$.

$$G: S \rightarrow aSB(1)$$

$$S \rightarrow \varepsilon$$
 (2)

$$S \stackrel{1}{\Rightarrow} \underline{aSB} \stackrel{1}{\Rightarrow} \underline{aaSB}B \stackrel{2}{\Rightarrow} \underline{aa_BB}$$

$$S \rightarrow \varepsilon$$
 (2)

$$S \rightarrow B$$
 (3)

$$B \rightarrow Bb (4)$$

$$B \rightarrow b$$
 (5)

Extended Derivation Relation (Transitive Closure)

Definition (Transitive Derivation Relation \Rightarrow^*)

Let $G = (\Sigma, N, S, P)$ be a grammar and \Rightarrow its derivation relation. The transitive derivation relation of G is defined as:

- $\alpha \Rightarrow^* \alpha$ for all $\alpha \in (\Sigma \cup N)^*$ (derived in 0 steps).
- For $\alpha, \beta \in (\Sigma \cup N)^*$, $\alpha \Rightarrow^* \beta$ if there exists a $\gamma \in (\Sigma \cup N)^*$ such that $\alpha \Rightarrow \gamma$ and $\gamma \Rightarrow^* \beta$ (derived in at least one step).

More generally, this is known as the transitive closure of a relation. In our previous examples, we saw $S \Rightarrow^*$ aaabbbb and $S \Rightarrow^*$ aabbb. That means, both words are in the language of G.

Definition (Language of a Grammar)

Let $G = (\Sigma, N, S, P)$ be a grammar and \Rightarrow its derivation relation. The language of the grammar is $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$.

 $\stackrel{4}{\Rightarrow}$ aaBb $B \stackrel{5}{\Rightarrow}$ aabb $B \stackrel{5}{\Rightarrow}$ aabbb

Syntax Tree and Directed Derivation

$$G:S \rightarrow aSB$$
 (1)

$$S \rightarrow aSB \quad (1)$$

 $S \rightarrow \varepsilon \quad (2)$

$$S \rightarrow \varepsilon$$

 $S \rightarrow B$

$$S \rightarrow B$$

 $B \rightarrow Bb$

$$B \rightarrow b$$

$$B \rightarrow b$$

- Syntax trees describe the derivation independent of the
- Left-most derivation: depth-first left-to-right tree traversal.
- $S \stackrel{1}{\Rightarrow} aSB \stackrel{1}{\Rightarrow} aaSBB \stackrel{2}{\Rightarrow} aaBBB \stackrel{4}{\Rightarrow} aaBbB \stackrel{5}{\Rightarrow} aabbB$

Nevertheless: $S \Rightarrow^*$ aabbb can be derived in two ways.

• $S \stackrel{1}{\Rightarrow} \underline{aSB} \stackrel{1}{\Rightarrow} \underline{aaSBB} \stackrel{3}{\Rightarrow} \underline{aaBBB} \stackrel{5}{\Rightarrow} \underline{aabBB} \stackrel{5}{\Rightarrow} \underline{aabbB} \stackrel{5}{\Rightarrow} \underline{aabbB}$

The grammar G is said to be ambiguous.

Avoiding Ambiguity (Changed Grammar)

$$G:S \rightarrow aSE$$

$$G': S \rightarrow AB$$

 $A \rightarrow aAb$

$$S \rightarrow B$$

$$B \rightarrow Bb$$

$$B \rightarrow b$$

$$A \rightarrow \varepsilon$$
 (3)

(2)

$$B \rightarrow bB$$
 (

Modify the grammar to make it non-ambiguous. (describing the same language), give a syntax tree for aabbb.

- Idea: generate extra bs separately by new start production
- Avoiding left-recursion (explained later)
- Left-most derivation: (1 2 2 3 4 5)

 $S \stackrel{1}{\Rightarrow}_{l} \underline{AB} \stackrel{2}{\Rightarrow}_{l} \underline{aAb}B \stackrel{2}{\Rightarrow}_{l} \underline{a\underline{Ab}}bB \stackrel{3}{\Rightarrow}_{l} \underline{aa}\underline{bb}B \stackrel{4}{\Rightarrow}_{l} \underline{aabb}\underline{bB} \stackrel{5}{\Rightarrow}_{l} \underline{aabbb}$

Parsing

Token sequence Syntax analysis

Syntax tree

- · Producing a syntax tree from a token sequence
- Representation of the tree: left-most or right-most derivation

Two approaches

- Top-Down Parsing: Builds syntax tree from the root. Builds a left-most derivation sequence
- Bottom-Up Parsing: Builds syntax tree from the leaves. Builds a reversed right-most derivation sequence
- Both: use stack to keep track of derivation.

