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Abstract. We study the Church-Rosser property—which is also known
as confluence—in term rewriting and λ-calculus. Given a system R and
a peak t ∗← s →∗ t′ in R, we are interested in the length of the reduc-
tions in the smallest corresponding valley t →∗ s′ ∗← t′ as a function
vsR(m,n) of the size m of s and the maximum length n of the reductions
in the peak. For confluent term rewriting systems (TRSs), we prove the
(expected) result that vsR(m,n) is a computable function. Conversely,
for every total computable function ϕ(n) there is a TRS with a single
term s such that vsR(|s|, n) ≥ ϕ(n) for all n. In contrast, for orthogonal
term rewriting systems R we prove that there is a constant k such that
vsR(m,n) is bounded from above by a function exponential in k and
independent of the size of s. For λ-calculus, we show that vsR(m,n) is
bounded from above by a function contained in the fourth level of the
Grzegorczyk hierarchy.

1 Introduction

The Church-Rosser property—also called confluence—is a property of rewriting
systems which states that any peak t ∗← s →∗ t′ has a corresponding valley
t→∗ s′ ∗← t′. The valley and the term s′ are said to complete the diagram.

In functional programming, the Church-Rosser property ensures that differ-
ent ways of evaluating a program will always yield the same end result (modulo
non-termination): The outcome will be independent of the evaluation order or re-
duction strategy. In logic, if a deductive system has the Church-Rosser property,
the system will be consistent: No statement can both hold and not hold.

While the Church-Rosser property has been shown to hold for a wide variety
of rewrite systems, there has, to our knowledge, never been an investigation into
the number of reduction steps in a valley that completes the diagram of a peak
of a given size (see Figure 1). Succinctly: The question “How large is the valley
as a function of the peak?” has apparently never been asked.
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Fig. 1. The Church-Rosser property for a rewriting system R with bounds on the
lengths of reductions. This paper is concerned with finding least upper bounds of l as
a function of n. Succinctly: The peak being the upper half of the diagram, the valley
being the lower half, how large is the valley as a function of the peak?

We believe the above question to be intrinsically interesting from a theoreti-
cal point of view, as Church-Rosser-type results are ubiquitous. We also believe
the practical implications in mainstream functional programming to be limited:
Standard functional languages like ML and Haskell employ a fixed evaluation
strategy such as call-by-value or call-by-need, and there seems to be little interest
in performing optimisations by switching strategies (modulo non-termination).
However, for more specialised languages, like declarative DSLs where the evalu-
ation order may not be fixed, there may be practical implications: If, for small
peaks, the size of the smallest corresponding valley is so large that a term com-
pleting the Church-Rosser diagram cannot be computed using realistic resources,
then it matters very much what kind of reduction strategy is used: Choosing the
‘wrong’ evaluation strategy (say, call-by-value) and performing just a few steps
of computation could result in a very long reduction before a result is reached—
better to backtrack to the original term and try another strategy. Apparently,
there is no prior research concerning this problem in the foundational basis of
declarative programming—λ-calculus and term rewriting. There does exist some
literature on length of shortest and longest reductions to normal form for cer-
tain classes of systems [15,8,17], but the Church-Rosser theorem does not concern
normal forms: It also applies to systems where some (or all) terms may fail to
have normal forms.

In this paper, we perform the first fundamental study of the size of peaks and
valleys for systems having the Church-Rosser property; specifically we study how
the size of a peak affects the valley size of the smallest corresponding valley. We
consider three very general settings: That of (arbitrary) first-order term rewriting
systems, of orthogonal term rewriting systems (roughly corresponding to first-
order functional programs that have no fixed evaluation order), and untyped
λ-calculus. We believe that these three areas cover most of the non-specialised
areas where the Church-Rosser property occurs; the most significant omission is
the case of general higher-order rewrite systems (including general higher-order
functional programs and logics with bound variables)—we expect general upper
bounds in that case to be difficult to derive (and, likely, to be astronomical), as
is foreshadowed by our treatment of λ-calculus in Section 5.



The remainder of this paper proceeds as follows: Section 2 reviews prelimi-
nary notions. Section 3 formally introduces valley sizes and shows, respectively,
that for term rewriting systems the valley size will always be a computable func-
tion and that every computable function can be majorized by a valley size of
a specific family of peaks in a term rewriting system. Section 4 gives an expo-
nential upper bound for valley sizes in orthogonal term rewriting systems and
Section 5 shows that valley sizes in λ-calculus are bounded from above by a
function in the fourth level of the Grzegorczyk hierarchy. Section 6 concludes.

2 Preliminaries

We presuppose a working knowledge of Turing machines and a basic familiarity
with term rewriting and λ-calculus. We give brief definitions below. The basic
references for term rewriting are [1,16,9]; for λ-calculus we refer the reader to
[2,16,5]. For Turing machines, almost any introductory textbook on computabil-
ity will do, e.g. [12,7,14,5]. Section 5 of the paper uses the Grzegorczyk hierarchy;
we refer the reader to [6,11] for definitions.

2.1 Abstract Rewriting and the Church-Rosser Property

We introduce some basic notions related to abstract rewriting and confluence.

Definition 2.1. An abstract rewriting system (ARS) is a pair (A,R) with A
a set of objects and R a binary relation over A where we write (a, b) ∈ R as
a → b. We write →∗ for the reflexive, transitive closure of R. A reduction or
rewrite sequence is a finite sequence 〈a1, a2, . . . , an〉 with ai → ai+1 for all i < n,
which we usually write as a1 → a2 → · · · → an−1 → an, or even as a1 →∗ an.

