
On Confluence of
Infinitary Combinatory Reduction Systems

Jeroen Ketema1 and Jakob Grue Simonsen2

1 Department of Computer Science, Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

jketema@cs.vu.nl
2 Department of Computer Science, University of Copenhagen (DIKU)

Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark
simonsen@diku.dk

Abstract. We prove that fully-extended, orthogonal infinitary combina-
tory reduction systems with finite right-hand sides are confluent modulo
identification of hypercollapsing subterms. This provides the first general
confluence result for infinitary higher-order rewriting.

1 Introduction

Lazy declarative programming employs several approaches that are well-suited
for description by term rewriting. This is of interest when studying basic con-
structs such as lazy lists:

from(x, y)← x′ is x + 1, from(x′, z), y = [x|z]

and (lazy) narrowing or residuation, in conjunction with, say, higher-order func-
tions, e.g. the map functional:

map(f, []) = []
map(f, [x|xs]) = [f(x)|map(f, xs)]

Such a combination occurs in several pure functional languages, as well as in
functional logic languages such as Curry [1, 2] and Toy [3].

An extension of term rewriting intended to model lazy computations is infini-
tary rewriting, a formalism allowing for terms and reductions to be infinite [4–6].
Technical properties known as strong convergence and compression furnish the
computational intuition for such systems: The limit term of every infinitely long
sequence of computations is also the limit of a sequence of finite computations.
Unfortunately, many desirable properties of ordinary (first-order) term rewriting
systems fail to hold when considering infinitary term rewriting systems (iTRSs).
Furthermore, substantial care and ingenuity is needed to treat bound variables
and applications in the infinitary setting, a fact already evident in infinitary
lambda calculus (iλc) [6, 7].

While many language features require some sort of extension or restriction
on the rewrite relation to model actual computations correctly (e.g. conditional

rewriting for logic programming [8,9]), any systematic treatment of such variants
of infinitary rewriting must wait until the basic theory for infinitary higher-order
rewriting has been pinned down. The contribution of this paper is to do exactly
that by proving a general confluence (or Church-Rosser) theorem for infinitary
higher-order rewriting. Our proof follows the general outline of confluence proofs
for more restricted kinds of infinitary rewriting [6], but the crucial methods we
employ are adapted from van Oostrom’s treatment [16] of a method by Sekar
and Ramakrishnan [15]. We work with infinitary combinatory reduction systems
(iCRSs), as introduced in [10].

The outline of the paper is as follows: Section 2 introduces the basic concepts,
Section 3 treats developments of sets of redexes, Section 4 concerns a special class
of troublesome terms: the hypercollapsing ones, and the proof methods needed
to tackle them, while Section 5 provides a proof of the main result.

2 Preliminaries

This section briefly recapitulates basic facts concerning both ordinary and in-
finitary CRSs; the reader is referred to [11] for an account of CRSs, and to [10]
for iCRSs.

Throughout the paper we assume a signature Σ, each element of which has
finite arity. We also assume a countably infinite set of variables, and, for each
finite arity, a countably infinite set of meta-variables. Countably infinite sets are
sufficient, given that we can employ ‘Hilbert hotel’-style renaming. We denote
the first infinite ordinal by ω, and arbitrary ordinals by α, β, γ, We use N to
denote the set of natural numbers, starting at zero.

The standard way of defining infinite terms in infinitary rewriting is by defin-
ing a metric on the set of finite terms and letting the set of infinite terms be
the completion of the metric space of finite terms [5, 7, 12], an approach also
used in [10]; here, we give a shorter, but equivalent, definition using so-called
“candidate” meta-terms:

Definition 2.1. The set of (infinite) candidate meta-terms is defined by inter-
preting the following rules coinductively:

1. each variable x is a candidate meta-term,
2. [x]s is a candidate meta-term, if x is a variable and s is a candidate meta-

term,
3. Z(s1, . . . , sn) is a candidate meta-term, if Z is a meta-variable of arity n

and s1, . . . , sn are candidate meta-terms, and
4. f(s1, . . . , sn) is a candidate meta-term, if f ∈ Σ has arity n and s1, . . . , sn

are candidate meta-terms.

A candidate meta-term of the form [x]s is called an abstraction. Each occurrence
of the variable x in s is bound in [x]s.

The set of finite meta-terms, a subset of the candidate meta-terms, is the set
inductively defined by the above rules.

2

Thus, [x]x, [x]f(Z(x)), Z(Z(Z(. . .))), and Z([x]Z ′([y](Z([x]Z ′) . . .))) are all
candidate meta-terms. Moreover, [x]x and [x]f(Z(x)) are also finite meta-terms.

As usual in rewriting, we define the set of positions of candidate meta-terms
as a set of finite strings over N, with ε the empty string, such that each string
corresponds to the “location” of subterm. For instance, the position of y in
[x]f(x, y) is 01 (‘0’ to get to f(x, y) and ‘1’ to get to the second argument of
f). The set of positions of term s is denoted Pos(s). If p ∈ Pos(s), then we
denote by s|p the subterm of s at p (e.g. [x]f(x, y)|01 = y). The length of a
position p is denoted |p|. There is a natural well-founded (but not necessarily
total) order < on positions such that p < q iff p is a proper prefix of q. If p and q
are incomparable in this order, we write p ‖ q and say that p and q are parallel.

