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Abstract. We define the class of constrained cons-free rewriting systems
and show that this class characterizes P , the set of languages decidable
in polynomial time on a deterministic Turing machine. The main nov-
elty of the characterization is that it allows very liberal properties of
term rewriting, in particular non-deterministic evaluation: no reduction
strategy is enforced, and systems are allowed to be non-confluent.

We present a class of constructor term rewriting systems that character-
izes the complexity class P—the set of languages decidable in polynomial time
on a deterministic Turing machine. The class is an analogue of similar classes
in functional programming that use cons-freeness–the inability of a program
to construct new compound data during its evaluation–to characterize a range
of complexity classes, including L and P [1, 2], and for higher-order programs
PSPACE and hierarchies of exponential space and time classes [3]. The pri-
mary novelty is that while previous work has crucially utilized the deterministic
evaluation (in particular, call-by-value) and typing disciplines usually found in
functional programming languages, we allow for the full rewriting relation to be
used, and we allow non-orthogonal systems.

The ability to use non-orthogonal and non-confluent systems means that we
do not have access to standard results on orthogonality such as normalization
or finite developments of sets of redexes, and we cannot appeal to results con-
necting deterministic Turing machines to confluent rewriting [4], or to functional
programming without overlapping function declarations [1, 3, 5]. These are the
main reasons that our proofs are substantially more difficult than similar work
by Bonfante showing that introducing non-determinism to a cons-free functional
language characterizes P [2].

Related work

The original impetus for devising languages or calculi characterizing complexity
classes was the seminal work of Bellantoni and Cook [6] who introduced a scheme
of constrained recursion in function declarations in applicative languages, called
safe recursion, later followed by similar constraints, tiered or ramified recursion



[7, 5]. Roughly, the idea of this approach is to partition the arguments of every
function into “normal” and “safe” variables, where only normal variables are used
for recursion. Our approach contains no such constraints. Other approaches have
used type systems, typically based on variants of linear logic [8–10]; in contrast,
we employ no type system, but enforce a simple syntactic criterion to constrain
copying.

Much effort has been directed towards performing polynomial complexity
analysis in term rewriting, that is, devising methods to automatically infer that
specific TRSs have polynomial runtime or derivational complexity. This work
has almost invariably considered analogues of call-by-value semantics, e.g. in-
nermost evaluation; in this vein of research, several reduction orders have been
defined such that TRSs are compatible with the orders iff they have polynomial
runtime complexity [11, 12]. The main difference with our work is that we do not
necessarily enforce polynomial runtime complexity, but use a form of memoiza-
tion to ensure that our class of systems can be evaluated in polynomial time on
a Turing machine. For full rewriting with no constraints on reduction strategy,
Avanzini and Moser [4] have shown that a confluent constructor rewriting sys-
tem characterizes a language in P iff it has polynomial runtime complexity, that
is, if the maximal reduction lengths starting from appropriately formed terms
are polynomially bounded. Most research in this vein has focused on functional
complexity classes, whereas we only consider the case of decision problems; we
believe our results can be extended to the function classes, but with some diffi-
culty as input constructors may not be used as output constructors in cons-free
systems.

The restriction to cons-free systems was originally developed in functional
programming by Jones [1], [3] inspired by similar work by Goerdt in recursion-
theoretic settings [13, 14], and leading to similar characterizations in other lan-
guage paradigms [15], [2], [16]. The primary difference between this work and
ours is that we do not consider a particular reduction order, and work in a com-
pletely untyped setting, that is, the standard liberal setting of term rewriting;
the cost of this freedom is that we need to enforce technical demands on our
class of systems leading to constrained cons-free systems, rather than merely
cons-free ones.

1 Constrained cons-free term rewriting systems

We presuppose basic knowledge about rewriting, corresponding to the introduc-
tory chapters of [17]. Throughout the text, we assume a denumerable set X of
variables.

Let Σ be a signature (i.e., a function from a set F of function symbols to N

which associates with every f ∈ F its arity ar(f)); we then denote by T (Σ) the
set of terms built from Σ and X . The set of ground terms over Σ is denoted
by T0(Σ). By abuse of language, if F0 is a set of function symbols, we will
write also T (F0) instead of T (Σ F0) (or T0(F0) instead of T0(Σ F0)). The set
of positions in a term t is denoted by Pos(t) (a position q is said to be below



the position p if p ≤ q): if p is a position in a term t, then p determines the
subterm t p of t occurring at position p and the symbol t(p) occurring in t at
p. If s and t are terms, we write s E t (resp. s ⊳ t) if s is a subterm of t (resp.
if s is a subterm of t and s 6= t); note that s E t iff (∃p ∈ Pos(t))s = t p.
For any term t, we denote by Oc(t) the set of variables occurring in t, that is,
Oc(t) = {x ∈ X ; (∃p ∈ Pos(t))t(p) = x} and, for any x ∈ X , by Oc(x, t) the
number of occurrences of x in t, that is, Oc(x, t) = Card({p ∈ Pos(t); t(p) = x}).

A constructor TRS is a term rewriting system (TRS) in which the set of
function symbols F is partitioned into a set D of defined function symbols and
a set C of constructors, such that for every rewrite rule (l, r) ∈ R, the left-hand
side l has the form f(t1, . . . , tn) with f ∈ D and t1, . . . , tn ∈ T (C), the set of
terms built from variables and constructors.

We introduce cons-free TRS that corresponds essentially to the functional
programming language called “F+ro” (ro for “read-only”) in [18].

Definition 1. A cons-free TRS is a finite constructor TRS such that, for every
rewrite rule (l, r), for any c(u1, . . . , un) E r such that c is a constructor, we have
c(u1, . . . , un) E l or c(u1, . . . , un) ∈ T0(C).

The functional programming languages considered in [3] and in [18] have
a call-by-value semantics, and proofs generally assume terminating programs;
in contrast, terms in (cons-free) term rewriting systems may be subjected to
different reduction strategies, are not necessarily terminating, and terms may
have more than one normal form. To obviate technical problems due to these
facts, we restrict the class of term rewriting systems to the constrained cons-free
term rewriting systems.

Definition 2. A cons-free TRS R is said to be constrained if there exists some
subset A ⊆ D such that, for any rule (f(c1, . . . , cq), r) ∈ R and for any x ∈ X
such that x ⋪ c1, . . . cq, we have:

– (∀p, p′ ∈ Pos(r))(r(p) = x⇒ (p′ < p⇒ r(p′) ∈ A))

– and f ∈ A ⇒ Oc(x, r) ≤ 1.

Every variable occurring just below the root symbol of a left-hand side of
a rule occur only below defined symbols of a certain kind that do not allow
for non-linear recursion. Note that duplication may occur in constrained cons-
free TRSs, both for variables that occur “deep” in a left-hand side (i.e., below
constructor symbols), and for variables occurring just below the root of defined
symbols not in the special subset A ⊆ D. E.g., if f/1, g/2 ∈ D and c/1 ∈ C, the
TRS {f(c(x)) → g(x, x), g(c(x), y) → y, g(c(x), c(y)) → g(x, y)} is constrained
cons-free (set A = {g} or A = {f, g}).

In Sections 2 and Section 3, we will prove some properties of cons-free term,
respectively constrained cons-free TRSs that will allow for efficient simulation
on Turing machines. The main aim of the two sections is to prove Proposition 1,
respectively Corollary 1.



2 Computation in cons-free TRS

In this section, we introduce a class of “generalized terms”, and we show that
any reduction sequence in a cons-free TRS from a ground term to a ground
constructor term can be simulated by some “innermost” reduction sequence of
such “generalized terms” (i.e. some sequence of ⊲-reductions).

We are given a cons-free TRS with R the set of rules, D the set of defined
function symbols, and C the set of constructors. Moreover, for any m ∈ N, we
denote by Dm the set of defined function symbols of arity m and by Cm the set
of constructors of arity m. We first set notations used in the remainder of the
paper.

Notations: As usual, the reflexive transitive closure of a relation E is denoted by
E∗. Throughout the text, A ⇀ B refers to the type of partial maps with domain
A and co-domain B. If f : A ⇀ B, we denote by dom(f) the set of x ∈ A such
that f(x) is defined and by im(f) the set f(dom(f)) = {f(x) : x ∈ dom(f)}.

For any t ∈ T (D ∪ C), we denote by |t| the size of t, i.e., |x| = |c| = 1 for
all variables x and nullary c ∈ D0 ∪ C0, and |f(s1, . . . , sm)| = 1 +

∑m
i=1 |si| for

f ∈ Dm ∪ Cm.
Let u, v, t ∈ T (D ∪ C). We denote by Seq(u, v) the set of (finite) reduction

sequences from u to v and we set Seq(u,−) =
⋃

v∈T (D∪C) Seq(u, v). If ρ1 ∈

Seq(t, u) and ρ2 ∈ Seq(u, v), then we denote by (ρ1; ρ2) the reduction sequence
from t to v consisting in ρ1 followed by ρ2.

For any reduction step ρ : t →C0[],(l,r) u, for any occurrence 〈v|C[]〉 of v in
t = C[v], we denote by 〈v|C[]〉 \ ρ the set of descendants of 〈v|C[]〉 in u after ρ.

We denote by U0 the set of ground terms that may be written as C[t1, . . . , tn]
for some n ∈ N where C[·, . . . , ·] is an n-hole context over D, and t1, . . . , tn are
ground terms over C. Notice that, if v ∈ U0 and v → u in some cons-free TRS,
then u ∈ U0.

For any i ∈ N, we denote by Φi the set of i-hole contexts obtained by sub-
stituting exactly i distinct occurrences of constants in an element of U0 such
that, for any hole, the unique path from the root to the hole passes through only
elements of D.

Recall that a semi-ring is an algebraic structure (R, ·,+) satisfying the stan-
dard ring axioms with the exceptions that every element need not have a +-
inverse. Recall further that a semi-module is an algebraic structure satisfying
the usual module axioms over a commutative semi-ring. We denote by 2 the
semi-ring with exactly two elements 0 and 1, where 1 + 1 = 1.