Definition 2.2. A peak is a pair of reductions

(s→ s1 → · · · → si−1 → si, s→ s′1 → · · · → s′j−1 → s′j)

both starting from s. A valley is a pair of reductions

(si → t1 → · · · → tk−1 → t, s′j → t′1 → · · · → t′l−1 → t)

both ending in t. We usually write a peak as si i← s →j s′j and a valley as
si →k t l← s′j, occasionally replacing reduction lengths with the Kleene star ∗
when the lengths are unimportant.

Definition 2.3. An ARS (A,R) has the Church-Rosser property or is confluent
iff for every peak t ∗← s→∗ t′ there exists a valley t→∗ s′ ∗← t′.

Definition 2.4. Let (A,R) be an ARS and let a ∈ A. Define the reduction
graph of a, denoted G(a), to be the graph (Va, Ea) inductively defined by

Va,n =

{
{a} if n = 0
{b : ∃a′ ∈ Va,n−1.a

′ → b} if n > 0



and

Ea,n =

{
∅ if n = 0
{(a′, b) : a′ ∈ Va,n−1, b ∈ Va,n. a′ → b} if n > 0

And G(a) = (Va, Ea) = (
⋃
n≥0 Va,n,

⋃
n≥0Ea,n).

Thus, Va,n is the set of objects b such that a→n b.

2.2 Term Rewriting Systems

We define term rewriting systems. Throughout, we assume a fixed, finite sig-
nature Σ with each function symbol of non-negative integer arity and a denu-
merable, infinite set of variables V . The set of terms over Σ and V , denoted
Ter(Σ,V ), is defined by induction, as usual. We assume the following.

Definition 2.5. Let s be a term.
– The term s is ground if no variables occur in s.
– The set of positions of s, denoted pos(s) is the subset of N∗ inductively

defined by pos(x) = {ε} and pos(f(s1, . . . , sn)) = {ε} ∪ (
⋃n
i=1 i · pos(si)).

– The set of variables of s, denoted vars(s), is the finite subset of V inductively
defined by vars(x) = {x} and vars(f(s1, . . . , sn)) =

⋃n
i=1 vars(si).

– The size of s, denoted |s|, is defined inductively as:
• |x| = 1;
• |f(s1, . . . , sn)| = 1 + |s1|+ · · ·+ |sn|.

Positions are equipped with a partial (strict) order ≺ such that p ≺ q if p
is a proper prefix of q. Moreover, we write s|p for the subterm of a term s that
occurs at position p ∈ pos(s).

Substitutions, written θ : V −→ Ter(Σ,V ), are defined as usual. Contexts
are terms over Σ ] {�}, written as C[], where we say that that a context C[] is
a k-hole context if there are exactly k occurrences of � in C[].

Definition 2.6. A rule over Σ is a pair (l, r), invariably written l→ r, where l
and r are terms over Σ such that l /∈ V and vars(r) ⊆ vars(l). A term s rewrites
to a term t by l→ r if there is a one-hole context C[] and a substitution θ such
that s = C[θ(l)] and t = C[θ(r)].

A term rewriting system (TRS) is a pair (Σ,R) with Σ a signature and R a
finite set of rules over Σ.

We usually suppress explicit mention of the signature Σ and refer to the TRS
(Σ,R) as R. Every TRS R gives rise to an ARS (A,R′) in the obvious fashion:
The elements of A are the terms and R′ is the above rewrite relation.

Definition 2.7. A rule is left-linear if every variable of occurs at most once
in l. A TRS R is left-linear if all of its rules are.

A rule l1 → r1 is said to overlap a rule l2 → r2 at position p ∈ pos(l2) if
l2|p /∈ V and there are two substitutions σ, θ such that θ(l1) = σ(l2|p). A TRS
(Σ,R) is said to be orthogonal if R is left-linear, and the only overlaps of rules
in R are those where a rule overlaps itself at position ε.

Two TRSs (Σ0, R0) and (Σ1, R1) are said to be mutually orthogonal if they
are left-linear, and no rule of R0 overlaps with a rule of R1, and vice versa.



2.3 λ-Calculus

The (untyped) λ-calculus is the ARS (Λ,→β) with Λ the set of objects M defined
inductively by

M ::= x |λx.M |MM

where x ∈ V is a variable and with →β the rewrite relation induced by the
β-rule:

(λx.M)N →β M{N/x}

where M{N/x} equals M with N substituted for every free occurrence of x in
M . Contexts for λ-calculus are defined as for TRSs. We assume the following.

Definition 2.8. Let M be a λ-term.

– The set of positions of M , denoted pos(M), is the subset of N∗ inductively
defined by pos(x) = {ε}, pos(λx.M) = {ε}∪0·pos(M), and pos(M1M2) =
{ε} ∪ 0 · pos(M1) ∪ 1 · pos(M2).

– The size of M , denoted |M |, is defined by inductively as:

• |x| = 1;
• |λx.M | = 1 + |M |;
• |M N | = |M |+ |N |.

Positions are again equipped with a partial (strict) order ≺ such that p ≺ q
if p is a proper prefix of q.

The notion of a residual of a β-redex across reduction, i.e. the formalisation of
“what happens” to a redex across a reduction, is defined as usual [2]. Recall that
a development of a set of redexes U of a λ-term M is a reduction starting from
M contracting a residual of a redex in U in each step. Moreover, a development
is complete if the set of residuals of redex in U across the development is empty.
We have the following.