A (one-hole) context is a candidate meta-term over Σ ∪ {�} where � is a
fresh constant that occurs at most once in the term.

We next define the set of meta-terms:

Definition 2.2. Let s be a candidate meta-term. A chain in s is a sequence
of (context,position)-pairs (Ci[�], pi)i<n where n ∈ ω + 1, such that for each
(Ci[�], pi) there exists a term ti with the property that Ci[ti] = s|pi

and pi+1 =
pi · q where q is the position of the hole in Ci[�].

A chain of meta-variables is a chain (Ci[�], pi)i<n such that for each i < n
it holds that Ci[�] = Z(t1, . . . , tm) with tj = � for at most one 1 ≤ j ≤ m.

A meta-term is a candidate metaterm s such that no infinite chain of meta-
variables occurs in s.

Observe that � occurs only in Ci[�] if i+1 < n, otherwise Ci[�] = s|pi
. More-

over, note that candidate meta-terms such as Z(Z(Z(· · ·Z(· · ·)))) are not meta-
terms. These terms are rejected as meta-terms as the result of applying substitu-
tions to them is generally not well-defined [10]. Note too that [x1]Z1([x2]Z2(. . .))
is a meta-term.

We can now define terms:

Definition 2.3. A term is a meta-term without meta-variables.

As usual, we consider terms modulo α-equivalence. Note that the definition of
meta-terms only restricts meta-terms containing meta-variables, not meta-terms
without meta-variables, i.e. not terms. Substitutions are defined by interpreting
the ordinary rules of substitution coinductively, minding α-conversion when ap-
plicable. We write s[x := t] for the substitution of a vector t of terms for a vector
x of variables (of the same length) in a term s. An n-ary substitute is a mapping
denoted λx1, . . . , xn.s or λx.s, with s a term, such that:

(λx.s)(t1, . . . , tn) = s[x := t] .

A valuation σ̄ is an extension of a function σ which assigns n-ary substitutes to
n-ary meta-variables. The extension maps meta-terms to terms. For instance, if
σ(Z) = [x]f(x), we have σ̄(g(Z, x)) = g([x]f(x), x). As above, it is defined by
interpreting the usual rules for valuations [11] coinductively.

The following is proved in [10]:

3

Proposition 2.4. Let s be a meta-term and σ̄ a valuation. There exists a unique
term that is the result of applying σ̄ to s.

2.1 Infinitary Rewriting

Definition 2.5. A finite meta-term is a pattern if each of its meta-variables
has distinct bound variables as its arguments. Moreover, a meta-term is closed
if all its variables occur bound.

Definition 2.6. A rewrite rule is a pair (l, r), denoted l→ r, where l is a finite
meta-term and r is a meta-term, such that:

1. l is a pattern and of the form f(s1, . . . , sn) with f ∈ Σ of arity n,
2. all meta-variables that occur in r also occur in l, and
3. l and r are closed.

An infinitary combinatory reduction system (iCRS) is a pair C = (Σ, R) with Σ
a signature and R a set of rewrite rules.

Definition 2.7. A rewrite rule l → r is left-linear, respectively collapsing, if
each meta-variable occurs at most once in l, respectively if r has a meta-variable
as root symbol. An iCRS is left-linear if all its rewrite rules are left-linear.

Definition 2.8. A pattern is fully-extended [13, 14], if, for each of its meta-
variables Z, and each abstraction [x] having Z in its scope, x is an argument of
Z. An iCRS is fully-extended if the left-hand sides of all rewrite rules are.

We now define redexes and rewrite steps.

Definition 2.9. Let l→ r be a rewrite rule. Given a valuation σ̄, the term σ̄(l)
is called a l → r-redex. If s = C[σ̄(l)] for some context C[�] with σ̄(l) a l → r-
redex and p the position of the hole in C[�], then an l → r-redex, or simply a
redex, occurs at position p and depth |p| in s. Moreover, a position q occurs in
the redex pattern, if q ≥ p and if there does not exist q′ such that q ≥ p · q′ and
q′ is the position of a meta-variable in l.

A rewrite step is a pair (s, t), denoted s→ t, such that an l→ r-redex occurs
in s = C[σ̄(l)] and such that t = C[σ̄(r)]. A redex or rewrite step is collapsing
if the employed rewrite rule is collapsing. It is root-collapsing if it is collapsing
and if the redex occurs at position ε.