Idea of Top-Down Parsing aabbb • Recursive functions modelling the productions ("recursive-descent") and parseA () =(* choose A -> a A b or A -> <epsilon> *) if should_use_production_2 then print "parsing_A: prod.__2"; match #"a"; parseA(); match #"b" else print "parsing_A: prod.__3";() How can we decide which production

to use? and parseB () =choose B -> b B or B -> <epsilon> *)
should_use_production_4

then print "parsing_uB:prod.u4"; match #"b"; parseB() else print "parsing_uB:prod.u5";()

NIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENCE

Top-Down Parsing (LL(1) Parsing)

- Producing a left-most derivation from a token sequence.
- Uses a stack (maybe the function call stack) to keep track of derivation.
- Called predictive parsing: needs to "guess" used productions.
- Information to choose the right production (look-ahead):
 - For each right-hand side: What input token can come first?
 - Special attention to empty right-hand sides. What can follow?
- A production $A \rightarrow \alpha$ is chosen
 - if look-ahead c and $\alpha \Rightarrow^* c\beta$ (can start with c).
 - or if look-ahead c , $\alpha \Rightarrow^* \varepsilon$, and c can follow A.

de 13 /45 — I Barthold — Compilere: Suntay Analysis — 11/201

JNIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENCE

FIRST Sets and Property NULLABLE

Definition (FIRST set and NULLABLE)

Let $G = (\Sigma, N, S, P)$ a grammar and \Rightarrow its derivation relation. For all sequences of grammar symbols $\alpha \in (\Sigma \cup N)^*$, define

- FIRST $(\alpha) = \{c \in \Sigma \mid \exists_{\beta \in (\Sigma \cup N)^*} : \alpha \Rightarrow^* c\beta\}$ (all terminals at the start of what can be derived from α)
- Nullable(α) = $\begin{cases} true & , \text{ if } \alpha \Rightarrow^* \varepsilon \\ false & , \text{ otherwise} \end{cases}$

Computing NULLABLE and FIRST for right-hand sides:

- Set equations recursively use results for nonterminals.
- Smallest solution found by computing a smallest fixed-point.
- Solved simultaneously for all right-hand sides of the productions.

lide 14/45 — J.Berthold — Compilers: Syntax Analysis — 11/2012

RSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENC

Computing Nullable by Set Equations

```
\begin{array}{lcl} \mathrm{Nullable}(\varepsilon) & = & \mathit{true} \\ \mathrm{Nullable}(a) & = & \mathit{false} \; \mathrm{for} \; a \in \Sigma \\ \mathrm{Nullable}(\alpha\beta) & = & \mathrm{Nullable}(\alpha) \wedge \mathrm{Nullable}(\beta) \; \mathrm{for} \; \alpha, \beta \in (\Sigma \cup \textit{N})^* \\ \mathrm{Nullable}(A) & = & \mathrm{Nullable}(\alpha_1) \vee \ldots \vee \mathrm{Nullable}(\alpha_n), \\ & & & & & & & & & & \\ \mathrm{nuing \; all \; productions \; for} \; \textit{A, } A \rightarrow \alpha_i \; (i \in \{1..n\}) \end{array}
```

• Equations for nonterminals of the grammar:

```
\begin{array}{lll} G':S & \to & AB & \text{Nullable}(S) & = & \text{Nullable}(AB) = true \\ A & \to & aAb \mid \varepsilon & \text{Nullable}(A) & = & \text{Nullable}(aAb) \vee \text{Nullable}(\varepsilon) = true \\ B & \to & bB \mid \varepsilon & \text{Nullable}(B) & = & \text{Nullable}(bB) \vee \text{Nullable}(\varepsilon) = true \\ \end{array}
```

