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Least Upper Bounds on the Size of Confluence and Church-Rosser
Diagrams in Term Rewriting and λ-Calculus1

JEROEN KETEMA, Imperial College London
JAKOB GRUE SIMONSEN, University of Copenhagen

We study confluence and the Church-Rosser property in term rewriting and λ-calculus with explicit bounds
on term sizes and reduction lengths. Given a system R, we are interested in the lengths of the reductions in
the smallest valleys t→∗ s′ ∗← t′ expressed as a function:

— for confluence a function vsR(m,n) where the valleys are for peaks t ∗← s→∗ t′ with s of size at most m
and the reductions of maximum length n, and

— for the Church-Rosser property a function cvsR(m,n) where the valleys are for conversions t↔∗ t′ with t
and t′ of size at most m and the conversion of maximum length n.

For confluent term rewriting systems (TRSs), we prove that vsR is a total computable function, and
for linear such systems that cvsR is a total computable function. Conversely, we show that every total
computable function is the lower bound on the functions vsR(m,n) and cvsR(m,n) for some TRS R: In
particular, we show that for every total computable function ϕ : N −→ N there is a TRS R with a single term
s such that vsR(|s|, n) ≥ ϕ(n) and cvsR(n, n) ≥ ϕ(n) for all n.

For orthogonal TRSs R we prove that there is a constant k such that (a) vsR(m,n) is bounded from above
by a function exponential in k and (b) cvsR(m,n) is bounded from above by a function in the fourth level
of the Grzegorczyk hierarchy. Similarly, for λ-calculus, we show that vsR(m,n) is bounded from above by a
function in the fourth level of the Grzegorczyk hierarchy.
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1. INTRODUCTION
Confluence is the property of some rewriting systems that any peak t ∗← s→∗ t′ has a
corresponding valley t→∗ s′ ∗← t′. The valley and the term s′ are said to complete the
diagram.

1This work is an extended and revised version of the conference paper [Ketema and Simonsen 2010].
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Fig. 1. Confluence and the Church-Rosser property of a rewrite system R with bounds on the lengths of the
reductions. This paper is concerned with finding least upper bounds of l as a function of n.

A rewriting system is confluent iff it has the so-called Church-Rosser property; the
property that any conversion t ↔∗ t′ has a corresponding valley t →∗ s′ ∗← t′. As the
two notions are equivalent, the terms ‘confluence’ and ‘Church-Rosser property’ are
often used interchangeably in the literature; to the authors’ knowledge, all contem-
porary research in rewriting systems considers confluence, rather than the classical
Church-Rosser property, probably due to the fact that the former seems better suited
to the range of standard proof methods available.

In functional programming, the Church-Rosser property ensures that different ways
of evaluating a program always yield the same result (modulo non-termination): The
result of running a program will be independent of the evaluation order or reduction
strategy. In logic, if the rewrite system induced by the derivation relation of a deductive
system has the Church-Rosser property and is strongly normalizing, the system will
be consistent: No statement can both hold and not hold.

While the Church-Rosser property has been shown to hold for a variety of rewrite
systems, there has, to the authors’ knowledge, never been an investigation into the
number of reduction steps in a valley that completes a peak or a conversion of a given
size (see Figure 1). Succinctly: The question “How large is the valley as a function of
the peak or conversion?” has apparently not been asked before.

We find the above question to be intrinsically interesting from a theoretical point
of view as Church-Rosser-type results are ubiquitous. However, we also believe the
practical implications in mainstream functional programming to be limited: Standard
functional languages like ML and HASKELL employ a fixed evaluation strategy such
as call-by-value or call-by-need, and there seems to be little interest in performing
optimizations by switching strategies (modulo non-termination). However, for more
specialized languages, like declarative DSLs where the evaluation order may not be
fixed, there may be practical implications: If, for small peaks, the size of the smallest
corresponding valley is so large that a term completing the Church-Rosser diagram
cannot be computed using realistic resources, then it matters very much which reduc-
tion strategy is employed: Choosing the ‘wrong’ evaluation strategy (say, call-by-value)
and performing just a few steps of a computation could result in a very long reduction
before a result is reached—better to backtrack to the original term and try another
strategy.

In this paper, we perform the first fundamental study of valley sizes for systems
with the Church-Rosser property; specifically we study how the size of a peak or con-
version affects the size of the smallest corresponding valley. We consider three very
general settings: that of (arbitrary) first-order term rewriting systems, of orthogonal
term rewriting systems (roughly corresponding to first-order functional programs that
have no fixed evaluation order), and of untyped λ-calculus. We believe that these three
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Table I. The bounds derived for the valley sizes and their tightness

Confluence (vs) Church-Rosser (cvs)
Bound Tight? Bound Tight?

TRSs Unknown(Section 4) Computable Yes
Linear TRSs (Theorem 4.2) (Theorem 4.12) Computable Yes
(Section 4) (Theorem 4.5) (Theorem 4.14)

Orthogonal TRSs Exponential Yes E4 Unknown(Section 5) (Theorem 5.5) (Remark 5.6) (Theorem 5.9)
λ-calculus E4 Unknown Unknown(Section 6) (Theorem 6.5)

areas cover most of the non-specialized areas where the Church-Rosser property oc-
curs. The most significant area omitted is that of general higher-order rewrite systems
(including higher-order functional programs and logics with bound variables)—we ex-
pect general upper bounds in that case to be very difficult to derive, as is foreshadowed
by the difficulties we encounter in our treatment of λ-calculus in Section 6.

Valley sizes are measured by two functions, vs : N2 −→ N for confluence, and cvs :
N2 −→ N for the Church-Rosser property. Roughly, vs(m,n) is the least number of steps
required to complete a valley for a peak starting from a term of size at mostm and with
reductions of length at most n. Similarly, cvs(m,n) is the least number of steps required
to complete a valley corresponding to a conversion involving at most n steps between
two terms of size at most m.

Our results on upper bounds are summarized in Table I. In the table, the exponential
upper bound for orthogonal TRSs depends on a constant dependent on the specific
rewrite system and is thus tractable in some cases.

1.1. Related Work
For all the kinds of rewriting considered in this paper, the question of valley sizes in
confluence and Church-Rosser diagrams does not appear to have been investigated be-
fore. However, in research on the ‘efficiency’ in λ-calculus, some related phenomena
have been under scrutiny. Most pertinently, investigations have been performed con-
cerning upper bounds on the length of developments by de Vrijer [1985] and concerning
standard reductions by Xi [1999]. In typed systems, lower bounds for normalizing re-
ductions have been studied by Statman [1979], upper bounds are treated Schwichten-
berg [1982; 1991] and Beckmann [2001], and lower and upper bounds are discussed by
Springintveld [1993]. A related vein of research considers lower bounds on the length
of developments and reductions in λ-calculus, pioneered by Khasidashvili [1988] and
later simplified by Sørensen [2007]; upper bounds on reductions are considered by
Sørensen [1996].

In the present work, we employ distinct techniques to treat first-order term rewrit-
ing and λ-calculus. However, a body of literature exists that attempts to relate certain
efficiency measures of the two. For example, Dal Lago and Martini [2009] showed that
orthogonal constructor term rewrite systems and λ-calculus with weak call-by-value
reduction can simulate each other with linear overhead.

Throughout the paper, we measure the size of diagrams by the number of rewrite
steps performed. This is a measure quite different from the actual computational work
employed in computing the diagram on a concrete machine. For λ-calculus, the relation
between a single parallel β-step and the time and space complexity of performing it on
abstract hardware such as a Turing machine has been investigated in depth in the
1990s, culminating in work by Lawall and Mairson [1996] showing that most earlier
attempts at providing reasonable cost models with a polynomial overhead with respect
to Turing machine simulation were not adequate; later work by Lawall and Mairson
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[1997] attempted to use Lévy labeling to provide a cost model, but yielded no concrete
algorithm to normalize arbitrary λ-terms with polynomial overhead. Dal Lago and
Martini [2008] recently gave a cost model with polynomial time overhead for λ-calculus
with weak call-by-value reduction, but it is as yet unclear whether the model can be
amended to work with arbitrary β-steps.

2. PRELIMINARIES
We presuppose a working knowledge of Turing machines and a basic familiarity with
term rewriting and λ-calculus. We give brief definitions below. The basic references
for term rewriting are Baader and Nipkow [1998], Terese [2003], and Klop [1992];
for λ-calculus we refer the reader to Barendregt [1985], Terese [2003], and Fernández
[2009]. For Turing machines, any introductory textbook on computability will do [Pa-
padimitriou 1994; Jones 1997; Sipser 2006; Fernández 2009].

Sections 5 and 6 of the paper use the Grzegorczyk hierarchy; we refer the reader
to Grzegorczyk [1953] and Odifreddi [1999] for definitions. Most important for our
purposes is E4, the fourth level of the hierarchy, which roughly corresponds to limited
recursion over exponential functions, i.e. iterated exponentiation or tetration—a typical
function is:

n 7→ 22·
·2︸︷︷︸
n

.

2.1. Abstract Rewriting, Confluence, and the Church-Rosser Property
We introduce some basic notions related to abstract rewriting, confluence, and the
Church-Rosser property.

Definition 2.1. An abstract reduction system (ARS) is a pair (A,→) with A a set of
objects and → a binary relation over A where (a, b) ∈ → is written as a → b. The ARS
is said to be finitely branching if for every object a there are only finitely many objects
b such that a→ b.

— A reduction of length n is a finite sequence of objects 〈a0, a1, . . . , an〉 with ai → ai+1

for all i < n, written as a0 → a1 → · · · → an−1 → an or a0 →n an, or even as a0 →∗ an.
— A conversion of length n is a finite sequence objects 〈a0, a1, . . . , an〉 with ai → ai+1 or
ai ← ai+1 for all i < n, written as a0 ↔n an, or even as a0 ↔∗ an.

Definition 2.2. A peak is a pair of reductions

(ai ← ai−1 ← · · · ← a1 ← a, a→ a′1 → · · · → a′j−1 → a′j)

both starting from a. A valley is a pair of reductions

(b0 → b1 → · · · → bk−1 → b, b← b′l−1 ← · · · ← b′1 ← b′0)

both ending in b. Below, a peak is usually written as ai i← a →j a′j and a valley as
b0 →k b l← b′0, occasionally replacing reduction lengths with the Kleene star ∗ when
the lengths are unimportant.

Definition 2.3. An ARS (A,→) is confluent if for every peak b ∗← a→∗ c there exists
a valley b →∗ d ∗← c. Moreover, an ARS (A,→) has the Church-Rosser property if for
every conversion b↔∗ c there exists a valley b→∗ d ∗← c.

