Tentative List of Project Offerings by TOPPS Members, Spring
2009

2. februar 2009

The current document is a list of bachelor thesis and master project offerings by TOPPS group members
for quarters 1 and 2 2009.

The current list has been finalized Tuesday, January 13.

Each project description occurs as outlined by the supervisor; there is at present no common format for
descriptions.

1 Andrzej Filinski

1.1 Implementation of Scan-Based Data Parallelism on CUDA

The vector-scan model is a general framework for expressing data-parallel algorithms in a deterministic
setting. It is based on a combination of elementwise operations (arithmetic and scatter/gather primitives)
and so-called "scans” or ”prefix sums”, which transform a vector of numbers (e.g., [1,5,2,6,3,2]) into a
vector of the sums of all initial segments of that vector ([1,6,8,14,17,19]). While this may at first appear to
be an inherently sequential operation, it can actually be efficiently parallelized across multiple processing
elements. Moreover, that parallelization strategy works for any associative operation, not only addition.

Parallel scans enable efficient parallelization of a wide range of higher-level fundamental operations, such
as packing all the elements of a vector that satisfy some property into a shorter vector. Most notably,
however, they also play an important role in so-called ”"nested data parallelism”, in which elementwise
parallel operations are preformed not on atomic data, but on vectors of inner vectors, not necessarily of
the same size. For example, given the vector of integer vectors [[1,5,2,6], [3,2]], we may want to compute
their individual scans [[1,6,8,14], [3,5]] while still keeping all processing elements busy. The experimental
nested data-parallel language NESL is based on an ML-like functional language extended with vector-
scan operations and allows many classical parallel algorithms to be expressed at a very high level of
abstraction, yet still be implemented efficiently.

Project:

Implement a library of vector-scan operations on top of nVidia’s CUDA library for general-purpose
computation on graphics processors, and assess its potential as a platform for executing data-parallel
algorithms. A larger project (multi-person or M.Sc. thesis) might investigate retargeting the NESL
compiler — which originally targeted several 1990s-era supercomputer architectures — to modern com-
modity hardware. The work can focus on practical experimentation, on more theoretical analyses of the
implementation strategy, or a mixture of both.

Level: B.Sc. project, M.Sc. project, or M.Sc. thesis

Prerequisites: General knowledge of multiprogramming and compilation; practical programming/implementation
skills.



1.2 Natural-Language Presentation of Formal Proofs

Formal proofs based on natural deduction can be readily checked by machine, but also quite closely mirror
precise mathematical argumentation, as done by humans. The main difference is that formal logic proofs
are conceptually tree-like objects built out of inference-rule instances, while natural-language proofs are
inherently linear presentations of the same basic steps, obtained by some suitable traversal of the proof
tree — a process which should itself be mechanizable. The goal of generating a natural-language proof
is not so much to verify that the proof is correct (a machine can do that much more reliably), but to
convey the main insights behind a machine-formalized proof in the most effective way — keeping in mind
that humans tend to have a very short mental stack.

Project:

Survey the existing literature on natural-language proof presentation (there isn’t very much) and im-
plement some of the suggested strategies, and/or develop new ones. Depending on the level and size,
the project can focus either on covering a reasonable spectrum of formalized proofs, or on generating
easy-to-read natural language.

Level: B.Sc. project, M.Sc. project, or M.Sc. thesis

Prerequisites: A course in logic, semantics, or type systems. A little background in natural-language
processing might prove handy, but is not required.

1.3 Pretty-Printing of Formalized Programming-Language Definitions

The LF logical framework (as used in the Twelf proof assistant) is a domain-specific metalanguage
for formalizing programming language syntax, semantics, type systems, and logics. It allows one to
represent a collection of inference rules defining a semantic judgment (such as ”expression e evaluates
to value v” or ”expression e has type tau”) as a set of datatypes with suitable constructors, such that
checking correctness of a derivation of the judgment amounts to type-checking a collection of terms in
the metalanguage. Likewise, it is possible to automatically search for derivations of a judgment, e.g., to
execute test programs using a formalized operational semantics.

