
mlq header will be provided by the publisher

Specker Sequences Revisited

Jakob Grue Simonsen

Department of Computer Science, University of Copenhagen (DIKU) Universitetsparken 1, DK-
2100 Copenhagen Ø, Denmark
simonsen@diku.dk

Specker sequences are constructive, increasing, bounded sequences of rationals that do not converge
to any constructive real. A sequence is said to be a strong Specker sequence if it is Specker and
eventually bounded away from every constructive real. Within Bishop’s constructive mathemat-
ics we investigate non-decreasing, bounded sequences of rationals that eventually avoid sets that
are unions of (countable) sequences of intervals with rational endpoints. This yields surprisingly
straightforward proofs of certain basic results from constructive mathematics. Within Russian con-
structivism, we show how to use this general method to generate Specker sequences. Furthermore,
we show that any nonvoid subset of the constructive reals that has no isolated points contains a
strictly increasing sequence that is eventually bounded away from every constructive real. If every
neighborhood of every point in the subset contains a rational number different from that point, the
subset contains a strong Specker sequence.
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1 Introduction

In 1949, E. Specker exhibited a strictly increasing, bounded sequence of rationals that was constructive,
but did not converge to any constructive real number [Spe49], thus showing that the classical Bolzano-
Weierstrass Theorem is provably false in Russian constructive mathematics (RUSS), and unprovable
in Bishop’s constructive mathematics (BISH). A folklore result was that not only did these “Specker
sequences” (rn)n∈N exist, but there are sequences that are “strongly” Specker: An algorithm can be
defined in Russian mathematics that yields, for each constructive real x, a pair (ε, k) ∈ Q×N such that
|x− rn| ≥ ε for n ≥ k, i.e. it is possible to give a constructive witness (in the form of a lower bound) to
the fact that (rk)k∈N is bounded away from each constructive real. O. Aberth [Abe80] and D. Bridges
and F. Richman [BR87] provided proofs of this, the Richman/Bridges proof using Cantor’s middle-third
set. A method, apparently first employed by K.-I Ko [Ko91] in recursive mathematics, can be used to
construct such sequences from a sequence of open intervals covering the constructive reals.

This paper makes the following contributions:

1. We show that Ko’s observations can be used to examine both the existence of strong Specker
sequences and other results by considering sequences of rational numbers strongly avoiding socalled
countably open sets, i.e. countable unions of intervals with rational endpoints. In particular, we
may derive well-known results within Bishop’s brand of constructivism and the Russian ditto.

2. We show, within RUSS (specifically BISH + CPF — the axiom that the set of partial functions
from the naturals to the naturals is countable), that every nonvoid subset of the constructive reals
without isolated points contains a strictly increasing sequence that strongly avoids the constructive
reals. If every neighborhood of every point in the subset contains a rational number distinct from
that point, the subset contains a strong Specker sequence.

Computer scientists should note that RUSS is essentially recursive mathematics (or “computable
analysis”) with some minor differences that do not surface in this paper. We refer the reader to [BR87]
for a treatment of the various schools of constructivism.
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2 Preliminaries

We expect the reader to have a working knowledge of BISH, cf. [BB85, BR87], and of either Russian
constructive mathematics or computable analysis [Abe80, Ko91, Wei98]; the well-known Blum-Shub-
Smale framework for computable analysis [BCSS97] is quite different from the aforementioned notions
and will not be treated here. Terminology will be that of constructive mathematics; the reader with
background in computer science will thus be well-advised to interpret every statement (“there is X”) in
this paper as “there is a program computing X” and “countable” as “recursively enumerable”. Defini-
tions of standard concepts from classical mathematics, e.g. convergence of sequences and (sequential)
continuity carry over to the constructive setting mutatis mutandis, unless otherwise noted.