Throughout the paper, sets of redexes are denoted by calligraphic capitals
such as U . We can now define what a transfinite reduction sequence is. The
definition copies the definition from iTRSs and iλc verbatim [5,7]:

Definition 2.10. A transfinite reduction sequence of ordinal length α is a se-
quence of terms (sβ)β<α+1 such that sβ → sβ+1 for all β < α. For each rewrite
step sβ → sβ+1, let dβ denote the depth of the contracted redex. The reduction
sequence is weakly convergent or Cauchy convergent if for every ordinal γ ≤ α
the distance between tβ and tγ tends to 0 as β approaches γ from below. The
reduction sequence is strongly convergent if it is weakly convergent and if dβ

tends to infinity as β approaches γ from below.

4

Notation 2.11. By s �α t, respectively s �≤α t, we denote a strongly conver-
gent transfinite reduction sequence of ordinal length α, respectively of ordinal
length less than or equal to α. By s � t we denote a strongly convergent trans-
finite reduction sequence of arbitrary ordinal length and by s→∗ t we denote a
reduction sequence of finite length. Reduction sequences are usually ranged over
by capitals such as D, S, and T . The concatenation of two reduction sequences
S and T is denoted by S;T . Note that the concatenation of any finite number
of strongly convergent reductions is a strongly convergent reduction.

Lemma 2.12 (See [10]). If s � t, then the number of steps contracting redexes
at depths less than d ∈ N is finite for any d.

As in [5–7], we consider strongly converging reduction sequences. This ensures
that we can restrict our attention to reduction sequences of length at most ω by
the so-called compression property :

Theorem 2.13 (Compression, see [10]). For every fully-extended, left-linear
iCRS, if s �α t, then s �≤ω t.

Left-linearity and fully-extendedness ensure no redex is created by either
making two subterms equal or erasing some variable in an infinite number of
steps. As shown in [10], they cannot be omitted from the theorem. In the re-
mainder we work exclusively with orthogonal systems; these are defined as in
the finite case:

Definition 2.14. Let R = {li → ri | i ∈ I} be a set of rewrite rules.

1. R is non-overlapping if it holds that:
– each li → ri-redex that occurs at a position p in an lj → rj-redex with

i 6= j occurs such that there exists a position q ≤ p with q ∈ Pos(lj) and
root(lj |p) a meta-variable,

– likewise for p 6= ε and i = j.
2. R is orthogonal if it is left-linear and non-overlapping.
3. An iCRS is orthogonal if its set of rewrite rules is orthogonal.

As shown in [10], orthogonality suffices for the definition of well-defined de-
scendant and residual relations, i.e. the relations that describe respectively what
“happens to” positions and redexes across reductions.

Notation 2.15. Let s and t be terms such that s � t. Assume that P ⊆ Pos(s)
and that U is a set of redexes in s. We denote descendants of P across s � t,
respectively residuals of U across s � t, by P/(s � t) and U/(s � t). If P = {p}
and U = {u} we also write p/(s � t) and u/(s � t).

3 Developments

The results in this section apply to orthogonal iCRSs. Orthogonality is required,
as descendants and residuals are only defined in the orthogonal case.

5

Definition 3.1. Let U be a set of redexes in a term s. A development of U is a
strongly convergent reduction sequence such that each step contracts a residual
of a redex in U . A development s � t is complete if U/(s � t) = ∅.

Notation 3.2. If U is a set of redexes in term s and there is some development
of U that results in term t, we write s ⇒ t, where the arrow is adorned with U
if needed. Observe that there may exist t′ 6= t with s ⇒ t′, as the development
s⇒ t need not to be complete.

The following is the main result of [10]:

Theorem 3.3. Let U be a set of redexes in a term s. If U has a complete
development then all complete developments of U end in the same term.

Lemma 3.4. If U has a complete development and if s � t is a development of
U (not necessarily complete), then U/(s � t) has a complete development.

Proof. Immediate by inspection of the proof of Theorem 5.12(1) in [10]. ut

Lemma 3.5. Let U be a set of redexes in a term s, let U have a complete
development, and let u be a redex in s. Then U∪{u} has a complete development.

Proof (Sketch). By the finite chain condition on meta-terms and the variable
convention, residuals of u can only be nested in “finite chains” across a complete
development of U . One can coinductively perform complete developments of
these finite chains in a top-down manner, yielding a complete development of
U ∪ {u}. ut

Corollary 3.6. Let U be a set of redexes in a term s which has a complete
development s � t and let v be a redex of s. The following diagram commutes
(where all developments are complete):

s
v //

U
��

t

U/(s→t′)

��
t′

v/(s�t)
+3 s′

Proof. By Lemmas 3.4 and 3.5, Theorem 3.3 and the fact that (U ∪ {v})/(s →
t′) = U/(s→ t′), respectively (U ∪ {v})/(s � t) = v/(s � t). ut

4 Hypercollapsingness and Essentiality

From this section onwards we consider only fully-extended, orthogonal iCRSs
where each rewrite rule has a finite right-hand side. Finiteness of the right-hand
sides is essentially used to show that Definition 4.11 is well-defined3.

In this section, we treat a special kind of troublesome term and reduction:
3 The restriction to finite right-hand sides is crucial to the technique of considering

essentiality that we employ in our proofs. We conjecture that it is possible to lift
the restriction.