Let E be some set. We denote by 2〈E〉 the free 2-semi-module on E . For any
V ∈ 2〈E〉, we denote by Supp(V ) the unique F ⊆ E such that V =

∑

v∈F v. If
F = {v}, then we still denote by v the vector

∑

v∈F v ∈ 2〈E〉.

We will use the notation 2〈E〉 either with E = T0(C) or E = ∆, the set of
“generalized terms” defined just below. In those cases, an element of 2〈E〉 may
be thought of as a “formal sum” of (generalized) terms, and Supp(V ) as the
set of (generalized) terms occurring in the sum. A benefit of considering formal



sums instead of finite sets is that it allows to painlessly identify a term with the
singleton containing this term. In later developments, we shall use the sum to
track the possible reducts of subterms, i.e. each summand will correspond to a
possible reduct.

Definition 3. For any i ∈ N, we define ∆i by induction on i:

– ∆0 = T0(C);
– ∆i+1 = ∆i ∪

(⋃

m∈N
{f(U1, . . . , Um); f ∈ Dm and U1, . . . , Um ∈ 2〈∆i〉}

)
.

We set ∆ =
⋃

i∈N
∆i. For any u ∈ ∆, we set level(u) = min {i ∈ N; u ∈ ∆i}.

Thus, e.g., if D = {f/1, g/2} and C′ = {s/1, n/0}, then f(s(n) + s(s(n))) ∈
∆1 and g(f(s(n)) + f(s(s(n))), s(n) + s(s(n))) ∈ ∆2. Note further that U0 ⊆ ∆
and every term on the form C[c1, . . . , cm], where C[·, . . . , ·] is an m-hole context
over D and C1, . . . , Cm ∈ 2〈T0(C)〉, is an element of ∆.

Now, we want to define a notion of reduction on 2〈∆〉: we will denote this
reduction by ⊲. First, we define an auxiliary binary relation ⊲∆. For any r ∈
T (D∪C0), we homomorphically extend the notation rϕ with ϕ : X ⇀ T (D∪C0)
to any ϕ : X ⇀ 2〈T0(C)〉 such that Oc(r) ⊆ dom(ϕ): instead of having rϕ ∈
T (D ∪ C0), we have rϕ ∈ 2〈∆〉.

Definition 4. We define the relation ⊲∆ ⊆ (∆1\∆0)×2〈∆〉 as follows: u⊲∆V
if, and only if, there exist q ∈ N, f ∈ Dq, (f(c1, . . . , cq), r) ∈ R, V1, . . . , Vq ∈
2〈T0(C)〉 and ϕ : X ⇀ 2〈T0(C)〉 such that, for any j ∈ {1, . . . , q}, we have

– Oc(cj) ⊆ dom(ϕ) and (cj /∈ X ⇒ (∀x ∈ Oc(cj))ϕ(x) ∈ T0(C));
– and Vj = cj

ϕ

and u = f(V1, . . . , Vq) and V = rϕ.

If u⊲∆V , then U may be replaced by V inside a one-hole generalized context
C[]; this gives rise to a reduction step C[u]⊲C[]C[V ]. We also write C[u]⊲C[]C[0],
i.e. whenever u is erased. However, in this last case, we will not count this step
when we define the length of ⊲-reductions (see Definition 6). The set of one-hone
generalized contexts is denoted by Θ1 and is defined by setting Θ1 =

⋃

i∈N
∆�
i ,

where ∆�
i is defined by induction on i:

– ∆�
0 = {U +�; U ∈ 2〈∆〉};

– ∆�
i+1 =

⋃

m∈N







U+
f(U1, . . . , Um)

;
U ∈ 2〈∆〉, f ∈ Dm and
(∃j ∈ {1, . . . ,m})(Uj ∈ ∆�

i and
U1, . . . , Uj−1, Uj+1, . . . , Um ∈ 2〈∆〉)






.

More generally, we can define the set Θi of i-hole generalized contexts: if
i = 0, then Θi = 2〈∆〉; if i = 1, then Θi is already defined. Now, for i > 1, if
D[] ∈ Θi, then D[] = C[f(U1, . . . Um)] with C[] ∈ Θ1 and U1 ∈ Θi1 , . . . , Um ∈
Θim , i1 + . . .+ im = i, so the several holes have to be in the same summand.

Definition 5. Let C[] ∈ Θ1. We define the binary relation ⊲C[] on 2〈∆〉 as
follows: for any U,U ′ ∈ 2〈∆〉, we have U ⊲C[] U

′ if, and only if, there exist
u ∈ ∆ and V ∈ 2〈∆〉 such that U = C[u], U ′ = C[V ] and (u⊲∆ V or V = 0).



Then we define the binary relation ⊲ on 2〈∆〉 by writing (as usual) U ⊲ V
if, and only if, there exists C[] ∈ Θ1 such that U ⊲C[] V .

For any generalized term t ∈ ∆, we denote by ‖t‖ the maximum number of
distict summands occurring anywhere in t. In particular, if t ∈ ∆0 = T0(C), we
have ‖t‖ = 1. We generalize this notation to any element U of 2〈∆〉 by setting

‖U‖ =

{
0 if U = 0;
max{‖u‖; u ∈ Supp(U)} otherwise.

For any k ∈ N, we denote by 2〈∆〉k the set {U ∈ 2〈∆〉; ‖U‖ ≤ k} and by ⊲k

the restriction of the binary relation ⊲ to 2〈∆〉k, i.e. 2〈∆〉k = ⊲ 2〈∆〉k×2〈∆〉k .
For any k ∈ N, the relation ⊲∗

k enjoys the following properties:

– For any U, V ∈ 2〈∆〉k, we have U + V ⊲∗
k V .

– Let q ∈ N. Let W1, . . . ,Wq, V1, . . . , Vq ∈ 2〈∆〉k such that W1 ⊲∗
k V1, . . . ,

Wq ⊲
∗
k Vq. Then we have

∑q
j=1Wj ⊲

∗
k

∑q
j=1 Vj . Moreover, for any C[] ∈ Θq

such that C[W1, . . . ,Wq] ∈ 2〈∆〉k, we have C[W1, . . . ,Wq]⊲
∗
k C[V1, . . . , Vq].

Definition 6. Let k ∈ N and let U, V ∈ 2〈∆〉.
We denote by Seq∆(U, V ) (resp. Seq∆,k(U, V )) the set of finite sequences

(U1, . . . , Un) ∈ 2〈∆〉<∞ such that U = U1, V = Un and, for any i ∈ {1, . . . , n−
1}, we have Ui ⊲ Ui+1 (resp. Ui ⊲k Ui+1).

For any (U1, . . . , Un) ∈ Seq∆(U, V ), we denote by length∆((U1, . . . , Un)) the

integer Card(

{

i ∈ {1, . . . , n− 1};
(∃C[] ∈ Θ1, u ∈ ∆1 \∆0, V ∈ 2〈∆〉)
(u⊲∆ V, Ui = C[u] and Ui+1 = C[V ])

}

).

Definition 7. For any (ρ, v, C[]) ∈ Seq × U0 × Φ1 such that ρ ∈ Seq(C[v],−),
we define R(ρ, v, C[]) ⊆ Seq(v,−) by induction on length(ρ) as follows:

– if length(ρ) = 0, then R(ρ, v, C[]) = {idv};
– if ρ = C0[u] →C0[],(l,r) C0[u

′]; ρ0 with C0[] = C[C′[]], then R(ρ, v, C[]) =
{(v →C′[],(l,r) C

′[u′]; ρ′0); ρ
′
0 ∈ R(ρ0, C

′[u′], C[])};
– if ρ = C0[u] →C0[],(l,r) C0[u

′]; ρ0 and there is no C′[] ∈ Φ1 such that C0[] =
C[C′[]], then R(ρ, v, C[]) is the set

{idv} ∪










⋃

C′′[] ∈ Φ1

〈v|C′′[]〉 ∈ 〈v|C[]〉 \ C0[u] →C0[],(l,r) C0[u
′]

R(ρ0, v, C
′′[])










and we set N (ρ, v, C[]) = {c ∈ T0(C); R(ρ, v, C[])) ∩ Seq(v, c) 6= ∅}.

In other words, N (ρ, v, C[]) is the set of constructor terms that are descen-
dants of the occurrence 〈v|C[]〉 of v in C[v] during the reduction ρ. Notice that in
the case ρ is an innermost reduction sequence, the set R(ρ, v, C[]) is a singleton.

Lemma 1. Let m ∈ N. Let E[] ∈ Φm. Let u1, . . . , um ∈ U0. Let c ∈ T0(C).
Let ρ ∈ Seq(E[u1, . . . , um], c). For any l ∈ {1, . . . ,m}, let Ul ∈ 2〈∆〉 such that
N (ρ, ul, E[u1, . . . , ul−1,�, ul+1, . . . , um]) ⊆ Supp(Ul). Then E[U1, . . . , Um]⊲∗ c.



Definition 8. Let t ∈ U0. For any u ∈ ∆, we define the relation t ↓ u by
induction on level(u) as follows:

– if u ∈ ∆0, then t ↓ u if, and only if, t→∗ u;

– if u = f(V1, . . . , Vq) ∈ ∆i+1 \ ∆i, then t ↓ u if, and only if, there exist
v1, . . . , vq ∈ U0 such that t →∗ f(v1, . . . , vq) and, for any j ∈ {1, . . . , q}, for
any v ∈ Supp(Vj), vj ↓ v.

This relation is extended to the relation ↓⊆ U0 × 2〈∆〉 defined by: t ↓ U if, and
only if, for any u ∈ Supp(U), t ↓ u.

Notice that, for any t, u ∈ U0, we have t ↓ u if, and only if, t→∗ u.

Lemma 2. Let C[] ∈ Θ1. Let t ∈ U0, U, V ∈ 2〈∆〉 such that t ↓ U and U⊲C[]V .
Then t ↓ V .

Proposition 1. Let t ∈ U0, c ∈ T0(C). We have t→∗ c if, and only if, t⊲∗ c.

Proof: Assume that t →∗ c. We have t ∈ Φ0 and Seq(t, c) 6= ∅. Therefore, by
Lemma 1, we have t⊲∗ c.