We begin with some notation:
Definition 2.1 (BISH) The least element of N is 1. We set N0 , {0} ∪ N. The set Q denotes

{p/q : p ∈ Z, q ∈ N}. Observe that comparisons and the standard arithmetical operations on this set are
finite procedures. The set of nonvoid open intervals on the constructive real line with endpoints in Q is
denoted by IQ. If I, J1, . . . , Jn are intervals with endpoints in Q, then I \ (J1 ∪ · · · ∪Jn) is either empty,
or is a finite union of disjoint elements of IQ; we define µ(I \ (J1∪ · · ·∪Jn)) to be 0 in the first case, and
the total length of the elements of the disjoint, finite union otherwise. The symbol R denotes the set of
(constructive) reals, i.e. the set of sequences (an)n∈N of elements of Q such that |xn−xm| < 1/m+1/n
for all m,n ∈ N.

We now introduce countably open sets and covers:
Definition 2.2 (BISH) A countably open set is a set U =

⋃
j∈N Ij such that (Ij)j∈N is a sequence of

(not necessarily disjoint) elements of IQ, called a generator of the set. Let ε ∈ R+. A generator (Ij)j∈N
is said to be ε-enclosed if, for all n ∈ N we have

∑n
j=1 |Ij | < ε. It is said to be ε-sharp (or just sharp, if

ε is unimportant) if
∑

j∈N |Ij | is convergent with limit ε. A set A ⊆ R is said to have an ε-cover if there
is a countably open set U =

⋃
j∈N Ij with

∑
j∈N |Ij | < ε and A ⊆ U .

Observe that a single countably open set may have enclosed, sharp, non-sharp, and non-enclosed
generators.

Example 2.3 Simple examples of covers and covered sets are:

1. (BISH) The Cantor Set C , {
∑∞

n=1 cn3−n : cn ∈ {0, 2} for each n} has an ε-sharp cover for all
ε ∈ R+.

2. (RUSS) A well-known construction [KL57, TZ62, BR87] yields, for each ε ∈ R+, a (non-sharp)
ε-cover of R (often called a singular cover in the literature). Thus, R will have (outer) measure 0
in any näıve constructive measure theory.

Definition 2.4 (BISH) Let U be a countably open set. A sequence (rk)k∈N of reals is said to be
U -avoiding if it does not converge to any element of U . It is said to be strongly U -avoiding if, for any
u ∈ U , there are δ ∈ Q+ and m ∈ N such that |rj − u| ≥ δ for all j > m. A (strongly) R-avoiding
sequence is called (strongly) divergent. A strictly increasing, bounded sequence of elements of Q that
is (strongly) R-avoiding is called (strongly) Specker.

E. Bishop (and subsequently proponents of K. Weihrauch’s Type II computable analysis) used the
notion of an operation M ⇒ N to denote a “finitely specified procedure” that takes an element x ∈ M
to an element of N with the proviso that different specifications of x could lead to different elements
of N (in Type II computable analysis such “operations” are called “multi-valued functions”). Thus,
we could have rephrased the notion of strongly U -avoiding sequence to mean existence of an operation
F : U ⇒ Q+ × N such that F (u) = (δ,m) implies |rj − u| ≥ δ for all j > m.

3 The M< and M≤ Constructions

We no present two simple means of constructing monotone sequences of rationals that avoid countably
open sets.
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Definition 3.1 (BISH) Let (]pj ; qj [)j∈N be a generator, and let p ∈ Q and d ∈ Q+. Then
M<(p, (]pk; qk[)k∈N, d) is the strictly increasing sequence (rn)n∈N of elements of Q defined by setting
r0 , p, and defining rn for n > 0 as follows: let s , rn−1 + d · 2−n; if s /∈

⋃n
j=1]p1; q1[, then set rn , s.

Otherwise, let rn be the least qi ∈ {q1, . . . , qn} such that s < qi and qi /∈
⋃n

j=1]p1; q1[.

It is immediate that the sequence thus constructed is bounded below by p. If there is a q ∈ Q such
that

∑n
j=1 |Ij | < q for all n ∈ N, then the sequence is clearly bounded above by p + q + d. Further, it

is clear that a variant, M≤, of M< that only produces a non-decreasing sequence of rationals can be
constructed by letting d = 0. Ko [Ko91], and Hertling and Weihrauch [HW98] observe that one may
also construct a non-decreasing sequence by considering some element r ∈ ]p1; q1[ ∩ Q and letting, for
each n ∈ N, rn be the the right endpoint of the maximal interval subset of

⋃n
j=1 Ij that contains r.