6

Definition 4.1. A hypercollapsing reduction is a sequence of terms (si)i<ω

such that si → si+1 for all i < ω and such that an infinite number of these
steps are root-collapsing.

Thus, a hypercollapsing reduction is a transfinite reduction sequence of length
ω which is not convergent in any sense and from which the term sω is omitted.

Definition 4.2. A term s is said to be hypercollapsing if, for all terms t with
s � t, there exists a term t′ with t � t′ such that t′ has a collapsing redex at
the root.

The objective of this section is to prove the following lemma:

Lemma 4.3. Let s be a term. If there is a hypercollapsing reduction starting
from s, then s is hypercollapsing.

This result is key for results concerning confluence modulo in iTRSs and
iλc. Alas, the existing proof methods [6] cannot be lifted to the general higher-
order case: For iTRSs, the known proofs hinge on the Strip Lemma, and for
iλc on head reductions, none of which generalise to iCRSs. Instead, we employ
a measure on finite reduction sequences and proof technique as developed by
Sekar and Ramakrishnan [15] and as extended to higher-order rewriting by Van
Oostrom [16].

4.1 Essential Reductions

To define the measure on finite reduction sequences, we first need to define the
notions of contribution and essentiality.

Definition 4.4. Let s and t be terms and s→ t with an l→ r-redex contracted
at position p. If q ∈ Pos(s) and P ⊆ Pos(t), then q contributes to P , whenever:

– one or more positions of q/(s→ t) are in P , or
– the position q occurs in the redex pattern of the contracted redex and p is a

prefix of some positions in P .

Contribution is extended to finite reductions of positive length by transitive clo-
sure. If s→= s, then every position in P contributes only to itself.

Observe that several distinct positions in s can contribute to a single position
in t. In the case the redex contracted in s → t occurs at position p, at least all
positions in the redex pattern contribute to the position p in t.

Definition 4.5. Let s →∗ t and let P ⊆ Pos(t). A position in any term along
s →∗ t is essential for P (usually the explicit mention of P is suppressed) if it
contributes to P . A set of positions is essential for P if every position in the set
is. A redex is essential for P if its root position contributes to P . A rewrite step
is essential for P if its redex is. A finite reduction is essential for P if all of its
rewrite steps are. A redex is inessential if its root position does not contribute to
P . A rewrite step is inessential if its redex is.

7

Lemma 4.6. A rewrite step is either essential or inessential.

Proof. By the fact that all positions in a redex pattern contribute to a redex. ut

Definition 4.7. A prefix of a term s is a finite set P ⊆ Pos(s) such that all
prefixes of positions in P are also in P .

Take heed that prefixes are finite.

Lemma 4.8. Let s0 →∗ sn and let P be a prefix of sn. The positions in s0 that
are essential for P form a prefix of s0.

Proof. By induction on n. If n = 0, we are done, since the reduction is empty. If
n = n′ + 1, then P consists of a (possibly empty) set of positions P ′ “created”
by the right-hand side of the redex contracted in the step s′n → sn and a (pos-
sibly empty) set of positions descending from positions Q in sn′ . The positions
contributing to P ′ are exactly the positions that occur in the redex pattern of
the redex contracted in sn′ → sn, and Q consists of any position above or par-
allel to the redex, and of positions in arguments of the redex. The union of all
these positions clearly constitutes a prefix of sn′ . The induction hypothesis now
furnishes the result. ut

By the above lemma, we may consider s0 →∗ sn as a sequence of n prefixes
such that each step either is inside the prefix of its term (and is hence essential),
or is below the prefix (and is hence inessential).

Lemma 4.9. Let s0 →∗ sn and let P be a prefix of sn. There exists a reduction
s0 →∗ s′ � sn where s1 →∗ s′ consists of steps essential for P and s′ � sn

consists of steps inessential for P (hence the prefix P exists in s′).

Proof. It suffices to show that if ti ⇒ t′i → ti+1 where ti ⇒ t′i consists of
a complete development of some set of redexes that contracts only inessential
steps and t′i → ti+1 is an essential step, then ti → t′′i ⇒ ti+1 for some term
t′′i . Observe that since ti ⇒ t′i is inessential, the prefix of ti will not be touched
by any step in ti ⇒ t′i. Hence, the redex contracted in t′i → ti+1 is the unique
residual of an essential redex in ti. By Corollary 3.6 there now exists a term t′′i
such that ti → t′′i ⇒ ti+1. ut

Notation 4.10. With the notation of the above lemma, we write s0 →∗ s′ as De

(‘e’ for ‘essential’) and s′ � sn as De (‘e’ for ‘inessential’).

Definition 4.11. Let D : s0 ⇒U1 s1 ⇒U2 · · · ⇒Un sn be a reduction consisting
of a finite number of developments of finite sets of redexes (with finite right-
hand sides). The measure, µ(D) of D is the n-tuple (ln, . . . , l1)—note the reverse
ordering!—where li is the maximal length of a development of Ui that contracts
only essential steps. Tuples are compared first by their length and then by their
successive elements (in the natural order). This yields a well-founded order ≺.

