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Abstract. Let β be a real number with 1 < β < 2. We prove that the
language of the β-shift is ∆0

n iff β is a ∆n-real. The special case where
n is 1 is the independently interesting result that the language of the
β-shift is decidable iff β is a computable real. The “if” part of the proof
is non-constructive; we show that for Walters’ version of the β-shift, no
constructive proof exists.

1 Introduction

Symbolic dynamics is a vast and varied field of research originating with Morse’s
work in the 1920ies [12], and has a wide variety of applications [6, 1, 11]. A well-
known class of symbolic dynamical systems is that of the β-shifts introduced by
Renyi [16], developed by Parry in the seminal paper [15], and studied intensely
[7, 19, 22, 10, 2, 5, 20, 21]. From the vantage point of the computer scientist, the
class of β-shifts is also interesting because of the following fact concerning its
topological entropy, a quantity of major importance in dynamical systems theory
also having connections to data compression [6]:

Theorem 1 ([15, 16]). If β is a non-integral real number > 1, then the topo-
logical entropy of the β-shift is log(β).

The computability of the topological entropy of various dynamical systems
has been studied closely [8, 9, 4]. For none of the studied classes of systems, is it
known whether, for each computable real number α, there exists a system having
topological entropy equal to α. As log is a computable function, Theorem 1 thus
offers a tantalizing opportunity to have a class of dynamical systems with this
property. Ideally, such a correspondence should be effective, ie. we would like
to have an algorithm that transformed any computable real β, in some suitable
representation, to some suitable representation of the β-shift.

As we shall show, β is a computable real iff the socalled “language” of the
β-shift is decidable. Therefore, the “suitable representation” of the β-shift is an
algorithm for deciding its language. However, we also show that an algorithm
as is asked for above does not exist. Our methods are not particular to the
setting of decidable sets, but can be recast to fit effective procedures with access
to oracles. Consequently, we prove our results for all ∆0

n in the Arithmetical
Hierarchy. This proof establishes a surprising correspondence with the elegant
notion of ∆n-reals introduced by Weihrauch and Zheng [27].



For ease of notation, we prove our results for reals in the open interval (1; 2).
The extension of our results to non-integral βs greater than 2 is certainly possible,
but requires some awkward encoding.

2 Preliminaries

For ease of notation, we use the computability notions of recursion theory. The
reader in need of intuitive understanding may substitute “program” for “partial
recursive function” and “program that always halts” for “total recursive func-
tion”. Good introductions to recursion theory are [18, 14]. Familiarity with com-
putable analysis or any of the varieties of constructive mathematics will be an
advantage, but not a prerequisite; Weihrauch’s monograph [25] is recommended.

Throughout the paper, R denotes the usual set of real numbers from classical
mathematics, as does any use of the term “real number”. As usual, the greatest
integer less than or equal to a real number β is denoted by bβc. We denote the
set of positive reals by R>0.

We set 2 , {0, 1}. The set of right-infinite binary sequences is denoted by
2N, the set of bi-infinite such by 2Z; if b is a finite binary string, we denote by
bω the right-infinite string consisting of an infinite number of concatenations of
b. If M is a language of finite binary strings and k ∈ N, Mk denotes the set of
all finite strings obtained by k− 1 successive concatenations of k elements of M
(with M1 = M as a special case). As usual, we set M∗ , {λ} ∪

⋃∞
k=1M

k where
λ is the empty string.

The (strict) lexicographic order on 2N (or 2k for any k ∈ N) is defined by
α <lex γ iff there is an n ∈ N such that α(n) = 0, γ(n) = 1, and α(k) = γ(k) for
all k < n. The non-strict lexicographic order is then defined in the obvious way.

We set N , {1, 2, . . .}, N0 , {0} ∪ N, and define Z and Q as usual. For
computability purposes, we assume elements of N0, Z and Q to have suitable
representations as elements of N, whence comparison under <, > and = are
decidable in these sets. Indices k,m, n, s ranges over N.

2.1 The Beta-Shift

For any finite alphabet Σ, the one-sided shift map on ΣN, denoted σ, is defined
by σ(b1b2 · · · ) , b2b3 · · · . The two-sided shift on ΣZ, also denoted σ, is defined
by σ(b)i = bi+1 for all i ∈ Z.

Definition 1. Let β be a non-integral real number > 1. The (greedy) expansion
of 1 in powers of β−1 is the sequence a = (ak)∞k=1 where a1 = bβc, and ak =
bβk −

∑k−1
i=1 aiβ

k−ic for k > 1.
If there is an m ∈ N such that k ≥ m implies ak = 0, then the expansion is

said to be finite.