It is a straightforward exercise to show that an ARS is confluent iff it has the
Church-Rosser property (see e.g. Terese [2003, Proposition 1.1.10]).
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Definition 2.4. Let (A,→) be an ARS and let a ∈ A. The reduction graph of a, de-
noted G(a), is the graph (Va, Ea) = (

⋃
n≥0 Va,n,

⋃
n≥0Ea,n) with Va,n and Ea,n induc-

tively defined by

Va,n =

{
{a} if n = 0

{b : ∃a′ ∈ Va,n−1.a
′ → b} if n > 0

and

Ea,n =

{
∅ if n = 0

{(a′, b) : a′ ∈ Va,n−1, b ∈ Va,n. a′ → b} if n > 0

Thus, Va,n is the set of objects b such that a→n b.

2.2. Term Rewriting Systems
Throughout, we assume a fixed, finite signature Σ with each function symbol of non-
negative integer arity and a denumerable, infinite set of variables V . The set of terms
over Σ and V , denoted Ter(Σ, V ), is defined by induction, as usual. We assume the
following, where N∗ is the set of finite strings over N with ε the empty string.

Definition 2.5. Let s be a term.

— The term s is ground if no variables occur in s.
— The set of positions of s, denoted pos(s), is the subset of N∗ inductively defined by

pos(x) = {ε} and pos(f(s1, . . . , sn)) = {ε} ∪ (
⋃n
i=1 i · pos(si)).

— The set of variables of s, denoted vars(s), is the finite subset of V inductively defined
by vars(x) = {x} and vars(f(s1, . . . , sn)) =

⋃n
i=1 vars(si).

— The size of s, denoted |s|, is defined inductively by |x| = 1 and |f(s1, . . . , sn)| = 1 +
|s1|+ · · ·+ |sn|.
Positions are equipped with a (strict) partial order ≺ such that p ≺ q if p is a proper

prefix of q. We write s|p for the subterm of a term s that occurs at position p ∈ pos(s).
Substitutions, written σ : V −→ Ter(Σ, V ), are defined as usual. Contexts are terms

over Σ ] {2}, written as C[], where we say that that a context C[] is a k-hole context if
there are exactly k occurrences of 2 in C[].

Definition 2.6. A rule over Σ is a pair (l, r), invariably written l → r, where l and r
are terms over Σ such that l /∈ V and vars(r) ⊆ vars(l). A term s rewrites to a term t
by l→ r if there exists a one-hole context C[] and a substitution σ such that s = C[σ(l)]
and t = C[σ(r)].

A term rewriting system (TRS) is a pair (Σ, R) with Σ a signature and R a finite set
of rules over Σ.

We usually suppress explicit mention of the signature Σ and refer to the TRS (Σ, R)
as R. Every TRS R gives rise to an ARS (A,→) in the obvious fashion: The objects of A
are the terms and→ is the above rewrite relation.

Definition 2.7. A term is linear if every variable occurs in it at most once. A rule
l → r is left-linear if l is a linear term. Moreover, a rule is linear if both l and r are
linear terms. A TRS R is left-linear, respectively linear, if all its rules are.

A rule l1 → r1 is said to overlap a rule l2 → r2 at position p ∈ pos(l2) if l2|p /∈ V
and there are substitutions σ, τ such that τ(l1) = σ(l2|p). A TRS (Σ, R) is said to be
orthogonal if R is left-linear and the only overlaps of rules in R are those where a rule
overlaps itself at position ε.

Two TRSs (Σ0, R0) and (Σ1, R1) are said to be mutually orthogonal if they are left-
linear and no rule of R0 overlaps with a rule of R1, and vice versa.
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2.3. Combinator Systems
A combinator system [van Bakel and Fernández 2003] is a particular kind of ARS
(CS ,→). Assuming a finite set of constants C (often called combinators), the set CS of
objects or terms M is inductively defined by

M ::= x |C | (MM)

Convention dictates that parentheses associate to the left and are dropped accord-
ingly. Hence, ((x y) (x z)) is usually written x y (x z). The size of a term is defined induc-
tively by |x| = 1, |C| = 1, and |M N | = 1 + |M |+ |N |.

A rule is of the form
C x1 · · ·xn →M

where C is a combinator, x1, . . . , xn are distinct variables, and such that every variable
in M occurs among x1, . . . , xn. A combinator system has exactly one rule per combi-
nator. One-hole contexts, substitutions, and the relation → are defined as for TRSs,
mutatis mutandis.

The standard example of a combinator system is Combinatory Logic, which has the
combinators I, K, S with associated rules I x→ x, K xy → x, and S x y z → x z (y z).

For our purposes, combinator systems—including Combinatory Logic—need only be
treated superficially, as the upper bounds we shall derive for orthogonal term rewrit-
ing systems also hold for combinator systems due to the proposition below, which is
folklore.

PROPOSITION 2.8. For every combinator system (CS ,→) with k combinators, there
is an orthogonal rewriting system (Σ, R) with k+ 1 function symbols and k rules, and a
bijective function φ mapping terms from CS to terms over Σ such that for every pair of
terms M , N from CS :

M →CS N iff φ(M)→R φ(N)

PROOF. Set Σ = {App} ] {C1, . . . , Ck}, with App binary and all other function
symbols nullary, and define φ inductively by φ(x) = x, φ(Ci) = Ci, and φ(M N) =
App(φ(M), φ(N)). Let R be the set of all rewrite rules φ(l) → φ(r) with l → r a rule
from the combinator system. Orthogonality of R follows by the assumption that all
variables on the left-hand sides of combinator rules are distinct and by the assump-
tion that there is exactly one rule per combinator Ci. Bijectivity of φ and the connection
between→CS and→R now follow by an easy induction.

Observe that as φ is a bijection, we also have for every pair (s, t) of terms over Σ that
s→R t iff φ−1(s)→CS φ

−1(t).

2.4. λ-Calculus
The (untyped) λ-calculus is the ARS (Λ,→β) with Λ the set of objects or λ-terms M
defined inductively by

M ::= x |λx.M |MM

where x ∈ V is a variable and with→β the rewrite relation induced by the β-rule:
(λx.M)N →β M{N/x}

where M{N/x} equals M with N substituted for every free occurrence of x in M , work-
ing as usual modulo α-equivalence (see e.g. Barendregt [1985]). Contexts for λ-calculus
are defined as for TRSs.2 We assume the following.

2Observe that substitutions are only defined on terms and not on contexts; we make no use of substitutions
on contexts.
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Definition 2.9. Let M be a λ-term.

— The set of positions of M , denoted pos(M), is the subset of N∗ inductively defined by
pos(x) = {ε}, pos(λx.M) = {ε} ∪ 0 · pos(M), and pos(M1M2) = {ε} ∪ 0 · pos(M1) ∪ 1 ·
pos(M2).

— The size of M , denoted |M |, is defined inductively by |x| = 1, |λx.M | = 1 + |M |, and
|M N | = 1 + |M |+ |N |.

Positions are equipped with a (strict) partial order ≺ such that p ≺ q if p is a proper
prefix of q.

The notion of a residual of a β-redex across a reduction, i.e. the formalization of ‘what
happens’ to a redex across a reduction, is defined as usual [Barendregt 1985]. The set
of residuals of a β-redex u, respectively a set of redexes U , across a reduction M →∗β N
is denoted u/(M →∗β N), respectively U/(M →∗β N). Recall that a development of a set
of β-redexes U of a λ-term M is a reduction starting from M contracting a residual of
a redex in U in each step. As usual, a development M →∗β N is complete if the set of
residuals of redexes in U across M →∗β N is empty, i.e. if U/(M →∗β N) = ∅. We have
the following [Barendregt 1985].

THEOREM 2.10 (FINITE DEVELOPMENTS THEOREM). Let M be a λ-term and U a
set of redexes of M . All developments of U are finite and there is a unique λ-term N that
is the final term of all complete developments of U .

3. VALLEY SIZES IN ABSTRACT REDUCTION SYSTEMS
We now define the main objects of study in this paper: the functions vsR and cvsR.

Definition 3.1. Let R = (A,→) be a finitely branching and confluent ARS and let
|·| : A −→ N be a function (‘size’) such that {a ∈ A : |a| ≤ m} is finite for each m ∈ N.

— The valley size vsR : N2 −→ N (see Figure 1(a) on page 2) is defined as vsR(m,n) =
l where l is the least non-negative integer such that for every object a with |a| ≤ m and
every peak starting from a with reductions of length at most n there is a completing
valley with reductions of length at most l. If there are no objects of size at most m,
define vsR(m,n) = 0 for all n.

— The conversion valley size cvsR : N2 −→ N (see Figure 1(b) on page 2) is defined
as cvsR(m,n) = l where l is the least non-negative integer such that for every pair of
objects b, c with |b|, |c| ≤ m and every conversion b ↔∗ c of length at most n, there is a
completing valley with reductions of length at most l. If there are no objects of size at
most m, define cvsR(m,n) = 0 for all n.

The function vsR(m,n) is well-defined: For each m, finiteness of the set {a ∈ A :
|a| ≤ m} in combination with finite branching of (A,→) ensures that only finitely
many peaks exist with reductions of length at most n; furthermore, the peaks all have
valleys by confluence of (A,→). Observe that, if (A,→) were not finitely branching,
there would exist an object a such that a → b for an infinite number of objects b. In
this case, vsR(|a|, 1) might not be bounded, as each for n ∈ N there could exist a peak
bn ← a → cn such that one of the reductions in any completing valley has at least
length n.

The function cvsR(m,n) is also well-defined: For each m, finiteness of the set {a ∈
A : |a| ≤ m} ensures that there are only finitely many conversions of length at most n;
the conversions all have valleys by confluence of (A,→). Observe that finite branching
is redundant in this case. However, as ARSs will be finitely branching in all practical
cases, we do not consider this additional restriction a severe one. In fact, from here
onwards we assume all ARSs to be finitely branching.
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The ‘size’ function |·| depends on the class of ARSs considered. In this paper, we
are concerned solely with term rewriting systems, combinator systems, and λ-calculus
where we consider terms equal (with respect to the size function) if one can be obtained
from the other by renaming of (free) variables, as this will ensure that {a ∈ A : |a| ≤ m}
is finite. Observe that for TRSs and combinator systems it is safe to make this assump-
tion, as variables behave as nullary function symbols to which no rewrite rules apply.
Similarly for λ-calculus, where free variables behave as nullary function symbols.

We employ |a|, |b|, |c| ≤ m, and not |a|, |b|, |c| = m, in the definitions of vsR and cvsR to
ensure that the functions are non-decreasing in both arguments. Replacing |a|, |b|, |c| ≤
m by |a|, |b|, |c| = m gives less well-behaved functions; Example 3.2 below demonstrates
this poor behavior: vsR(2, 1) would be equal to 1 instead of being equal to vsR(1, 1) = 2.

A confluent ARS will usually have several (or even infinitely many) different valleys
that complete a diagram. If an ARS is both confluent and terminating, a valley can
always be found by reducing to normal form (but this may yield a valley with longer
reductions than necessary); if an ARS has cycles, there may be an infinite number of
different valleys.