8

Note that the Finite Developments Theorem for ordinary CRSs applies: All
developments of a finite set of redexes (with finite right-hand sides) are finite and
end in the same term, and all maximal developments of such sets are complete
[17]. Hence, each li in the definition is well-defined.

Remark 4.12. Let s0 ⇒ s1 ⇒ · · · ⇒ sn = D1;D2; · · · ;Dn be a finite reduction
consisting of developments of finite sets contracting only redexes essential to
some prefix P of sn. In the remainder of this section we will consider a special
kind of projection of such a reduction across a step u : s0 → t0 contracting a
redex u. By applying the Finite Developments Theorem for finite CRSs to each
single rewrite step in each Di, we can erect the following diagram, in which each
development is finite (but not necessarily complete):

s0
D1 +3

u

��

s1
D2 +3

u/D1

��

·

u/(D1;D2)

��

· Dn +3 sn

u/(D1;...;Dn)

��
t0

D1/u
+3 t1

D2/(u/D1)
+3 · · +3 tn

If u is inessential, then it is outside the sequence of prefixes in s0 ⇒∗ sn

contributing to P . Therefore, all bottommost steps in the above diagram are
essential, and P is a prefix of tn.

If u is essential and some residual of the redex of u occurs in Di, then some
of the steps in the development Di/(u/D1; . . . ;Di−1) may be inessential, since
redexes may have been duplicated by u and since not all copies need to be
essential. If this is the case, Lemma 4.9 ensures that we can rearrange t0 ⇒∗ tn
an essential initial part t0 →∗ q and an inessential final part q � tn (such that
P is a prefix of the term q). We can thus “strip away” all inessential steps in the
original projection to obtain an “emaciated” projection t0 →∗ q; observe that,
in this case, we do not necessarily have sn � q.

The above remark ensures that the following definition is meaningful:

Definition 4.13. Let s0 ⇒ s1 ⇒ · · · ⇒ sn = D1;D2; · · · ;Dn be a finite reduc-
tion consisting of developments of finite sets contracting only redexes essential to
some prefix P for sn. Let s0 → t0 contract a redex u. The emaciated projection
of D1; · · ·Dn across u, with respect to P , written D�u is the usual projection
where inessential steps have been stripped out as in Remark 4.12.

Proposition 4.14. Let D : s0 ⇒∗ sn, let P be a prefix of sn and let s0 → t0
contract a redex u. Then, in the emaciated projection D�u : t0 ⇒∗ q, the term
q contains P as a prefix and D�u contains only essential steps for P .

Proof. This is the content of Remark 4.12. ut

We want to relate the measure of the emaciated projections to the original
reductions. The following two lemmas ensure that this can be done:

9

Lemma 4.15. If D factors as De;De (according to Lemma 4.9), then µ(De) �
µ(D).

Proof. Inessential steps are not counted by µ. In the proof of Lemma 4.9, the
number of essential steps is constant under the permutation, whence the result.

ut

Lemma 4.16. If D : s0 ⇒∗ sn, µ(D) = (ln, . . . , l1), and s0 → t0 contracts an
essential redex u, then µ(D�u) ≺ µ(D).

Proof. If u is essential, then a residual of u that is essential is contracted in one
of the steps si ⇒U

i si+1. Assume that i is the largest index of a set Ui such
that Ui contains a residual u′ of u that is essential. If u′ is the sole redex in Ui,
then the ith component of D/u becomes empty, and µ(D/u) will have length at
least one less than µ(D). By Lemma 4.15 we have µ(D�u) � µ(D/u). Hence,
we obtain µ(D�u) ≺ µ(D).

If u′ is not the sole redex in Ui, then write µ(D�u) = (l′n, . . . , l′1) and notice
that u may duplicate redexes from U1, . . . ,Ui−1 Hence, increase the maximal
length of their essential developments, i.e. we may have l′j > lj for j < i. However,
the maximal length of a partial development of Ui that contracts only essential
steps is now at least one less. Hence, l′i < li, and for all lj with j > i we have
l′j = lj . Thus, µ(D�u) ≺ µ(D). ut

Lemma 4.17. Suppose D : s0 →∗ sn is a reduction to a root-collapsing term
and suppose s0 → t0 contracting a redex u is not root-collapsing. Then, t0 reduces
to a root-collapsing term in a finite number of steps.

Proof. We may assume that s0 →∗ sn does not contain any root-collapsing steps
(minimality). This implies that the collapsing redex at the root of s0 is either (1)
created along the reduction, or (2) that it was already at the root in s0 (which
implies n = 0). If it was already in s0, but at some other position than the root,
then a root-collapsing step must occur in s0 →∗ sn (otherwise the root-collapsing
redex can never be at the root), which is impossible by minimality.