It is easy to see that 1 =
∑∞
n=1 anβ

−n, and that β is the unique positive
solution to 1 =

∑∞
k=1 akx

−k. Observe that if k = bβc+ 1, then 0 ≤ an ≤ k − 1



for all n ∈ N, and thus a = (an)∞n=1 is an element of the full shift on k letters (i.e.
the set of all right-infinite sequences of words from a k-letter alphabet—this set
is unique up to injective renaming of the letters). As we restrict our attention
to the open interval (1; 2), we may take Σ = 2 in the remainder of the paper.

Note that σn(a) ≤lex a for all n ∈ N; this gives rise to the standard definition
of the β-shift:

Definition 2. Let β be a real number with 1 < β < 2, and let a = (an)∞n=1 be
the expansion of 1 in powers of β−1. The one-sided W-β-shift is the subset X̃β

of 2N containing exactly those b such that, for all n ∈ N0, we have σn(b) ≤lex a.
The one-sided β-shift, denoted Xβ, is defined to be X̃β if a is not finite. If a

is finite, i.e. a = a1a2, . . . ak0ω such that ak = 1, define a′ , (a1a2 · · · ak−10)ω.
Then, Xβ is defined to be the subset of 2N such that, for all n ∈ N0, we have
σn(b) ≤lex a

′

The two-sided W-β-shift is the subset of 2Z containing exactly those b such
that, for all i ∈ Z, we have we have bibi+1bi+2 · · · ∈ X̃β. The two-sided β-shift is
defined analogously, using Xβ.

It is easy to see that both the one- and two-sided (W-)β-shifts are shift-
invariant subsets of {0, . . . , bβc}N and {0, . . . , bβc}Z, ie., σ(X̃β) = X̃β and σ(Xβ) =
Xβ .

The term “W-β-shift” is short for “Walters-β-shift”, since X̃β is studied in
Walters’ book [24] (a point of confusion is that the W-β-shift is occasionally
called the β-shift in the literature). The special case where the definition of the
W-β-shift differs from the β-shift (i.e. with finite a) stems from the original
research of the β-shift [15] where it was necessary to consider the special case
to study aspects of number theory. Both the W-β-shift and the β-shift satisfy
Theorem 1.

A fundamental concept in the study of shift spaces is that of language:

Definition 3. Let β be a real number with 1 < β < 2. The language of the W-β-
shift, denoted L(X̃β), is the set of all finite binary strings occurring in elements

of X̃β, ie. L(X̃β) ,
{
bibi+1 · · · bj | b ∈ X̃β ∧ i, j ∈ N ∧ i ≤ j

}
. L(Xβ) is defined

analogously.

Define the shift map σfin on finite strings by σfin(b1b2 · · · bk) , b2 · · · bk and
note that |σfin(a)| + 1 = |a|. Extend the map to sets of finite strings by letting
σfin act on each string in the set. We have:

Proposition 1. For all j, k ∈ N, we have L(X̃β) ∩ 2jk ⊆ (L(X̃β) ∩ 2k)j, and
L(Xβ) ∩ 2jk ⊆ (L(Xβ) ∩ 2k)j

Proof. As σ(X̃β) = X̃β , we see that σfin(L(X̃β)) = L(X̃β). From the above,
we see that σk(L(X̃β) ∩ 2jk) = L(X̃β) ∩ 2(j−1)k (where 20 = {λ}). Hence,
L(X̃β) ∩ 2jk ⊆ (L(X̃β) ∩ 2k) · (L(X̃β) ∩ 2(j−1)k), and the result follows by a
simple induction on j. The proof for Xβ is completely analogous. ut



2.2 Computable Reals

There are several definitions of “computable reals” in the literature, but these
are all equivalent [23, 13, 17, 25, 26]. The definition that will be easiest to work
with in this paper is, essentially, that of [25]:

Definition 4. A sequence (Is)s∈N = ([ps; qs])s∈N of closed intervals with end-
points in Q is said to be computable if there is a total recursive function φ : N −→
Q where, for all s ∈ N, we have φ(2s) = ps and φ(2s + 1) = qs. A computable
name is a computable sequence (Is)s∈N of closed intervals with endpoints in Q
such that, for all s ∈ N, we have Is+1 ⊆ Is such that

⋂
s∈N is a singleton.

A real number α is said to be computable if there is a computable name
(Is)s∈N with {α} =

⋂
s∈N Is.

From any computable name (Is)s∈N of some real α, we may effectively obtain
a computable name (I ′s)s∈N of α such that |I ′s| ≤ 2−s for all s ∈ N: Since we
know that |Is| → 0 for s → ∞ and we can, in finite time, check the length
of an interval Is, we may simply wait for (Is)s∈N to produce sufficiently small
intervals.