• Equations for the right-hand side

 $\begin{array}{lcl} \text{Nullable}(AB) & = & \text{Nullable}(A) \land \text{Nullable}(B) \\ \text{Nullable}(aAb) & = & \text{Nullable}(a) \land \text{Nullable}(A) \land \text{Nullable}(b) = \textit{false} \\ \text{Nullable}(bB) & = & \text{Nullable}(b) \land \text{Nullable}(B) = \textit{false} \\ \text{Nullable}(e) & = & \textit{true} \end{array}$

Compute smallest solution of system, starting by false for all.

ide 15/45 — J.Berthold — Compilers: Syntax Analysis — 11/2012

UNIVERSITY OF COPENHAGEN

DEDIEMVENT OF GOVERNMEN SOIDVO

Computing FIRST by Set Equations

```
\begin{array}{lll} \operatorname{First}(\varepsilon) & = & \emptyset \\ \operatorname{First}(\mathsf{a}) & = & \mathsf{a} \text{ for } \mathsf{a} \in \Sigma \\ \operatorname{First}(\alpha\beta) & = & \begin{cases} \operatorname{First}(\alpha) \cup \operatorname{First}(\beta) & \text{, if Nullable}(\alpha) \\ \operatorname{First}(\alpha) & \text{, otherwise} \end{cases} \\ \operatorname{First}(A) & = & \operatorname{First}(\alpha_1) \cup \ldots \cup \operatorname{First}(\alpha_n), \\ \text{using all productions for } A, A \to \alpha_i \ (i \in \{1..n\}) \end{array}
```

• Equations for nonterminals of the grammar:

• Equations for the right-hand side

```
FIRST(aAB) = FIRST(a) = {a}
FIRST(bB) = FIRST(b) = {b}
FIRST(\varepsilon) = \emptyset
```

Compute smallest solution of system, starting by \emptyset for all sets.

Slide 16/45 — J.Berthold — Compilers: Syntax Analysis — 11/2012

DEPARTMENT OF COMPUTER SCIENCE

FOLLOW Sets for Nonterminals

$\ensuremath{\mathrm{First}}$ Sets are often not enough.

In production $X \to \alpha$, if $\mathrm{NullAble}(\alpha)$, we need to know what can follow X (FIRST set of α cannot provide this information).

Definition (FOLLOW Set of a Nonterminal)

Let $G=(\Sigma,N,S,P)$ a grammar and \Rightarrow its derivation relation. For each nonterminal $X\in N$, define

• FOLLOW(X) = {c $\in \Sigma \mid \exists_{\alpha,\beta \in (\Sigma \cup N)^*} : S \Rightarrow^* \alpha \underline{Xc}\beta$ } (all input tokens that follow X in sequences derivable from S)

To recognise the end of the input

- add a new character \$ to the alphabet
- ullet add start production S' o S\$ to the grammar.

Thereby, we always have $S \in Follow(S)$.

UNIVERSITY OF COPENHAGEN

Set Equations for Follow Sets

FOLLOW sets solve a collection of set constraints.

Constraints derived from right-hand sides of grammar productions

For $X \in N$, consider all productions $Y \to \alpha X \beta$ where X occurs on the right.

- First(β) \subseteq Follow(X)
- If Nullable(β) or $\beta = \varepsilon$: Follow(Y) \subseteq Follow(X)

If X occurs several times, each occurrence contributes separate equations.

Solve iteratively, starting by \emptyset for all nonterminals.

FOLLOW(
$$S$$
) = FOLLOW(B) = {\$}
FOLLOW(A) = {\$, b}

de 18/45 — J.Berthold — Compilers: Syntax Analysis — 11/2012

Putting it Together: Look-ahead Sets and LL(1)

After computing NULLABLE and FIRST for all right-hand sides and Follow for all nonterminals, a parser can be constructed.