Theorem 2.9 (Finite Developments Theorem). Let M be a λ-term and U
a set of redexes of M . All developments of U are finite and there is a unique
λ-term N that is the final term of all complete developments of U .

3 Valley Sizes in ARSs and TRSs

We now define the main object of study in this paper: The function vsR.

Definition 3.1. Let (A,R) be an ARS that has the Church-Rosser property and
let |·| : A −→ N be a function (‘size’) such that for each m ∈ N, the set {a ∈ A :
|a| ≤ m} is finite. The valley size vsR : N2 −→ N is defined as vsR(m,n) = l
where l is the least number such that for every object a with |a| ≤ m and every
peak starting from a with reductions of length at most n there is a corresponding
valley with reductions of length at most l.



Observe that vsR is well-defined as {a ∈ A : |a| ≤ m} is finite and (A,R)
has the Church-Rosser property. The ‘size’ function |·| will depend on the class
of ARSs considered. In this paper, we are concerned solely with term rewriting
systems and λ-calculus where we consider terms modulo the renaming of (free)
variables to ensure {a ∈ A : |a| ≤ m} is finite.

We employ |a| ≤ m, and not |a| = m, in the above the definition to ensure
that vsR is monotone. Replacing |a| ≤ m by |a| = m gives us a less well-behaved
function; The example we give below demonstrates this: vsR(2, 1) would be equal
to 1 instead of being equal to vsR(1, 1) = 2.

In an ARS with the Church-Rosser property, there will usually be several (or
even infinitely many) different valleys that complete the diagram of a specific
peak. If the ARS is both Church-Rosser and terminating, a valley can always
be found by reducing to normal form (but this may yield a valley with longer
reductions than necessary); if the ARS has cycles, there may be an infinite
number of possible valleys.

The function vsR(m,n) picks the smallest valley for each specific peak, but
has to take into account all peaks with a starting term of size (at most) m and
reductions of size (at most) n; thus, vsR(m,n) may be larger than what is needed
for ‘most’ peaks—it gives the least valley size that will surely work for all terms
and peaks limited by m and n.

We illustrate the workings of vsR by computing vsR(2, 1) for a small TRS in
the following example.

Example 3.2. Let R be the TRS with rules
a→ b b→ d d→ e

a→ c c→ a g(x)→ h(a)
a→ e d→ a h(x)→ e


This TRS is confluent3 (and normalising, but not terminating4).

Consider the peak g(b)← g(a)→ g(c). Some valleys completing the diagram
are: (i) g(b)→ h(a)← g(c), (ii) g(b)→ g(d)→ g(a)→ g(c), (iii) g(b)→ h(a)→
e ← h(a) ← g(c), (iv) g(b) → g(d) → h(a) ← g(c), and so on. Observe there
are an infinite number of valleys of the form g(b) → g(d) →∗ g(a) → h(a) ←
g(a) ∗← g(c) and that there is no largest valley completing the diagram.

The smallest possible valley is the first of the above: Both reductions have
length 1. Note that this valley does not involve normal forms, and that any
valley with reductions to normal form involves strictly longer reductions.

By definition of the size of terms (Def. 2.5), the term g(a) has size 2, and by
inspection, we find that for any peak with reductions of length at most 1 starting
from a term of size 2, there is a corresponding valley where each reduction has
length at most 1. However, for terms of size 1, there is the peak b← a→ c whose
3 The system has the unique normal form property and is weakly confluent (see [16]

for details and definitions).
4 Normalisation and termination are also called, respectively, weak normalisation and

strong normalisation.



smallest valleys involve reductions of length 2, e.g. b → d → a ← c. Thus, for
peaks involving terms of size at most 2 and reductions of length at most 1, the
smallest corresponding valleys involve reductions of length at most 2, and there
is a peak that needs a valley with reductions of length 2. Hence, vsR(2, 1) = 2.

In the above example, R was a non-orthogonal TRS. We shall see in Sect. 4
that for orthogonal TRSs the term size does not matter ; thus, the first argument
of vsR can be dropped in that case.

Remark 3.3. The function vsR need not be computable for an ARS: Let h :
N −→ N be any non-computable total function, let A = N ∪ N2, and let |i| = i
and |(i, j)| = i + j for all i ∈ N and (i, j) ∈ N2. Define, for every m ≥ 1 and
n > 1: m→ (m, 1), m→ (m,h(m) + 1), and (m,n)→ (m,n− 1). Then, (A,R)
has the Church-Rosser property by the last rule, but vsR(|m|, 1) = h(m), whence
vsR(m,n) is not computable.

3.1 The Valley Size is a Computable Function for TRSs

We now show that vsR is computable for arbitrary term rewriting systems R; in
fact it is uniformly so: There is a program that, given an encoding of a confluent
TRS, returns another program that computes vsR. We give a formal account in
the following.

Recall that we consider only TRSs with a finite signature and a finite number
of rules. As terms are inductively defined, it is clear that every such TRS (Σ,R)
can be recursively encoded and decoded as an integer j(Σ,R). In the remainder
of the paper we assume a fixed such encoding and decoding.

Theorem 3.4. There is a (partial) computable function g : N3 −→ N such
that if j(Σ,R) encodes a TRS (Σ,R) with the Church-Rosser property, then
vs(Σ,R)(m,n) = g(j(Σ,R),m, n) for all m,n.