Observe that the function vsR(m,n) picks the smallest valley for each specific peak,
but has to take into account all peaks with a starting term of size (at most) m and
reductions of size (at most) n; thus, vsR(m,n) may be larger than needed for ‘most’
peaks—it gives the least valley size that will surely work for all terms and peaks lim-
ited by m and n. The same holds for cvsR(m,n), mutatis mutandis.

3.1. Computing Valley Sizes
We illustrate the definitions of vsR and cvsR by computing vsR(2, 1) and cvsR(2, 2) for a
small TRS in the following example.

Example 3.2. Let R be the TRS with the rules
a→ b b→ d d→ e

a→ c c→ a g(x)→ h(a)

a→ e d→ a h(x)→ e


This TRS is confluent3 (and normalizing, but not terminating4).

Consider the peak g(b)← g(a)→ g(c). Some valleys completing this peak are:

g(b)→ h(a)← g(c)

g(b)→ g(d)→ g(a)→ g(c)

g(b)→ h(a)→ e← h(a)← g(c)

g(b)→ g(d)→ h(a)← g(c)

Observe there are an infinite number of valleys of the form g(b) → g(d) →∗ g(a) →
h(a)← g(a) ∗← g(c) and, hence, there is no largest valley completing the diagram.

The smallest possible valley is the first one given above: Both reductions have
length 1. Note that this valley does not involve normal forms, and that any valley
with reductions to normal form involves strictly longer reductions.

By definition of the size of terms (Definition 2.5), the term g(a) has size 2, and by
inspection, we find that for any peak with reductions of length at most 1 starting from
a term of size 2, there is a corresponding valley where each reduction has length at
most 1. However, for terms of size 1, there is the peak b ← a → c whose smallest
valleys involve reductions of length 2, e.g. b → d → a ← c. Thus, for peaks involving

3The system has the unique normal form property and is weakly confluent; see Terese [2003].
4Normalization and termination are also called, respectively, weak normalization and strong normalization.
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terms of size at most 2 and reductions of length at most 1, the smallest corresponding
valleys involve reductions of length at most 2, and there is a peak that needs a valley
with reductions of length 2. Hence, vsR(2, 1) = 2.

In case of cvsR(2, 2), the conversion will either be (a) a reduction of length at most 2,
(b) a valley with two reductions of length 1, or (c) a peak with each reduction of length 1.
In the case of (a) and (b), the considered reductions themselves are already valleys with
reductions of length at most 2. In the case of (c), the valley size is equal to vsR(2, 1).
Hence, cvs(2, 2) = 2.

As the following example shows, vsR and cvsR do not need to be computable for ARSs.

Example 3.3. Let h : N −→ N be any non-computable, non-decreasing total function
with h(i) ≥ 1 for all i ∈ N (note that h must have unbounded range). Moreover, let
A = (N× {∗}) ∪ N2 with |(i, ∗)| = i, for all i ∈ N, and |(i, j)| = i+ j, for all (i, j) ∈ N2

To see that vsR does not need to be computable, define for every m ≥ 1 and n > 1:
(m, ∗)→R (m, 1), (m, ∗)→R (m,h(m) + 1), and (m,n)→ (m,n− 1). Then, R = (A,→) is
confluent by the last rule, but vsR(m, 1) = h(m), as any peak with reductions of length
1 is either the peak (m, 1) ← (m, ∗) → (m,h(m)) or a reduction of length 1. Thus, we
cannot compute vsR(m,n).

To see that cvsR does not need to be computable, define for every m ≥ 1 and n > 1:
(m, ∗) →R (m, 1), (m, ∗) →R (m, 0), (m, 0) →R (m,h(m) + 1), and (m,n) → (m,n − 1).
Then,R = (A,→) has the Church-Rosser property by the last rule, but cvsR(m+ 1, 2) =
h(m) + 1, as any conversion of length 2 is either the peak (m, 1)← (m, ∗)→ (m, 0), the
valley (m, ∗) → (m, 1) ← (m, 2), or a reduction of length at most 2. Whence, we cannot
compute cvsR(m,n).

3.2. Relating vsR and cvsR

As an ARS is confluent iff it has the Church-Rosser property, it is natural to consider
the relation between vsR and cvsR. The relation will be non-trivial, because the objects
whose ‘size’ is restricted by vsR and cvsR are quite different: In the case of vsR the size
of the ‘top of a peak’ is bounded, while in the case of cvsR the ‘leftmost’ and ‘rightmost’
objects of a conversion are bounded.

One might naı̈vely ponder dropping one of the object bounds from cvsR to create
a more symmetric situation. However, as the following example shows, this is not a
viable option.

Example 3.4. Consider the ARS R = (A,→) with A = {a, c} ∪ {b1, b2, . . .} ∪
{d1, d2, . . .}, where |a| = |c| = 1 and |bi| = |di| = i, and with the relation → defined
by: {

a→ d1

c→ a

}
∪
{
bi → di

c→ bi

∣∣∣∣ for all i
}
∪ {di → di−1 | for all i > 1}

It is immediate that there is a conversion a↔∗ bi of length 2 for all i, and that the only
valley joining a and bi is a → d1 ← d2 ← · · · ← di ← bi, which has size i. Thus, if the
rightmost object in the conversion were not bounded in the definition of cvsR, then in
current example cvsR(1, 2) would not be bounded from above by any i and, hence, not
well-defined.

As an alternative, we could consider restricting the size of all the objects in the
peaks of vsR and the conversions of cvsR. However, we consider this too restrictive as
the growth rates of objects along reductions and conversions can be markedly different
among different systems.

We now proceed by exposing an important difference between between vsR and cvsR.
Thereafter, we derive an upper bound on vsR given cvsR, and vice versa.
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3.2.1. Keeping the Object Size Constant. Assuming the object size m fixed, vsR and cvsR
behave markedly different: vsR(m,n) can grow unboundedly with n for some systems,
while cvsR(m,n) cannot. To see that vsR(m,n) can grow unboundedly, consider the
following example:

Example 3.5. Let R be the (obviously confluent) TRS with the rules
a→ b

a→ f(a)

f(x)→ x


and consider the term a of size 1.

For any n ≥ 1, there exists a peak with a reduction of length n:

b← a→n fn(a)

Any completing valley of this peak is a reduction fn(a)→∗ b. The reduction must erase
all function symbols f from fn(a) and rewrite a to b. Hence, the reduction has length
at least n + 1. Besides a, the only other terms of size 1 are b and the variables, which
are normal forms. Hence, vsR(1, n) = n+ 1 and vsR thus grows unboundedly with n for
fixed m(= 1).

For cvsR, we have the following lemma.

LEMMA 3.6. Let R = (A,→) be an ARS with the Church-Rosser property and let
|·| : A −→ N be a function (‘size’) such that for each m ∈ N the set {a ∈ A : |a| ≤ m} is
finite. For each m ∈ N there is a number n ∈ N such that cvsR(m,n′) = cvsR(m,n) for
all n′ ≥ n.

PROOF. Define l(a, b) as the minimal length of a conversion between a and b and
set l(a, b) = 0 in case no conversion exists. Let m ∈ N and Am = {a ∈ A : |a| ≤ m}.
Consider the set Bm = {l(a, b) : (a, b) ∈ Am × Am}. As Am is finite, Bm has an up-
per bound n. Hence, for any n′ ≥ n the conversions considered in the computation of
cvsR(m,n′) will be same ones as those considered in the computation of cvsR(m,n).
Whence, cvsR(m,n′) = cvsR(m,n) for all n′ ≥ n.

Remark 3.7. The n from Lemma 3.6 is in general not computable, even for a fixed
system R. To see this, consider any linear TRS R and assume n is computable. As we
show below (Lemma 4.3), it is decidable for linear TRSs whether for two terms of size
≤ m a conversion of at most a certain fixed length exists in R. Hence, as we assume
that n is computable, we can decide for all terms s and t in a linear TRS whether
these terms are convertible: Compute m = max(|s|, |t|) and compute n for terms of
size at most m; s and t are convertible whenever the pair (s, t) occurs in the finite
set hc(jR,m, n), where hc is the computable function from Lemma 4.3 and where jR
encodes the TRS R as an integer. We now obtain a contradiction, as it is in general
undecidable for linear TRSs with the Church-Rosser property whether two terms are
convertible (consider e.g. Combinatory Logic).

3.2.2. Bounding vsR by means of cvsR. We will now derive an upper bound on vsR given
cvsR. To mitigate the aforementioned problem regarding the difference in object sizes
in the two definitions, we introduce the following function:

Definition 3.8. Let R = (A,→) be an ARS and let |·| : A −→ N be a function (‘size’)
such that for each m ∈ N the set {a ∈ A : |a| ≤ m} is finite. The reduction upper bound
rubR : N2 −→ N is defined as rubR(m,n) = l where l is the least non-negative integer
such that for every object a with |a| ≤ m and every reduction a→≤n b the object b is of
size at most l. If there are no objects of size at most m, define rubR(m,n) = 0 for all n.
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The function rubR is well-defined, as we assume all ARSs to be finitely branching.
Moreover, rubR is obviously non-decreasing in both arguments. We have the following
lemma.

LEMMA 3.9. Let R = (A,→) be an ARS with the Church-Rosser property and let
|·| : A −→ N be a function (‘size’) such that for each m ∈ N the set {a ∈ A : |a| ≤ m} is
finite. Then, vsR(m,n) ≤ cvsR(rubR(m,n), 2n) for all m,n ∈ N.

PROOF. For all |a| ≤ m and all peaks b ∗← a→∗ c with reductions of length at most
n we have by definition of rubR that b and c are of size at most rubR(m,n). Moreover,
b ∗← a→∗ c is a conversion b↔∗ c of length at most 2n. Hence, any valley b→∗ d ∗← c
will have reductions of length at most cvsR(rubR(m,n), 2n), as required.

As the following example shows, there exist ARSs for which the bound from the
above lemma is tight.

Example 3.10. Consider the ARS R = (A,→) with A = {ai : i ∈ Z}, where |ai| =
|i|+ 1, and with the relation→ defined by:{

ai → ai+1

ai → ai−1

∣∣∣∣ for all i
}

Observe that there are valleys for all ai and aj , e.g. ai →∗ a0
∗← aj . Moreover, we

obtain the smallest valley ai →∗ b ∗← aj by meeting ‘half way’ between ai and aj , i.e.
when one reduction is of length d|i− j|/2e and the other is of length b|i− j|/2c. Hence,
only the distance between ai and aj is relevant and cvsR(m,n) = dn/2e. Moreover, as we
have for all ai that only the objects ai−k, . . . , ai, . . . , ai+k can occur occur in a peak with
reductions of at most length k, it follows by exactly the same reasoning as for cvsR that
vsR(m,n) = n (consider ai−k and ai+k). Consequently, vsR(m,n) = cvsR(rubR(m,n), 2n).