The formal LF metalanguage, however, is based on a plain textual syntax, while most presentations of
formal systems (in research papers or textbooks) use a variety of fonts, styles, and special symbols to
represent grammars, inference rules, and derivations. Thus, even if the system is fully formalized, there is
a significant gap between the formalized and the presentational versions, requiring both to be developed
and maintained in parallel. It would be much preferable if the presentational form could be generated
directly from the formalized one, in such a way that misprints and tedious hand-typesetting could be
avoided entirely. To do this, the formalized system would be augmented with markup comments saying,
for example, that ”<if el €2 e3>" should be typeset as ”if <el> then <e2> else <e3>” (but with the
keywords in bold), or that the evaluation judgment ” <eval e v>" would be written as ”<e> ==> <v>"
(with a proper arrow symbol).

Project:

Develop a system for pretty-printing LF-formalized definitions and derivations to be included as figures
in LaTeX documents. There are opportunities for focusing either on specific formatting issues and the
details of the markup language, or for investigating on how some advanced features of LF, such as higher-
other abstract syntax (a uniform way of dealing with variable-binding constructs and substitutions) can
be reliably mapped to a traditional ”paper” representation.

Level: M.Sc. project or M.Sc thesis.

Prerequisites: one (or preferably more) courses on logic, semantics, or type systems. Working knowledge
of TeX/LaTeX, MathML, or a similar markup language, Some prior exposure to Twelf or other proof
assistants would be ideal, but is not required.



1.4 Certified Code

Certified, or proof-carrying, code consists of an executable program (whether expressed in machine code
or in some intermediate language such as JVM or .NET bytecodes), together with an independently
verifiable mathematical/logical proof that the code satisfies some additional property,. Typically this
property dies not specify full functional correctness, but only, e.g, that the code is sufficiently well-
behaved that it may be executed in a trusted environment without runtime sandboxing. Unlike the
superficially related notion of cryptographic ”code signing”, a formal certificate does not rely on trust in
a person or organization, but ultimately only in the laws of logic themselves.

The certificates can either be generated completely automatically by the compiler (which can insert
additional runtime checks if it cannot guarantee that the original code is correct/safe without them), or
based on additional hints from the programmer (such as loop invariants) that codify a formal reason for
why the code is correct as written. In addition to proving a certificate of correctness to the end user,
formalized proofs of specification satisfaction are also useful in the development process, to keep track of
internal interfaces and correct implementations of modules according to these interfaces, as seen e.g., in
the Spec# framework for C# or JML for Java.

Project:

A large number of projects are possible, depending on both the nature of the executable code and the
properties to be certified. See http://www.diku.dk/~andrzej/certcomp.html for more details.

Prerequisites: One or more courses on logic, semantics, or type systems.

Level: B.Sc. project, M.Sc. project, or M.Sc. thesis

2 Robert Gluck

2.1 Program Inversion and Reversible Computation

Many problems in computation can be specified in terms of computing the inverse of an easily constructed
function. Program inversion is one of the fundamental operations on programs. A familiar example of
two programs that are inverse to each other is the encoding and decoding of data. The proposed projects
explore different manifestations of program inversion, reversible logic circuits and reversible programming
languages, and their connection to quantum computing.

Prerequisites: Good knowledge of programming languages and/or compiler construction, and having fun
constructing experimental software and trying new ideas. Ideally, the course Program Inversion and
Reversible Computation.

3 Fritz Henglein

See “Pan-TOPPS projects”.

4 Jyrki Katajainen

Contact supervisor directly.



5 Ken Friis Larsen

5.1 New Backend for Moscow ML

Design, implement and evaluate a new backend for Moscow ML. This could be a backend targetting .NET
CIL or JVM bytecode, for instance.

5.2 Code Duplication Discovery and Code Merging of NAV C/AL Code with
git

Use the infrastructure from the version control system git (http://git-scm.com/) to construct code
duplication discovery and code merging tools for the programming language C/AL. C/AL is the pro-
gramming language used in the ERP system Microsoft Dynamics NAV.

5.3 Additional projects offered by Ken Friis Larsen

See “Pan-TOPPS projects below”.