Let P be the set of positions in the redex pattern of the root-collapsing
redex of sn, and consider the emaciated projection D�u. Since u is not root-
collapsing, we have in the case of (1) that the final term q in the emaciated
projection must also be root-collapsing. In the case of (2) this is also holds, as
the redex contracted in s0 → t0 must differ from the root-collapsing one in s0,
by the assumption on s0 → t0. ut

Lemma 4.18. If s � t contains no root-collapsing steps and s reduces to a
collapsing redex, then so does t.

Proof. If s � t is finite, the result follows by repeated application of Lemma
4.17.

If s � t is infinite, we may by compression assume that it has length ω and by
strong convergence that s→∗ sn by a finite reduction D where sn is a collapsing
redex. Let P be the set of positions in the redex pattern of the root-collapsing

10

redex in sn. By Lemma, 4.8, the set of positions in s that contribute to P form a
prefix Q of s and by Lemma 4.9 the reduction s→∗ sn consists solely of essential
steps. We write s⇒ s1 ⇒ · · · ⇒ sn, and µ(D) = (ln, . . . , l1).

Since s � t is infinite, it consists of a first step s→ t1 contracting a redex u
and an infinite reduction t1 � t. Taking the emaciated projection of s ⇒ s1 ⇒
· · · ⇒ sn over u yields a reduction D�u = t1 →∗ s′n to a collapsing redex. If u is
inessential, then µ(D�v) � µ(D). Otherwise, by Lemma 4.16, µ(D�v) ≺ µ(D).

If, from some ti in s � t onwards, no step is essential, then all steps are
outside the prefix Qi of ti that contributes to P , hence the final term t contains a
prefix that reduces to a collapsing redex in “the same way” as ti does. Assume, for
contradiction, that there are an infinite number of essential steps in s � t. Then,
Lemma 4.16 furnishes that the measure of the emaciated projected sequence
decreases strictly in each of these steps, contradicting well-foundedness of ≺. ut

4.2 Hypercollapsing reductions imply hypercollapsingness

The following is the iCRS analogue of Lemma 12.8.4 in [6] for iTRSs and
strengthening for iλc:

Lemma 4.19. Let s0 be a term. If there exists a hypercollapsing reduction start-
ing from s0, and a rewrite step s0 → t0, then there is a hypercollapsing reduction
starting from t0.

Proof (Sketch). By definition of hypercollapsing reductions we may write:

s0 →∗ s′0 → s1 →∗ s′1 → s2 →∗ · · · ,

with si → si+1 a root-collapsing step and no root-collapsing steps in si →∗ s′i,
for all i ∈ N. By repeated application of Corollary 3.6 we can erect the following
diagram, where u takes on the rôle of the set U when the corollary is first applied:

s0

u

��

∗ // s′0

U ′
0

��

// s1

U1

��

∗ // s′1

U ′
1

��

// s2

U2

��

∗ // ·

��
t0 // // t′0 // // t1 // // t′1 // // t2 // // ·

We write Si for si � s′i � si+1 � · · · and Ti for ti � t′i � ti+1 � · · ·. Note
that Ti may have length greater than ω.

If it holds for each i ∈ N that a root-collapsing step occurs in Ti, then an infi-
nite number of root-collapsing steps occurs in T0. We show this first. Afterwards,
we extract a hypercollapsing reduction from T0 employing this property.

To show the property we distinguish two cases: either (1) a root-collapsing
step occurs in Si that does not contract a residual of u, or (2) all root-collapsing
steps contract residuals of u. Careful case analysis shows that in both cases, Ti

will contain a root-collapsing step.
To show that a hypercollapsing reduction starting from t0 exists, one repeat-

edly applies the case distinction above to Ti for successively larger i ∈ N. ut

11

We can now prove Lemma 4.3:

Proof (Lemma 4.3). Let s � t and assume by compression that this reduction
has length at most ω. By strong convergence, we can write s →∗ t′ � t such
that all root-reductions occur in s→∗ t′. By repeated application of Lemma 4.19,
there is a hypercollapsing reduction starting from t′, in particular, t′ reduces to
a collapsing redex. Since t′ � t contains no steps at the root, Lemma 4.18 yields
that t reduces to a collapsing redex, proving that s is hypercollapsing. ut

5 Confluence Modulo

We use the notion of a tiling diagram from [6]:

Definition 5.1. A tiling diagram of two strongly convergent reductions S :
s0,0 →α sα,0 and T : s0,0 →β s0,β is a rectangular arrangement of strongly
convergent reductions:

s0,0 //

��

s0,1

����

s0,δ //

����

s0,δ+1

����

s0,β

s1,0 // // s1,1 s1,δ // // s1,δ+1 s1,β

sγ,0 // //

����

sγ,1

����

sγ,δ
Tγ,δ

// //

Sγ,δ

����

sγ,δ+1

����

sγ,β

sγ+1,0 // // sγ+1,1 sγ+1,δ // // sγ+1,δ+1 sγ+1,β

sα,0 sα,1 sα,δ sα,δ+1 sα,β

such that (1) each reduction Sγ,δ : sγ,δ � sγ,δ+1 is a complete development
of a set of redexes of sγ,δ, and conversely with Tγ,δ : sγ,δ � sγ+1,δ, (2) the
topmost horizontal reduction is T and the leftmost vertical reduction is S, and
(3) for each γ, δ, the set of redexes developed in Tγ,δ is the set of residuals of
the redex contracted in s0,δ → s0,δ+1 across the (strongly convergent) reduction
S[0,γ],δ : s0,δ → s1,δ → · · · sγ,δ (symmetrically for Sγ,δ).