It is also easy to construct an ARS with the Church-Rosser property for which the
bound from the above lemma is not tight, viz. the following example.

Example 3.11. Consider the ARS R = (A,→) with A = {a1, a2, . . .}, where |ai| = i,
and with the relation → defined by {ai → ai+1 | for all i}. For all objects ai and aj a
valley exists and the smallest valley is ak →∗ al with k = min(i, j) and l = max(i, j).
Hence, cvsR(m,n) = min(m− 1, n) and vsR(m,n) = n. As rubR(m,n) = m+ n, it follows
for all n > 0 and m > n that vsR(m,n) = n = cvsR(m,n) < cvsR(m+ n, 2n).

3.2.3. Bounding cvsR by means of vsR. Naı̈vely, one may conjecture that deriving a bound
on cvsR given vsR is as simple as introducing the function that acts as a ‘reverse’ of
rubR, i.e. a function that yields the least non-negative integer l such that for every
object b with |b| ≤ m and every reduction a →n≥ b the object a is of size at most l.
Unfortunately, this would require the inverse relation of the assumed ARS to be finitely
branching, which in the opinion of the authors is unreasonable for the following reason:
Any TRS with an erasing rewrite rule, i.e. a rule with a variable that occurs on its left-
hand side but not on its right-hand side, induces an ARS whose inverse relation is not
finitely branching. For example, given the rule f(x)→ a, we have for every term t that
f(t)→ a.

Fortunately, it turns out that we do not have to consider all reductions a→n≥ b with
b of a given size; instead, we can employ the following function.

Definition 3.12. Let R = (A,→) be an ARS and let |·| : A −→ N be a function (‘size’)
such that for each m ∈ N the set {a ∈ A : |a| ≤ m} is finite. The conversion bound
cbR : N2 −→ N is defined as cbR(m,n) = l where l is the least non-negative integer
such that for every pair of objects b, c with |b|, |c| ≤ m and every conversion b ↔∗ c of
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length at most n there exists a conversion b ↔≤n c such that |d| ≤ l for all objects d
occurring in the conversion.

Observe that cbR is well-defined, because {a ∈ A : |a| ≤ m} is finite for every m.
Moreover, cbR is obviously non-decreasing in both arguments. Intuitively, we can use
cbR to derive upper bounds, as we only need one conversion between a pair of objects to
be able to construct a valley for the pair; that there can be many distinct conversions
between two objects (or even infinitely many) is irrelevant.

We have the following.

LEMMA 3.13. Let R = (A,→) be a confluent ARS and let |·| : A −→ N be a function
(‘size’) such that for each m ∈ N the set {a ∈ A : |a| ≤ m} is finite. Then, cvsR(m,n) ≤
h(bn/2c, cbR(m,n), n) with h(i, j, k) for all i, j, k ∈ N defined by:

h(i, j, k) =

{
k if i = 0

h(i− 1, j′, k′) if i > 0

such that in the second case j′ = max(j, rubR(j, l′)) and k′ = k + 2l′ with l′ = vsR(j, k)
and rubR as defined in the previous section.

PROOF. Define a half peak as a peak with one reduction of length 0, and define a
full peak as a peak with both reductions of positive length. We prove by induction on
the number of full peaks p in a conversion b↔≤n c that a valley exists with reductions
of length at most h(p, s, n) in case all objects in the conversion of length at most n are
of size at most s. In the case p = 0, the conversion is either empty, of the form · →∗ ·, or
of the form · →∗ · ∗← ·. Hence, the conversion is already valley and the reductions in
this valley have length at most n.

In the case p = p′ + 1, consider an arbitrary full peak from the conversion b ↔∗ c
and observe that the reductions in this peak are of length at most n and start from
an object of size at most s. By confluence, we may replace the peak by a valley with
reductions of length at most l′ = vsR(s, n), yielding a new conversion b ↔∗ c with p′

full peaks. The new conversion is of length at most n′ = n + 2l′ with each object of
size at most s′ = max(s, rubR(s, l′)). By the induction hypothesis, a valley exists for the
conversion b↔∗ c with p′ peaks such that the reductions in the valley are of length at
most h(p′, s′, n′), as required.

As vsR and rubR are non-decreasing in both the size of the objects and the length
of reductions, and as max and addition over N are also non-decreasing in both argu-
ments, it follows that h is non-decreasing in all arguments. Observe that any con-
version b ↔≤n c has at most bn/2c full peaks, and, if |b|, |c| ≤ m, we may assume
that the objects d along any considered conversion b ↔≤n c are of size at most
cbR(m,n). Hence, by the first part of the current proof and as h is non-decreasing,
cvsR(m,n) ≤ h(bn/2c, cbR(m,n), n), as required.

The bound derived in the above lemma cannot be tight, as h(bn/2c, cbR(m,n), n)
grows unboundedly with n while cvsR does not due to Lemma 3.6. An example from
which this is apparent is the following.

Example 3.14. Consider the ARS from Example 3.11. Observe for any conversion
b ↔≤n c with |b|, |c| ≤ m that the conversion involves objects of size at most m+ bn/2c
and, thus, cbR(m,n) = m+ bn/2c (intuition: we may go ‘beyond’ am but we must leave
enough ‘room’ to return to an object of size at most m). We now have

h(bn/2c, cbR(m,n), n) = h(bn/2c,m+ bn/2c, n)

= h(bn/2c − 1,m+ bn/2c+ n, 3n) .
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Furthermore, as max and addition are non-decreasing it follows that

h(bn/2c − 1,m+ bn/2c+ n, 3n) ≥ vsR(m+ bn/2c+ n, 3n) = 3n .

Hence, for all n > 0 and m > n, we have cvsR(m,n) = n < 3n ≤ h(bn/2c, cbR(m,n), n).

4. VALLEY SIZES IN TERM REWRITING SYSTEMS
We proceed to treat first-order term rewriting systems. We start by showing that the
behavior from Example 3.3 cannot be replicated in such systems: vsR is computable
for arbitrary term rewriting systems R; in fact it is uniformly computable: There is
a program that, given an encoding of a confluent TRS R, returns another program
computing vsR. Similarly, there is a program that, given an encoding of a linear TRS R
satisfying the Church-Rosser property, returns another program computing cvsR. We
give a formal account in the present section.

4.1. Computing Valley Sizes in Term Rewriting Systems
Recall that we consider only TRSs with a finite signature and a finite number of rules.
As terms are inductively defined, it is clear that every TRS R can be recursively en-
coded and decoded as an integer jR. In the remainder of the paper we assume fixed
encodings and decodings of this kind.

Valley Sizes. For vsR we have the following computability result.

LEMMA 4.1. There is a (partial) computable function g : N3 −→ N such that if jR
encodes a confluent TRS R, then vsR(m,n) = g(jR,m, n) for all m,n ∈ N.

PROOF. Let P be a program that does the following: On input (jR,m, n), P decodes
jR, builds all terms t1, . . . , tl of size at most m over Σ (modulo the renaming of vari-
ables), and stores them in memory. As R has a finite number of rules, each term has
a finite number of one-step reducts. Thus, for each ti ∈ {t1, . . . , tl}, the program P
may simply apply all rules from R in turn to obtain in finite time every t′i such that
ti →≤n t′i. Next, for every pair (si, s

′
i) of such terms, P uses R to simultaneously build

increasingly larger parts (
⋃

0≤k≤j Vsi,k,
⋃

0≤k≤j Esi,k) and (
⋃

0≤k≤j Vs′i,k,
⋃

0≤k≤j Es′i,k)

of the reduction graphs of si and s′i. As (Σ, R) is confluent, eventually a j is reached
such that a term ri exists in both

⋃
0≤k≤j Vsi,k and

⋃
0≤k≤j Vs′i,k. The program P stores

the least such j for (si, s
′
i). Clearly, this j is equal to the number of steps in the longest

reduction of the smallest valley of si and s′i. After iterating over every pair (si, s
′
i), P

takes the maximum of the stored lengths and returns it. This value is clearly vsR(m,n).
Thus, P computes a function g(jR,m, n) as desired.

THEOREM 4.2. If R is a confluent TRS, then vsR is a total computable function.

PROOF. By Lemma 4.1, we have vsR(m,n) = g(jR,m, n) for all m,n ∈ N. That vsR is
a partial computable function follows immediately by the s-m-n Theorem [Rogers Jr.
1987]. That the function vsR is total follows by the fact that vsR is well-defined by the
comments below Definition 3.1.

Conversion Valley Sizes. For cvsR, proving computability is harder than for vsR. The
main reason is that the presence of rules such as f(x) → a implies that, even though
→ is finitely branching, the relation← need not be finitely branching. In fact, we cur-
rently only know how to compute cvsR for linear systems. We start by showing that we
can compute the set of pairs of terms of size at most m that have a conversion of length
at most n between them.

The proof below depends on the introduction of a fresh nullary function symbol ⊥.
Intuitively, ⊥ is a placeholder that represents any possible term. Observe that the
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introduction of⊥ entails existence of a decidable partial order on terms in the following
way: ⊥ ≤ s for all s and f(s1, . . . sn) ≤ f(t1, . . . , tn) if si ≤ ti for all 1 ≤ i ≤ n. Given a
rewrite rule l→ r, we say that s ⊥-rewrites to t by l→ r, denoted s→⊥ t, if there exists
a one-hole context C[] and a term s′ 6= ⊥ such that s = C[s′] ≤ C[σ(l)] and t = C[σ(r)]
with σ a substitution such that if s ≤ C[τ(l)] for any substitution τ , then σ(x) ≤ τ(x)
for all x ∈ vars(l) (i.e. σ is the smallest substitution with respect to the partial order
on terms). Observe that it is decidable whether a term s ⊥-rewrites to a term t, and
that σ is unique when restricted to vars(l).

LEMMA 4.3. There is a (partial) computable function hc : N −→ N such that if jR
encodes a linear TRS R, then hc(jR,m, n) is (an encoding as a natural number of) the
finite set of pairs of terms (s, t) such that s↔≤nR t with s and t of size at most m.

PROOF. Let Pc be a program that does the following: On input (jR,m, n), Pc decodes
jR, builds all terms t1, . . . , tl of size at most m over Σ (modulo renaming of variables),
and stores them in memory. Employing that Σ and R are finite sets, Pc extends Σ with
a fresh nullary function symbol ⊥ and computes the finite rule set

R⊥ = R ∪ {r → σl→r⊥ (l) | l→ r ∈ R}
with the substitution σl→r⊥ defined by:

σl→r⊥ (x) =

{
⊥ if x ∈ vars(l) \ vars(r)
x otherwise

Observe that the definition of a rule is slightly relaxed here, as left-hand sides may
be variables. Moreover, observe that each term has a finite number of one-step ⊥-
reducts, as R⊥ has a finite number of rules. Using this fact, for each ti ∈ {t1, . . . , tl},
the program Pc brute-force applies all rules from R⊥ under ⊥-reduction to obtain in
finite time every term t′i over Σ∪ {⊥} such that ti →≤n⊥ t′i. Next, for every such term t′i,
Pc computes each term si ≥ t′i with si ∈ {t1, . . . , tl} and outputs (si, ti).