6 Julia Lawall

6.1 Finding Bugs in Open-Source Software

Project Description Software seems to be intrinsically riddled with bugs. In the case of open-source
software, everyone has the chance to search for such bugs and submits bug fixes. Still, to find a bug,
one has to have some idea of where to look and for what. In recent work, members of the TOPPS group
have developed, in collaboration with researchers at the Ecole des Mines de Nantes, Coccinelle, a tool
for searching and transforming C code. Coccinelle has been primarily applied to Linux code, both for
updating code with respect to changes in the Linux internal APIs and for finding bugs. The goal of
this project is to study the applicability of Coccinelle to transforming and finding bugs in other kinds of
systems software, such as Gnome, BSD, or MacOS.

6.2 Debugging oopses

Find and fix the bugs that cause the oopses in the Linux kernel oopses database. I suspect this project
will have a low chance of success, if that is defined as finding and fixing a lot of bugs. What is interesting
is to understanding the process and what kinds of tools could be useful in this setting.

Master’s project, 7.5 ECTS.



6.3 Implementing Semantics

When designing a programming language, it is a useful exercise to write down in a formal way the
semantics of the language as well as the definition of any associated analyses. But as the language
evolves, the written specification tends to fall behind the actual implementation. Furthermore, while
the implementation benefits from any type checking provided by the implementation language and from
subsequent testing, it is very easy to make mistakes in a written specification. The purpose of this project
is to evaluate and try to improve on tools that have been designed to bring together the specification of
language tools and their implementation. The semantics, type systems, and flow analyses of a number of
domain-specific languages are available for use as test cases.

Prerequisites: DAT-V Programmeringssprog or the equivalent.

7 Torben Mogensen

Contact supervisor directly (also see “Pan-TOPPS-projects”).

8 Jakob Grue Simonsen

8.1 Automated Harvesting of Music Corpora

Traditional analysis of sheet music consists of one or more persons analysing rhythm, chord sequences
and other characteristics of a single piece, set in the context of an often vague comparison of other pieces
by the same composer or other composers from the same period.

Traditional automated analysis of music has barely treated sheet music, but has focused on signal analysis
and the use of machine learning techniques to extract and classify within, say, mood or genre.

In contrast, incipient research at DIKU aims to automate parts of the analysis of sheet music. The added
value is the potential for extracting information from large volumes of sheet music that cannot easily be
done by hand and cannot be meaningfully analysed by machine learning techniques.

The current project aims at extending prototype tools developed at DIKU for mass harvesting and large-
scale analysis of sheet music, with a particular focus on (i) providing analysis of chord sequences, (ii)
ensuring high data quality.

The particular analysis to be performed will the verification/falsification of a number of hypotheses related
to the entropy of chord selection. Informally: ”How does the unpredictability of 'what the next chord will
be’ scale with the length of the piece?”, "Does a composer’s choice of chords become more unpredictable
with age?”, ”Is there a quantitative difference in the predictability of chord choice in ’great’ composers
compared to their contemporaries?”.

Particular tasks:

1. Implement a harvester (pre-existing DIKU-developed prototype code exists for this purpose) for
automated downloading of and meta-data-generation for music scores from online repositories.

2. Modify existing DIKU-developed scripting tools for batch-processing sheet music conversion to
MusicXML using commercial applications.



3. Devise and implement a method for converting sheet music to MusicXML with minimum error using
an array of existing commercial applications (colloquially: Let several programs vote to obtain the
correct answer).

4. Perform analysis of the entropy of chord sequences for a large dataset using chords extracted from
MusicXML.

Hardware and commercial software will be supplied by the supervisor. Prototype software for much of
the above exists already and will be provided.

Level: Bachelor’s thesis or master’s project.
Workload: Approx. 15 ECTS (may be extended to 30 ECTS).

Prerequisites: Practical programming skills. Ability to read music a distinct advantage. Basic knowledge
of statistics an advantage.

Notes: Highly practical, ambitious project. Will require both significant skills in independent reasoning
and contact with the supervisor several times per week.

8.2 Parameter Extraction from MusicXML

MusicXML is one of the standard formats for representing music in a hierarchical form that also allows
for storage of various kinds of metadata.

Unfortunately, the MusicXML format suffers from a number of infelicities that render the extraction of
information from raw MusicXML (without specific annotations) difficult. Hence, MusicXML has serious
drawbacks as a data format for large-scale statistical analysis of music.

The aim of this project is to devise simple algorithms for deriving a number of parameters from MusicXML
representing tonal music with the express purpose of using them for statistical analysis of corpora of sheet
music.