Conversely, we prove, by induction on n and applying Lemma 2, that, for
any n ∈ N, for any U0, . . . , Un ∈ 2〈∆〉 such that t = U0 ⊲ U1 . . . Un−1 ⊲ Un, we
have t ↓ Un.

Example 1. Consider the following (constrained) cons-free TRS: the set D is
{k/1, h/2, p/1} and the set C is {c/2, n/0, true/0, false/0} with the following
rewrite rules:

– p(c(x, c(y, z))) → x

– p(c(x, c(y, z))) → y

– h(x, false) → x

– k(x) → h(x, x)

We have k(p(c(true, c(false, n)))) → h(p(c(true, c(false, n))), p(c(true, c(false, n))))
→∗ h(true, false) → true (notice that there is no innermost reduction sequence
from k(p(c(true, c(false, n)))) to true, so in particular the algorithm considered in
[16] applied to the evaluation of k(p(c(true, c(false, n)))) is not able to find this
normal form). Now, we have

k(p(c(true, c(false, n)))) ⊲2 k(p(c(true, c(false, n))) + false)

⊲2 k(true+ false)

⊲2 h(true+ false, true+ false)

⊲∗
2 h(true, false)

⊲2 true



3 Computation in constrained cons-free TRS

In this section, we show that, for any constrained cons-free TRS, it is enough to
consider ⊲-reduction sequences (Ui)i∈N of elements of 2〈∆〉K (i.e. ⊲K-reduction
sequences) for some integer K depending only on the TRS.

We are given a constrained cons-free TRS and we set B = D \A and as the
TRS is finite, we let K ≥ 1 be an integer such that, for any (f(c1, . . . , cq), r) ∈ R
for any x ∈ X ∩ {c1, . . . , cq}, Oc(x, r) ≤ K.

Definition 9. Let i ∈ N. For any U ∈ 2〈∆i〉, we define U∗ ∈ 2〈∆i〉 ∩ 2〈∆〉K
by induction on i:

– i = 0: we set U∗ = U ;
– i > 0, U = f(U1, . . . , Uq) ∈ ∆i \∆i−1: we set

U∗ =
∑

W1, . . . ,Wq ∈ 2〈∆i−1〉
Supp(Wj) ⊆ Supp(Uj

∗)
Card(Supp(Wj)) = min{Z,Card(Supp(Uj

∗)})}
for j ∈ {1, . . . , q}

f(W1, . . . ,Wq),

where Z =

{
1 if f ∈ A;
K if f ∈ B.

– i > 0, U ∈ 2〈∆i〉 \ (∆i ∪ 2〈∆i−1〉): we set U∗ =
∑

u∈Supp(U) u
∗.

Definition 10. Let q ∈ N. Let c1, . . . , cq ∈ T (C). Let ϕ : X ⇀ 2〈T0(C)〉. Assume
that, for any l ∈ {1, . . . , q}, we have Oc(cl) ⊆ dom(ϕ) and (cl /∈ X ⇒ cl

ϕ ∈
T0(C)). Let W1, . . . ,Wq ∈ 2〈T0(C)〉 such that, for any l ∈ {1, . . . , q}, (cl /∈ X ⇒
Wl = cl

ϕ) and Supp(Wl) ⊆ Supp(cl
ϕ). Then we denote by ϕ(W1,...,Wq) the partial

function X ⇀ 2〈T0(C)〉 such that, for any x ∈ X , we have ϕ(W1,...,Wq)(x) =
{
Wl if x = cl;
ϕ(x) otherwise.

Lemma 3. Let (f(c1, . . . , cq), r) ∈ R. Let ϕ : X ⇀ 2〈T0(C)〉. Assume that, for
any j ∈ {1, . . . , q}, we have Oc(cj) ⊆ dom(ϕ) and (cj /∈ X ⇒ cj

ϕ ∈ T0(C)).
Then

∑

W1∈W1,...,Wq∈Wq
rϕ(W1,...,Wq) ⊲∗

K (rϕ)∗, where, for any j ∈ {1, . . . , q}, Wj

is the following subset of 2〈T0(C)〉:

– {cjϕ} in the case cj /∈ X ;

–

{

W ∈ 2〈T0(C)〉;
Supp(W ) ⊆ Supp(cj

ϕ) and
Card(Supp(W )) = min{Oc(cj , r),Card(Supp(cj

ϕ))}

}

in

the case cj ∈ X .

Proposition 2. Let i ∈ N. Let C[] ∈ ∆�
i . For any U, V ∈ 2〈∆〉 such that

U ⊲C[] V , we have U∗ ⊲∗
K V ∗.

Proof: The proof is by induction on i.



– If i = 0, then C[] = U0 +� for some U0 ∈ 2〈∆〉; we distinguish between two
cases:

• V = U0 and there exists u ∈ ∆ such that U = U0 + u: in this case, we
have ‖U∗‖, ‖U0

∗‖ ≤ K. Thus we have U∗ = U0
∗ + u∗ ⊲∗

K U0
∗ = V ∗.

• U = U0+f(c1, . . . , cq)
ϕ, V = U0+r

ϕ with f ∈ Dq, c1, . . . , cq ∈ T (C), ϕ :
X ⇀ 2〈T0(C)〉 such that, for any j ∈ {1, . . . , q}, cj /∈ X ⇒ cj

ϕ ∈ T0(C):
For any j ∈ {1, . . . , q}, we define Wj as in Lemma 3 and we define W ′

j

as follows:

∗ if cj /∈ X , then W ′
j = {cjϕ};

∗ if cj ∈ X , then W ′
j is the set

{

W ∈ 2〈T0(C)〉;
Supp(W ) ⊆ Supp(cj

ϕ) and
Card(Supp(W )) = min{Z,Card(Supp(cjϕ))}

}

with Z =

{
1 if f ∈ A;
K if f ∈ B.

We have

(f(c1, . . . , cq)
ϕ)

∗
=

∑

W1∈W′
1,...,Wq∈W′

q

f(c1
ϕ(W1,...,Wq) , . . . , cq

ϕ(W1,...,Wq))

⊲∗
K

∑

W1∈W1,...,Wq∈Wq

f(c1, . . . , cq)
ϕ(W1,...,Wq)

⊲∗
K

∑

W1∈W1,...,Wq∈Wq

rϕ(W1,...,Wq)

⊲∗
K (rϕ)

∗
(by Lemma 3).

We have U0 ∈ 2〈∆〉K , so U∗ = U0
∗+(f(c1, . . . , cq)

ϕ)
∗
⊲∗
K U0

∗+(rϕ)
∗
= V ∗.

– If i > 0, U = C[U0], V = C[V0], C[] = U ′ + f(U1, . . . , Um), k ∈ {1, . . . ,m},
Uk ∈ ∆�

i−1 and U0 ⊲� V0, then, by the induction hypothesis, Uk[U0
∗] ⊲∗

K

Uk[V0
∗]. Let V1, . . . , Vm ∈ 2〈∆〉 such that

• for any j ∈ {1, . . . ,m} \ {k}, we have

Supp(Vj) ⊆ Supp(Uj
∗) and Card(Supp(Vj)) = min{1,Card(Supp(Uj

∗))}

• and Supp(Vk) ⊆ Supp(Uk[V0]
∗
) and

Card(Supp(Vk)) =

{
min{1,Card(Supp(Uk[V0]

∗
))} if f ∈ A;

min{K,Card(Supp(Uk[V0]
∗))} if f ∈ B.

There exists V ∈ 2〈∆〉 such that Supp(V ) ⊆ Supp(Uk[U0]), Card(Supp(V )) ≤
Card(Supp(Vk)) and V ⊲∗

KVk, and hence f(V1, . . . , Vk−1, V, Vk+1, . . . , Vm)⊲∗
K

f(V1, . . . , Vk). We obtain

f(U1, . . . , Uk−1, Uk[U0], Uk+1, . . . , Um)
∗

⊲∗
K f(U1, . . . , Uk−1, Uk[V0], Uk+1, . . . , Um)∗;



moreover we have ‖U ′∗‖ ≤ K, hence

U∗ = U ′∗ + f(U1, . . . , Uk−1, Uk[U0], Uk+1, . . . , Um)
∗

⊲∗
K U ′∗ + f(U1, . . . , Uk−1, Uk[V0], Uk+1, . . . , Um)

∗

= V ∗

Corollary 1. Let q ∈ N. Let C1, . . . , Cq ∈ 2〈T0(C)〉 such that Card(Supp(C1)),
. . . , Card(Supp(Cq)) ≤ K, let c ∈ T0(C) and f ∈ Dq. We have f(C1, . . . , Cq)⊲

∗ c
if, and only if, f(C1, . . . , Cq)⊲

∗
K c.

Proof: Apply Proposition 2, noticing that f(C1, . . . , Cq)
∗
= f(C1, . . . , Cq) and

c∗ = c.

4 A polynomial time algorithm

In this section we describe a polynomial time algorithm that computes the con-
structor terms obtained by ⊲K-reduction sequences in a constrained cons-free
TRS. Assume that we are given a constrained cons-free TRS. We assume that
R = {(l1, r1), . . . , (lR, rR)} and

⋃R
j=1 Oc(lj) = {x1, . . . , xV }. We set TR =

⋃
{t ∈

T (D ∪ C); (∃j ∈ {1, . . . , R})(t E lj or t E rj)}. We set A = max{ar(f); f ∈
D ∪ C}, O = max{1,max{Oc(f, rj); f ∈ D and j ∈ {1, . . . , R}}}, Q = Card(D)
and S = Card({c ∈ T0(C); (∃(l, r) ∈ R)c E r}). For any c0 ∈ T0(C), we set
I(c0) = {c ∈ T0(C); c E c0 or (∃(l, r) ∈ R)c E r}.

Remark 1. For any c0 ∈ T0(C), we have Card(I(c0)) = S + |c0|.