Definition 5. Let α be a real number. Then, α is said to be left-computable
(resp. right-computable) if there is a total recursive function φ : N −→ Q such
that sups φ(s) = α (resp. infs φ(s) = α).

It is well-known that a real number is computable iff it is both left- and
right-computable. Also:

Proposition 2. For each fixed computable name of some real α, the following
problem is undecidable:

Given: A computable name (In)n∈N of some computable real β.
To decide: Is β < α?

Proof. Standard. See e.g. [3, 25]. ut

We use the above proposition in Section 6, specialized to the case where α is
the Golden Mean (1 +

√
5)/2.

We shall need an effective way of finding the unique positive root of equations
of the form 1 =

∑k
j=1 cjx

−j where all cj ∈ 2 and at least one of the cj equals 1.

Lemma 1. There is a total recursive function ψ : N −→ N such that, for each
k ∈ N, φψ(k) : 2k −→ N is a partial recursive function such that, if c1, . . . , ck ∈ 2
with at least one cj = 1, then φψ(k)(c1, . . . , ck) is defined and φφψ(k)(c1,...,ck) :

N −→ Q is a computable name of the unique positive solution to 1 =
∑k
j=1 cjx

−j.

Proof. The positive solution of 1 =
∑k
j=1 cjx

−j is an isolated zero of f(x) ,∑
j=1 cjx

−j − 1, which is a computable function in the sense of Weihrauch [25].
The result now follows from standard root-finding algorithms, indeed from the
fact that every isolated zero of a computable function is a computable real, and
that there is an effective way of finding a computable name for it [25, Ch. 6]. ut



In the above lemma, ψ is merely a way of getting the right arity, and φψ(k)

an “algorithm” for converting the relevant “coefficients” to a computable name
of the solution.

2.3 The Arithmetical Hierarchy of Reals

We briefly summarize a few notions from recursion theory:

Definition 6. Let A ⊆ N. We let (φAi )i∈N be an effective enumeration of all
partial functions from N −→ N that are recursive-in-A (ie., computable by Tur-
ing Machines with access to an oracle for A). Observe that A = ∅ gives the
usual partial recursive functions, and we write φi in place of φ∅i . We will usually
suppress the index i if it is not necessary for the exposition.

We overload the φAi to denote partial recursive-in-A functions with domain
or codomain any of the sets 2,N,Z,Q (using suitable representations). If B is
any of these sets, observe that C ⊆ B is decidable iff there exists a total recursive
function φi : B −→ 2 such that φi(x) = 1 iff x ∈ C.

Let, for each n ∈ N, 〈·, . . . , ·〉 : Nn −→ N be a total recursive pairing function,
e.g. the one obtained by repeated use of the Cantor pairing function 〈i, j〉 ,
(i+ j)(i+ j + 1)/2 + j and its accompanying projections.

Using the pairing function, we may extend the concepts introduced above to
finite Cartesian products of any of these sets. If φ : N −→ N is a total function,
we say that ψ : N −→ N is recursive-in-φ if it is recursive-in-{〈n, φ(n)〉 | n ∈ N}.

Definition 7. For any A ⊆ N, the jump, A′ is defined by A′ , {i ∈ N |
φAi (i) is defined}. For n ∈ N, the nth jump A(n) is defined by A(1) , A′, and
A(n+1) ,

(
A(n−1)

)′
. For convenience, we set A(0) , A.

Define Σ0
0 = Π0

0 = ∆0
0 to be the set of decidable subsets of N. For any n ∈ N,

define the sets of subsets of N called Σ0
n,Π

0
n, and ∆0

n as follows: a set A ⊆ N
satisfies A ∈ Σ0

n iff there is a decidable set R ⊆ N such that, for any i ∈ N:
i ∈ A iff (∃m1)(∀m2)(∃m3) · · · (Qmn).(〈i,m1, . . . ,mn〉 ∈ R) where Q is ‘∃’ if n
is odd and ‘∀’ otherwise. A ⊆ Π0

n, iff the complement A ∈ Σ0
n, and we define

∆0
n , Σ0

n ∩Π0
n.

It is easy to see that Σ0
1 contains precisely the recursively enumerable (hence-

forth “r.e.”) subsets of N, and Π0
1 precisely the co-r.e. sets. It is a standard

result that, for n ∈ N, A ∈ ∆0
n iff there is a total recursive-in-∅(n−1) function

φ : N −→ 2 such that φ(j) = 1 iff j ∈ A.
Recognizing the similarity between alternating quantifiers in the usual notion

of arithmetical hierarchy for N and the alternating uses of inf and sup in certain
generalizations of the computable reals, Weihrauch and Zheng introduced the
arithmetical hierarchy of reals [27]. Each class in the hierarchy constitutes a
closed subfield of R corresponding to a degree of unsolvability.