Proposition 3.2 (BISH) Let A = {x1, x2, . . .} ⊆ R be countable, and ε ∈ Q+. Then A is covered
by a countably open set with an ε-sharp generator (]pj ; qj [)j∈N, such that, for all j ∈ N, we have
pj + 2−(j+2)ε < xj < qj − 2−(j+2)ε.

P r o o f. For each xj , find p, q ∈ Q such that xj ∈ ]p; q[ and q − p = 2−(j+1)ε. Set pj , p− 2−(j+2)ε

and qj , q + 2−(j+2)ε. Clearly,
∑

k∈N(qj − pj) = ε.

The following lemma shows that the M< and M≤ constructions can be used to create sequences that
strongly avoid countably open sets:

Lemma 3.3 (BISH) Let U be the countably open set generated by (]pk; qk[)k∈N, let p ∈ Q, d ∈ Q+,
and let (rm)m∈N be shorthand for the sequence M<(p, (]pj ; qj [)j∈N, d). Then, for any x ∈ U , there are
n ∈ N and δ ∈ Q+ such that, for all m > n, |rm − x| ≥ δ.

P r o o f. Since x ∈
⋃

k∈N]pj ; qj [, there exists an n ∈ N such that x ∈ ]pn; qn[, and hence δ ∈ Q such
that pk + δ < x < qj − δ.

We can clearly replace M< by M≤ in the lemma.

3.1 Applications of Enclosed Generators

As a first application, we derive a few well-known results:
Proposition 3.4 The following hold:

1. (BISH) For any countably open set U ⊂ [0; 1] with an enclosed generator (Ij)j∈N such that Ij∩Ij′ =
∅ for j 6= j′, there exists a (continuous, but not necessarily uniformly so) surjection f : [0; 1] −→
[0; 1[ such that f(x) > 0 if x ∈ U and f(x) = 0 if x ∈ R \ U .

2. (RUSS) Existence of strong Specker sequences: There exists a strictly increasing sequence (rn)n∈N
of elements of Q such that for each x ∈ R, there is N ∈ N and δ > 0 satisfying |x − rn| ≥ δ
whenever n ≥ N .

3. (RUSS/CLASS) For each ε ∈ Q+, there is a continuous map f : [0; 1] −→ [0; 1[ such that the
classical measure of the set {x ∈ [0; 1] : f(x) = 0} is at least 1− ε, but for all x ∈ R, f(x) 6= 0.

P r o o f. We proceed as follows:

1. Write Ij , ]pj ; qj [, for all j ∈ N. Let tj(x) be a continuous map from [0; 1] to R that maps [pj ; qj ]
onto [0; 1− j−1], vanishes outside ]pj ; qj [. Let f(x) ,

∑
j∈N tj(x). If x ∈ U , there exists an n ∈ N

such that x ∈ In. Hence, f(x) > 0, and by disjointness of the Ij , f(x) < 1. If x ∈ R \U , we clearly
have f(x) = 0. Continuity follows by disjoint of the Ij .

2. Use Lemma 3.3 on the countably open set of Example 2.3.2.

3. Use the first part of the proposition and the countably open set of Example 2.3.2.
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A version of Part 1 of the above specialized to the countably open set of Example 2.3.2 with ε = 1/4
was used by Specker to demonstrate [Spe59] the existence of a function on [0; 1] that attained its
maximum on a set of (classical) measure > 3/4, but did not do so for any element of R.

Since the union of any two countably open sets is countably open, we may combine the countably
open set covering R with any other countably open set, and thus obtain:

Corollary 3.5 (RUSS) For any countably open set, U , there is a Specker sequence that is strongly
U -avoiding.

3.2 Applications of Sharp Generators

Up to this point, we have considered how to construct sequences that avoid countably open sets, and
showed within RUSS that the classical limit is not necessarily an element of R. A tantalizing question is
in what cases the classical limit of such a sequence is an element of R. It turns out that sharp generators
can yield (constructive) reals specified by increasing sequences; to prove this, we first need the following
lemma.