Definition 11. For any c0 ∈ T0(C), we set V(c0) =
⋃

i∈N
Vi(c0), where Vi(c0)

is a subset of {U ∈ 2〈∆i〉; ‖U‖ ≤ K} defined by induction on i:

– V0(c0) = {U ∈ 2〈T0(C)〉; Card(Supp(U)) ≤ K and Supp(U) ⊆ I(c0)}

– Vi+1(c0) = Vi(c0) ∪
⋃A
m=1{f(V1, . . . , Vm); f ∈ Dm and V1, . . . , Vm ∈ Vi(c0)}

Given c0 ∈ T0(C), the algorithm will compute, for every element u of V1(c0)\
V0(c0), the set of constructor terms c such that u⊲∗

K c. In particular, by Propo-
sition 1 and Corollary 1, if K is large enough, then, for every f ∈ Dm and every
c1, . . . , cm ∈ I(c0), it will return exactly all the constructor terms c such that
f(c1, . . . , cm) →∗ c.

Remark 2. For any c0 ∈ T0(C), we have Card(V0(c0)) ≤ Card(I(c0))K+1, hence
Card(V1(c0) \ V0(c0)) ≤ Q · Card(I(c0))A·(K+1).

Definition 12. For any c0 ∈ T0(C), for any i ∈ N \ {0}, for any V ∈ Vi(c0) \
Vi−1(c0), we define, by induction on i, the leftmost-innermost redex 〈U |E[]〉 of
V with U ∈ V1(c0) \ V0(c0) and E[] ∈ Θ1:

– if i = 1, then the leftmost-innermost redex of V is 〈V |�〉;



– if i > 1 and V = f(V1, . . . , Vm), then the leftmost-innermost redex of V is
〈W |f(V1, . . . , Vj−1, C[], Vj+1, . . . , Vm)〉, where j = min{k ∈ {1, . . . ,m}; Vk /∈
V0} and 〈W |C[]〉 is the leftmost-innermost redex of Vj .

From now M will be an integer and E the subset {1, . . . ,M} of N; L will be
a function E → D ∪ C ∪ {x1, . . . , xV ,⊥}, Succ will be a partial function E ⇀
(E ∪ {⊥}){1,...,A} and Comp will be a partial function E ⇀ (E ∪ {⊥}){1,...,K}.

Definition 13. For any t ∈ T (D ∪ C), for any n ∈ E, we define, by induction
on t, FT (t, n) ∈ {0, 1} as follows: FT (f(t1, . . . , tm), n) = 1 if, and only if, n ∈
dom(Succ), L(n) = f and FT (t1, Succ(n)(1)) = . . . = FT (tm, Succ(n)(m)) = 1.

Notice that FT (t, n) = FT (t
′, n) = 1 ⇒ t = t′, hence we can define a partial

function J·KT : E ⇀ T (D∪C) by setting JnKT = t if, and only if, FT (t, n) = 1. In
the same way, we define a partial function J·KV,c0 : E ⇀ V(c0) for any c0 ∈ T0(C):

Definition 14. Let c0 ∈ T0(C). For any i ∈ N, for any V ∈ Vi(c0), for any
n ∈ E, we define, by induction on i, FV,c0(V, n) ∈ {0, 1}:

– if i = 0, then FV,c0(V, n) = 1 if, and only if, JnKT = V or the following holds:
L(n) = ⊥, n ∈ dom(Comp) and

∑

k ∈ {1, . . . ,K}
Comp(n)(k) 6= ⊥

JComp(n)(k)KT = V ;

– if i > 0 and V = f(V1, . . . , Vm) /∈ Vi−1, then FV,c0(V, JnKV,c0) = 1 if,
and only if, n ∈ dom(Succ), L(n) = f and JSucc(n)(1)KV,c0 = V1, . . . ,
JSucc(n)(ar(f))KV,c0 = Var(f).

Since, for any c0 ∈ T0(C), we have FV,c0(V, v) = FV,c0(V
′, n) = 1 ⇒ V = V ,

we can define a partial function J·KV,c0 : E ⇀ V(c0) by setting JnKV,c0 = V if,
and only if, FV,c0(V, n) = 1.

In the two following definitions, we restrict the partial functions J·KT and
J·KV,c0 to elements of E that unshare (hence the symbol U) defined symbol
functions.

Definition 15. For any n ∈ dom(J·KT ), we define ReachT (n) ⊆ E by induction
on JnKT : if L(n) /∈ D, then ReachT (n) = ∅; if L(n) ∈ D, then ReachT (n) =

{n} ∪
⋃ar(L(n))
j=1 ReachT (Succ(n)(j)).

We set UT = {n ∈ dom(J·KT ); (∀m,m′ ∈ ReachT (n))(L(m) = L(m′) ⇒
(m 6= m′ or L(m) /∈ D))} and J·KT ,U = J·KT UT

.

Definition 16. For any c0 ∈ T0(C), for any i ∈ N, for any V ∈ Vi(c0), for any
n ∈ E such that JnKV,c0 = V , we define ReachV,c0(n) by induction on i:

– if i = 0 and L(n) = ⊥, then

ReachV,c0(n) =
⋃

k ∈ {1, . . . ,K}
Comp(n)(k) 6= ⊥

ReachT (Comp(n)(k))



– if i = 0 and L(n) 6= ⊥, then ReachV,c0(n) = ReachT (n)

– if i > 0, then ReachV,c0(n) = {n} ∪
⋃ar(L(n))
j=1 ReachV,c0(Succ(n)(j))

For any c0 ∈ T0(C), we denote by UV(c0) the set of n ∈ dom(J·KV,c0) such
that (∀m,m′ ∈ ReachV,c0(n))(L(m) = L(m′) ⇒ (m 6= m′ or L(m) /∈ D)) and we
set J·KV,c0,U = J·KV,c0 UV(c0)

.

From now, we assume that, for any c0 ∈ T0(C), we are given a bijection

inp(c0) :
{1, . . . , Inp-Max} → V1(c0) \ V0(c0)

i 7→ JiKV,c0
. By Remark 2, we can assume that

Inp-Max ≤ Q · Card(I(c0))A·(K+1).
The algorithm begins with a procedure Inst-Init() which performs the follow-

ing one: for any c0 ∈ T0(C), after the execution of the procedure, we have

– {JInp(i)KV,c0 ; 1 ≤ i ≤ Inp-Max} = V1(c0) \ V0(c0)
– and, for any i ∈ {1, . . . , Inp-Max}, we have {JInst(i)(s)KV,c0,U ; 1 ≤ s ≤
R} \ {⊥} = {V ∈ 2〈∆〉; JInp(i)KV,c0 ⊲∆ V }.

Here we used the following crucial property of cons-free term rewriting sys-
tems: whenever we perform a reduction step u ⊲∆ V with u ∈ V1(c0) \ V0(c0),
we have V ∈ V(c0) (and not only in 2〈∆〉).

The algorithm calls the procedure Inf-Inp(i, j) with i, j ∈ {1, . . . , Inp-Max}.
This procedure performs the following one: for any c0 ∈ T0(C), if there exist
q ∈ N, f ∈ Dq and C1, . . . , Cq, C

′
1, . . . , C

′
q ∈ 2〈T0(C)〉 such that

– JInp(i)KV,c0 = f(C′
1, . . . , C

′
q),

– JInp(j)KV,c0 = f(C1, . . . , Cq)
– and Supp(C′

1) ⊆ Supp(C1), . . . , Supp(C
′
q) ⊆ Supp(Cq),

then the procedure Inf-Inp(i, j) returns true; otherwise it returns false.

Definition 17. Let c0 ∈ T0(C). For any i ∈ N, we define some subset Ψi(c0) of
∆�
i by induction on i as follows: Ψ0(c0) = {�} and

Ψi+1(c0) =
⋃

m∈N






f(V1, . . . , Vm);

f ∈ Dm and (∃j ∈ {1, . . . ,m})
(Vj ∈ Ψi(c0) and
V1, . . . , Vj−1, Vj+1, . . . , Vm ∈ V(c0))






.

We set Ψ(c0) =
⋃

i∈N
Ψi(c0).

Definition 18. Let c0 ∈ T0(C). Let Y : V1(c0)\V0(c0) → {true, false}I. For any
C[] ∈ Ψ(c0), we define the binary relation on V(c0) as follows: V ⊲Y,C[] V

′ if,
and only if, there exist u ∈ V1(c0)\V0(c0) and V0 ∈ V0(c0) such that Supp(V0) ⊆
{c ∈ I(c0); Y (u)(c) = true}, V = C[u] and V ′ = C[V0].

We define the binary relation ⊲Y on V(c0) as follows: V ⊲Y V
′ if, and only

if, there exists W ∈ 2〈T0(C)〉 such that

– Card(Supp(W )) ≤ K,
– for any w ∈ Supp(W ), Y (U)(w) = true

– and V ′ = E[W ],



where 〈U |E[]〉 is the leftmost-innermost redex of V .

The algorithm uses a procedure Computation, which has the following proper-
ties: Let c0 ∈ T0(C). Let Q ≤ O. Let V ∈ VQ(c0). Let n ∈ E such that JnKV,c0,U =

V . Let Y : V1(c0) \ V0(c0) → {true, false}I(c0) such that, for any V ′ ∈ V1(c0) \
V0(c0), for any c ∈ I(c0), Y (V ′)(c) = true if, and only if, Val(inp(c0)

−1(V ′))(c) =
true. After the execution of the procedure Computation(n), we have:

– apart from M and D, which increased, and apart from Result, no value of
any global variable changed;

– the increasing of D is bound by (Card(I(c0)) + 1)Q·K ·K;
– for any c ∈ I(c0), there exists j ∈ {1, . . . , D} such that Result(j) = c if, and

only if, there exists V ′ ∈ V0(c0) such that c ∈ Supp(V ′) and V ⊲∗
Y V

′.

The execution time of the procedure Computation is polynomial in the size of c0.