The below is part of Thm. 12.6.5 in [6]:

Theorem 5.2. Let S and T be strongly convergent reductions starting from the
same term. The following are equivalent:

1. The tiling diagram of S and T can be completed, i.e. S/T and T/S are
strongly convergent and have the same limit.

2. S/T is strongly convergent.
3. T/S is strongly convergent.

12

Proof. The proof in [6] is independent of the details of rewriting. ut

Notation 5.3. By s →out t we denote a rewrite step that does not occur inside
any hypercollapsing subterm of s.

We now prove the analogue of Lemma 12.8.14 in [6]:

Lemma 5.4. If S : s �out t0 and T : s �out t1, then for some term q, we have
t0 � q and t1 � q.

Proof. Let s �out t0 have length α and s �out t1 have length β, respectively.
Assume without loss of generality that α ≤ β, and proceed by induction on
β (the “outer” induction). Each case in this induction is in turn performed by
induction on α (the “inner” induction). Induction ensures that it suffices to give a
proof for α = β = 1, for α = 1 and β = ω (by Compression), and for α = β = ω.

– The case α = β = 1 is covered by Lemma 3.5.
– For the case α = 1 and β = ω, Theorem 5.2 ensures that we need only

prove that S/T is strongly convergent, indeed since S contracts a single
redex u we need only prove that the set u/T has a strongly convergent
complete development. Assume the contrary. Observe that only residuals of
u are contracted in any development of u/T and that the employed rewrite
rule is collapsing (otherwise any development u/T is strongly convergent).
As contracting residuals of u cannot create further nestings of the residuals
that are left, there exists a subterm of t1 with a hypercollapsing reduction
starting from it (obtained by a development of u/T), say at position p.
In fact, there must exist an infinite chain of nested residuals of u in the
subterm at p. By strong convergence and limit length of T , we can write
T = T ′′ ;T ′ where T ′ : t �out t1 is a non-empty final segment of T that
performs no steps at prefix positions of p. Note that T ′′ is finite, by strong
convergence. Thus, we have t|p �out t1|p. Since there is a hypercollapsing
reduction starting from t1|p, there is also a hypercollapsing reduction starting
from t|p interleaving the steps from t|p �out t1|p and the hypercollapsing
reduction starting from t1|p. But then by Lemma 4.3 we have that t|p is
hypercollapsing, which implies that t|p �out t1|p is empty and that t|p = t1|p.
Thus, t|p contains a set of descendants of u having no complete development
(giving rise to the hypercollapsing reduction from t|p), whence u/T ′′ has no
complete development. Since T ′′ has length less than ω, this contradicts the
(outer) induction hypothesis.

– When α = β = ω, the argument from the proof of Lemma 12.8.14 in [6] can
be copied verbatim, as it is independent of the details of rewriting. ut

Define s ∼hc t if and only if t can be obtained from s by replacing a number of
hypercollapsing subterms of s by other hypercollapsing terms. By orthogonality,
∼hc is an equivalence relation, which is closed under substitution of terms for
free variables.

Lemma 5.5. If s � t and s ∼hc s′, then s′ �out t′ and t ∼hc t′.

13

Proof. Let s �α t and s ∼hc s′. We prove the result by transfinite induction.

– If α = 0, then the result is immediate, as an empty reduction sequence is by
definition one that only contracts redexes outside hypercollapsing subterms.

– If α = β +1, then assume s �α t = s �β q → t. By induction hypothesis we
have that there exist q′ such that s′ �out q′ and q ∼hc q′. There are now two
possibilities for q → t, depending on the contracted redex occurring either
outside or inside a hypercollapsing subterm:
• If the redex occurs outside a hypercollapsing subterm, then we have by

q ∼hc q′ and orthogonality that a redex employing the same rewrite rule
occurs at the same position in q′ and that this redex occurs outside a
hypercollapsing subterm. By definition of ∼hc, contracting the redex in q′

yields a term t′ by a reduction outside a hypercollapsing subterm. That
t ∼hc t′ follows by the fact that the same rewrite rule is employed in q → t
and q′ → t′ and the fact that q ∼hc q′: Clearly, t and t′ are identical at all
positions p that descend from positions not in hypercollapsing subterms
of q or q′. If p′ is the position of a maximal hypercollapsing subterm
of q, it is also the position of a maximal hypercollapsing subterm of q′

and vice versa, and p′ descends to identical positions in t, respectively t′.
Any descendant of the subterm at p′ will be a (not necessarily maximal)
hypercollapsing subterm, and the result then follows by q ∼hc q′ and its
closure under substitution.
• If the redex occurs inside a hypercollapsing subterm, then we have t ∼hc

q. Hence, by transitivity of ∼hc we have t ∼hc q′ and we can define
t′ = q′.