Definition (Look-ahead Sets of a Grammar)

For every production $X \to \alpha$ of a context-free grammar G, we define the Look-ahead set of the production as:

$$la(X \to \alpha) = \begin{cases} \operatorname{FIRST}(\alpha) \cup \operatorname{FOLLoW}(X) & \text{, if } \operatorname{Nullable}(\alpha) \\ \operatorname{FIRST}(\alpha) & \text{, otherwise} \end{cases}$$

LL(1) Grammars

If for each nonterminal $X \in N$ in grammar G, all productions of Xhave disjoint look-ahead sets, the grammar G is LL(1) (left-to-right, left-most, look-ahead 1).

For an LL(1) grammar, a parser can be constructed which constructs a left-most derivation for valid input with one token look-ahead (predicting the next production from look-ahead).

J.Berthold — Compilers: Syntax Analysis — 11/2012 _

Recursive Descent with Look-Ahead

The grammar in our example is LL(1):

$$G':S \rightarrow AB \qquad la(S \rightarrow AB) \qquad = \operatorname{First}(AB) \cup \operatorname{Follow}(S) = \{a,b,\$\}$$

$$A \rightarrow aAb \qquad la(A \rightarrow aAb) \qquad = \operatorname{First}(aAB) = \{a\}$$

$$A \rightarrow \varepsilon \qquad la(A \rightarrow \varepsilon) \qquad = \operatorname{First}(\varepsilon) \cup \operatorname{Follow}(A) = \{b,\$\}$$

$$B \rightarrow bB \qquad la(B \rightarrow bB) \qquad = \operatorname{First}(bB) = \{b\}$$

$$B \rightarrow \varepsilon \qquad la(B \rightarrow \varepsilon) \qquad = \operatorname{First}(\varepsilon) \cup \operatorname{Follow}(B) = \{\$\}$$
 fun parseS ()
$$= \operatorname{if next} = \#^n \text{ or else next} = \#^n \text{ b}^n \text{ or else next} = \operatorname{EOF}$$

$$\qquad \qquad \operatorname{then parseA}(); \; \operatorname{parseB}(); \; \operatorname{match EOF else error}$$
 and
$$\operatorname{parseA}() \; (* \; \operatorname{choose} \; \operatorname{by} \; \operatorname{look-ahead} \; *)$$

$$= \operatorname{if next} = \#^n \text{ b}^n \; \operatorname{orelse} \; \operatorname{next} = \operatorname{EOF} \; \operatorname{then}()$$

$$= \operatorname{else} \; \operatorname{if next} = \#^n \text{ b}^n \; \operatorname{orelse} \; \operatorname{next} = \operatorname{EOF} \; \operatorname{then}()$$

$$= \operatorname{else} \; \operatorname{error}$$
 and
$$\operatorname{parseB}() = \operatorname{if} \; \operatorname{next} = \#^n \text{ b}^n \; \operatorname{then} \; \operatorname{match} \; \#^n \text{ b}^n \; ; \; \operatorname{parseB}()$$

$$= \operatorname{else} \; \operatorname{if} \; \operatorname{next} = \#^n \text{ b}^n \; \operatorname{then} \; \operatorname{match} \; \#^n \text{ b}^n \; ; \; \operatorname{parseB}()$$

$$= \operatorname{else} \; \operatorname{if} \; \operatorname{next} = \operatorname{EOF} \; \operatorname{then}()$$

$$= \operatorname{else} \; \operatorname{if} \; \operatorname{next} = \operatorname{EOF} \; \operatorname{then}()$$

$$= \operatorname{else} \; \operatorname{error}$$

Table-Driven LL(1) Parsing

- Stack, contains unprocessed part of production, initially S\$.
- Parser Table: action to take, depends on stack and next input
- Actions (pop consumes input, derivation only reads it)

Pop: remove terminal from stack (on matching input).

Derive: pop nonterminal from stack, push right-hand side (in table).

· Accept input when stack empty at end of input.