A brief shortlist of parameters to be extracted (more will be added as the project progresses):

1. Chromatic scale degree
2. Chord progression
Texture (number of voices active)

(Un)directed melodic intervals

oo W

Contour (shape of melodic interval progression over time)

Workload: 15-30 ECTS
Level: Bachelor’s thesis, master’s project or master’s thesis.

Notes: Practically-oriented project. Ability to read music an advantage.



8.3 Automated Frame-Based Paraphrasing of Natural Language

Ostensibly, the most common source of academic plagiarism is the direct syntactic copying of source
material with man-made paraphrasing.

The present project will serve as a proof-of-concept that, using natural-language semantic parsing, it is
possible to perform an automated paraphrasing that, apart from domain-specific terms, will fool several
of the standard tools for plagiarism detection.

The tool of choice will be semantic analysis using semantic frames. A semantic frame is, loosely, an
abstraction characterising some (natural language) semantic meaning such as ”applying heat to an object”
and an associated list of socalled ”frame elements” representing the semantically important syntactic
constituents of the frame. Thus, ”Puff incinerated the man” is an instantiation of the frame ”applying
heat to an object” and the associated frame elements are "actor”, "verb” and ”object”, instantiated as
"Puff”, 7incinerate”, and ”the man”.

The basic task in the project will be to associate each semantic frame with a number of different possible
instantiation and perform an automated replacement of some or all frame instantiations in a text with
other instantiations of the frames. Hence, the result will be semantically equivalent to the original input
text, but with significantly different syntax.

Particular tasks:

1. Using an existing setup of a semantic parser using Framenet, harvest and catalogue a database of
possible frame instantiations for the most common frames. Goal: For each possible frame, there is
a set of ”candidate sentences” with which one frame instantiation can be substituted with another.

A subtask will be to devise a suitable database format for storing frame instantiations.

2. Implement a tool that:

e Takes as input a plaintext document in English

e Semantically parses said document and employs some algorithm to replace frame instantia-
tions by instantiations found in the database described above (with suitable word-for-word
substitutions).

e Returns the document with substituted frame instantiations.
3. Assess and adapt the algorithm from 2 by

(a) Compile a small database of Engligh-language texts from a variety of domains to use as testbed.

(b) using state-of-the art, third-party plagiarism detection tools to detect whether the output is
deemed to a plagiarised version of the input.

(c) performing a qualitative estimate of the semantic (and literary) quality of the output (”Does
it convey the same meaning as the original?”, ”Is t he prose readable?”).
Level: Bachelor’s thesis or master’s project.
Workload: Approx. 15 ECTS (may be extended to 30 ECTS).
Prerequisites: Practical programming skills, at least one compiler course.

Notes: Highly practical, ambitious project. Will require both significant skills in independent reasoning
and contact with the supervisor several times per week.



8.4 Empirical Equidistribution of Algebraic Numbers

A description of the previous two student projects concerning this area is available at:
http://www.diku.dk/~simonsen/bach/pisot/.

The current project offering concerns stress-testing the Gupta-Mittal root-finding algorithm and comput-
ing approx. 10® digits of a large number of algebraic numbers from different classes as well as compiling
new statistics. The experimental results will, if succesful, very likely be publishable.

Level: Bachelor’s thesis of master’s project.
Workload: Approx. 15 ECTS.

Notes: Good mix of theory and practice with an emphasis on practics. The supervisor is very interested
in getting the work done. The project is, unlike most others, fairly suited for solo work.

8.5 Resource-Bounded Incompleteness

It is well-known that the Godel incompleteness theorems may be proven using Kolmogorov complexity.
This fact has recently been strengthened by Calude and Jirgensen (‘Is Complexity a Source of Incom-
pleteness’, Adv. App. Math. 35, 2005). However, no quantitative results exist concerning the relationship
of incompleteness in formal logic and resource-bounded Kolmogorov complexity.

The project will consist of characterising the sets of results that cannot be proven to be true using proof
systems with limited resources. For instance, given some time-constructible function f : N — N, a
relevant result is a characterization of the sets of theorems that may be proven true in time f(n) where
n is the length of the theorem.

Kolmogorov complexity will be used as a vital tool in establishing said characterizations.
Level: Master’s project or master’s thesis.
Workload: 15-30 ECTS.