Lemma 3.6 (BISH) Let J be a closed interval with endpoints in Q, and let (Ij)j∈N = (]pj ; qj [)j∈N
be a sharp sequence such that

∑
j∈N(qj − pj) < |J |. Then there is a sequence of closed intervals

J0 ⊇ · · · ⊇ Ji ⊇ · · · with endpoints in Q such that:

1. Ji ⊆ J ,

2. |Ji| ≥ q/2i, and

3. µ
(
Ji \

(⋃ni

j=1 Ij

))
> q/4i (we make the convention that

⋃0
j=1 Ij is void).

P r o o f. The proof is by induction on i.
Define J0 , J and n0 , 0. Observe that µ

(
J0 \

(⋃ni

j=1 Ij

))
= |J0| > q, thus finishing the base case.

The inductive case proceeds as follows: Assume that i ≥ 1 and that the claim holds for i− 1. By the
induction hypothesis, µ

(
Ji−1 \

(⋃ni−1
j=1

))
> q/4i−1. We have:

µ
(
Ji−1 \

⋃ni

j=1 Ij

)
= µ

((
Ji−1 \

⋃ni−1
j′=1 Ij′

)
\

⋃ni

j=ni−1+1 Ij

)
> q/4i−1 −

∑ni

j=ni−1+1 |Ij |
≥ q/4i−1 −

∑∞
j=ni−1

|Ij |
≥ q/4i−1 − q/4i

= 3q/4i

Write Ji−1 = ]ai−1; bi−1[, d = (ai−1; bi−1), let d , (ai−1 + bi−1)/2, and let A1 , ]ai−1; ai−1 + d[ \(⋃ni

j=1 Ij

)
, respectively A2 , ]ai−1 + d; bi−1[ \

(⋃ni

j=1 Ij

)
.

By the above computation, one of µ(A1) > 3/2 ·q/4i and µ (A2) > 3/2 ·q/4i must be true—recall that
all arithmetic and the comparisons are performed in Q. If µ(Am) > 3/2 · q/4i (for some m ∈ {1, 2}), we
set Ji , Am. We clearly have |Ji| = |Ji−1/2| ≥ q/2i and µ(Ji \

⋃ni

j=1 Ij) > 3/2 · q/4i > q/4i, concluding
the proof.

We now have:

Theorem 3.7 (BISH) Let J be a closed interval with endpoints in Q, and let (Ij)j∈N = (]pj ; qj [)j∈N be
a sharp sequence such that

∑
j∈N(qj−pj) < |J |. Then there exists a non-decreasing sequence (rn)n∈N of

elements of Q∩J , convergent in J , that is strongly
⋃

j∈N Ij-avoiding (hence an element of ∩j∈N(J \Ij)).
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P r o o f. Let q ∈ Q+ be such that |J | > q +
∑

j∈N(qj − pj). For each i ∈ N0, sharpness enables us to
find ni ∈ N such that

∑∞
j=ni

|Ij | < q/4i+1.

Let (Ji)i∈N be the sequence of Lemma 3.6. We can find the least element, ri, of Q in Ji \
(⋃ni

j=1 Ij

)
in a finite number of computations involving only arithmetic in Q, and the sequence (ri)i∈N is clearly
non-decreasing. Furthermore, for m,m′ > N , we have |rm− rm′ | ≤ |JN | = 2−N , i.e. (rn)n∈N is Cauchy,
hence an element, x, of R. In addition, for n > ni, we have rn /∈

⋃ni

j=1]pj ; qj [. Thus, for u ∈
⋃

j∈N Ij ,
we can find m ∈ N and q′ ∈ Q+ such that pm + q′ < u < qm − q′. We can find a suitable nk with
nk > m, in which case |ri − u| > q for i > nk, and we thus have x ∈ ∩j∈N(J \ Ij), since x ∈ (J \ Ij) for
all j ∈ N.