Proof. Let P be a program that does the following: On input (j(Σ,R),m, n), P
decodes j(Σ,R), builds all terms t1, . . . , tl (modulo the renaming of variables),
of size at most m over Σ, and stores them in memory. Using R and the fact
each term has a finite number of one-step reducts, for each ti ∈ {t1, . . . , tl}, P
brute-force applies all rules of R to obtain, after a finite number of steps, every
term t′i such that ti →≤n t′i. Next, for every pair (si, s′i) of such terms, P uses
R to simultaneously build increasingly larger parts (

⋃
0≤k≤j Vsi,k,

⋃
0≤k≤j Esi,k)

and (
⋃

0≤k≤j Vs′i,k,
⋃

0≤k≤j Es′i,k) of the reduction graphs of si and s′i. If (Σ,R)
has the Church-Rosser property, eventually a j is reached such that a term ri
exists that is both in

⋃
0≤k≤j Vsi,k and

⋃
0≤k≤j Vs′i,k. The program P stores the

least such j for (si, s′i). Clearly, the least such j is equal to the number of steps
in the longest reduction of the smallest valley of si and s′i. After iterating over
every pair (si, s′i), P takes the maximum of the stored lengths and returns it.
This value is clearly vs(Σ,R)(m,n). Thus, P computes a function g(j(Σ,R),m, n)
as desired. ut



Theorem 3.5. If (Σ,R) is a TRS having the Church-Rosser property, then
vs(Σ,R) is a total computable function.

Proof. By Theorem 3.4, we have vs(Σ,R)(m,n) = g(j(Σ,R),m, n) for all m,n.
That vs(Σ,R) is a partial computable function follows immediately by the s-m-n
Theorem [13]. That the function vs(Σ,R) is total follows by the fact that vs(Σ,R)

is well-defined by the comments below Definition 3.1. ut

3.2 All Computable Functions can be Majorized by Valleys in TRSs

Above we showed that for every TRS (Σ,R) the size vsR is computable; collo-
quially, we have a very tight computable upper bound on valley sizes. Näıvely,
one might conjecture that an even tighter bound is obtainable—e.g. that vs(Σ,R)

is always primitive recursive. We now proceed to show this is not possible in a
very strong sense: For every computable function ϕ : N −→ N, there is a TRS
and a single term of some size m such that vs(Σ,R)(m,n) ≥ ϕ(n) for all n ≥ 2.

Encoding Turing Machines. We shall use the following (inconsequential)
constraints on the Turing machines we encode:

Definition 3.6. All Turing machines are one-head, one-tape machines with no
auxiliary input or output tapes. There are no transitions to the initial state qs,
nor are there any transitions from the halting state qh. The input and tape alpha-
bets of all Turing machines are {0, 1,�} where � is ‘blank’ as usual. All inputs
are assumed to be given in unary; hence, n ∈ N is encoded as 0n. The initial
configuration of a Turing machine will always be in the initial state with the in-
put starting in the tape cell immediately to the right of the read/write head. The
machine is assumed never to be stuck on a legal configuration; for every state
q ∈ Q \ {qh} and every element b ∈ {0, 1,�}, the transition δ(q, b) is defined.

We give the standard encoding of [16]. The tape alphabet is modelled by
unary function symbols 0, 1 and �, respectively. Both tape ends are modelled
by the nullary symbol B. The representation of the string 01�1 enclosed on the
right by a tape end will thus be 0(1(�(1(B)))); the left tape end and position of
the read/write head of the machine will be encoded in the TRS rules representing
the Turing machine transitions. For each state q ∈ Q of the machine, we assume
a binary function symbol q. The TRS induced by the transitions of a Turing
machine M is given in Figure 2.

For our purposes, we augment ∆(M) with a constant symbol T and a binary
function symbol r. In addition, we augment the rewrite rules of ∆(M) with the
rule set from Figure 3, which extends the rule set from [4, Sect. 5] with the rules
r(x, 0y)→ r(x, 00y) and r(x, 00y)→ r(x, 0y).

To prove confluence of ∆C(M) in the case where M halts on all inputs, we
first give a general lemma concerning mutually orthogonal systems. For i ∈ {0, 1}
we define i = (i+ 1) mod 2.



Rewrite rules induced by transition rules of the Turing machine M (∆N (M)):

(L/R)-move rewrite rules (for each q ∈ Q, a ∈ {0, 1,�})
δ(q, b) = (q′, b′, R) q(x, by)→ q′(b′x, y)

δ(q, b) = (q′, b′, L) q(ax, by)→ q′(x, ab′y)

Extra rules (∆E(M)):

(L/R)-move extra rewrite rules (for each q ∈ Q, a ∈ {0, 1,�})
δ(q,�) = (q′, b′, R) q(x,B)→ q′(b′x,B)

δ(q, b) = (q′, b′, L) q(B, by)→ q′(B,�b′y)

δ(q,�) = (q′, b′, L)
q(ax,B) → q′(x, ab′B)
q(B,B) → q′(B,�b′B)

∆(M) = ∆N (M) ∪∆E(M)

Fig. 2. Basic encoding ∆(M) of a Turing machine M

Rule for transitioning to T when the halting state has been reached (†):
qh(x, y)→ T

Rules for non-deterministic choice of n ∈ N (∆ndt(M)):

r(x,B) → T r(B, y) → qs(B, y)
r(x, 0y) → r(0x, y) r(0x, y) → r(x, 0y)
r(x, 0y) → r(x, 00y) r(x, 00y) → r(x, 0y)

∆C(M) = ∆(M) ∪ {†} ∪∆ndt(M)

Fig. 3. Extra rules for non-deterministic choice and confluence

Lemma 3.7. Let R0 and R1 be mutually orthogonal systems such that for each
i ∈ {0, 1} and for each peak t ∗i← s →∗i t′, there either exists a corresponding
valley t →∗i s′ ∗i← t′, or a corresponding valley t →∗

i
s′ ∗

i
← t′. Then, R0 ∪ R1

has the Church-Rosser property.