	Look-ahead/Input:				
Stack:	a	b	· \$		
S	AB, 1	AB, 1	AB, 1		
Α	aAb, 2	ε, 3	ε, 3		
В	error	bB, 4	ε, 5		
a	рор	error	error		
b	error	рор	error		
\$	error	error	accept		

Examp	le run	(input	aabbb)	Ì

Example run (input aabbb).					
Input	Stack	Action	Output		
aabbb\$	<i>S</i> \$	derive	ε		
aabbb\$	AB\$	derive	1		
aabbb\$	aAbB\$	pop	12		
abbb\$	AbB\$	derive	12		
abbb\$	aAbbB\$	pop	122		
bbb\$	AbbB\$	derive	122		
bbb\$	bbB\$	pop	1223		
bb\$	bB\$	pop	1223		
ъ\$	B\$	derive	1223		
b\$	bB\$	pop	12234		
\$	B\$	derive	12234		
\$	\$	accept	122345		

Eliminating Left-Recursion and Left-Factorisation

Problems that often occur when constructing LL(1) parsers:

- Identical prefixes: Productions $X \to \alpha\beta \mid \alpha\gamma$. Requires look-ahead longer than the common prefix α . Solution: Left-Factorisation, introducing new productions $X \to \alpha Y$ and $Y \to \beta \mid \gamma$.
- Left-Recursion: a nonterminal reproducing itself on the left. Direct: production $X \to X\alpha \mid \beta$, or indirect: $X \Rightarrow^* X\alpha$. Cannot be analysed with finite look-ahead!

 $X \to X\alpha \mid \beta$, thus $FIRST(X) \subset FIRST(X\alpha) \cup FIRST(\beta)$

Solution: new (nullable) nonterminals and swapped recursion. $X \to \beta X'$ and $X' \to \alpha X' \mid \varepsilon$

Also works in case of multiple left-recursive productions. For indirect recursion: first transform into direct recursion.

Contents

- Context-Free Grammars and Languages
- 2 Top-Down Parsing, LL(1) Look-Ahead Sets and LL(1) Parsing
- 3 Bottom-Up Parsing, SLR Parser Generator Yacc Shift-Reduce Parsing

Bottom-Up Parsing

LL(1) Parser works top-down. Needs to guess used productions. Bottom-Up approach: build syntax tree from leaves.

$$G'': S' \rightarrow S\$ \quad (0)$$

$$S \rightarrow AB \quad (1)$$

$$A \rightarrow aAb \quad (2)$$

$$A \rightarrow \varepsilon \quad (3)$$

$$B \rightarrow bB (4)$$
 $B \rightarrow \varepsilon (5)$

 $S' \overset{\bigcirc}{\Rightarrow}_r S\$ \overset{1}{\Rightarrow}_r \underbrace{AB} \overset{4}{\Rightarrow}_r A\underline{bB} \overset{5}{\Rightarrow}_r A\underline{b} - \overset{2}{\Rightarrow}_r \underbrace{aAb} + \overset{2}{\Rightarrow}_r \underbrace{aAb} + \overset{3}{\Rightarrow}_r \underbrace{aAb} + \overset$

Bottom-Up Parsing: Idea for a Machine S\$ (0) AB (1) Action Stack Input aAb(2)aabbb\$ shift ε (3) abbb\$ shift bB (4) reduce 3 aa bbb\$ aaAbbb\$ shift reduce 2 a<u>aAb</u> bb\$ a.A bb\$ shift reduce 2 aAb ъ\$ b\$ shift A b reduce 5 \$ *A* <u>b</u>*B* \$ reduce 4 reduce 1 accept Questions:

mosmlyac: Yet Another Compiler Compiler in MosML

- Generates bottom-up parser from a grammar specification
- Grammar specification also includes token datatype declaration and other declarations.

Demo mosmlyac

Tradition: Lex and Yacc (GNU: flex and bison)

- Parser generators usually use LALR(1) Parsing².
- We use SLR parsing instead: Simple Left-to-right Right-most analysis with look-ahead 1.

 2 More information about LALR(1) and LR(1) parsing can be found in the Red-Dragon book

Constructing an SLR-Parser: Items

Each production in the grammar leads to a number of items:

• When to accept (solved: separate start production) • When to shift, when to reduce? Especially $R \to \varepsilon$.

Shift Items and Reduce Items of a Production

Let $X \to \alpha$ be a production in a grammar.

The production implies:

- Shift items: $[X \to \alpha_1 \bullet \alpha_2]$ for every decomposition $\alpha = \alpha_1 \alpha_2$ (including $\alpha_1 = \varepsilon$ and $\alpha_2 = \varepsilon$);
- One reduce item: $[X \to \alpha \bullet]$ per production.