– If α = γ, with γ a limit ordinal, then the result is immediate by strong
convergence and the induction hypothesis. ut

Definition 5.6. An iCRS is said to be confluent modulo an equivalence relation
∼ if s ∼ t, s � s′, and t � t′ imply existence of terms s′′ and t′′ such that
s′ � s′′, t′ � t′′ and s′′ ∼ t′′.

Theorem 5.7. Fully-extended, orthogonal iCRSs with finite right-hand sides
are confluent modulo ∼hc.

Proof. Let s ∼hc t, and assume that s � s′ and t � t′. Consider the following
diagram:

s

������
��

��
��

∼hc

(1)

t

out
�� ��
>>

>>
>>

>>

out
������
��

��
��

(3)

t

�� ��
??

??
??

??

(2)

s′

out
�� ��
??

??
??

??
∼hc t′1

�� ��
>>

>>
>>

>>

(4)

t′2

������
��

��
��

(5)

t′

out
������
��

��
��

∼hc

s′′ ∼hc q t′′∼hc

Prisms (1) and (2) follow by Lemma 5.5. Square (3) follows by Lemma 5.4.
The diagram is completed by noting that (4) and (5) follow by Lemma 5.5 The
result now follows by transitivity of ∼hc. ut

14

References

1. Hanus, M.: A unified computation model for functional and logic programming.
In: Proceedings of the 24th Annual SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’97), ACM Press (1997) 80–93

2. Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: An operational semantics for
declarative multi-paradigm languages. In: Proceedings of the 11th International
Workshop on Functional and (Constraint) Logic Programming (WFLP ’02), Uni-
versità degli Studi di Udine (2002) 7–20

3. Fernández, A.J., Hortalá-Gonzales, T., Sáenz-Pérez, F.: Solving combinatorial
problems with a constraint functional logic language. In: Practical Aspects of
Declarative Languages (PADL ’03). Volume 2562 of LNCS., Springer-Verlag (2003)
320–338

4. Dershowitz, N., Kaplan, S., Plaisted, D.A.: Rewrite, rewrite, rewrite, rewrite,
rewrite, Theoretical Computer Science 83 (1991) 71–96

5. Kennaway, R., Klop, J.W., Sleep, R., de Vries, F.J.: Transfinite reductions in
orthogonal term rewriting systems. Information and Computation 119 (1995) 18–
38

6. Terese: Term Rewriting Systems. Cambridge University Press (2003)
7. Kennaway, J.R., Klop, J.W., Sleep, M., de Vries, F.J.: Infinitary lambda calculus.

Theoretical Computer Science 175 (1997) 93–125
8. Marchiori, M.: Logic programs as term rewriting systems. In: Proceedings of the

4th International Conference on Algebraic and Logic Programming. Volume 850
of LNCS., Springer-Verlag (1994) 223–241

9. van Raamsdonk, F.: Translating logic programs into conditional rewriting systems.
In: Proceedings of the 14th International Conference on Logic Programming (ICLP
’97), MIT Press (1997) 168–182

10. Ketema, J., Simonsen, J.G.: Infinitary combinatory reduction systems. In Giesl, J.,
ed.: Proceedings of the 16th International Conference on Rewriting Techniques and
Applications (RTA ’05). Volume 3467 of LNCS., Springer-Verlag (2005) 438–452

11. Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems:
introduction and survey. Theoretical Computer Science 121 (1993) 279–308

12. Arnold, A., Nivat, M.: The metric space of infinite trees. Algebraic and topological
properties. Fundamenta Informaticae 3 (1980) 445–476

13. Hanus, M., Prehofer, C.: Higher-order narrowing with definitional trees. In
Ganzinger, H., ed.: Proc. of the 7th Int. Conf. on Rewriting Techniques and Ap-
plications (RTA’96). Volume 1103 of LNCS., Springer-Verlag (1996) 138–152

14. van Oostrom, V.: Higher-order families. In Ganzinger, H., ed.: Proc. of the 7th
Int. Conf. on Rewriting Techniques and Applications (RTA ’96). Volume 1103 of
LNCS., Springer-Verlag (1996) 392–407

15. Sekar, R.C., Ramakrishnan, I.V.: Programming in equational logic: beyond strong
sequentiality. Information and Computation 104 (1993) 78–109

16. van Oostrom, V.: Normalisation in weakly orthogonal rewriting. In: Proceedings
of the 10th International Conference on Rewriting Techniques and Applications
(RTA ’99). Volume 1631 of LNCS., Springer-Verlag (1999) 60–74

17. Klop, J.W.: Combinatory Reduction Systems. PhD thesis, Rijksuniversiteit
Utrecht (1980)

18. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. Revised edn.
Elsevier Science (1984)

15