This leaves to show that si ↔≤n ti iff there exists a term t′i ≤ si such that ti →≤n⊥ t′i.
Thus, suppose si ↔k ti for k ≤ n. We prove by induction on k that there exists a term
t′i ≤ si such that ti →≤k⊥ t′i. If k = 0, then si = ti and we may define t′i = ti, as ti →0

⊥ ti.
If k = k′ + 1, then either (a) si → s′i ↔k′ ti or (b) si ← s′i ↔k′ ti. In both cases, it follows
by the induction hypothesis that there exists a term t′′i ≤ s′i such that ti →≤k

′

⊥ t′′i .
Suppose that the hole of the one-hole context employed in si → s′i or si ← s′i occurs at
a position p and that the rule l → r is used. If p 6∈ pos(t′′i ) or t′′i |p = ⊥, then t′′i ≤ si
and we can define t′i = t′′i . Otherwise, p ∈ pos(t′′i ) and t′′i |p 6= ⊥. In the case of (a), a
⊥-redex for r → σl→r⊥ (l) occurs at the position p in t′′i and contracting this redex yields
a term t′i ≤ si. In the case of (b), a ⊥-redex for l → r occurs at the position p in t′′i and
contracting this redex yields a term t′i ≤ si. Hence, there exists a term t′i ≤ si such that
ti →≤k⊥ t′i.

Now suppose there exists a term t′i ≤ si such that ti →k
⊥ t′i for k ≤ n. We prove

by induction on k that si ↔k ti. If k = 0, then t′i = ti and, as no ⊥ occurs in ti, we
have si ↔0 ti. If k = k′ + 1, then ti →k

⊥ t′i is of the form ti →k−1
⊥ t′′i →⊥ t′i. The step

t′′i →⊥ t′i employs either (a) l → r or (b) r → σl→r⊥ (l). Suppose that the hole of the
one-hole context employed in t′′i →⊥ t′i occurs at position p. In the case of (a), we have
by linearity of R that there is a term s′i ≥ t′′i such that s′i → si (in fact, there are
infinitely many such terms in case vars(l) \ vars(r) is non-empty), where we contract
the redex at position p using l → r. In the case of (b), define the term s′i ≥ t′′i as the
result of contracting the redex at position p in si using l→ r, where the redex exists by
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linearity of R. In both cases, s′i ↔k′ ti now follows by the induction hypothesis. Thus,
we also have si ↔k ti.

We now have the following analogue of Lemma 4.1.

LEMMA 4.4. There is a (partial) computable function h : N3 −→ N such that if jR
encodes a linear TRS R with the Church-Rosser property, then cvsR(m,n) = h(jR,m, n)
for all m,n ∈ N.

PROOF. Let P be a program that does the following: On input (jR,m, n), P de-
codes jR and invokes the function hc from Lemma 4.3 with arguments (jR,m, n).
Next, for every pair (si, s

′
i) of terms output by hc, the program P proceeds as the pro-

gram from Lemma 4.1 and uses R to simultaneously build increasingly larger parts
(
⋃

0≤k≤j Vsi,k,
⋃

0≤k≤j Esi,k) and (
⋃

0≤k≤j Vs′i,k,
⋃

0≤k≤j Es′i,k) of the reduction graphs of
si and s′i. As (Σ, R) has the Church-Rosser property, eventually a j is reached such that
a term ri exists in both

⋃
0≤k≤j Vsi,k and

⋃
0≤k≤j Vs′i,k. The program P stores the least

such j for (si, s
′
i). Clearly, this j is equal to the number of steps in the longest reduction

of the smallest valley of si and s′i. After iterating over every pair (si, s
′
i), P takes the

maximum of the stored lengths and outputs it. This value is clearly cvsR(m,n). Thus,
P computes a function h(jR,m, n) as desired.

THEOREM 4.5. If R is a linear TRS with the Church-Rosser property, then cvsR is a
total computable function.

PROOF. Identical to the proof of Theorem 4.2, but with g replaced by h.

The above theorem also holds for non-erasing TRSs R, i.e. systems having no erasing
rules. In the case of a non-erasing system R, define R′ = R ∪ {r → l | l → r ∈ R} and
apply the brute-force method from the first few lines of the proof of Lemma 4.1 with
respect to R′ to find every pair (s, t) with s ↔≤nR t and |s|, |t| ≤ m. By non-erasingness,
all rules from R′ are rules in the proper sense, except that left-hand sides may be
variables, which does not pose a problem.

4.2. Majorizing Computable Functions by Valleys in Term Rewriting Systems
Above we showed for every confluent TRSR that vsR and cvsR are computable; thus, we
have a computable upper bound on valley sizes. This is a step forwards compared to the
much less restricted setting of ARSs where valley sizes are in general uncomputable,
as we showed in Example 3.3.

However, naı̈vely, one might conjecture that an even tighter bound is obtainable
for TRSs—e.g. that vsR and cvsR are always primitive recursive. We now proceed to
show that this is not the case in a very strong sense: For every computable function
ϕ : N −→ N, there is (a) a TRS R and a single term of some size m ∈ N such that
vsR(m,n) ≥ ϕ(n) for all n ≥ 2 and (b) a TRS R′ and such that cvsR′(n, n) ≥ ϕ(n) for all
n ≥ 4. The results are obtained by encoding Turing machines as TRSs.

4.2.1. Encoding Turing Machines. We shall use the following (non-essential) constraints
on the Turing machines we encode:

Definition 4.6. All Turing machines are deterministic, one-head, single-tape ma-
chines without auxiliary input and output tapes. There are no transitions to the initial
state qs, nor are there any transitions from the final state qh. The input and tape al-
phabets of the Turing machines are {0, 1,2} where 2 is ‘blank’ as usual. All inputs are
assumed to be given in unary; hence, n ∈ N is encoded as 0n. The initial configura-
tion of a Turing machine will always be in the initial state with the input starting in
the tape cell immediately to the right of the read/write head. The machine is assumed
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Rewrite rules induced by the transition rules of the Turing machine M (∆N (M))
(L/R)-move Rewrite rules (for each q ∈ Q, a ∈ {0, 1,2})

δ(q, b) = (q′, b′, R) q(x, by)→ q′(b′x, y)
δ(q, b) = (q′, b′, L) q(ax, by)→ q′(x, ab′y)

Extra rules (∆E(M))
(L/R)-move Extra rewrite rules (for each q ∈ Q, a ∈ {0, 1,2})

δ(q,2) = (q′, b′, R) q(x,�)→ q′(b′x,�)
δ(q, b) = (q′, b′, L) q(�, by)→ q′(�,2b′y)

δ(q,2) = (q′, b′, L)
q(ax,�)→ q′(x, ab′�)
q(�,�)→ q′(�,2b′�)

∆(M) = ∆N (M) ∪∆E(M)

Fig. 2. Basic encoding ∆(M) of a Turing machine M

Rule for transiting to T when the final state has been reached (†)
qh(x, y)→ T

Rules for non-deterministic choice of a number n ∈ N (∆ndt(M))
r(x,�)→ T r(�, y)→ qs(�, y)
r(x, 0y)→ r(0x, y) r(0x, y)→ r(x, 0y)
r(x, 0y)→ r(x, 00y) r(x, 00y)→ r(x, 0y)

∆C(M) = ∆(M) ∪ {†} ∪∆ndt(M)

Fig. 3. Extra rules for non-deterministic choice and confluence

never to get stuck on any legal configuration, i.e. for every state q ∈ Q \ {qh} and every
element b ∈ {0, 1,2}, the transition δ(q, b) is defined.

We give the standard encoding from Terese [2003]. In this encoding, the tape alpha-
bet is modeled by unary function symbols 0, 1 and 2, respectively. Moreover, both tape
ends are modeled by the nullary function symbol �. Hence, the string 0121 enclosed
on the right by a tape end is represented by 0(1(2(1(�)))). For each state q ∈ Q of
the Turing machine we assume there exits a binary function symbol q. The position of
the read/write head and tape extension are encoded in the TRS rules representing the
Turing machine transitions. For a Turing machine M , the TRS ∆(M) induced by the
transitions of M is given in Figure 2, omitting parentheses when no ambiguity arises.

For our purposes, we augment the signature of ∆(M) with a nullary function symbol
T and a binary function symbol r. Moreover, we extend ∆(M) with the rules from
Figure 3, where {†} ∪∆ndt(M) is the rule set defined by Endrullis et al. [2009, Section
5] extended with the rules r(x, 0y) → r(x, 00y) and r(x, 00y) → r(x, 0y). The result is
the TRS ∆C(M).

To prove confluence of ∆C(M) in case where M halts on all inputs, we first state a
general fact concerning mutually orthogonal systems. In the lemma, i = (i+ 1) mod 2
for i ∈ {0, 1}.
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LEMMA 4.7. Let R0 and R1 be mutually orthogonal TRSs. If for each i ∈ {0, 1}
and for each peak t ∗i← s →∗i t′, there exists a corresponding valley t →∗i s′ ∗i← t′ or
t→∗

i
s′ ∗
i
← t′, then R0 ∪R1 is confluent.

PROOF. As R0 and R1 are mutually orthogonal, R0-reductions and R1-reductions
commute, i.e. the following diagram commutes for every i ∈ {0, 1}:

s
i

∗
//

∗i
��

t

∗ i
��

t′
∗
i
// s′

By the conditions of the lemma, for each peak t ∗i← s →∗i t′, at least one of the two
diagrams below commutes for every i ∈ {0, 1}:

s ∗
i //

∗i
��

t

∗ i
��

s ∗
i //

∗i
��

t

∗ i
��

t′
∗
i
// s′ t′

∗

i

// s′

Consider the relation→Q=→∗0 ∪ →∗1. Then,→∗Q= (→0 ∪ →1)∗ =→∗0∪1, and it suffices
to prove that →Q is confluent. We make a stronger claim from which confluence will
follow: →Q has the diamond property. To see this, observe that if t Q← s →Q t′, then
there are the four possibilities: (a) s →∗0 t and s →∗0 t′, (b) s →∗0 t and s →∗1 t′, (c)
s →∗1 t and s →∗0 t′, (d) s →∗1 t and s →∗1 t′. By the assumptions, for each peak there is
a corresponding valley by the one of the three diagrams above. As each reduction in a
valley is either a →∗0- or a →∗1-reduction, it is in particular a →Q-step; hence, →Q has
the diamond property and→0∪1 is thus confluent.