A full introduction to the arithmetical hierarchy of reals is beyond the scope
of this paper; we shall only need to recapitulate a few facts. The lemma below
may be taken as a definition of the classes.



Lemma 2 (Lemma 7.2 of [27]). With the convention ∅(0) = ∅, the following
hold for all n ∈ N0 and all x ∈ R:

1. x ∈ Σn+1 iff there is a recursive-in-∅(n) total function φi : N −→ Q with
x = sups φi(s).

2. x ∈ Πn+1 if there is a recursive-in-∅(n) total function φi : N −→ Q with
x = infs φi(s).

3. x ∈ ∆n+1 if there is a total function as above such that x = lims→∞ φi(s) that
converges effectively, ie. there is a recursive-in-∅(n) total function ξ : N −→ N
such that for all s, j ∈ N, we have s ≥ ξ(j) ⇒ |x− φi(s)| ≤ 2−j.

4. x ∈ ∆n+2 if there is a total function as above such that x = lims→∞ φi(s).

In [27], the lemma is stated only for n ≥ 1, but the case n = 0 is proved
elsewhere loc. cit.

From the above lemma, it is not hard to see that ∆n = Σn∩Πn for all n ∈ N,
that ∆1 coincides with the set of computable reals, and Σ1 (resp. Π1) coincides
with the set of left-computable (resp. right-computable) reals.

Proposition 3 (First part of Prop. 7.6 of [27]). For any n ∈ N, ∆n is
an algebraic field, ie. is closed under the arithmetical operations of addition,
subtraction, multiplication and division.

Examination of the proof in [27] and the standard proof of algebraic closure
of the computable reals [25] yields that the closure under algebraic operations is
effective. For example, if φi, φj : N −→ Q are total recursive-in-∅(n−1) functions
with lims→∞ φi(s) = α and lims→∞ φj(s) = β (where the convergence is effective
in both cases), then there is a total recursive-in-∅(n−1) function ψ : N −→ Q such
that lims→∞ ψ(s) = α+ β, effectively.

We now prove a series of ancillary propositions and lemmas.

Proposition 4. For any n ∈ N, if α is a Πn-real, then so is 2α.

Proof. As α is Πn, there is, by Lemma 2, a total recursive-in-∅(n−1) function
φ : N −→ Q such that α = infk f(k). Using standard methods from computable
analysis, it is easy to show that there is a total recursive function ξ : N×Q −→ Q
such that, for each k ∈ N and p/q ∈ Q, we have 0 ≤ ξ(k, p/q) − 2p/q < 2−k.
Hence, 0 ≤ ξ(k, f(k)) − 2f(k) < 2−k for all k ∈ N. The function ζ : N −→ Q
defined by ζ(k) , ξ(k, f(k)) is thus recursive-in-∅(n−1) and, since x 7→ 2x is an
increasing map, satisfies infk ζ(k) = 2α. Thus, 2α ∈ Πn. ut

We need the concept of ∆0
n-good sequences to make some of the subsequent

proofs more readable:

Definition 8. Let n ∈ N. A sequence (xs)s∈N of computable reals is called ∆0
n-

good if there is a ∅(n−1)-computable total function ψ : N −→ N such that, for
each s ∈ N, φψ(s) : N −→ Q is a computable name of xs.

Taking the sup or inf of such sequences does not force us into a higher level
of the arithmetical hierarchy:



Proposition 5. Let n ∈ N, and let (xs)s∈N be a ∆0
n-good, convergent sequence

of computable reals. Then:

1. If ∀s ∈ N.xs ≤ lims xs, then lims→∞ xs = sups xs ∈ Σn.
2. If ∀s ∈ N.xs ≥ lims xs, then lims→∞ xs = inf xs ∈ Πn.

Proof. We prove (1); the proof of (2) is similar.
As we have ∀s ∈ N.xs ≤ lims→∞ xs, we immediately get lims→∞ xs =

sups xs. As (xs)s∈N is ∆0
n-good, there is a total recursive-in-∅(n−1) function ψ

with the properties of Definition 8. For each s, φψ(s)(2s) is a left endpoint of
an interval a name of xs; there is clearly a total recursive-in-∅(n−1) function
ξ : N −→ Q such that ξ(s) = φψ(s)(2s), for all s ∈ N.