Notes: Highly theoretical project with very little practical content.

8.6 Compression, Omega-Numbers and the Choice of Universal Machines

Tt is well-known that any finite bit sequence x may be described fully by the minimal length C(z) of some
other bit sequence from which a particular universal Turing machine will output x (intuitively, C(z) is
the smallest length that 2 can be compressed to using any program). Furthermore, it is well-known that,
up to an additive constant (independent of z), the choice of universal machine does not affect C(z). In
contrast, the density of compressible bit sequences may apparently depend on the choice of universal
programming language (density, here, informally means “proportion of the possible sequences of a given
length”).

The famous real number Q (see e.g. the Wikipedia) representing the halting probability of Turing
machines is uncomputable in the sense that no program computes the sequence of digits of 2 in the
obvious sense. However, if sufficiently many short bit sequences do not represent well-formed programs
(equivalently, the density of compressed bit sequences is low), a significant number of digits of Q may be
computed. It is highly likely that this fact is an artifact of Turing machines that does not carry over to
other paradigms of computation.



This project aims at investigate paradigms of computation that have a large density of correct programs,
compare these paradigms with Turing machines and establish how few digits of {2 may be computed for
them.

Level: Master’s project, possibly master’s thesis.
Workload: 15-30 ECTS.

Notes: Highly theoretical project. Toy code can be provided for illustrative purposes and simple compu-
tations.

8.7 Productivity of Stream Definitions

A (first-order, untyped) functional program outputting a stream of data is said to be /productive/ if the
output stream is infinite (”there is always a next element that will be output”). Equivalently, we may
query some functional program for ”the next element” in the stream and get an answer in finite time.

For instance, the following program (written as a term rewriting system) is productive and computes the
celebrated Thue-Morse sequence:

i(0) — 1
i(l) — 0
zip(x : xs,ys) — x: zip(ys,zs)
inv(xz:xs) — i(x):inv(xs)
even(z:xs) — x:odd(xs)
odd(x : xs) — even(xs)
tail(z : xs) — xs
M — 0:zip(inv(even(M)), tail(M))

And hence

M—*0:1:1:0:1:0:0:...

It is undecidable whether a given stream definition (program or term rewriting system) is productive,
in fact unpublished research by the supervisor shows the problem to be complete for the class I19, i.e.
loosely as hard as showing that a given Turing machine halts on all inputs.

A fair amount of research has been done to give approximate, safe characterizations of when a stream
definition is productive, most recently by Endrullis et al. However, these methods all use fairly involved,
novel techniques, e.g. pebble flows.

We conjecture that it is possible to massage well-known methods for proving programs terminating to
obtain automatic means of proving stream definitions productive.

It is easy to see that if the stream definition contains no projections (rules on the form 1 -; x for some
term 1), any safe algorithm for proving termination can be immediately converted to an algorithm proving
productivity by redefining the set of constructors of the system.

Unfortunately, projections are everywhere in real programming (e.g. head(z,y) — ). The major
technical challenge is to account for these.

Aim:



. Give an account of stream definitions and productivity

Give an account of (select) existing methods for proving termination of first-order functional pro-
grams and term rewriting systems.

Establish a technical framework for converting a given termination method to a method for proving
productivity. Prove correctness of the framework.

Extend the framework suitably to encompass larger classes of definitions. Compare with existing
methods of proving productivity.

Level: Master’s thesis

Workload: 30 ECTS.

8.8

Projects Offered in Cooperation with the Royal Library of Denmark

See http://www.diku.dk/“simonsen/bach/kb07/projfold.pdf

At present, only the following projects are available:

8.9

See:

“Standardisering af tre digitale arkiver pa feelles objektmodel”

“ LOCKSS: Peer to peer deling af dokumenter”

Projects Offered in Cooperation with the Department of Defense

http://www.diku.dk/ " simonsen/projects/CEP.pdf
http://www.diku.dk/“simonsen/projects/StatiskAnalyse.pdf

http://www.diku.dk/“simonsen/projects/fuzzer.pdf

All students must sign a non-disclosure agreement with the Department of Defense.

9

9.1

Pan-TOPPS Projects

Projects in 3rd Generation Enterprise Resource Planning

See www.3gerp.org

10