PROPOSITION 4.8. If the Turing machine M halts on all inputs, then the systems
R0 = ∆(M) ∪ {†} and R1 = ∆ndt(M) satisfy the conditions of Lemma 4.7.

PROOF. Both systems are left-linear and clearly no left-hand side of a rule of R0

overlaps with a left-hand side of a rule of R1, and vice versa; whence, the two systems
are mutually orthogonal. As M is assumed to be deterministic, R0 is orthogonal and,
hence, confluent.

Observe that two rules from of ∆ndt(M) can only overlap at the root. As there are no
collapsing rules in ∆ndt(M) we thus obtain confluence if every peak t ∗1← r(s, s′) →∗1 t′
has a corresponding valley. By inspection of the rules from ∆ndt(M), it is seen that if
r(s, s′) →∗1 r(t, t′), then r(t, t′) →∗1 r(s, s′). Thus, the only peaks of R1 that do not have
corresponding valleys in R1 are the ones of the form

T ∗1← r(s, s′)→∗1 qs(�, t) ,

where s = 0n� and s′ = 0n
′
� for n, n′ ∈ N. By inspection of the rules of ∆ndt(M), we

see that such a peak is only possible if t = 0n�. As M halts on all inputs, we obtain
qs(�, t)→∗0 qh(t′, t)→0 T , concluding the proof.

COROLLARY 4.9. If M halts on all inputs, then ∆C(M) is confluent.

4.2.2. Majorizing Computable Functions by Valleys in Term Rewriting Systems.

Valley Sizes. We now show that for every computable function ϕM : N −→ N, there
exists a confluent TRS R and a term s such that there is a peak of size n with the
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s
n

!!

2

}}
s0 sn

≥ϕM (n)
}}

s0

(a) Confluence

t0 oo
n // tn

≥ϕM (n)
��

t0

(b) Church-Rosser property

Fig. 4. Majorizing a computable function ϕM by a valley

smallest corresponding valley of size at least ϕM (n). Thus, vsR(m,n) ≥ ϕM (n) for all
m ≥ |s|.

We first prove a general lemma regarding Turing machines and employ this lemma
to construct the desired TRS R.

LEMMA 4.10. Let ϕM : N −→ N be a total computable function. There is a Turing
machine M ′ that (a) halts on all inputs and (b) halts on input 0n in at least ϕM (n) steps.

PROOF. Let M ′ be the Turing machine containing an inlined copy of the Turing
machine M . On input 0n, let M ′ compute k = ϕM (n) and then perform k ‘idle steps’
before halting. As M halts on all inputs, so does M ′ and, by construction, M ′ runs for
at least ϕM (n) steps before halting.

LEMMA 4.11. For every total computable function ϕM : N −→ N, there exists a con-
fluent TRS R, a ground term s, and a ground normal form s0 such that, for every
natural number n ≥ 1, there exists a term sn with (a) s0

2← s →n sn, (b) sn →∗ s0, and
(c) every sn →∗ s0 of length at least ϕM (n) (see Figure 4(a)).

PROOF. Let M ′ be the Turing machine obtained by applying Lemma 4.10 to ϕM .
Then, M ′ halts on all inputs and halts in at least ϕM (n) steps on input 0n for all n ∈ N.
We set R = ∆C(M ′), s = r(�, 0�), s0 = T , and sn = qs(�, 0

n�). For all n ∈ N, we then
have s → r(0�,�) → T and s →n sn. Observe that R is confluent by Corollary 4.9
and that s is ground. By the fact that each step of ∆(M ′) simulates exactly one step of
M ′, we obtain that qs(�, 0n�) →m qh(t, t′) (for terms t, t′) where m ≥ ϕM (n). As M ′ is
deterministic, this is the only possible reduction from qs(�, 0

n�) to qh(t, t′). Finally, we
use the †-rule to obtain qh(t, t′)→ T = s0. Hence, sn →∗ s0 and all such reductions are
of length at least ϕM (n).

By Lemma 4.11, we thus have the following theorem showing that the valley size as
a function of the peak size can be made to majorize any total computable function.

THEOREM 4.12. For every total computable function ϕM : N −→ N, there is an ex-
plicitly constructible, confluent TRS R and an explicitly constructible ground term s of
R such that vsR(m,n) ≥ ϕM (n) for all m ≥ |s| and n ≥ 2.

Conversion Valley Sizes. Analogously to the above, we next show that for every com-
putable function ϕM : N −→ N, there exists a confluent TRS R′ such that there is a
conversion of size n between terms of size at most n with the smallest corresponding
valley of size at least ϕM (n). Thus, cvsR′(n, n) ≥ ϕM (n).

LEMMA 4.13. For every total computable function ϕM : N −→ N, there exists a TRS
R′ with the Church-Rosser property, and a ground normal form t0 of size 1 such that,

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: December 2012.



Least Upper Bounds on the Size of Confluence and Church-Rosser Diagrams 0:19

for every natural number n ≥ 4, there exists a term tn of size n with (a) t0 ↔n tn, (b)
tn →∗ t0, and (c) every tn →∗ t0 of length at least ϕM (n) (see Figure 4(b)).

PROOF. To start, observe that similarly to the construction in Lemma 4.10, we can
construct from the Turing machine M of ϕM a Turing machine M ′ that (a) halts on
all inputs and (b) halts on input 0n using at least ϕM (n + 3) steps: Let M ′ compute
ϕM (n+ 3) instead of ϕM (n).

Define R′ = R′0 ∪R′1 with

R′0 = ∆(M ′) ∪ {qh(x, y)→ T ′, T → T ′}
R′1 = ∆ndt(M

′)

where T ′ is a fresh nullary function symbol. Hence, compared to ∆C(M ′), the right-
hand side of the †-rule has been changed, and a new rule T → T ′ has been added. By
reasoning similar to that of Proposition 4.8, it follows that R′0 and R′1 satisfy the condi-
tions of Lemma 4.7, where the valley constructed for the peak T ∗1← r(s, s′)→∗1 qs(�, t)
is T →0 T

′
0← qh(t′, t) ∗0← qs(�, t). Hence, R′ has the Church-Rosser property.

Let n ≥ 4. Set t0 = T ′ and tn = qs(�, 0
n−3�). We have |t0| = 1 and |tn| = n.

Moreover, for s = r(�, 0�) we have s → r(0�,�) → T → T ′ and s →n−3 tn. Hence,
t0 ↔n tn. As each step of ∆(M ′) simulates exactly one step of M ′, we obtain that
qs(�, 0

n−3�)→m qh(t, t′) (for terms t, t′) where m ≥ ϕM (n − 3 + 3) = ϕM (n). As M ′ is
deterministic, this is the only possible reduction from qs(�, 0

n−3�) to qh(t, t′). Finally,
we use the rule qh(x, y)→ T ′ to obtain qh(t, t′)→ T ′ = t0. Hence, tn →∗ t0 and all such
reductions are of length at least ϕM (n).

We now immediately have the following theorem.

THEOREM 4.14. For every total computable function ϕM : N −→ N, there is an ex-
plicitly constructible TRS R′ with the Church-Rosser property such that cvsR′(n, n) ≥
ϕM (n) for all n ≥ 4.

In contrast to Theorem 4.12 where a fixed term s of fixed size was employed, the term
size cannot be fixed in Theorem 4.14 because of Lemma 3.6. Observe that the TRS R′

from the above theorem is linear. This implies that the result from Theorem 4.5 for
linear systems cannot be improved.

5. UPPER BOUNDS ON VALLEY SIZES IN ORTHOGONAL TERM REWRITING SYSTEMS
Valley Sizes. For orthogonal TRSs, much better bounds can be obtained than those

presented in Section 4. We shall prove existence, for every TRS R, of a constant µR
such that vsR(m,n) ≤ n · (µR)n, where µR and, hence, vsR is independent of the term
size m. The constant, called the multiplicity of R, is defined as follows.

Definition 5.1. The multiplicity of a finite TRS R, denoted µR, is defined as:

max
l→r∈R

max
x∈vars(l)

(1,number of occurrences of x in r)

Thus, the multiplicity of a system is simply the maximum number of times that a
variable can occur on a right-hand side of a rule of R.

Example 5.2. Let R = {f(x, y) → g(x, x, y), g(x, y, z) → f(x, z)} Then µR = 2, as
x occurs twice on the right-hand side of f(x, y) → g(x, x, y) and as no variable occurs
more often.

We can now derive the touted exponential bound for orthogonal systems by enriching
the standard confluence proof for orthogonal systems with reduction lengths. To do so,
we first define the—standard—notion of parallel rewriting.
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s0,0 = s
1 +3

1

��

s0,1
1 +3

≤1·µR

��

s0,2
1 +3

≤µR·µR

��

· s0,i−1
1 +3

≤(µR)i−1

��

s0,i = t

≤(µR)i−1·µR

��
s1,0 ≤1·µR

+3

1

��

s1,1 ≤1·µR

+3

≤1·µR

��

s1,2 ≤1·µR

+3

≤µR·µR

��

· s1,i−1 ≤1·µR

+3

≤(µR)i−1

��

s1,i

≤(µR)i−1·µR

��
s2,0 ≤µR·µR

+3

1

��

s2,1 ≤µR·µR

+3

≤1·µR

��

s2,2 ≤µR·µR

+3

≤µR·µR

��

· s2,i−1 ≤µR·µR

+3

≤(µR)i−1

��

s2,i

≤(µR)i−1·µR

��
· · · · · ·

sj−1,0
≤(µR)j−1

+3

1

��

sj−1,1
≤(µR)j−1

+3

≤1·µR

��

sj−1,2
≤(µR)j−1

+3

≤µR·µR

��

· sj−1,i−1
≤(µR)j−1

+3

≤(µR)i−1

��

sj−1,i

≤(µR)i−1·µR

��
sj,0 = t′

≤(µR)j−1·µR

+3 sj,1
≤(µR)j−1·µR

+3 sj,2
≤(µR)j−1·µR

+3 · sj,i−1
≤(µR)j−1·µR

+3 sj,i = t

Fig. 5. Tiling diagram annotated with reduction lengths for the proof of Theorem 5.5

Definition 5.3. Let R be a TRS. The parallel rewrite relation⇒ is defined as follows:
s ⇒k t if there is a k-hole context such that (a) s = C[s1, . . . , sk], (b) t = C[t1, . . . , tk],
and (c) for all 1 ≤ i ≤ k, si → ti.

It is easily shown that⇒∗=→∗.
LEMMA 5.4 (PARALLEL MOVES LEMMA). Let R be an orthogonal TRS and let s be

a term. If t m⇐ s⇒n t′ is a peak, then there exists a valley t⇒≤n·µR s′ m·µR≥⇐ t′.