By the comments after Definition 4, we may assume wlog. that for each s ∈ N,
we have |xs − φψ(s)(2s)| ≤ 2−s, Furthermore, for each s ∈ N, φψ(s)(2s) is a left
endpoint of a name of xs, and we thus have xs ≥ φψ(s)(2s) for all s ∈ N, and
thus lims φψ(s)(2s) = sups φψ(s)(2s) = sups ξ(s) ∈ Σn, as desired. ut

3 Beta-Shifts Having Arithmetical Languages

In this and the remaining sections, we assume a β ∈ R with 1 < β < 2. Further-
more, we freely refer to (ak)k∈N as the expansion of 1 in powers of β−1.

Let log be the logarithm to base 2; we now establish a sufficient condition
for log(β) to be in Πn:

Proposition 6. Let L(X̃β) be ∆0
n. Then, the quantity

log(β) = htop

(
X̃β

)
= lim
k→∞

(
log(|L(X̃β) ∩ 2k|)

k

)

is a Πn-real. The result holds with L(X̃β) replaced by L(Xβ).

Proof. The limit always exists and equals log(β) by the standard theory of the
β-shift [24]. We want to use Proposition 5 and proceed as follows:

– If L(X̃β) is ∆0
n, then there is a total recursive-in-∅(n−1) function ζ : 2∗ −→ 2

such that ζ(a) = 1 iff a ∈ L(X̃β); hence, there is a total recursive-in-∅(n−1)

function ξ : N −→ N such that ξ(k) = |L(X̃β) ∩ 2k| for all k ∈ N. For each
k ∈ N, log(|L(X̃β)∩ 2k|)/k is a computable real, and we can effectively find
a computable name for it given the natural number |L(X̃β) ∩ 2k| as input.
Thus, there is a total recursive-in-∅(n−1) function ψ : N −→ N such that
φψ(k) : N −→ Q is a computable name of log(L(X̃β) ∩ 2k)/k for all k ∈ N,
proving that (log(L(X̃β) ∩ 2k)/k)k∈N is a ∆0

n-good sequence.
– For all j, k ∈ N, Proposition 1 entails that L(X̃β) ∩ 2kj ⊆ (L(X̃β) ∩ 2k)j ,

hence that |L(X̃β) ∩ 2kj | ≤ |(L(X̃β) ∩ 2k)j | = |L(X̃β) ∩ 2k|j .
Thus:



log(|L(X̃β) ∩ 2kj |)
kj

≤ log(|L(X̃β) ∩ 2k|j)
kj

=
log(|L(X̃β) ∩ 2k|)

k
.

The rightmost expression above does not depend on j, whence we have, for
each k ∈ N:

lim
j→∞

(
log(|L(X̃β) ∩ 2j |)

j

)
= lim
j→∞

(
log(|L(X̃β) ∩ 2kj |)

kj

)
≤ log(|L(X̃β) ∩ 2k|)

k
.

Thus, for each k ∈ N, log(|L(X̃β)∩ 2k|)/k is an upper bound on htop

(
X̃β

)
.

Finally, Proposition 5 yields htop

(
X̃β

)
∈ Πn. The proof for L(Xβ) can be

carried out by copying the arguments for L(X̃β) verbatim. ut

The following lemma establishes a useful correspondence between L(X̃β) and
{k | ak = 1}.

Lemma 3. L(X̃β) is ∆0
n iff {k ∈ N | ak = 1} is ∆0

n.

Proof. Let, for each k ∈ N, Dk , {d ∈ 2k | ∀j ∈ {0, . . . , k − 1}.σj(d) ≤lex

a1 · · · ak−j}. Observe that if d ∈ Dk, then d·0ω ∈ X̃β , and thus Dk ⊆ L(X̃β)∩2k.
Conversely, if d ∈ L(X̃β)∩2k, then σjfin(d) ≤lex a1 · · · ak−j for j ∈ {0, . . . , k−1},
ie. d ∈ Dk. Hence, Dk = L(X̃β) ∩ 2k.

If L(X̃β) is ∆0
n, then we can obviously establish a total recursive-in-∅(n−1)

function φ : N −→ 2 such that φ(k) = bk where b1 · · · bk is the lexicographically
greatest element ofDk. By definition of the β-shift, the lexicographically greatest
element of Dk is the prefix of length k of a1a2 · · · . But then φ(k) = 1 iff ak = 1,
ie. {k ∈ N | ak = 1}.