Proof (Sketch). Straightforward tiling of peaks. ut

Proposition 3.8. If M halts on all inputs, the two systems R0 = ∆(M)∪{(†)}
and R1 = ∆ndt(M) satisfy the conditions of Lemma 3.7.

Proof. Both systems are left-linear and clearly no left-hand side of a rule of R0

overlaps with a left-hand side of a rule of R1 and vice versa, whence the two
systems are mutually orthogonal. Also, R0 is orthogonal, hence has the Church-
Rosser property. Furthermore, observe that two rules from of ∆ndt(M) can only
overlap at the root. As there are no collapsing rules in ∆ndt(M), we thus obtain
confluence if every peak t ∗← r(s, s′) →∗ t′ has a corresponding valley. By



inspection of the rules of ∆ndt(M), it is seen that if r(s, s′) →∗1 r(t, t′), then
r(t, t′) →∗1 r(s, s′). Thus, the only peaks of R1 that do not have corresponding
valleys in R1 are the ones on the form

T ∗1← r(s, s′)→∗1 qs(B, t)

By inspection of the rules of ∆ndt(M), we see that such a peak is only possible if
t = 0nB. As M halts on all configurations, we obtain qs(B, t)→∗0 qh(t′, t)→0 T ,
concluding the proof. ut

Corollary 3.9. If M halts on all inputs, then ∆C(M) has the Church-Rosser
property.

We have the following lemma:

Lemma 3.10. Let ϕM : N −→ N be a total computable function. Then there is
a Turing machine M ′ that (i) halts on all inputs, and (ii) on input 0n halts in
at least ϕM (n) steps.

Proof. Let M ′ be the Turing machine containing an inlined copy of M and, on
input 0n, computes k = ϕM (n), then performs k “idle steps” before halting. As
M halts on all inputs, so does M ′, and by construction M ′ runs for at least
ϕM (n) steps before halting. ut

Majorizing a Computable Function with Valleys in a TRS. We now show
that for every computable function ϕM : N −→ N, there exists a TRS R having
the Church-Rosser property and a term s such that there is a peak of size n with
smallest corresponding valley of size ϕM (n). Thus, vs(Σ,R)(m,n) ≥ ϕM (n) for
all m ≥ |s|.

Theorem 3.11. For every total computable function ϕM : N −→ N, there exists
a TRS R having the Church-Rosser property, a ground term s, and a ground
normal form s0 of R such that, for every natural number n, there is a term sn
with (i) s0 2← s →n sn, (ii) sn →∗ s0, and (iii) every reduction sn →∗ s0 has
length at least ϕM (n).

s
n //

2

��

sn

≥ϕM (n)

��
s0 s0

Proof. Let M ′ be the Turing machine obtained by applying Lemma 3.10 to ϕM .
Then, M ′ halts on all inputs and halts in at least ϕM (n) steps on input 0n for
all n ∈ N. We set R = ∆C(M ′), s = r(B, 0B), s0 = T , and sn = qs(B, 0nB).
For all n ∈ N, we then have s → r(0B,B) → T and s →n sn. Observe that
R has the Church-Rosser property by Corollary 3.9, and that s is ground. By
the fact that each step of ∆(M ′) simulates exactly one step of M ′, we obtain
that qs(B, 0nB) →m qh(t, t′) (for terms t, t′) where m ≥ ϕM (n). As M ′ is



deterministic, this is the only possible reduction from qs(B, 0nB) to qh(t, t′).
Finally, we use rule (†) to obtain qh(t, t′) → T = s0. Hence, sn →∗ s0 and all
such reductions are of length at least ϕM (n). ut

We hence have:

Theorem 3.12. For every total computable function ϕM : N −→ N, there
is an explicitly constructible TRS (Σ,R) that has the Church-Rosser property
and an explicitly constructible ground term s of R such that for all m ≥ |s|
vs(Σ,R)(m,n) ≥ ϕM (n).

4 Bounds on Valley Sizes in Orthogonal TRSs

For orthogonal TRSs, much better bounds can be obtained than those presented
in the previous section. We shall prove existence, for every TRS R, of a constant
µR such that vs(Σ,R)(m,n) ≤ n · (µR)n.

Definition 4.1. Let R be a TRS. The parallel rewrite relation ⇒ is defined as
follows: s ⇒k t if there is a k-hole context such that (i) s = C[s1, . . . , sk], (ii)
t = C[t1, . . . , tk], and (iii) for all 1 ≤ i ≤ k, we have si → ti.

Definition 4.2. The multiplicity of a finite TRS R, denoted µR, is defined as:

max
l→r∈R

max
x∈vars(l)

(1,number of occurrences of x in r)

Thus, the multiplicity of a system is simply the maximum number of times
that a variable can occur in a right-hand side of a rule of R.

Example 4.3. Let R = {f(x, y) → g(x, x, y), g(x, y, z) → f(x, z)} Then µR = 2
as x occurs twice in the right-hand side of the rule f(x, y) → g(x, x, y), and no
variable occurs more often in a right-hand side.