PROOF. Existence of a valley follows by the standard Parallel Moves Lemma
[Baader and Nipkow 1998]. The reduction t ⇒ s′ consists of a parallel contraction of
the residuals of the redexes contracted in s⇒n t′ across contraction of the m redexes in
s⇒m t, and vice versa for t′ ⇒ s′. The step s⇒m t consists of m separate→-steps, each
contracting a single redex parallel to the other m − 1 redexes. By the definition of the
rewrite relation→, every single step using a rule l → r may copy each of its subterms
by as many times as a variable occurs in r. Each of the n parallel redexes contracted in
s⇒n t′ may, or may not, occur inside one of the subterms copied by a redex in s⇒m t.
The total number of copies occurring in t is, hence, bounded from above by n times the
maximum number of times that a single variable can occur in the right-hand side of a
rule, hence n · µR. The case for m · µR is symmetrical.

THEOREM 5.5. Let R be an orthogonal TRS and let s be a term. If t j← s→i t′, then
there exists a valley t→≤j·(µR)i s′ i·(µR)j≥← t′. Hence, vsR(m,n) ≤ n · (µR)n.

PROOF. As every→-reduction is also a⇒-reduction and as⇒∗=→∗, repeated appli-
cation of Lemma 5.4 allows us to erect the tiling diagram in Figure 5. The result now
follows by tallying the number of steps on the right-most and bottom-most sides of the
diagram.

Remark 5.6. The bounds from Theorem 5.5 are tight for every non-erasing TRS R
in the following sense: There is an infinite number of terms s such that vsR(|s|, n) =
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n · (µR)n. Let l→ r be a rule such that there is a variable x in l that occurs µR times in
r. For j ≥ 0 let sj be the term defined inductively by s0 = l and sj+1 = l[sj ]px where px
is the (unique, by left-linearity) position of the variable x in l. For every n ≥ 1, consider
the term s2n and the peak obtained by performing (a) a complete development of the
n outermost redexes, and (b) the n innermost redexes, where in both cases the redexes
are contracted in inside-out fashion (i.e. by iteratively contracting redexes that have
no redexes below them that also need to be contracted); observe that both reductions
are of length precisely n. The (a)-reduction copies the ‘inner’ term sn a total of (µR)n

times ending in some term t. The (b)-reduction leaves exactly one copy of each of the
top n redexes, ending in some term t′. To complete the confluence diagram, one needs
to reach the term obtained by a complete development of all redexes in s2n. From the
term t′, a total of n steps is required to reach this term. From the term t, reaching the
final term requires the contraction of n redexes in (µR)n parallel subterms, for a total
of n · (µR)n steps.

Remark 5.7. By Proposition 2.8 any bound on vsR(m,n) derived for orthogonal
TRSs immediately carries over to combinator systems, which are always orthogonal.
For the specific case of Combinatory Logic, inspection of the rules shows that µCL = 2,
as the variable x occurs twice in the right-hand side of rule S x y z → x z (y z); whence,
vsCL(m,n) ≤ n · 2n.

A simple construction along the lines of Remark 5.6 shows that the above bound is
tight: DefineM0 = S x y z andMj+1 = SMj y z for every j ≥ 0. For every n ≥ 1, consider
the term M2n and the peak obtained by performing (a) a complete development of the n
outermost redexes, and (b) the n innermost redexes. As in Remark 5.6, both reductions
have exactly n steps. Note that the only combinator occurring in any Mj is S, and
that the rule associated with S is non-erasing, whence completion of the confluence
diagram requires reaching the term obtained by performing a complete development of
all redexes inM2n; for the term at the end of the (a)-reduction, this requires contraction
of n · 2n redexes.

Conversion Valley Sizes. In case R is orthogonal, we can employ the bound on vsR to
derive a bound for cvsR.

LEMMA 5.8. Let R be an orthogonal TRS. Consider the family s ↔≤n t of conver-
sions (for n ≥ 0) and write i = bn/2c. Then, the length vlR (i, n) of the reductions in
the valleys s→∗ · ∗← t of s↔≤n t constructed as in Lemma 3.13 satisfies the following
recursion inequality:

vlR (i, n) ≤
{
n if i = 0

vlR (i− 1, n+ 2n · (µR)n) if i > 0

PROOF. Immediate by Theorem 5.5 and Lemma 3.13, employing that Theorem 5.5
does not depend on term sizes.

We now have the following upper bound on conversion valleys.

THEOREM 5.9. Let R be an orthogonal TRS. There exists a function g : N2 −→ N
such that cvsR(m,n) ≤ g(m,n) and

— if µR = 1, then g is in E3, the third level of the Grzegorczyk hierarchy, and
— if µR > 1, then g is in E4, the fourth level of the Grzegorczyk hierarchy.

PROOF. We prove the two cases in turn.
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— In case µR = 1, observe for all n ∈ N that n + 2n · (µR)n = 3n and n · (µR)n = n.
Hence, by Lemma 5.8, we have cvsR(m,n) ≤ vlR (bn/2c, n) ≤ g′(bn/2c, n) with

g′(i, n) =

{
n if i = 0

3 · g′(i− 1, n) if i > 0

Obviously, the right-hand side of g′ involves multiplication applied to limited recursion.
Hence, as multiplication is in the second level of the Grzegorczyk hierarchy, we have
that g′ is in E3. The result follows by defining g(m,n) = g′(bn/2c, n).

— In case µR > 1, observe for all n ∈ N that
n+ 2n · (µR)n ≤ 3n · (µR)n ≤ (µR)3n · (µR)n = (µR)4n

and
n · (µR)n ≤ (µR)n · (µR)n ≤ (µR)4n

Hence, by Lemma 5.8, we have cvsR(m,n) ≤ vlR (bn/2c, n) ≤ g′(bn/2c, n) with

g′(i, n) =

{
(µR)4n if i = 0

(µR)4·g′(i−1,n) if i > 0

Obviously, the right-hand side of g′ involves composition of multiplication and expo-
nentiation, applied to limited recursion. Hence, as multiplication and exponentiation
are, respectively, in the second and third level of the Grzegorczyk hierarchy, g′ is in E4.
The result follows by defining g(m,n) = g′(bn/2c, n).

A natural notion of tightness of the bound in Lemma 5.8 would be that for some
orthogonal TRSs cvsR(m,n) = vlR (bn/2c, n+ 2n · (µR)n) for all or most m,n ∈ N. How-
ever, due to the observation from Lemma 3.6, the bound is unlikely to be tight in this
sense. Moreover, as in the general case described in Remark 3.7, the n from Lemma 3.6
cannot be computed for (linear) orthogonal TRSs, as convertibility of two terms is un-
decidable even within this subclass (see Terese [2003]).

Although the derived bound will in general not be tight, it is possible that tighter
bounds for µR = 1 and µR > 1 could exist in E3 and E4, respectively. We currently do
not know whether this is the case.

6. UPPER BOUNDS ON VALLEY SIZES IN λ-CALCULUS
In λ-calculus we cannot expect valley sizes to be independent of term sizes as in the
case of orthogonal TRSs (cf. Theorem 5.5), because the growth rate of terms across
β-steps depends on the number of occurrences of bound variables in the original term,
and hence on its size. Thus, the size of the valleys is determined by the number of
copies of redexes, and vsΛ(m,n) and cvsΛ(m,n) must thus depend on m.

As the proof of Theorem 4.2 trivially extends to λ-calculus, vsΛ is clearly a total
computable function. However, following the approach from the previous section, an
explicit upper bound on vsΛ can be obtained by enriching one of the standard conflu-
ence proofs for λ-calculus with reduction lengths; we derive this bound below.

Unfortunately, knowing a bound on vsΛ is insufficient to obtain a bound on cvsΛ by
means of Lemma 3.13. As vsΛ and cvsΛ depend on term sizes, employing the lemma
requires us to establish an upper bound on the function cbΛ from Definition 3.12. We
currently do not know how to derive such an upper bound and, consequently, we do
not know how to establish an upper bound on cvsΛ either. In fact, as it seems that
Lemma 4.1 does not immediately extend to λ-calculus, we do not even know whether
cvsΛ is computable. For these reasons, we focus on vsΛ in the remainder of this section.

Of the many available methods of proving λ-calculus confluent, we believe that the
one most amenable to analysis of reduction lengths is the method of ‘tiling peaks’ with
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commuting squares of so-called complete developments of sets of redexes in a single
term; the construction is essentially the same as the one depicted in Figure 5 (indeed,
the figure is often called a tiling diagram [Terese 2003]), except that for λ-calculus, the
‘parallel reduction’ relation used in each square is replaced by a complete development
of a set of redexes in a single term. An analysis of this proof reveals vsΛ(m,n) to be
bounded from above by a function in E4, the fourth level of the Grzegorczyk hierarchy.
Indeed, considering the special case of the so-called Strip Lemma where one reduction
in the peak has length 1 and the other length k (see Lemma 6.3), naı̈ve analysis yields

a bound |Mi,0|2
2·|Mi,0|

2k+k

for the length of the reduction Mi+1,0 →∗ Mi+1,k. We give a
somewhat better bound in the present section; this bound is still in E4, but much less
than the bound obtained by naı̈ve analysis: |Mi,0|2

2k+k+2 for the Strip Lemma.

6.1. Upper Bounds for the Strip Lemma
To establish upper bounds on the length of the reductions in the Strip Lemma, we first
prove two auxiliary lemmas concerning positions in λ-terms.

In the proofs of the lemmas, we write p ‖ q if p and q are incomparable with respect to
the prefix order on positions. Moreover, if C[] is a one-hole context with the hole occur-
ring at position q, then we write C[]q. Finally, if P = C[(λx.M)N ]q →β C[M{N/x}]q =
Q, then we say that there is a redex at position q in P .

LEMMA 6.1. Let M0 →M1 → · · ·Mn−1 →Mn be a reduction of length n ≥ 0, and let
u be a redex in M0. For each position p ∈ pos(Mn), at most 2n residuals of u occur in
Mn at prefix positions of p.

PROOF. We prove the result by induction on n. If n = 0, then only a single copy of u
occurs in Mn = M0, and the result follows.

If n = n′+1, let the redex contracted inMn′ →β Mn be C[(λx.M)N ]q →β C[M{N/x}]q
and let p ∈ pos(Mn). If p � q or p ‖ q, there are at most 2n

′
< 2n residuals of u above

p by the induction hypothesis. If q ≺ p, then either the number of residuals of u above
p is bounded by the number of residuals of u above (a) the position q · 0 · 0 · q′ with
q′ ∈ pos(M) and p = q · q′ in case M |q′ 6= x or (b) the positions q · 0 · 0 · q′ and q · 1 · p′
with q′ ∈ pos(M), p′ ∈ pos(N), and p = q · q′ · p′ in case M |q′ = x. By the induction
hypothesis, we have in the case of (a) that the number of residuals is at most 2n

′
< 2n

and in the case of (b) that the number is at most 2n
′
+2n

′
= 2 ·2n′ = 2n

′+1 = 2n (observe
that, although there may be many copies of N in M{N/x}, no copy of N will occur
above any another copy of N in M{N/x}).