Items give information about the next action:

- · Either to shift an item to the stack and read input
- or to reduce the top of stack (a production's right-hand side).
- Stack of the parser will contain items, not grammar symbols.
- Therefore, no need to read into the stack for reductions.

Constructing an SLR Parser: Production DFAs

Each production $X \to \alpha$ suggests a DFA with items as states, and doing the following transitions:

- From $[X \to \alpha \bullet a\beta]$ to $[X \to \alpha a \bullet \beta]$ for input tokens a. These will be Shift action that read input later.
- From $[X \to \alpha \bullet Y\beta]$ to $[X \to \alpha Y \bullet \beta]$ for nonterminals Y. These will be Go actions later, without consuming input.

All items are states, start state is the first item $[X \to \bullet \alpha]$.

 $\boxed{ [\mathsf{A} \to \bullet] }$ $A \rightarrow \varepsilon$

> While traversing the DFA: items pushed on the stack. When reaching a reduce item: use stack to back-track (later).

SLR Parser Construction: Example(2)

Productions

 $S \rightarrow AB$

 $B \to \varepsilon$

B o bB

 $A \rightarrow \varepsilon$

Productions NFA $S \rightarrow AB$ $B o \varepsilon$ B o bB $A \rightarrow \varepsilon$ $A o \mathtt{a} A\mathtt{b}$

SLR Parser Construction: Example

Extra ε -transitions connect the DFAs for all productions:

• From $[X \to \alpha \bullet Y\beta]$ to $[Y \to \bullet \gamma]$ for all productions $Y \to \gamma$ When in front of a nonterminal \boldsymbol{Y} in a production DFA: try to run the DFA for one of the right-hand sides of $\,Y\,$ productions.

 $A o \mathtt{a} A\mathtt{b}$ Next step: Subset construction of a combined DFA.

Blackboard...

NFA

LIVERSITY OF COPENHAGE

DEPARTMENT OF COMPUTER SCIENCE

SLR Parsing: Internal DFA and Stack

- Transitions: Shift actions (terminals) and Go actions (nonterminals).
- Final DFA states: contain reduce items. Reduce actions need to be added to the transition table.
- Reduce action: remove items from stack corresponding to right-hand side, then do a Go action with the left-hand side.
- SLR Parse Table: actions indexed by symbols and DFA states

Shift n Terminal transition: push state n on stack, consume input

Go n Nonterminal transition: push state n on stack, (no input read)

Reduce p Reduce with production p

Accept Parsing has succeeded (reduce with production 0).

Ilda 21 /46 | I Bookhold | Compilers Contact Applied | 11 /2012

DEPARTMENT OF COMPUTER SCIENCE

SLR Parser Construction: Conflicts

- After constructing a DFA: shift and go actions.
- Next: add reduce actions for states containing reduce items

SLR Parser Conflicts

Subset construction of the DFA might join conflicting items in one DFA state. We call these conflicts

- <u>Shift-Reduce conflict</u>, if a DFA state contains both shift and reduce items.
 - Typically, productions to ε generate these conflicts.
- <u>Reduce-Reduce conflict</u>, if a DFA state contains reduce items for two different productions.

In SLR parsing: ${
m FOLLOW}$ sets of nonterminals are compared to the look-ahead to resolve conflicts.

de 32/45 — J.Berthold — Compilers: Syntax Analysis — 11/201

 $\begin{array}{cccc}
A & \rightarrow & \varepsilon & (3) \\
B & \rightarrow & bB & (4)
\end{array}$

 $B \rightarrow \varepsilon$ (5)

2 2 red.3 red.3 Go 4 3 Go 7 6 red.5 4 5 5 red.2 red.2 6 6 red.5 Go 8 red.1 8 red 4

• FOLLOW Sets of Nonterminals:

Follow(S) = {\$} Follow(A) = {b,\$} Follow(B) = {\$}

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENCE

Table-Driven SLR Parsing

- Stack contains DFA states, initially start state 0.
- SLR Parse Table: actions and transitions

Shift: do a transition consuming input, push new state on stack
Reduce: pop length of right-hand-side from stack, then go to a new
state with left-hand side non-terminal, push new state on stack