Inst-Init(); change := true;
while change do

change := false;
for i := 1 to Inp-Max do

D := 0; for s := 1 to R do Computation(Inst(i)(s)); od;
for o := 1 to Inp-Max do

if Inf-Inp(i, o) then
for j := 1 to D do

if Val(o)(Result(j)) 6= false

then change := true;
Val(o)(Result(j)) := true;

fi;
od;

fi;
od; od; od;

Fig. 1. The algorithm

The key-point to notice is that the execution time of the algorithm is in
O(|c0|H) for some constantH is that the size of the table Val is Card(Inp-Max)×
Card(I(c0)) ≤ (Q · Card(I(c0))A·(K+1)) × (S + |c0|). Hence, for any c0 ∈ T0(C),
for any m ∈ N, for any f ∈ Dm, for any C1, . . . , Cm ∈ 2〈T0(C)〉 such that
Card(Supp(C1)), . . . , Card(Supp(Cm)) ≤ K, for any c ∈ {c ∈ T0(C); c E

c0 or (∃(l, r) ∈ R)c E r}, the problem of deciding whether f(C1, . . . , Cm)⊲∗
K c

holds is solvable in time polynomial in the size of c0.

5 Characterizing P

Let Γ be the signature {one/1, zero/1, nil/0}. For each t = f1(f2(· · · fn(nil))) ∈
T0(Γ ), we define the string 〈t〉 to be 〈f1〉〈f2〉 · · · 〈fn〉 where 〈one〉 =‘1’ and



〈zero〉 =‘0’. Clearly, T0(Γ ) is in bijective correspondence with {0, 1}<∞ under
〈·〉.

Jones [3] considers (deterministic) cons-free functional programs. Now, the
following lemma holds:

Lemma 4. Any (deterministic) cons-free functional program taking only zeroth-
order data and involving only terminating functions can be simulated by an or-
thogonal cons-free TRS.

Proof: Given a (deterministic) cons-free functional program p taking only zeroth-
order data, we consider the following cons-free TRS: for any declaration of the
form f x1 . . . xn = ef in p, we have the rewrite rule f(x1, . . . , xn) → (ef )

∗
,

where (ef )
∗
is defined by induction on ef : for instance, if ef = if e1 e2 e3, then

(ef )
∗
= if(e1

∗, e2
∗, e3

∗); moreover we have the rewrite rules if(true, x, y) → x and
if(false, x, y) → y.

As the language of [3] involves only a single function declaration per function
name, and all left-hand sides of such declaration have the form f(x1, . . . , xn) (for
distinct x1, . . . , xn), it is straightforward that the cons-free TRS we obtained is
orthogonal. The operational semantics in [3] is essentially call-by-value and can
be straightforwardly simulated by innermost reduction steps (the exceptions are
whenever we have expressions of the form if e1 e2 e3: following the evaluation of
e1, either e2 or e3 will not be evaluated). Hence, if f c1 . . . cn evaluates to some
normal form in the functional program, then t reduces to the same normal form
in the corresponding TRS. Conversely, as orthogonal TRSs are confluent (hence
each term has at most one normal form), and the functions are terminating, if
f(c1, . . . , cn) reduces to some normal form c in the TRS, then f c1 . . . cn evaluates
to the value c in the functional program.

Theorem 1. Let L ⊆ {0, 1}<∞. Then, L ∈ P if, and only if, there exists a
constrained cons-free TRS over some signature F = D ∪ C such that (i) Γ ⊆ C,
and there is f ∈ D and true ∈ C0 such that, for any t ∈ T0(Γ ), we have f(t) →∗

true if, and only if, 〈t〉 ∈ L.

Proof: Corollary 24.2.4 of [18] (or Theorem 6.12 of [3] in the case k = 0) shows
that we can simulate any polynomial-time Turing Machine by a (deterministic)
cons-free (called read-only in [18]) functional program taking only zeroth-order
data (Note that cons-free in the above setting is slightly stronger than our notion:
No constructors are allowed in the right-hand side of function declarations).
This simulation involves only terminating functions, hence, by Lemma 4, any
polynomial-time Turing Machine can be simulated by an orthogonal cons-free
TRS.

The cons-free term rewriting system R obtained from a functional program is
not necessarily constrained. To obtain a constrained system, we do the following
for each function declaration def f(x1, . . . , xn) = ef (where the function body
ef is an expression in the functional language): Let f(x1, . . . , xn) → r be the
corresponding cons-free rule. For every such rule, let {x1, . . . , xn} be the set
of variables that occur immediately beneath the defined symbol at the root of



the left-hand side. Choose a set {y1, . . . , yn} of distinct variables, and let M
be the set of all n-tuples w = (s1, . . . , sn) where si (for 1 ≤ i ≤ n) is either
zero(yi), one(yi), or nil. Then replace the rule f(x1, . . . , xn) → r by the |M |
rules on the form f(s1, . . . , sn) → r[s1/x1, . . . , sn/xn], where (s1, . . . , sn) ∈ M
and r[s1/x1, . . . , sn/xn] denotes the obvious substitution. Observe that (i) each
of the new rules is left-linear if the original rule was, and (ii) that the only
overlaps between these rules occur when the left-hand sides are equal. Thus,
as R was orthogonal, so is R′, and it is clearly constrained as no variable in a
left-hand side occurs immediately below the defined symbol at the root.

It is obvious that, for any terms t and t′ such that t→ t′ in R′, we have t→ t′

in R: indeed if t→(l,r) t
′ and (l, r) is not a rule of R, then there exists a unique

rule (l0, r0) of R such that (l, r) is obtained from (l0, r0); we have t→(l0,r0) t
′. Re-

ciprocally, if t and t′ are two terms such that t = C[f(t1, . . . , tm)σ] →(f(t1,...,tm),r)

C[rσ ] = t′ is a innermost reduction step in R, then t1
σ, . . . , tm

σ are constructor
terms, hence there exists a rule (l, r) in R′ such that t→(l,r) t

′. Now, since R is
confluent and the functions are terminating, for any term t and any constructor
term c, we have t→∗ c in R if, and only if, t reduces to c in R by some innermost
strategy.

To see that every constrained, cons-free TRS can be suitably simulated by a
polynomial-time Turing machine, let K ≥ 1 be an integer such that, for any rule
(f(c1, . . . , cq), r), for any x ∈ X ∩ {c1, . . . , cq}, Oc(x, r) ≤ K. By Proposition 1
and Corollary 1, we have f(t) →∗ true if, and only if, f(t) ⊲∗

K true. And the
previous section showed that the problem of deciding whether f(t)⊲∗

K true holds
is solvable in time polynomial in the size of t.
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A Proofs of Sections 2 and 3 omitted from the main text

A.1 Proofs of properties of the relations ⊲∗

k
:

The statement: “For any U, V ∈ 2〈∆〉k, we have U + V ⊲∗
k V .” is proved by

induction on Card(Supp(U + V ) \ Supp(V )):

– Card(Supp(U+V )\Supp(V )) = 0: Supp(U+V ) = Supp(V ), hence U+V = V ,
hence U + V ⊲∗

k V .
– Card(Supp(U + V ) \ Supp(V )) > 0: let u ∈ Supp(U) \ Supp(V ); we set
U ′ =

∑

v∈Supp(U)\{u} v; by the induction hypothesis we have U ′ + V ⊲∗
k V ;

moreover we have U + V ⊲k U
′ + V , hence U + V ⊲∗

k V .

In order to prove the property “Let q ∈ N. Let W1, . . . ,Wq, V1, . . . , Vq ∈
2〈∆〉k such that W1 ⊲∗

k V1, . . . , Wq ⊲
∗
k Vq. Then, for any C[] ∈ Θq such that

C[W1, . . . ,Wq] ∈ 2〈∆〉k, we have C[W1, . . . ,Wq]⊲
∗
k C[V1, . . . , Vq], first we prove

the following fact:

Fact 1 Let k ∈ N. Let W,V ∈ 2〈∆〉 such that W ⊲k V . Let C[] ∈ Θ1 such that
‖C[W ]‖ ≤ k. Then C[W ]⊲k C[V ].

Proof: Let C′[] ∈ Θ1 such thatW⊲C′[]V . We haveC[C′[]] ∈ Θ1 and C[W ]⊲C[C′[]]

C[V ].
Now, we can prove the property by induction on q:

– If q = 0, then C[W1, . . . ,Wq] = C[V1, . . . , Vq].
– If q = 1, then apply Fact 1.
– If q > 1 and C[] = C′[f(U1, . . . , Um)] with C

′ ∈ Θ1, U1 ∈ Θi1 , . . . , Um ∈ Θim ,

then we set j0 = max{j ∈ {1, . . . ,m}; Uj /∈ Θ0}. We set n =
∑j0−1
i=1 mi. By

the induction hypothesis, we have

C′[U1, . . . , Uj0−1, Uj0 [Wn+1, . . . ,Wn+mj0
], Uj0+1, . . . , Um][W1, . . . ,Wn]

⊲∗
k C

′[U1, . . . , Uj0−1, Uj0 [Wn+1, . . . ,Wn+mj0
], Uj0+1, . . . , Um][V1, . . . , Vn]

and, again by the induction hypothesis, we have

C′[U1[V1, . . . , Vm1 ], . . . , Uj0−1[Vn−mj0−1 , . . . , Vn], Uj0 , . . . , Um][Wn+1, . . . ,Wn+mj0
]

⊲∗
k C

′[U1[V1, . . . , Vm1 ], . . . , Uj0−1[Vn−mj0−1 , . . . , Vn], Uj0 , . . . , Um][Vn+1, . . . , Vn+mj0
].

In order to prove the property “Let q ∈ N. Let W1, . . . ,Wq, V1, . . . , Vq ∈
2〈∆〉k such that W1⊲

∗
k V1, . . . , Wq⊲

∗
k Vq. Then we have

∑q
j=1Wj⊲

∗
k

∑q
j=1 Vj .”,

first we prove the two following facts:

Fact 2 Let C[] ∈ Θ1. Let U
′, V ′ ∈ 2〈∆〉 such that U ′ ⊲C[] V

′. Then, for any
U ∈ 2〈∆〉, we have U + U ′ ⊲U+C[] U + V ′.

Fact 3 Let U ′, V ′ ∈ 2〈∆〉 such that U ′⊲∗ V ′. Then, for any U ∈ 2〈∆〉, we have
U + U ′ ⊲∗ U + V ′.