Conversely, if {k ∈ N | ak = 1} is ∆0
n, we can recursively-in-∅(n−1) establish

a1 · · · ak for each k ∈ N. With a1 · · · ak in hand, we can effectively establish Dk.
For a given d ∈ 2∗, to decide whether d ∈ L(X̃β), we need only examine whether
d ∈ D|d|, which is thus recursive-in-∅(n−1), ie. there is a total recursive-in-∅(n−1)

function ψ : 2∗ −→ 2 such that ψ(d) = 1 iff d ∈ L(X̃β). ut

Observe that the proof is constructive, ie. we have an effective way of pro-
ducing decision procedures for {k | ak = 1} given decision procedures for L(X̃β)
as input, and vice versa.

Proposition 7. L(Xβ) is ∆0
n iff L(X̃β) is ∆0

n.

Proof. If a is not finite, we have L(Xβ) = L(X̃β), and the result follows. If a is
finite, then {k | ak = 1} is ∆0

1 (there are only a finite number of 1s), whence
Lemma 3 furnishes that L(X̃β) is ∆0

1. Also, we have that L(Xβ) is ∆0
1, since

we can use the same construction as in the second part of the proof of Lemma
3 applied to the sequence a′ = (a1a2 · · · ak−10)ω where k is the largest integer
with ak = 1. ut



Let s ∈ N, a1 = 1 and aj ∈ 2 for j ∈ {2, . . . , s}. Consider the map fs :
R>0 −→ R>0 defined by fs(x) =

∑s
j=1 ajx

−j . Now, fs(x) is strictly decreasing,
continuous and onto, whence 1 = fs(x) has a unique positive real solution for
all s. We now show that this solution is a computable real, and that there is an
effective way to find it given a1, . . . , as as input:

Proposition 8. If {k ∈ N | ak = 1} is ∆0
n, then the sequence (αs)s∈N of pos-

itive solutions to 1 =
∑s
j=1 ajx

−j is a ∆0
n-good sequence of computable reals,

convergent with limit β, and satisfying ∀s ∈ N.αs ≤ β.

Proof. Observe that we always have a1 = 1. By Lemma 1, there is an effective
procedure yielding a computable name of the unique positive real solution to
1 =

∑s
j=1 ajx

−j , when given (a1, . . . , as) as input. Let the notation and names
of recursive functions be as in Lemma 1; Then φφψ(s)(a1,...,as) : N −→ Q is a
computable name of the unique positive solution, and the function ψ : N −→
N is total recursive. As {k ∈ N | ak = 1} is ∆0

n, there is a total recursive-
in-∅(n−1) function ξ : N −→ 2 with ξ(k) = 1 iff ak = 1, and hence a total
recursive-in-∅(n−1) function ζ : N −→ 2 such that ζ(k) = ak for all k ∈ N.
Hence, there is a total recursive-in-∅(n−1) function mapping s ∈ N to an index of
φψ(s)(ζ(s), . . . , ζ(1)), whence (αs)s∈N is a ∆0

n-good sequence of computable reals.
The sequence is non-decreasing, since αs+1 = αs if as+1 = 0 and αs+1 > αs if
as+1 = 1. Now, β is the unique positive solution to 1 =

∑∞
j=1 ajx

−j , and clearly
all of the αs are less than or equal to this solution. Hence, ∀s ∈ N.αs ≤ β.
Proving that lims→∞ αs = β is a standard exercise in undergraduate (classical)
mathematics. ut

We now have the following key lemma:

Lemma 4. If L(X̃β) is ∆0
n, then β is a ∆n-real.

Proof. Propositions 6 and 4 furnish that β ∈ Πn. Furthermore, Lemma 3, and
Propositions 8 and 5 furnish that β ∈ Σn, whence the result. ut

4 Arithmetical Betas

In the first lemma of this section, we give a sufficient condition for {k | ak = 1}
to be ∆0

n.

Lemma 5. Let n ∈ N, and assume that, for all k ∈ N, we have 1 6= βk −∑k−1
j=1 ajβ

k−j. Then there is a total recursive-in-∅(n−1) function ξ : N −→ 2

such that ξ(n) = 1 iff βk −
∑k−1
j=1 ajβ

k−j ≥ 1, ie. {k | ak = 1} is a ∆0
n subset of

N.

Proof. By Lemma 2, there is a recursive-in-∅(n−1) total function f : N −→ Q
such that β = limi→∞ f(i) effectively (that is, there is an ∅(n−1)-computable
total function ψ : N −→ N such that, for all m ∈ N, |β − f(i)| < 2−m for
all i ≥ ψ(m)). By Proposition 3, ∆n is an algebraic field, and we thus have



βk −
∑k−1
j=1 ajβ

k−j ∈ ∆n for all k ∈ N. By the comments after the proposition,
the algebraic operations are recursive, and there is thus a total recursive-in-
∅(n−1) function ξ : N×N −→ Q such that, for all k,m ∈ N, |βk−

∑k−1
j=1 ajβ

k−j−
ξ(k,m)| < 2−m.