Accept input when accept state reached at end of input.

	a	b	\$	5	А	B	Example run (aabb	ь):
0	2	red.3	red.3	Go 1	Go 3		Stack Input Actio	
1			acc.				0 aabbb\$ shift	
2	2	red.3	red.3		Go 4		02 abbb\$ shift	2
	-				00 1	c -	022_ bbb\$ redu 0224 bbb\$ shift	
3		6	red.5			Go 7	0224 bb\$ redu	
4		5					024 bb\$ shift	
5		red.2	red.2				0 <u>245</u> b\$ redu	
						C - 0	03 b\$ shift	
6		6	red.5			Go 8	036_ \$ redu	
7			red.1					
8			red.4				037 \$ redu 01 \$ acce	
	l			I				

Slide 34/45 — J.Berthold — Compilers: Syntax Analysis — 11/201:

VERSITY OF CO

DEPARTMENT OF COMPUTER SCIENCE

Contents

- Context-Free Grammars and Languages
- 2 Top-Down Parsing, LL(1)

Recursive Parsing Functions (Recursive-descent

First- and Follow-Sets

Look-Ahead Sets and LL(1) Parsing

- 3 Bottom-Up Parsing, SLR Parser Generator Yacc Shift-Reduce Parsing
- Precedence and Associativity

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENC

Ambiguity, Precedence and Associativity

Arithmetic Expressions:

 $E \rightarrow E + E \mid E - E$

 $E \rightarrow E * E \mid E/E$

 $E \rightarrow a \mid (E)$

- In many cases, grammars are rewritten to remove ambiguity.
- Sometimes, ambiguity is resolved by changes in the parser.
- In both cases: Precedence and associativity guide decisions.

Problems with this grammar:

- **1** Ambiguous derivation of a a * a. Want precedence of * over +, $a + (a \cdot a)$.
- ② Ambiguous derivation of a a a. Want a left-associative interpretation, (a - a) - a.

lide 36/45 — J.Berthold — Compilers: Syntax Analysis — 11/2012

Operator Precedence in the Grammar

- Introduce precedence levels to get operator priorities
- New Grammar: own nonterminal for each level
- Here: 2 levels, mathematical interpretation: $a - a \cdot a = a - (a \cdot a)$ Precedence of * and / over + and -. More precedence levels could be added (exponentiation).

$$E \rightarrow E + E \mid E - E$$

$$E \rightarrow E * E \mid E/E$$

$$E \rightarrow a \mid (E)$$

$$E \rightarrow E + E \mid E - E \mid T$$

$$T \rightarrow T * T \mid T/T$$

$$T \rightarrow a \mid (E)$$

About Operator Associativity

Definition (Operator Associativity)

A binary operator \oplus is called

- <u>left-associative</u>, if the expression $a \oplus b \oplus c$ should be evaluated from left to right, as $(a \oplus b) \oplus c$.
- right-associative, if the expression $a \oplus b \oplus c$ should be evaluated from right to left, as $a \oplus (b \oplus c)$.
- non-associative, if expressions $a \oplus b \oplus c$ are disallowed, (and associative, if both directions lead to the same result).

Examples:

- Arithmetic operators like and /: left-associative.
- List constructors in functional languages: right-associative.
- Function arrows in types: right-associative.
- 'less-than' (<) in C: left-associative

if (3 < 2 < 1) { fprintf(stdout, "Awesome!\n"); }

lers: Syntax Analysis — 11/2012 ___

DEPARTMENT OF COMPUTER SCIENCE

Establishing the Intended Associativity

- limit recursion to the intended side
- When operators are indeed associative, use same associativity as comparable operators.
- Cannot mix left- and right-associative operators at same precedence level.

DEPARTMENT OF COMPUTER SCIENCE

Precedence and Associativity in SLR Parse Tables

Precedence and ambiguity usually materialise as shift-reduce conflicts in SLR parsers.

$$\begin{array}{cccc} E & \rightarrow & E*E \mid E+E \mid \dots & & & & [E \rightarrow E+E \bullet], \\ & & \mid a \mid (E) & & \Longrightarrow & & [E \rightarrow E \bullet + E], \\ & & & [E \rightarrow E \bullet * E] \end{array}$$

Shift-Reduce conflict!