Proof: We prove, by induction on n, that, for any n ∈ N, for any U,U0, . . . , Un ∈
2〈∆〉 such that U0 = U ′, V ′ = Un and, for any i ∈ {0, . . . , n− 1}, Ui ⊲ Ui+1, we
have U + U ′ ⊲∗ U + V ′:

– n = 0: U ′ = V ′, hence U + U ′ ⊲∗ U + V ′;
– n > 0: by the induction hypothesis, we have U + U ′ ⊲∗ U + Un−1; now, by

Fact 2, we have U + Un−1 ⊲ U + V ′.

Now, we can prove the property by induction on m:

– If m = 0, then
∑m

i=1 Ui =
∑m

i=1 Vi.

– If m > 0, then, by the induction hypothesis, we have
∑m−1
i=1 Ui⊲

∗
k

∑m−1
i=1 Vi.

By Fact 3, we have
∑m

i=1 Ui ⊲
∗
k

∑m−1
i=1 Vi + Um. Again by Fact 3, we have

∑m−1
i=1 Vi + Um ⊲∗

k

∑m
i=1 Vi.

A.2 Proof of Lemma 1:

We set Ω = {(ρ, v, C[]) ∈ Seq× U0 × Φ1; ρ ∈ Seq(C[v],−)}.
First, we prove the following fact:

Fact 4 Let (ρ, v, C[]) ∈ Ω. For any ρ′ ∈ R(ρ, v, C[]), we have length(ρ′) ≤
length(ρ).

Proof: By induction on length(ρ).

– If length(ρ) = 0, then, for any ρ′ ∈ R(ρ, v, C[]), we have ρ′ = idv, hence
length(ρ′) = 0.

– If length(ρ) > 0 and ρ = C0[u] →C0[],(l,r) C0[u
′]; ρ0 with C0[] = C[C′[]], then,

for any ρ′ ∈ R(ρ, v, C[]), there exists ρ′0 ∈ R(ρ0, C
′[u′], C[]) such that ρ′ =

(v →C′[],(l,r) C
′[u′]; ρ′0); by the induction hypothesis, we have length(ρ′0) ≤

length(ρ0) = length(ρ) − 1, hence length(ρ′) = length(ρ′0) + 1 ≤ length(ρ) −
1 + 1 = length(ρ).

– If length(ρ) > 0 and ρ = C0[u] →C0[],(l,r) C0[u
′]; ρ0 with no C′[] ∈ Φ1 such

that C0[] = C[C′[]], then, for any ρ′ ∈ R(ρ, v, C[]),
• ρ′ = idv, and in this case length(ρ′) = 0;
• or there exists C′′[] ∈ Φ1 such that 〈v|C′′[]〉 ∈ 〈v|C[]〉 \ C0[u] →C0[],(l,r)

C0[u
′] and ρ′ ∈ R(ρ0, v, C

′′[]), and in this case we just apply the induc-
tion hypothesis to obtain length(ρ′) ≤ length(ρ0) = length(ρ)− 1.

Then we can prove the following fact:

Fact 5 Let v ∈ U0, C[] ∈ Φ1 and c ∈ T0(C). Let ρ ∈ Seq(C[v], c). Let ρ′ ∈
R(ρ, v, C[]). If length(ρ′) = length(ρ), then C[] = �.

Proof: By induction on length(ρ), using Fact 4.
Now we prove, by induction on r, the following fact:

Fact 6 Let r ∈ T (C0 ∪ D). Let σ : X ⇀ U0 such that Oc(r) ⊆ dom(σ). Then
rσ ∈ U0.



Finally we can prove Lemma 1:

Proof: By induction on length(ρ). If length(ρ) = 0, then E[u1, . . . , um] = c ∈
T0(C), hence m = 0 or (m = 1 and E[] = �): in case m = 1, we have {c} ⊆
Supp(U1), hence E[U1] = U1 ⊲

∗ c. If length(ρ) > 0, then we assume that ρ =
C0[f(v1, . . . , vq)] →C0[],(l,r) C0[v

′]; ρ0 with C0[] ∈ Φ1: first, notice that, by Fact 6,
v′ ∈ U0; now, we distinguish between two cases:

– caseE[] = E′[�, . . . ,�
︸ ︷︷ ︸

j times

, f(E′
1[], . . . , E

′
q[]),�, . . . ,�

︸ ︷︷ ︸

k times

], whereE′
1[] ∈ Φm1 , . . . , E

′
q[] ∈

Φmq
with j+m1+. . .+mq+k = m andE′[] ∈ Φj+k+1 such that E′[u1, . . . , uj,�, um−k, . . . , um] =

C0[]:
We set D0[] = E′[U1, . . . , Uj,�, Um−k, . . . , Um] ∈ Θ1.
For any l ∈ {1, . . . , q}, we set Vl = N (ρ, vl, C0[f(v1, . . . , vl−1,�, vl+1, . . . , vq)])
and Wl = E′

l [Uj+m1+...+ml−1+1, . . . , Uj+m1+...+ml
]: by Fact 5, for any c′ ∈

Supp(Vl), there exists ρ
′ ∈ R(ρ, vl, C0[f(v1, . . . , vl−1,�, vl+1, . . . , vq)])∩Seq(vl, c′)

such that length(ρ′) < length(ρ), hence, by the induction hypothesis, we have
Wl ⊲

∗ Vl.
We set C[] = E′[U1, . . . , Uj, f(�, . . . ,�), Um−k, . . . , Um] ∈ Θq. We obtain

E[U1, . . . , Um] = C[W1, . . . ,Wq]

⊲∗ C[V1, . . . , Vq]

= D0[f(V1, . . . , Vq)].

Let σ : X ⇀ U0 such that lσ = f(v1, . . . , vq) and r
σ = v′.

We set σ′′ :
X ⇀ U0 ∪ {�}

x 7→

{
� if x = cl;
σ(x) if there is no l ∈ {1, . . . , q} such that x = cl.

We set σ′ :
X ⇀ 2〈∆〉

x 7→

{
Vl if x = cl;
σ(x) if there is no l ∈ {1, . . . , q} such that x = cl.

Let M ∈ N such that rσ
′′

∈ ΦM . Let w1, . . . , wM ∈ {v1, . . . , vq} such

that rσ
′′

[w1, . . . , wM ] = rσ
′

. Let F : {1, . . . ,M} → {1, . . . , q} such that,
for any l ∈ {1, . . . ,M}, wl = vF (l). For any l ∈ {1, . . . ,M}, we set E′′

l [] =

rσ
′′

[w1, . . . , wl−1,�, wl+1, . . . , wM ] and Tl =
∑

c∈N (ρ0,wl,E′[u1,...,uj ,E
′′

l
[],um−k,...,um]) c:

we have Supp(Tl) ⊆ Supp(VF (l)); indeed, we have

R(ρ0, wl, E
′[u1, . . . , uj, E

′′
l [], um−k, . . . , um])

⊆ R(ρ, vF (l), C0[f(v1, . . . , vF (l)−1,�, vF (l)+1, . . . , vq)])

and, from this inclusion we immediately obtain

N (ρ0, wl, E
′[u1, . . . , uj, E

′′
l [], um−k, . . . , um])

⊆ N (ρ, vF (l), C0[f(v1, . . . , vF (l)−1,�, vF (l)+1, . . . , vq)])

i.e. Supp(Tl) ⊆ Supp(VF (l)).



Moreover, for any l ∈ {1, . . . , j}, we have

N (ρ0, ul, E
′[u1, . . . , ul−1,�, ul+1, . . . , uj , v

′, um−k, . . . , um]) =

N (ρ, ul, E
′[u1, . . . , ul−1,�, ul+1, . . . , uj , f(v1, . . . , vq), um−k, . . . , um])

and, for any l ∈ {m− k, . . . ,m}, we have

N (ρ0, ul, E
′[u1, . . . , uj , v

′, um−k, . . . , ul−1,�, ul+1, . . . , um]) =

N (ρ, ul, E
′[u1, . . . , uj , f(v1, . . . , vq), um−k, . . . , ul−1,�, ul+1, . . . , um])

Since ρ0 ∈ Seq(E′[u1, . . . , uj, v
′, um−k, . . . , um], c) and v′ ∈ U0, by the in-

duction hypothesis, we have D0[r
σ′

]⊲∗ c.
Lastly, we have f(V1, . . . , Vq)⊲� r

σ′

, hence D0[f(V1, . . . , Vq)]⊲D0[] D0[r
σ′

].
– case C0[] = E[u1, . . . , uj−1, C

′[], uj+1, . . . , um] with C′[] ∈ Φ1 and uj =

C′[f(v1, . . . , vq)]: for any l ∈ {1, . . . , q}, we set u′l =

{
ul if l 6= j;
C′[v′] if l = j;

we have R(ρ0, u
′
l, E[u′1, . . . , u

′
l−1,�, u

′
l+1, . . . , u

′
m]) =





R(ρ, ul, E[u1, . . . , ul−1,�, ul+1, . . . , um]) if l 6= j;
{
(C′[f(v1, . . . , vq)] →C′[],(l,r) C

′[v′]; ρ′0);
ρ′0 ∈ R(ρ0, u

′
l, E[u′1, . . . , u

′
l−1,�, u

′
l+1, . . . , u

′
m])

}

if l = j;

Hence,

N (ρ0, u
′
l, E[u′1, . . . , u

′
l−1,�, u

′
l+1, . . . , u

′
m]) =

N (ρ, ul, E[u1, . . . , ul−1,�, ul+1, . . . , um])

Since ρ0 ∈ Seq(E[u′1, . . . , u
′
l+1, . . . , u

′
m], c) and u′j ∈ U0, by the induction

hypothesis, we have E[U1, . . . , Um]⊲
∗ c.

A.3 Proof of Lemma 2:

First we prove the following lemma:

Lemma 5. Let t ∈ U0. Let (l, r) ∈ R and ϕ : X ⇀ 2〈T0(C)〉 such that t ↓ u and
u⊲∆ r

ϕ. Then we have t ↓ rϕ.

Proof: For any j ∈ {1, . . . , q}, we set u′j =

{
ul if cj ∈ X ;
Uj if cj /∈ X .

We set σ :
X ⇀ U0

x 7→

{
uj if cj = x;
ϕ(x) otherwise.