Consider the recursive-in-ξ procedure that does the following: For each k ∈ N,
run ξ(k, i) on successively greater i until an i is found for which |1 − ξ(k, i)| >
2−(i−1) (the assumption 1 6= βk−

∑k−1
j=1 ajβ

k−j implies existence of such an i). As

|βk−
∑k−1
j=1 ajβ

k−j−ξ(k, i)| < 2−i, we have ξ(k, i) > 1 iff βk−
∑n−1
j=1 ajβ

k−j > 1.
This procedure can clearly be made into a total recursive-in-∅(n−1)-function

h : N −→ 2 such that h(n) = 1 iff βk −
∑n−1
j=1 ajβ

k−j > 1. ut
The next lemma is a counterpart to Lemma 4.

Lemma 6. Let β ∈ ∆n. Then, {k | ak = 1} is ∆0
n.

Proof. Consider (ak)k∈N. Either there is a k ∈ N such that 1 = βk−
∑k−1
i=1 aiβ

k−i,
or there is not1. If there is no such k, then Lemma 5 furnishes the result. If
there is no such k, the ai, for 1 ≤ i ≤ k − 1, are the initial coefficients of the
expansion of 1 in negative powers of β. Hence, ak = bβk −

∑k−1
i=1 aiβ

k−ic =
βk −

∑
i = 1k−1aiβ

k−i = 1, showing that 1 =
∑k
i=1 aiβ

−i is the β-expansion
of 1, all further coefficients therefore being 0. Thus, there is a total recursive
function φ : N −→ 2 such that φ(k) = 1 iff ak = 1. ut

5 The Correspondence Theorem

We now prove our main result:

Theorem 2. Let β be a real number with 1 < β < 2, and let n ∈ N. The
following are equivalent:

1. β is a ∆n-real.
2. {k | ak = 1} is a ∆0

n subset of N.
3. L(X̃β) is a ∆0

n subset of 2∗.
4. L(Xβ) is a ∆0

n subset of 2∗.

Proof. (1) ⇒ (2) is Lemma 6, (2) ⇒ (3) is one-half of Lemma 3, and (3) ⇒ (1)
is Lemma 4. Finally, Proposition 7 furnishes equivalence of (3) and (4). ut

The case where n is 1 is of particular interest:

Corollary 1. Let β be a real number with 1 < β < 2. The following are equiv-
alent:

1. β is a computable real.
2. The set {k | ak = 1} is a decidable subset of N.
3. L(X̃β) is a decidable subset of 2∗.
4. L(Xβ) is a decidable subset of 2∗.
1 This use of the Law of the Excluded Middle is the essential non-constructive part of

the proof: We are asking for an answer to the undecidable problem of whether such
a k exists.



6 Absence of a Constructive Proof

Inspection of the proof of Lemma 4 reveals that it is constructive and thus
yields an effective procedure for converting a decision procedure for L(X̃β) to a
computable name of β. Hence, (3) ⇒ (1) of Theorem 2 is effective in the case
where n equals 1.

Unfortunately, that fact is not very interesting; what we really want is for
(1) ⇒ (3) to be constructive, ie. we desire a program to generate a decision
procedure for L(X̃β) when given a computable name of a computable real β as
input. Alas, this is impossible:

Theorem 3. There is no partial recursive function ψ : N −→ N such that if
φi : N −→ Q is a computable name of a computable real β ∈ (1; 2), then i ∈
dom(ψ) and φψ(i) : 2∗ −→ 2 is a total recursive function such that φψ(i)(c) = 1
iff c ∈ L(X̃β) for all c ∈ 2∗.

Proof. Observe that for any β ∈ (1, 2), we have a1 = 1. Also, a2 = 0 iff bβ2−βc =
0 iff β2 − β < 1 iff β < (1 +

√
5)/2. If ψ existed, we could, by Lemma 3 and the

comments thereafter, effectively establish the sequence (an)n∈N. Thus, we could
decide whether a2 = 0 or a2 = 1, and hence decide whether β < (1 +

√
5)/2,

which is impossible by Proposition 2. ut

In other words, the proof of the theorem shows that there is no program
converting computable names to decision procedures for the associated shifts.
Note also that the proof can immediately be adapted to show that (1) ⇒ (2) in
Theorem 2 cannot be made effective. As x 7→ 2x is a computable function on
the computable reals, another adaptation of the proof yields:

Corollary 2. There is no partial recursive function ψ : N −→ N such that
if φi : N −→ Q is a computable name of a computable real β ∈ (0; 1), then
i ∈ dom(ψ) and φψ(i) : N −→ 2 is a total recursive function with φψ(i)(c) = 1 iff
c ∈ L(X̃β).