We have tacitly used the Axiom of Countable choice in the proof. In the theorem, the requirement
that (Ij)j∈N be sharp cannot be omitted due to the cover of R of Example 2.3.2. Consider, now, the
following well-known result by N. Greenleaf:

Theorem 3.8 (BISH) Let J be a bounded, closed interval and (Ij)j∈N a sequence of bounded, open
intervals such that

∑
j∈N |In| converges to a sum less than |J |. Then ∩j∈N(J \ Ij) is nonvoid.

Greenleaf’s Theorem can be inspected in the light of countably open sets: If J is a closed, bounded
interval and (Ij)j∈N a sequence of bounded, open intervals that is |K|-enclosed, there is a q ∈ Q+ with
q +

∑
j∈N |Ij | < |J | and a sequence (I ′j)j∈N of intervals in IQ such that Ij ⊆ I ′j and |I ′j | ≤ |Ij |+ q2−(j+1)

for all j ∈ N, i.e.
∑

j∈N |I ′j | converges to q +
∑

j∈N |Ij |. In addition, there exists an interval J ′ in IQ such
that J ′ ⊆ J and q +

∑
j∈N |Ij | ≤ |J ′| ≤ |J |. Thus, a proof of Greenleaf’s Theorem need only consider

countably open sets (with sharp generators). Theorem 3.7 is hence a strengthening of Theorem 3.8.
As with non-sharp generators, a few standard results follow immediately from Greenleaf’s Theorem

and its generalization:
Corollary 3.9 (BISH) The following hold:

1. The set of reals in [0; 1] cannot have an ε-sharp cover with ε < 1.

2. For each function f : N −→ [0; 1], the set {x ∈ [0; 1] : x 6= f(n), for all n ∈ N} is dense in [0; 1], i.e.
the set of reals in [0; 1] is uncountable.

P r o o f. The first part is immediate. The second follows from the first part and Proposition 3.2 (for
density, note that for all J ∈ IQ such that J ⊆ [0; 1], we may choose a countably open set covering f(N)
with generator (Ij)j∈N satisfying

∑
j∈N |Ij | < |J |).

Corollary 3.10 (BISH) Let A be the subset of the reals whose elements are limits of non-decreasing
sequences of elements of Q. For each countable subset C ⊆ A, there is an a ∈ A such that a ∈ A \ C,
i.e. A is uncountable.

P r o o f. By Theorem 3.7 and Proposition 3.2.

Close inspection of the proof of Theorem 3.7 reveals that we could have chosen the sequence to be
strictly increasing instead of non-decreasing. We thus have:

Corollary 3.11 (BISH) Let B be the subset of the reals whose elements are limits of strictly increas-
ing sequences of elements of Q. For each countable subset C ⊆ B, there is an a ∈ A such that a ∈ R\C,
i.e. B is uncountable.

4 Extensions of the Reals

Given a non-sharp generator, there is in general no way of producing a real eventually avoiding the
corresponding countably open set. However, the sequence of rationals produced by M< when given
such a generator is convergent within classical mathematics, whence sets of formal objects extending
the (constructive) reals, e.g. Troelstra reals [Tro80, Ric98], Richman reals [Ric98], or fickle reals [Bis67,
BB85] may contain the classical limit of the sequence.
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A fickle real is a bounded, non-decreasing sequence of elements of Q. Since every bounded, non-
decreasing (and, conversely, non-increasing) sequence in Q can be realised by considering a suitable
generator, and conversely any generator defines a ficke real by the construction of Definition 3.1, the
set of fickle reals constitute the only extension of the reals that we can hope to comment on using the
material of the previous sections.

One may wonder whether there exists a bounded, countably open cover of the fickle reals in the style
of Example 2.3.2. This turns out not to be the case:

Proposition 4.1 (BISH) For each ε-enclosed countably open set there is a fickle real not covered by
the set. If ε < 1, then there is a fickle real greater than 0 and less than 1 that is not covered by the set.

P r o o f. In both cases, if (Ij)j∈N is a generator of such a countably open set, and p, d ∈ Q were
arbitrary, Lemma 3.3 would yield that M<(p, (Ij)j∈N, d) would be a fickle real bounded away from⋃

j∈N Ij . The bounds in the second part of the proposition also follow from the lemma.