Instead of rewriting the grammar, resolve conflicts by targeted changes to parser table.

- if operator symbol with higher precedence follows: Shift
- if operator should be right-associative: Shift
- if symbol of lower precedence or left-associative: Reduce

Example: Resolving Precedence and Ambiguity

Regular expressions:

$$R \rightarrow R'|'R$$

 $R \rightarrow RR$

$$R \rightarrow R^{**}$$

$$R \rightarrow R^{**}$$

$$R \rightarrow \operatorname{char} | (R)$$

New grammar:

$$R \rightarrow R'|R2 \mid R2$$

$$R2 \rightarrow R2R3 \mid R3$$

$$R3 \rightarrow R4'^*' \mid R4$$

 \rightarrow char |(R)

1 Precedence: star, sequence, alternative

a | b a* is
$$a|(b(a^*))$$
.

2 Left-associative derivations: $\alpha + \beta + \gamma$ is $(\alpha|\beta)|\gamma$.

Precedence/Associativity declarations:

_____ mosmlyac file -%token BAR STAR LPAREN RPAREN ... :... /* lowest precedence */
%nonassoc CHAR LPAREN
%left seq /* pseudo-token for sequence */
%nonassoc STAR /* highest precedence */ R : R BAR R | R R %pre | R STAR n { ... } rec seq { ... }

| CHAR { ... } | LPAREN R RPAREN { ... }

Full example: Mosmlyac Demo (regular expressions)

One word about the Syntax Trees

- Concrete Syntax contains many extra tokens for practical reasons:
 - · Parentheses, braces, ... for grouping,
 - Semicolons, commas, ... to separate statements or arguments.
 - begin, end ... (also a kind of parentheses).
- Following stage works on abstract syntax tree without those

NIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENC

One word about the Syntax Trees

- Concrete Syntax contains many extra tokens for practical reasons:
 - Parentheses, braces, ... for grouping,
 - Semicolons, commas, ... to separate statements or arguments.
 - begin, end ... (also a kind of parentheses).
- Following stage works on abstract syntax tree without those

 $\textbf{begin} \quad \textit{id} \ := \ \textit{num} \ + \ \textit{id} \quad ; \quad \textbf{if} \quad \textit{id} \ < \ \textit{num} \quad \textbf{then} \quad \textit{id} \ := \ \textit{id} \ + \ \textit{num} \quad \textbf{end}$

le 43/45 — J.Berthold — Compilers: Syntax Analysis — 11/2012

lide 44/45 — J.Berthold — Compilers: Syntax Analysis — 11/2

NIVERSITY OF COPENHAGE

DEPARTMENT OF COMPUTER SCIENC

More about Context-Free Languages

- Context-Free languages are commonly processed using a stack machine (Push-Down Automaton, PDA)
- Can count one thing at a time, or remember input. $\{a^nb^n\mid n\in\mathbb{N}\}$ context-free. $\{a^nb^nc^n\mid n\in\mathbb{N}\}$ not context-free!
- Palindromes over Σ: context-free language.
 However: non-deterministic (need to guess the middle).
 Non-deterministic stack machines are more powerful than deterministic ones (unlike NFAs and DFAs)!
- Context-free languages are closed under union: L_1, L_2 context-free $\sim L_1 \cup L_2$ context-free.
- ... but not closed under intersection (famous counter examples above) and complement (by de Morgan's laws).

NIVERSITY OF CO

DEPARTMENT OF COMPUTER SCIENCE

Summary

Context-free grammars and languages

• Writing and rewriting grammars can be tricky! :-)

Top-down parsing (recursive-descent)

- FIRST- and FOLLOW-sets;
- Look-ahead sets for decisions in recursive-descent parser.

Bottom-up parsing (shift-reduce parsing, SLR parsing)

- Items, grammar-implied NFA and subset construction;
- Reduce actions in transition table, stack of visited states.

Precedence and associativity

 \bullet Solved in the grammar or by manipulation of the SLR parser.

lide 45/45 — J.Berthold — Compilers: Syntax Analysis — 11/2012