Thus, there is no effective way to find decision procedures for the W-β-shift
given its topological entropy log(β).

Whether the corresponding result holds for Xβ is still open; we strongly
conjecture that it does.

References

1. M.F. Barnsley. Fractals Everywhere. Morgan Kaufmann, 1993.
2. F. Blanchard. β-Expansions and Symbolic Dynamics. Theoretical Computer Sci-

ence, 65:131–141, 1989.
3. D.S. Bridges. Computability: A Mathematical Sketchbook, volume 146 of Graduate

Texts in Mathematics. Springer-Verlag, 1994.
4. J.-C. Delvenne and V.D. Blondel. Quasi-Periodic Configurations and Undecidable

Dynamics for Tilings, Infinite Words and Turing Machines. Theoretical Computer
Science, 319:127–143, 2004.



5. C. Frougny and B. Solomyak. Finite Beta-Expansions. Ergodic Theory and Dy-
namical Systems, 12:713–723, 1992.

6. G. Hansel, D. Perrin, and I. Simon. Compression and Entropy. In Proceedings of
the 9th Annual Symposium on Theoretical Aspects of Computer Science (STACS
’92), volume 577 of Lecture Notes in Computer Science, pages 515–528. Springer-
Verlag, 1992.

7. F. Hofbauer. β-Shifts have Unique Maximal Measure. Monatshefte für Mathematik,
85:189–198, 1978.

8. L. Hurd, J. Kari, and K. Culik. The Topological Entropy of Cellular Automata is
Uncomputable. Ergodic Theory and Dynamical Systems, 12:255–265, 1992.

9. P. Koiran. The Topological Entropy of Iterated Piecewise Affine Maps is Uncom-
putable. Discrete Mathematics and Theoretical Computer Science, 4(2):351–356,
2001.

10. D. Lind. The Entropies of Topological Markov Shifts and a Related Class of
Algebraic Integers. Ergodic Theory and Dynamical Systems, 4:283–300, 1984.

11. D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. cam-
bridge University Press, 1995.

12. M. Morse. Recurrent Geodesics on a Surface of Negative Curvature. Transactions
of the American Mathematical Society, 22:84–110, 1921.

13. J. Myhill. Criteria of Constructivity for Real Numbers. Journal of Symbolic Logic,
18:7–10, 1953.

14. P. Odifreddi. Classical Recursion Theory, volume 129 of Studies of Logic and the
Foundations of Mathematics. North-Holland, 1989.

15. W. Parry. On the β-Expansion of Real Numbers. Acta Math. Acad. Sci. Hung.,
pages 401–416, 1960.

16. A. Renyi. Representations for Real Numbers and their Ergodic Properties. Acta
Math. Acad. Sci. Hung., 8:477–493, 1957.

17. H.G. Rice. Recursive Real Numbers. Proceedings of the American Mathematical
Society, 5:784–791, 1954.

18. H. Rogers Jr. Theory of Recursive Functions and Effective Computability. The
MIT Press, paperback edition, 1987.

19. K. Schmidt. On Periodic Expansions of Pisot Numbers and Salem Numbers. Bul-
letin of the London Mathematical Society, 12:269–278, 1980.

20. N. Sidorov. Almost Every Number has a Continuum of Beta-Expansions. American
Mathematic Monthly, 110:838–842, 2003.

21. N. Sidorov. Arithmetic Dynamics. In Topics in Dynamics and Ergodic Theory,
volume 310 of London Mathematical Society Lecture Notes Series, pages 145–189.
London Mathematical Society, 2003.

22. Y. Takahashi. Shift with Free Orbit Basis and Realization of One-Dimensional
Maps. Osaka Journal of Mathematics, 20:599–629, 1983.

23. A.M Turing. On Computable Numbers with an Application to the “Entschei-
dungsproblem”. Proceedings of the London Mathematical Society, 42(2):230–265,
1936.

24. P. Walters. An Introduction to Ergodic Theory, volume 79 of Graduate Texts in
Mathematics. Springer-Verlag, 1981.

25. K. Weihrauch. Computable Analysis: An Introduction. Springer, 1998.
26. X. Zheng. Recursive Approximability of Real Numbers. Mathematical Logic Quar-

terly, 48:131–156, 2002.
27. X. Zheng and K. Weihrauch. The Arithmetical Hierarchy of Real Numbers. Math-

ematical Logic Quarterly, 47(1):51–65, 2001.