Thus, the standard way of disproving the Heine-Borel theorem in RUSS is impossible for fickle reals.
In computable analysis, the fickle numbers are equivalent to the left-computable reals [ZW01, Zhe02].

Thus, we could have substituted “fickle” with “left-computable” in Proposition 4.1. It is easy to see
that the left-computable reals are countable within RUSS; observe that this creates no conflict with
Proposition 3.2 since the proof of that proposition requires the considered objects to be reals.

The above propositions impose a hard limit on the techniques of this paper: we cannot hope to cover
the fickle reals as we did R within RUSS. In the study of random numbers, P. Hertling and K. Weihrauch
have shown in [HW98] that, using Martin-Löf’s notion of randomness test [ML66], one can prove the
existence of a random left-computable real by methods akin to those used in proving the existence of
the cover of R in Example 2.3.2.

5 Subsets of the Real Line Without Isolated Points

Aberth was the first to demonstrate the existence of a sequence that is strongly Specker in [Abe80]; the
lengthy proof was subsequently simplified by Bridges and Richman [BR87] using an elegant argument
based on the very regular structure of the Cantor set. While the present paper so far has considered
how to construct Specker sequences eventually bounded away from countably open sets, Bridges and
Richman examine a particular set and show that it contains a Specker sequence.

This begs for generalization; we will be searching for a suitably general class of sets such that each
set in the class contains a Specker sequence. It turns out that the following definition does the trick:

Definition 5.1 (BISH) A subset A ⊆ R is said to be without isolated points (abbreviated wip) if,
for all x ∈ A and all q ∈ Q+, ]x− q;x + q[∩A contains a point y 6= x. A is called Q-wip if ]x− q;x + q[
contains a point y 6= x with y ∈ Q.

In particular, the real line, any non-degenerate interval, and the Cantor set are all Q-wip. The set of
irrationals is wip, but not Q-wip.

Recall from classical mathematics that a topological space is called perfect if it is wip and closed,
and totally disconnected if the only connected subsets are the singletons. In classical topology, we have
access to the celebrated Alexandroff-Hausdorff Theorem: The Cantor set is, up to homeomorphism, the
unique nonvoid, totally disconnected, perfect, compact metrizable space [Wil70, HY88]. However, in
constructive mathematics, we do not (yet) have that result available; even if we had, we would have
to construct the homeomorphism in an order-preserving way if the target space was ordered in order
to have strictly increasing sequences. Therefore, we will not attempt the full Alexandroff-Hausdorff
Theorem, but instead show that every nonvoid, wip subset of the real line contains a subset having
those topological properties of the Cantor set that ensure the existence of a strong Specker sequence
within the subset.

Proposition 5.2 (BISH) Let P be a nonvoid, wip subset of R. There is a sequence (Tn)n∈N0 of
subsets of elements of IQ, such that, for each n ∈ N0:

1. Tn contains exactly 2n intervals.
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2. If I ∈ Tn then |I| ≤ 3−n.

3. For each I ∈ Tn there are exactly two intervals J, J ′ ∈ Tn+1 such that J, J ′ ⊆ I.

4. If ]p1; q1[, ]p2; q2[∈ Tn with ]p1; q1[6=]p2; q2[, then either q1 < p2 or q2 < p1.

5. If I ∈ Tn there is an x ∈ P ∩ I such that if ]p1; q1[, ]p2; q2[∈ Tn+1 with ]p1; q1[, ]p2; q2[⊆ I, then
x < min{p1, p2}.

P r o o f. We proceed by induction on n:

• n = 0. Since P is nonvoid, there exists an element x ∈ P . Choose any I ∈ IQ such that x ∈ I
and |I| = 1, and set T0 , {I}. By wipness, there exists y ∈ x ∩ I with y 6= x, and the Hausdorff
property of the real line allows us to find a neighborhood U of x such that y ∈ P \U . By wipness,
there is z ∈ U ∩ P with z 6= x, and we thus have three distinct points x, y, z ∈ P ∩ I. Since the
points are distinct, we may without loss of generality assume that x < y < z and hence obtain
disjoint ]p1; q1[, ]p2; q2[∈ IQ such that y ∈]p1; q1[, z ∈]p2; q2[, and such that x < min{p1, p2}.