Notice that we have f(u′1, . . . , u
′
q)⊲� r

σ . Now we have u1 →∗ u′1, . . . , uq →
∗

u′q, hence t →∗ f(u1, . . . , uq) →∗ f(u′1, . . . , u
′
q) →σ

r . So we just have to check
that rσ ↓ rϕ. This is done by induction on r:

– r = cj ∈ X : rσ = uj and r
ϕ = Uj ;

– r ∈ C0 or (r ∈ X and there is no j ∈ {1, . . . , q} such that r = cj): r
σ = rϕ,

hence rσ ↓ rϕ;



– r = g(v1, . . . , vm): rσ = g(v1
σ, . . . , vm

σ) and rϕ = g(v1
ϕ, . . . , vm

ϕ); by the
induction hypothesis, we have v1

σ ↓ v1ϕ, . . . , vmσ ↓ vmϕ, hence rσ ↓ rϕ.

Now, we can prove Lemma 2:

Proof: We prove, by induction on i, that, for any i ∈ N, fo any C[] ∈ ∆�
i , for

any t ∈ U0, U, V ∈ 2〈∆〉 such that t ↓ U and U ⊲C[] V , we have t ↓ V .

– i = 0: C[] =W +�: we distinguish between two cases.
1. There exist u ∈ ∆ and V ′ ∈ 2〈∆〉 such that U = W + u, V = W + V ′

and u ⊲∆ V ′: let v ∈ Supp(V ); if v ∈ Supp(W ), then, by assumption,
t ↓ v; if v ∈ Supp(V ′), then we apply Lemma 5.

2. There exists u ∈ ∆ such that U = V + u: since t ↓ U , we have t ↓ V .
– i > 0: C[] = W + f(U1, . . . , Uq) with W ∈ 2〈∆〉 and Uj = C′[] ∈ ∆�

i−1:
let U ′′, V ′′ ∈ 2〈∆〉 such that U = C[U ′′], V = C[V ′′] and U ′′ ⊲� V ′′;
there exist u1, . . . , uq ∈ U0 such that t →∗ f(u1, . . . , uq) and u1 ↓ U1,
. . . , uj−1 ↓ Uj−1, uj+1 ↓ Uj+1, . . . , uq ↓ Uq, uj ↓ C′[U ′′]. We have
C′[U ′′] ⊲C′[] C

′[V ′′], hence, by the induction hypothesis, uj ↓ C′[V ′′]. We
thus obtain t ↓ f(U1, . . . , Uj−1, C

′[V ′′], Uj+1, . . . , Uq); moreover t ↓ W , hence
t ↓ V .

A.4 Proof of Lemma 3:

First we state the following fact, which will used also in the proof of Proposi-
tion 2:

Fact 7 Let k ∈ N. Let q ∈ N. Let c1, . . . , cq ∈ T (C). Let ϕ : X ⇀ 2〈T0(C)〉.
Assume that, for any j ∈ {1, . . . , q}, we have Oc(cj) ⊆ dom(ϕ) and (cj /∈ X ⇒
cj
ϕ ∈ T0(C)). Let t ∈ ∆. Let W1, . . . ,Wq,W

′
1, . . . ,W

′
q ∈ 2〈T0(C)〉 such that

– for any j ∈ {1, . . . , q}, (cj /∈ X ⇒Wj = cj
ϕ) and Supp(Wj) ⊆ Supp(cj

ϕ);
– for any j ∈ {1, . . . , q}, (cj /∈ X ⇒W ′

j = cj
ϕ) and Supp(W ′

j) ⊆ Supp(Wj);
– and, for any j ∈ {1, . . . , q}, Card(Supp(W ′

j)) ≤ Card(Supp(Wj)) ≤ k.

Then tϕ(W1,...,Wq) ⊲∗
k t

ϕ(W ′
1
,...,W ′

q) .

Now, we can prove the lemma:

Proof: By induction on r:

– r ∈ X : let u ∈ Supp((rϕ)
∗
); for any j ∈ {1, . . . , q}, let Wj ∈ 2〈T0(C)〉 such

that Wj =







u if j = i;
cj
ϕ if cj /∈ X ;

0 otherwise;
We then have rϕ(W1,...,Wq) = u, hence we have rϕ(W1 ,...,Wq) ⊲∗

K u;
– r = g(u1, . . . , um) with g ∈ Dm ∩ A: Let W ′

1, . . . ,W
′
m ∈ 2〈∆〉 such that,

for any j′ ∈ {1, . . . ,m}, Supp(W ′
j′ ) ⊆ Supp((uj′

ϕ)
∗
) and Card(Supp(W ′

j′ )) =

min{1,Card(Supp((uj′ϕ)
∗
))}. For any j ∈ {1, . . . , q}, for any j′ ∈ {1, . . . ,m},

we set



Wj′

j =







{cjϕ} if cj /∈ X ;
{

W ∈ 2〈T0(C)〉;
Supp(W ) ⊆ Supp(cj

ϕ) and
Card(Supp(W )) = min{Oc(cj , uj′),Card(Supp(cj

ϕ))}

}

if cj ∈ X .

For any j′ ∈ {1, . . . ,m}, letW j′

1 ∈ Wj′

1 , . . . ,W j′

q ∈ Wj′

q such that uj′
ϕ

(W1
j′ ,...,Wq

j′ )⊲∗
K

W ′
j′ . For any j ∈ {1, . . . , q}, we set Wj =

∑m
j′=1W

j′

j : we have Wj ∈ Wj . We
have

g(u1
ϕ(W1,...,Wq) , . . . , um

ϕ(W1,...,Wq)) ⊲∗
K g(u1

ϕ
(W1

1
,...,W1

q ) , . . . , um
ϕ(Wm

1
,...,Wm

q ))

(by Fact 7)

⊲∗
K g(W ′

1, . . . ,W
′
m)

– r = h(u1, . . . , um) with h ∈ C: There exists j ∈ {1, . . . , q} such that r E cj ,
hence rϕ ∈ ∆0 and (∀W1 ∈ W1, . . . ,Wq ∈ Wq)r

ϕ(W1 ,...,Wq) = rϕ. Now, since
rϕ ∈ ∆0, we have rϕ∗ = rϕ.

– r = g(u1, . . . , um) with g ∈ Dm ∩ B: Notice that, for any j ∈ {1, . . . , q} such
that cj ∈ X , we haveOc(cj , r) = 0, hence Card(Wj) = 1 and uj

ϕ∗ = uj
ϕ. Let

W1 ∈ W1, . . . ,Wq ∈ Wq. For any j
′ ∈ {1, . . . ,m}, by the induction hypothe-

sis, we have uj′
ϕ(W1,...,Wq)⊲∗

K(uj′
ϕ)

∗
= uj′

ϕ; therefore g(u1
ϕ(W1,...,Wq) , . . . , um

ϕ(W1,...,Wq))⊲∗
K

g(u1
ϕ, . . . , um

ϕ) = g(u1, . . . , um)
ϕ = (g(u1, . . . , um)

ϕ)
∗
.

A.5 Lemmas and Facts used in the complete proof of Proposition 2

and which do not appear in the principal part of the text:

Lemma 6. Let k ∈ N. Let U, V ∈ 2〈∆〉 such that, for any v ∈ Supp(V ), there
exists u ∈ Supp(U) such that u⊲∗

k v. Then U ⊲∗
k V .

Proof: There exists a function ψ : Supp(V ) → Supp(U) such that, for any v ∈
Supp(V ), we have ϕ(v)⊲∗

kv. We obtain
∑

w∈im(ψ) w⊲
∗
kV , hence U⊲∗

k

∑

w∈im(ψ) w.

Lemma 7. Let n, k ∈ N. Let U, V ∈ 2〈∆〉 such that U ⊲nk V . Let V0 ∈ 2〈∆〉
such that Supp(V0) ⊆ Supp(V ). Then there exist n′ ≤ n and U0 ∈ 2〈∆〉 such
that

– Supp(U0) ⊆ Supp(U);
– Card(Supp(U0)) ≤ Card(Supp(V0));
– and U0 ⊲

n′

k V0.

Proof of Lemma 7: First we prove the following fact:

Fact 8 Let k ∈ N. Let U, V ∈ 2〈∆〉 such that U ⊲k V . Let V0 ∈ 2〈∆〉 such that
Supp(V0) ⊆ Supp(V ). Then there exists U0 ∈ 2〈∆〉 such that

– Supp(U0) ⊆ Supp(U);
– Card(Supp(U0)) ≤ Card(Supp(V0));
– and U0 ⊲

∗
k V0.



Proof: Let C[] ∈ Θ1 such that U ⊲C[] V . We split on cases according to the
shape of C[]:

– If C[] =W+�, U =W+u, V =W+V ′ and u⊲∆V
′, let V1, V2 ∈ 2〈∆〉 such

that Supp(V1) ⊆ Supp(W ), Supp(V2) ⊆ Supp(V ′), Supp(V1) ∩ Supp(V2) = ∅
and V = V1+V2; if V2 = 0, then we set U0 = V1, otherwise we set U0 = V1+u.

– If C[] =W +�, U =W + u and V =W , then we set U0 = V0.
– If C[] =W+f(U1, . . . , Um) with Uj ∈ Θ1, then U =W+f(U1, . . . , Uj−1, Uj [U

′], Uj+1, . . . , Um)
and V =W+f(U1, . . . , Uj−1, Uj [V

′], Uj+1, . . . , Um) and U ′⊲�V
′, let V1, V2 ∈

2〈∆〉 such that Supp(V1) ⊆ Supp(W ) and such that
Supp(V2) ⊆ Supp(f(U1, . . . , Uj−1, Uj[V

′], Uj+1, . . . , Um)), Supp(V1)∩Supp(V2) =
∅ and V = V1 + V2; if V2 = 0, then we set U = V1, otherwise we set
U = V1 + f(U1, . . . , Uj−1, Uj[U

′], Uj+1, . . . , Um).
– If C[] =W + f(U1, . . . , Um) with Uj ∈ Θ1 and V =W , then we set U0 = V0.