Lemma 4.4 (Parallel Moves Lemma with reduction lengths). Let R be
an orthogonal TRS and let s be a term. If t m⇐ s⇒n t′ is a peak, then there is
a valley t⇒≤n·µR s′ ≤m·µR⇐ t′.

Proof. Existence of a valley follows by the standard Parallel Moves Lemma [1].
The reduction in t⇒ s′ consists of a parallel contraction of the residuals of the
redexes contracted in s⇒n t′ across contraction of the m redexes in s⇒m t, and
vice versa. The step s⇒m t consists of m separate →-steps, each contracting a
single redex parallel to the other m− 1 redexes. By the definition of the rewrite
relation→, every single step using a rule l→ r may copy each of its subterms by
as many times a variable occurs in r. Each of the n parallel redexes contracted in
s⇒n t′ may, or may not, occur inside one of the subterms copied by a redex in
s⇒m t. The total number of copies that occur in t is hence bounded from above
by n times the maximum number of times that a single variable can occur in the
right-hand side of a rule, hence n ·µR. The situation with m ·µR is symmetrical.

ut



Theorem 4.5. Let the TRS R be orthogonal and let s be a term in R with a
peak t j← s →i t′. Then there is a valley t →≤j·(µR)i s′ ≤i·(µR)j← t′. Hence,
vs(Σ,R)(m,n) ≤ n · (µR)n.

Proof. As every →-reduction is also a ⇒-reduction and as ⇒∗=→∗, repeated
application of Lemma 4.4 allows us to erect the tiling diagram in Figure 4. The
result now follows by tallying the number of steps on the right-most and bottom-
most sides of the diagram. ut

s0,0 = s 1 +3

1

��

s0,1
1 +3

≤1·µR
��

s0,2
1 +3

≤µR·µR
��

· s0,i−1
1 +3

≤(µR)i−1

��

s0,i = t

≤(µR)i−1·µR
��

s1,0
≤1·µR

+3

1

��

s1,1
≤1·µR

+3

≤1·µR
��

s1,2
≤1·µR

+3

≤µR·µR
��

· s1,i−1
≤1·µR

+3

≤(µR)i−1

��

s1,i

≤(µR)i−1·µR
��

s2,0
≤µR·µR

+3

1

��

s2,1
≤µR·µR

+3

≤1·µR
��

s2,2
≤µR·µR

+3

≤µR·µR
��

· s2,i−1
≤µR·µR

+3

≤(µR)i−1

��

s2,i

≤(µR)i−1·µR
��

· · · · · ·

sj−1,0
≤(µR)j−1

+3

1

��

sj−1,1
≤(µR)j−1

+3

≤1·µR
��

sj−1,2
≤(µR)j−1

+3

≤µR·µR
��

· sj−1,i−1
≤(µR)j−1

+3

≤(µR)i−1

��

sj−1,i

≤(µR)i−1·µR
��

sj,0 = t′
≤(µR)j−1·µR

+3 sj,1
≤(µR)j−1·µR

+3 sj,2
≤(µR)j−1·µR

+3 · sj,i−1
≤(µR)j−1·µR

+3 sj,i = t

Fig. 4. Tiling diagram annotated with reduction lengths for the proof of Theorem 4.5

Remark 4.6. The bounds of the above theorem are tight for non-erasing TRSs
(Σ,R) in the following sense: There is an infinite number of terms s such that
vs(Σ,R)(|s|, n) = n · (µR)n. Let l→ r be a rule such that there is a variable x in
l that occurs µR times in r. For j ≥ 0 let sj be the term defined inductively by
s0 = l and sj+1 = l[sj ]px where px is the (unique, by left-linearity) position of
the variable x in l. For every n ≥ 1, consider the term s2n and the peak obtained
by performing (a) a complete development of the n outermost redexes, and (b)
the n innermost redexes; observe that both of these reductions are of length
precisely n. The (a)-reduction copies the ‘inner’ term sn a total of (µR)n times
ending in some term t. The (b)-reduction leaves exactly one copy of each of the
top n redexes, ending in some term t′. To complete the Church-Rosser diagram,
one needs to reach the term obtained by a complete development of all redexes
in s2n. From term t′, a total of n steps is required to reach this step. From term



t, reaching the final term requires the contraction of n redexes in (µR)n parallel
subterms, for a total of n · (µR)n steps.

5 A Bound on Valley Sizes in λ-Calculus

In λ-calculus we cannot expect the valley size vsΛ(m,n) to be independent of m
as in Theorem 4.5: In λ-calculus, the growth rate of terms across β-steps depends
on the number of bound variables in the original term. Hence, as the size of the
valleys is determined by the number of copies of redexes, vsΛ(m,n) must thus
depend on m.

Of the many available proofs of the Church-Rosser property for λ-calculus,
the one most amenable to analysis of reduction lengths consists of “tiling a peak”
with commuting squares of so-called complete developments of sets of redexes in a
single term; the construction is essentially the same as the one depicted by figure
in the proof of Theorem 4.5 (indeed, the figure is often called a tiling diagram
[16]), except that for λ-calculus, the “parallel reduction” relation used in each
square is a complete development of a set of redexes in a single term. An analysis
of this proof reveals vsΛ(m,n) to be bounded from above by a function in the
fourth level, E4, of the Grzegorczyk hierarchy, roughly corresponding to limited
recursion on iterated exponentiation, also called tetration—a typical function
is n 7→ 22···

2

(2 taken to the power of itself n times). Indeed, considering the
special case of the so-called “Strip Lemma” where one reduction in the peak
has length 1 and the other length k (see Lemma 5.3), näıve analysis yields a

bound |Mi,0|2
2·|Mi,0|

2k+k
for the length of the reduction Mi+1,0 →∗ Mi+1,k. We

give a somewhat better bound in the present section; this bound is still in E4,
but much less than the bound obtained by näıve analysis: |Mi,0|2

2k+k for the
Strip Lemma.