• n > 0. By the induction hypothesis, it suffices to consider one interval I ∈ Tn−1 and show that
it contains two subintervals I1 and I2 with the desired properties. This is done exactly as in the
proof of the base case.

Intuitively, the proposition means that we have an “infinite tree” of intervals, such that each interval
has exactly two intervals as child nodes in the tree and contains a point of P that is strictly less than
all elements of the two child intervals—Tn is then the set of nodes of the tree at depth n.

Remark 5.3 (BISH) Since the construction of Proposition 5.2 is essentially an (infinite) full binary
tree, we may consider the address, α, of an interval and its associated point xα as a finite binary sequence
where “0” means “go left” in the tree, and “1” means “go right”. The length of the address is denoted
|α|, and the empty sequence by λ (with |λ| = 0 and Iλ being the single interval in T0).

Observe that since the 2n intervals of Tn are pairwise separated by Proposition 5.2, there is, for each
n ∈ N, a δn ∈ Q+ such that the distance between the right endpoint of any interval in Tn and the left
endpoint of any other interval in Tn is at least δn. In addition, we have:

1. xa1···an < xa1···an·0 < xa1···an·1.

2. xa1···0···an < xa1···1···an where the indicated ’0’ and ’1’ occur at identical indices.

3. xa1···an < xa1···an·b1···bm for m > 0.

Given an address α, we may pick an qα ∈ Q such that qα is the midpoint of the interval in T|α| having
address α. The following proposition establishes properties of the set of these qα that we shall use as a
stepping stone for the proof of the main result of this section.

Proposition 5.4 (BISH) Let {0, 1}ω be the set of infinite binary sequences. The following hold:

1. For each α ∈ {0, 1}ω, write αi for the subsequence consisting of the least i elements of α. Then,
qα , (qαi

)i∈N0 is a real number.

2. The set, A, consisting of all sequences (qαi
)i∈N, is totally bounded, located, closed, and complete.

P r o o f. We proceed as follows:

1. By Proposition 5.2, the interval Iα with address α has width at most 3−|a|. If Iβ is an interval with
address β such that α is a prefix of β, then Iβ ⊆ Iα. Thus, |qαj

− qαj′ | ≤ 3−|i| for j, j′ > i.
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2. For each n, the set {qα : |α| = n} is a 3−n-approximation to A, showing that A is totally bounded,
and hence located. Observe that by Proposition 5.2, if (xn)n∈N is a convergent sequence of elements
of A, the elements xn must eventually agree on the first k ∈ N digits of the address, for each k
(since the intervals of Tn are disjoint). Closure follows by standard methods, and completeness
follows from closure.

We can now prove the first main result of this section:
Theorem 5.5 (RUSS) Every wip subset P ⊆ R contains a bounded, strictly increasing, strongly

divergent sequence.

P r o o f. Assume CPF and hence an enumeration, (φm)m∈N, of all partial functions from N to Q, and,
for each m ∈ N, an enumeration Dm(1) ⊆ Dm(2) ⊆ · · · of the domain Dm of φm, consisting of finite
subsets of N.

The set K , {m : m ∈ Dm ∧ φm(m) = 0} is countable, since each element of the array

D1(1) D1(2) D1(3) · · ·
D2(1) D2(2) D2(3) · · ·
D3(1) D3(2) D3(3) · · ·
D4(1) D4(2) D4(3) · · ·

...
...