LEMMA 6.2. Let M be a term and U a set of redexes in M . Suppose for each
p ∈ pos(M) that at most i ≥ 0 redexes from U occur at prefix positions of p. Then,
contracting all redexes in U yields a term of at most size |M |22·(i+1)

.

PROOF. We prove the result by induction on i, observing that there are at most |M |
redexes in U .

If i = 0, then for every p, q ∈ U , we have p ‖ q. Furthermore, contracting a single
redex can produce a term of size at most |M |2. Hence, the total size of the term obtained
by contracting all redexes in U is |M |·|M |2, and as there are at most |M | positions above
or parallel to the redexes of U , we obtain a term of size at most |M |+ |M | · |M |2 ≤ |M |22

.
If i = i′+ 1, then by the Finite Developments Theorem, we may contract the redexes

of U in any order to obtain the unique final term. In particular, we may contract the
redexes in an inside-out fashion (i.e. by iteratively contracting redexes that have no re-
dexes below them that also need to be contracted). Hence, consider the subterms of M
immediately below the outermost redexes in U . By the induction hypothesis, perform-
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ing an inside-out reduction of redexes in these subterms yields terms of size at most
|M |22·(i′+1)

. Contracting (the residual of) an outermost redex in U after reducing all of
the subterms below it can thus yield a term of size at most (|M |22·(i′+1)

)2 = |M |22·(i′+1)+1

.
There are at most |M | outermost redexes in U , and there are at most |M | positions

of M parallel to or above all redexes of U . Hence, the total size of the term obtained
after contracting all redexes of U is at most

|M |+ |M | · |M |2
2·(i′+1)+1

≤ |M | · |M | · |M |2
2·(i′+1)+1

≤ |M |2
2·(i′+1)+2

= |M |2
2·(i+1)

,

concluding the proof.

We can now establish our result for the Strip Lemma.

LEMMA 6.3 (STRIP LEMMA). Let k ≥ 1 and consider the peak

Mi+1,0 β←Mi,0 →β Mi,1 →β Mi,2 →β · · ·Mi,k−1 →β Mi,k .

Then, a valley may be obtained by tiling the peak using the Finite Developments Theo-
rem in the following way:

Mi,0
1 //

1

��

Mi,1
1 //

∗
��

Mi,2
1

∗
��

Mi,k−1
1 //

∗
��

Mi,k

∗
��

Mi+1,0
∗ // Mi+1,1

∗ // Mi+1,2 Mi+1,k−1
∗ // Mi+1,k

where the following holds for 1 ≤ j ≤ k:

(1) |Mi,j | ≤ |Mi,0|2
j

and |Mi+1,j | ≤ |Mi,0|2
2j+1+j+2

, and
(2) the reduction Mi+1,j−1 →∗β Mi+1,j has length at most |Mi,0|2

2j+j+1

.

Moreover, the reduction Mi+1,0 →∗β Mi+1,k has length at most |Mi,0|2
2k+k+2

.

PROOF. If P →β Q, then |Q| ≤ |P |2. Hence, straightforward induction shows that
|Mi,j | ≤ |Mi,0|2

j

. Let u be the redex contracted in Mi,0 →β Mi+1,0. By Lemma 6.1, the
number of residuals of u along any path from the root of Mi,j to a leaf is at most 2j .

Observe that any reduction Mi,j →∗β Mi+1,j is a complete development of U =

u/(Mi,0 →∗β Mi,j). Then, Lemma 6.2 and the first part of the current lemma yield

|Mi+1,j | ≤ (|Mi,0|2
j

)22·(2j+1)

= |Mi,0|2
j ·22j+1+2

= |Mi,0|2
2j+1+j+2

.

The reduction Mi+1,j−1 →∗β Mi+1,j is a complete development of a set of residuals
of the single redex contracted in Mi,j−1 →β Mi,j , and an inside-out development has
length bounded from above by the size of Mi+1,j−1; by the above, that size is at most
|Mi,0|2

2j+j+1

. Hence, the length of the entire bottom reduction Mi+1,0 →∗β Mi+1,k is
bounded from above by

k∑
j=1

|Mi,0|2
2j+j+1

≤ 2 · |Mi,0|2
2k+k+1

≤ |Mi,0|2
2k+k+2

,

where the first inequality follows once we observe that 2 · |Mi,0|2
2j
′
+j′+1 ≤ |Mi,0|2

2j+j+1

in case j′ = j − 1.
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6.2. Valley Sizes in λ-Calculus are in E4

Using the Strip Lemma, we can now prove the following lemma.

LEMMA 6.4. Consider the following family of peaks (for l, k ≥ 0):

Ml,0 β← · · · β←M1,0 β←M0,0 →β M0,1 →β · · · →β M0,k

and write m = |M0,0|. Then, in the tiling of the peak with complete developments, the
length bl (l, k,m) of the bottom side of the tiling diagram satisfies the following recur-
sion inequality:

bl (l, k,m) ≤

{
k if l = 0

m22bl(l−1,k,m)+bl(l−1,k,m)+l+1

if l > 0

PROOF. The tiling diagram may be viewed as l copies of the Strip Lemma (horizon-
tal tiling) stacked on top of each other. The result now follows by a simple induction
employing Lemma 6.3 (observe for 1 ≤ i ≤ l that the upper left term in the ith copy of
the Strip Lemma has size |Mi,0| ≤ m2i−1

).

We can now prove:

THEOREM 6.5. There exists a function g : N2 −→ N in E4, the fourth level of the
Grzegorczyk hierarchy, such that vsΛ(m,n) ≤ g(m,n).

PROOF. The right-hand side of the recurrence equation of Lemma 6.4 involves com-
position of addition, multiplication, and exponentiation, applied to limited recursion
on the function bl (l, k,m) being defined. As addition, multiplication and exponenti-
ation are at the first, second, and third levels of the Grzegorczyk hierarchy, hence a
fortiori in E3, the function g, defined as g(m,n) = bl (n, n,m), is in E4.

The reader should note that while performing projections of the reductions in a peak
across each other (i.e. by repeatedly applying the Strip Lemma as in the above theo-
rem) may yield reductions of extreme length, the projections will often be reductions
between terms that also have short reductions between them and, hence, will only
give rise to ‘small’ values of vsΛ. Therefore, it does not automatically follow from The-
orem 6.5 that reductions exist that saturate the above bound.

6.3. Attempting to Saturate the Upper Bound
It is interesting to investigate whether the inequality from Lemma 6.4 is tight. We
followed two approaches to investigate this question. Firstly, we wrote an implemen-
tation of the program from the proof of Theorem 4.2 for λ-calculus. Unfortunately, due
to the combinatorial explosion in the number of terms with growing term sizes and the
number of reductions with increasing reduction lengths, the program quickly ran out
of memory for any non-trivial combination of term size and reduction length.

Secondly, we attempted to manually construct terms and reductions that approach
the computed bound. The construction presented below is the best example we were
able to devise that comes ‘close’ to the upper bound from the lemma. Observe that the
example is only doubly exponential, which leads us to believe that the inequality from
Lemma 6.4 is, in fact, not tight.

To start, define for any variable x and positive integer k the term xk as follows:

xk =

{
x if k = 1

xxk−1 if k > 1
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Let {x0, x1, . . .} be a denumerably infinite set of distinct variables. Define for integers
n ≥ 0 and k ≥ 1 the term Mk,n as follows:

Mk,n =

{
xk0 if n = 0

(λz.z (z xn)) (λxn−1.Mk,n−1) if n > 0

Observe that |Mk,0| = 2k − 1 and |Mk,0| = 8 + |Mk,n−1| for n > 0, whence |Mk,n| =
8n+ 2k − 1 for n ≥ 0.

We claim that Mk,n →3n
β t where t is a term that contains xn as a free variable at

k2n

distinct positions. To prove the claim, use induction on n: In case n = 0, we have
Mk,0 = xk0 , which clearly contains k free copies of x0. In case n > 0, observe that by the
induction hypothesis

Mk,n = (λz.z (z xn)) (λxn−1.Mk,n−1)→3(n−1)
β (λz.z (z xn)) (λxn−1.N

′)

where N ′ contains k2n−1

free copies of xn−1. Now,

(λz.z (z xn)) (λxn−1.N
′)→β (λxn−1.N

′) ((λxn−1.N
′)xn)

→β (λxn−1.N
′) (N ′{xn/xn−1})

→β N
′{(N ′{xn/xn−1})/xn−1} = N

Thus, N has k2n−1 · k2n−1

= k2·2n−1

= k2n

free copies of xn, and

Mk,n →3(n−1)
β (λz.z (z xn)) (λxn−1.t

′)→3
β N ,

concluding the proof of the claim.
Consider the term (λxn.Mk,n) ((λy.y) y′) and the peak

(λxn.Mk,n) y′ β← (λxn.Mk,n) ((λy.y) y′)→β Mk,n{(λy.y) y′/xn} →3n
β N{(λy.y) y′/xn} ,

where N is as above. By construction, k2n

copies of (λy.y) y′ occur in N{(λy.y) y′/xn}
and, as these are the only redexes that occur in this term, any valley that completes
the peak must contract all these redexes. The other reduction of the completing valley
is

(λxn.Mk,n) y′ →β Mk,n{y′/xn} →3n
β N{y′/xn} .

Hence, for any k ≥ 2, the reductions in the valley are bounded by k2n

, which is signifi-
cantly smaller than bl (1, 3n+ 1, |Mk,n|+ 6) = bl (1, 3n+ 1, 8n+ 2k + 5).

7. CONCLUSION AND CONJECTURES
We have performed the first fundamental study of the size of confluence and Church-
Rosser diagrams in term rewriting and λ-calculus, and have derived bounds for the
valleys in confluence diagrams for general and orthogonal systems.

The work reported in the paper has raised a number of questions and conjectures:

— The dependence on term size |s| in the bound given for arbitrary TRSs in Sec-
tion 4 can possibly be removed; we are currently unable to do so.

— Our inability to construct terms in λ-calculus that saturate the upper bounds
derived in Section 6 suggests that vsΛ may be in E3. Similarly, we conjecture that
conversion valley sizes for orthogonal TRSs are in E3.

— We conjecture that conversion valley sizes for arbitrary TRSs and λ-calculus are
computable. For conversion valley sizes in λ-calculus, the derivation of conversion val-
ley sizes for orthogonal TRSs, combined with the E4 bound on valley sizes in λ-calculus,
suggests a bound in at least E5, the fifth level of the Grzegorczyk hierarchy.
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— The question of valley sizes for higher-order rewriting systems must be investi-
gated; bounds for such systems will automatically lead to bounds for deduction systems
in first- and higher order logics, as well as for higher-order functional programs.
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