Upper bounds on the length of developments [3] and standard reductions [17]
have been investigated in the literature, as have lower bounds for normalising
reductions in typed systems [15]; the present paper is the first study of the size
of Church-Rosser diagrams in λ-calculus.

Proposition 5.1. Let M0 → M1 → · · ·Mn−1 → Mn be a reduction of length
n ≥ 0, and let u be a redex in M0. For each position p ∈ pos(Mn), at most 2n

residuals of u occur in Mn at prefix positions of p.

Proof (Sketch). By induction on n. ut

Lemma 5.2. Let M be a term and U a set of redexes in M . Suppose for each
p ∈ pos(M) that at most i ≥ 0 other redexes from U occur at prefix positions of
p. Then contracting all redexes in U yields a term of at most size |M |22·i

.

Proof (Sketch). By induction on i. ut



5.1 Bounds for the Strip Lemma

Lemma 5.3 (Strip Lemma with term sizes and reduction lengths). Let
k ≥ 1 and consider the peak

Mi+1,0 β←Mi,0 →β Mi,1 →β Mi,2 →β · · ·Mi,k−1 →β Mi,k .

Then we may obtain a valley by tiling the peak using the Finite Developments
Theorem in the following way:

Mi,0
1 //

1

��

Mi,1
1 //

∗
��

Mi,2
1

∗
��

Mi,k−1
1 //

∗
��

Mi,k

∗
��

Mi+1,0
∗ // Mi+1,1

∗ // Mi+1,2 Mi+1,k−1
∗ // Mi+1,k

where the following holds for 1 ≤ j ≤ k:

1. |Mi,j | ≤ |Mi,0|2
j

and |Mi+1,j | ≤ |Mi,0|2
2j+1+j

, and

2. the reduction Mi+1,j−1 →∗β Mi+1,j has length at most |Mi,0|2
2j+j−1

.

Moreover, the reduction Mi+1,0 →∗β Mi+1,k has length at most |Mi,0|2
2k+k

.

Proof. If P →β Q, then |Q| ≤ |P |2. Hence, straightforward induction shows
that |Mi,k| ≤ |Mi,0|2

k

. Let u be the redex contracted in Mi,0 →β Mi+1,0. By
Proposition 5.1, the number of residuals of u along any path from the root to a
leaf of Mi,k is at most 2k.

Observe that the reduction Mi,k →∗β Mi+1,k is a complete development of
U = u/(Mi,0→∗βMi,k

). Then, Lemma 5.2 and the first part of the lemma yield

|Mi+1,k| ≤ (|Mi,0|2
k

)2
2·2k

= |Mi,0|2
k·22k+1

= |Mi,0|2
2k+1+k

.

The reduction Mi+1,j−1 →∗β Mi+1,j is a complete development of a set of
residuals of the single redex contracted in Mi,j−1 →β Mi,j , and an innermost
development has length bounded from above by the size of Mi+1,j−1; by the

previous item of the lemma, that size is at most |Mi,0|2
2j+j−1

. By the previous
parts of the lemma, the length of the entire bottom reduction Mi+1,0 →∗β Mi+1,k

is then bounded from above by

k∑
j=1

|Mi,0|2
2j+j−1

≤ 2 · |Mi,0|2
2k+k−1

≤ |Mi,0|2
2k+k

,

completing the proof. ut



5.2 Valley Sizes in λ-Calculus are in E4

Lemma 5.4. Consider the following family of peaks (for l, k ≥ 0):

Ml,0 β← · · · β←M1,0 β←M0,0 →β M0,1 →β · · · →β M0,k

and write m = |M0,0|. Then, in the tiling of the peak with complete develop-
ments, the length, bl (l, k,m) of the bottom side of the tiling diagram satisfies
the following recursion inequality

bl (l, k,m) ≤

{
k if l = 0

m22bl(l−1,k,m)+bl(l−1,k,m)+l
if l > 0

Proof. The tiling diagram may be viewed as m versions of the Strip Lemma
(horizontal tiling) stacked on top of each other. The result now follows by a
simple induction using Lemma 5.3 (observing for 1 ≤ i < l that the upper left
term in the ith copy of the Strip Lemma has size |Mi,0| ≤ m2i−1

). ut

Theorem 5.5. There is a function g(w, n) : N2 −→ N in the fourth level, E4,
of the Grzegorczyk hierarchy such that vsΛ(w, n) ≤ g(w, n).

Proof. The right-hand side of the recurrence equation of Lemma 5.4 involves
composition of addition, multiplication and exponentiation, applied to limited
recursion on the function bl (m, k,w) being defined. As addition, multiplication
and exponentiation are at the first, second, and third levels of the Grzegorczyk
hierarchy, hence a fortiori in E3, the function g(w, n) = bl (n, n,m) is in E4. ut

We are currently unable to exhibit a λ-term with a peak of size n such that
the corresponding valley size is more than singly exponential. The reader should
note that while performing projections of the reductions in a peak across each
other may yield reductions of extreme length, the projections will usually be
equivalent to much shorter reductions and will only give rise to ‘small’ values of
vsΛ(m,n).