...
. . .

can be “visited” by a standard zig-zag construction.
For future reference, we let ι : N −→ K be an injective function enumerating K.
Let wn be the address having ’0’s as its first n − 1 bits and a single ’1’ as its nth digit. Define ⊕

as the bitwise ’or’ operation on addresses, i.e. if a and b are addresses with, say, |a| ≥ |b|, then a ⊕ b
(= b⊕ a) is the address defined by:

Bit i of a⊕ b ,

 1 if 1 ≤ i ≤ |b| and bit i of either a or b or both is 0
0 if 1 ≤ i ≤ |b| and bit i of both a and b is 0

bit i of a if |b| < i ≤ |a|

Clearly, ⊕ is commutative and associative, and any finite ⊕-composition of wns is an address, and by
Proposition 5.4, each qwn is a rational in the interval with address wn of the set A of that proposition,
and each xwn

is an element of P occurring in the interval with address wn of the construction in
Proposition 5.2.

It is a straightforward induction on n to prove that

xwι(1)⊕···⊕wι(n)⊕wι(n+1) > max{xwι(1)⊕···⊕wι(n) , xwι(n+1)}

; indeed, proceed as follows: By injectivity of ι, the unique ’1’-bits of wι(i) and wι(j) are in different
places for i 6= j; hence adding wι(n+1) to wι(1) ⊕ · · · ⊕ wι(n) will either replace a ’0’ by a ’1’, or pad
wι(1) ⊕ · · · ⊕ wι(n) with a finite number of ’0’s and a single ’1’; the result then follows by the last part
of Proposition 5.2. Also observe that injectivity of ι yields that if N ≥ m is so large that m ∈ Dm(N),
and if n > N , then bit m of wι(1) ⊕ · · · ⊕ wι(n) is 1 iff φm(m) = 0.

Set rn , xwι(1)⊕···⊕wι(n) . Observe that (rn) is strictly increasing by the above comments, and is
bounded below by qλ − 1, and above by qλ + 1. Also note that the ι(k)th bit of the address of rn is
identical for all rn if n > k.

The rest of the proof establishes that (rn)n∈N is strongly divergent.
Let A be as in Proposition 5.4 and consider any y ∈ A. There exists an m ∈ N such that φm : N −→

{0, 1} is total, and

y = (qwφm(1)⊕···⊕wφm(n))n∈N

Copyright line will be provided by the publisher
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Choose N ≥ m so large that m ∈ Dm(N). Then, as φm(m) ∈ {0, 1}, φm(m) = 1− sn(m) if n ≥ N .
Hence, by the final comments of Remark 5.3, |y − rn| ≥ δm for all n ≥ N , completing the proof when
y ∈ A.

Now, consider an arbitrary y ∈ R. Recall that A was located, and that the function ρA(y) mapping
y to the infimum distance from y to elements of A is thus well-defined. Define an increasing binary
sequence (λn)n∈N such that, for each n, we have:

λn = 0 ⇒ ρA(y) < 1/n
λn = 1 ⇒ ρA(y) > 1/(n + 1)

Let c be any point of A. If λ1 = 1, define an , c for all n ∈ N; if λ1 = 0, do the following for each
n > 1:

• If λn = 0, choose an ∈ A with |y − an| < 1/n.

• if λn = 1, set an , an−1.

Observe that |am − an| ≤ 2/n if m ≥ n. Thus, (an)n∈N is Cauchy, hence—by Proposition 5.4—
converges to a limit, a ∈ A.

By the previous part of the proof, there exists N ∈ N and δ′ ∈ Q+ such that |a − rn| ≥ δ′ when
n ≥ N .

Now, either |y − a| < δ′, or |y − a| > 0. In the first case, we have

|y − rn| ≥ |a− rn| − |y − a| ≥ δ′ − |y − a|

whenever n ≥ N . Choosing a δ ∈ Q+ with δ < δ′ − |y − a| finishes the proof in this case.
In the second case, we may choose m ∈ N such that |y − am| ≥ 1/m; in this case, we have λm 6= 0,

whence λm = 1 and thus ρA(y)) > 1/(m + 1). Setting δ , 1/(m + 1) furnishes |y − rn| ≥ ρA(y) ≥ δ for
all n ∈ N, concluding the proof.

Finally, we have:
Theorem 5.6 (RUSS) Every Q-wip subset of the reals contains a strong Specker sequence.

P r o o f. Identical to the proof of Theorem 5.5, except for the fact that the sequence can now be
chosen to consist of elements of Q.
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