6 Conclusion and Conjectures

We have performed the first fundamental study of the size of Church-Rosser
diagrams in TRSs and λ-calculus. For orthogonal TRSs, bounds on valleys turn
out to be exponential in a constant dependent on the rewrite system, and thus
potentially tractable; for non-orthogonal systems, we showed that for every com-
putable total function, there are TRSs with valley sizes majorizing the function.
For λ-calculus, we gave an upper bound on valley sizes. Our inability to con-
struct terms that saturate the upper bounds derived in Section 5 suggests that
vsΛ(m,n) may be in E3. We conjecture that the dependence on term size |s|
in the bound given for arbitrary TRSs in Section 3.1 can be removed; we are
currently unable to do so. Finally, the question of valley sizes for higher-order
rewriting systems must be investigated; bounds for such systems will automat-
ically lead to bounds for deduction systems in first- and higher order logics, as
well as for higher-order functional programs.
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A Omitted Definitions, Proofs, and Remarks

A.1 Definitions for λ-Calculus

Definition A.1. We write p ‖ q if p and q are incomparable in this order.
The set of one-hole contexts C[] is defined exactly as for TRSs. If the hole

in the one-hole context C[] occurs at position q, we write C[]q. The relation →β

on Λ × Λ is given by P →β Q if there is a one-hole context C[]q such that
P = C[(λx.M)N ]q and Q = C[M{N/x}]q.

We say that there is a redex at position q.
If p ∈ pos(M) and v is the step C[(λx.M)N ]q →β C[M{N/x}]q, then the

set of descendants of p across v is defined by:

– if p ≺ q, then p/v = {p};
– if p = q, then p/v = ∅;
– if q ≺ p and p = q · 0 · p′, then p/v = {q · p′};
– if q ≺ p and p = q · 1 · p′, then p/v = q · {px : M |px = x} · p′.

If u is a redex at position p, we denote by u/v the set of redexes at positions
p/v. The elements of this set are called the residuals of u.

A.2 Omitted Proofs

Proof (Lemma 3.7). As R0 and R1 are mutually orthogonal, R0-reductions and
R1-reductions commute, i.e. the following diagram commutes:

s
i

∗
//

∗i
��

t

∗ i
��

t′
∗
i

// s′

By the conditions of the lemma, for each peak t ∗i← s →∗i t′, at least one of
the two diagrams below commutes

s ∗
i //

∗i

��

t

∗ i

��

s ∗
i //

∗i

��

t

∗ i
��

t′
∗
i

// s′ t′
∗

i

// s′

Consider the relation →Q=→∗0 ∪ →∗1. Then →∗Q= (→0 ∪ →1)∗ =→∗0∪1, and
it thus suffices to prove →Q confluent. We make a stronger claim from which
confluence will follow: →Q has the diamond property. To see this, observe that
if t Q← s →Q t′, then there are the four possibilities: (i) s →∗0 t and s →∗0 t′,
(ii) s →∗0 t and s →∗1 t′, (iii) s →∗1 t and s →∗0 t′, (iv) s →∗1 t and s →∗1 t′. By
the assumptions, for each of these four peaks, there is a corresponding valley
obtained by either of the three diagrams above. As each of the reductions in the
peak is either a→∗0- or a→∗1-reduction, it is in particular a→Q-step; hence,→Q

has the diamond property, and →0∪1 thus has the Church-Rosser property. ut



Proof (Proposition 5.1). By induction on n:

– n = 0. Only a single copy of u occurs in Mn = M0, and the result follows.
– n = n′ + 1. Let the redex contracted in Mn′ →β Mn be C[(λx.M)N ]q →β

C[M{N/x}]q and let p ∈ pos(Mn). If p � q or p ‖ q, there are at most
2n
′
< 2n residuals of u above p by the induction hypothesis. If q ≺ p, then

the number of residuals of u above p is bounded by the number of residuals of
u above q plus the number of residuals of u encountered in a path through the
term M{N/x}. This number is at most 2n

′
+2n

′
= 2·2n′ = 2n

′+1 = 2n (recall
that even though there may be nested copies ofN inM{N/x}, nestings occur
by the application symbol of λ-calculus, hence no position in a copy of N is
above any position in another copy of N). ut

Proof (Lemma 5.2). By induction on i, observing that there are at most |M |
redexes in U .

– i = 0. Then, for every p, q ∈ U , we have p ‖ q. Also, contraction of a single
redex can produce a term of size ≤ |M |2. Thus, the total size of the term
obtained by contracting all redexes in U is |M | · |M |2, and as there are at
most |M | positions above or parallel to all of the redexes of U , we obtain a
term of size at most |M |+ |M | · |M |2 ≤ |M |22

.
– i = i′ + 1. By the Finite Developments Theorem [2], we may contract the

redexes of U in any order we like to obtain the unique final term. In partic-
ular, we may contract the redexes in an innermost fashion. So, consider the
subterms of M immediately below outermost redexes in U . The induction
hypothesis yields that performing an innermost contraction, these subterms
reduce to terms of size at most |M |22·i′

. Contracting (the residual of) an
outermost redex in U after reducing all of the subterms below it can thus
yield a term of size at most (|M |22·i′

)2 = |M |22·i′+1
.

There are at most |M | outermost redexes in U , and there are at most |M |
positions of M parallel to or above all redexes of U . Hence, the total size of
the term obtained after contracting all redexes of U is at most

|M |+ |M | · |M |2
2·i′+1

≤ |M | · |M | · |M |2
2·i′+1

≤ |M |2
2·i′+2

= |M |2
2·i
,

concluding the proof. ut