Now, we can prove the lemma:

Proof:

– If n = 0, then U = V , so we can set n′ = 0 and U0 = V0.
– If n > 0, then there exists T ∈ 2〈∆〉 such that U ⊲

n−1
k T and T ⊲k V ; by

Fact 8, there exists U ′ ∈ 2〈∆〉 such that
• Supp(U ′) ⊆ Supp(T );
• Card(Supp(U ′)) ≤ Card(Supp(V0));
• and U ′ ⊲k V0;

now, by induction hypothesis, there exist n′′ ≤ n − 1 and U0 ∈ 2〈∆〉 such
that
• Supp(U0) ⊆ Supp(U ′);
• Card(Supp(U0)) ≤ Card(Supp(U ′));
• and U0 ⊲

n′′

k U ′.
We set n′ = n′′ + 1.

Fact 9 Let q ∈ N. Let c1, . . . , cq ∈ T (C). Let ϕ : X ⇀ 2〈T0(C)〉. Assume that,
for any l ∈ {1, . . . , q}, we have Oc(cl) ⊆ dom(ϕ) and (cl /∈ X ⇒ cl

ϕ ∈ T0(C)).
Let W1, . . . ,Wq ∈ 2〈T0(C)〉 such that, for any l ∈ {1, . . . , q}, (cl /∈ X ⇒ Wl =
cl
ϕ) and Supp(Wl) ⊆ Supp(cl

ϕ). Then, for any l ∈ {1, . . . , q}, we have Wl =
cl
ϕ(W1,...,Wq) .

Proof: For any l ∈ {1, . . . , q} such that cl /∈ X , for any x ∈ Oc(cl), we have
ϕ(x) = ϕ(W1,...,Wq)(x), hence cl

ϕ(W1,...,Wq) = cl
ϕ =Wl.

A.6 Complete proof of Proposition 2:

Proof: The proof is by induction on i.

– If i = 0, then C[] = U0 +� for some U0 ∈ 2〈∆〉; we distinguish between two
cases:
• V = U0 and there exists u ∈ ∆ such that U = U0 + u: in this case, we
have ‖U∗‖, ‖U0

∗‖ ≤ K. Thus we have U∗ = U0
∗ + u∗ ⊲∗

K U0
∗ = V ∗.



• U = U0+f(c1, . . . , cq)
ϕ, V = U0+r

ϕ with f ∈ Dq, c1, . . . , cq ∈ T (C), ϕ :
X ⇀ 2〈T0(C)〉 such that, for any j ∈ {1, . . . , q}, cj /∈ X ⇒ cj

ϕ ∈ T0(C):
For any j ∈ {1, . . . , q}, we define Wj as in Lemma 3 and we set

W ′
j =







{cjϕ} if cj /∈ X ;
{

W ∈ 2〈T0(C)〉;
Supp(W ) ⊆ Supp(cj

ϕ) and
Card(Supp(W )) = min{1,Card(Supp(cjϕ))}

}
if f ∈ A
and cj ∈ X ;

{

W ∈ 2〈T0(C)〉;
Supp(W ) ⊆ Supp(cj

ϕ) and
Card(Supp(W )) = min{K,Card(Supp(cjϕ))}

}
if f ∈ B
and cj ∈ X .

We have

(f(c1, . . . , cq)
ϕ)∗ =

∑

W1∈W′
1,...,Wq∈W′

q

f(c1
ϕ(W1,...,Wq) , . . . , cq

ϕ(W1,...,Wq)) (by Fact 9)

⊲∗
K

∑

W1∈W1,...,Wq∈Wq

f(c1, . . . , cq)
ϕ(W1,...,Wq) (by Fact 7)

⊲∗
K

∑

W1∈W1,...,Wq∈Wq

rϕ(W1,...,Wq)

⊲∗
K (rϕ)

∗
(by Lemma 3).

We have ‖U0
∗‖ ≤ K, hence we obtain U∗ = U0

∗+(f(c1, . . . , cq)
ϕ)∗⊲∗

KU0
∗+

(rϕ)
∗
= V ∗.

– If i > 0, U = C[U0], V = C[V0], C[] = U ′ + f(U1, . . . , Um), k ∈ {1, . . . ,m},
Uk ∈ ∆�

i−1 and U0 ⊲� V0, then, by the induction hypothesis, Uk[U0
∗] ⊲∗

K

Uk[V0
∗]; Let V1, . . . , Vm ∈ 2〈∆〉 such that

• for any j ∈ {1, . . . ,m}\{k}, Supp(Vj) ⊆ Supp(Uj
∗) and Card(Supp(Vj)) =

min{1,Card(Supp(Uj
∗))}

• and Supp(Vk) ⊆ Supp(Uk[V0]
∗
) and Card(Supp(Vk)) =

{
min{1,Card(Supp(Uk[V0]

∗
))} if f ∈ A;

min{K,Card(Supp(Uk[V0]
∗
))} if f ∈ B.

By Lemma 7, there exists V ∈ 2〈∆〉 such that Supp(V ) ⊆ Supp(Uk[U0]),
Card(Supp(V )) ≤ Card(Supp(Vk)) and V⊲∗

KVk, and hence f(V1, . . . , Vk−1, V, Vk+1, . . . , Vm)⊲∗
K

f(V1, . . . , Vk). By Lemma 6, we obtain f(U1, . . . , Uk−1, Uk[U0], Uk+1, . . . , Um)∗⊲∗
K

f(U1, . . . , Uk−1, Uk[V0], Uk+1, . . . , Um)
∗
; moreover we have ‖U ′∗‖ ≤ K, hence

U∗ = U ′∗+f(U1, . . . , Uk−1, Uk[U0], Uk+1, . . . , Um)
∗
⊲∗
KU

′∗+f(U1, . . . , Uk−1, Uk[V0], Uk+1, . . . , Um)
∗
=

V ∗.



B Details of Section 4

We extend the notion of size to any element of of 2〈∆〉. First, for any u ∈ ∆, we
define |u| by induction on level(u) as follows: |f(V1, . . . , Vm)| = 1 +

∑m
j=1 |Vj |.

Then, for any V ∈ 2〈∆〉, for any V ∈ 2〈∆〉, we set |V | =
∑

v∈Supp(V ) |v|. Notice

that, for any n ∈ N, for any V ∈ Vn(c), we have |V | ≤ n+An ·K · |c|.
The following lemma wil be used in the proof of Proposition 3.

Lemma 8. Let q ∈ N. Let C1, . . . , Cq ∈ 2〈T0(C)〉 such that Card(Supp(C1)),
. . . , Card(Supp(Cq)) ≤ K, let c ∈ T0(C) and f ∈ Dq. There exists ρ = (U1, . . . , Un) ∈
Seq∆,K(f(C1, . . . , Cq), c) if, and only if, there exist C′

1, . . . , C
′
q ∈ 2〈T0(C)〉, V ∈

2〈∆〉 and ρ′ ∈ Seq∆,K(V, c) such that Supp(C′
1) ⊆ Supp(C1), . . . , Supp(C

′
q) ⊆

Supp(Cq), f(C
′
1, . . . , C

′
q)⊲∆ V and length(ρ′) < length(ρ).

Proof: By induction on n.

– If there exists V ∈ 2〈∆〉 such that f(C1, . . . , Cq)⊲∆V and U2 = f(C1, . . . , Cq)+
V , then, by Lemma 7, we have V ⊲

n−1
K c or f(C1, . . . , Cq) ⊲

n−1
K c; now, if

f(C1, . . . , Cq)⊲
n−1
K c, then we can apply the induction hypothesis.

– If there exist C′
1, . . . , C

′
q ∈ 2〈T0(C)〉 such that Supp(C′

1) ⊆ Supp(C1), . . . ,
Supp(C′

q) ⊆ Supp(Cq) and U2 = f(C′
1, . . . , C

′
q), then we just apply the in-

duction hypothesis.

We proceed to prove that certain reduction sequences may be shortened using
an analogue of memoization.

Definition 19. For any C[] ∈ Θ1, for any V ∈ 2〈∆〉 such that C[V ] ∈ ∆, for
any ρ = (U1, . . . , Un) ∈ Seq∆(C[V ],−), we define R∆(ρ, V, C[]) ∈ Seq∆(V,−)
by induction on n:

– if n = 0, then R∆(ρ, V, C[]) = idV ;

– if n > 0 and C[] = �, then R∆(ρ, V, C[]) = ρ;

– if ρ = (C0[u] ⊲C0[] C0[U
′]; ρ0), u ⊲� U ′ and C[] 6= �, then we distinguish

between the following cases:

• if there exists D[] ∈ Θ2 such that C0 = D[V,�] and C[] = D[�, u], then
R∆(ρ, V, C[]) = R∆(ρ0, V,D[�, U ′]);

• if C0[] = C[C′[]] with C′[] ∈ Θ1, then R∆(ρ, V, C[]) = (V⊲C′[]C
′[U ′]; R∆(ρ0, C

′[U ′], C[]));

• if u⊲∆U
′ and C[] = C0[C

′[]] with C′[] ∈ Θ1 \ {�}, then R∆(ρ, V, C[]) =
idV ;

• if U ′ = 0 and C[] = C0[C
′[]] with C′[] ∈ Θ1 \ {�}, then R∆(ρ, V, C[]) =

id0.

Fact 10 For any C[] ∈ Θ1, for any V ∈ 2〈∆〉 such that C[V ] ∈ ∆, for any
V ′ ∈ 2〈T0(C)〉, for any ρ = (U1, . . . , Un) ∈ Seq∆(C[V ], V ′), there exists W ′ ∈
2〈T0(C)〉 such that R∆(ρ, V, C[]) ∈ Seq∆(C[V ],W ′).



Proof: Let W ′ ∈ 2〈∆〉 such that ρ ∈ Seq∆(C[V ],W ′). We prove, by induction
on n, that W ′ ∈ 2〈T0(C)〉.

If n = 0, then W ′ = V and C[V ] = V ′ ∈ 2〈T0(C)〉, hence W
′ ∈ 2〈T0(C)〉.

If ρ = (C0[u] ⊲C0[] C0[U
′]; ρ0), u ⊲∆ U ′, C[] 6= � and C[] = C0[C

′[]] with
C′[] ∈ Θ1 \ {�}, then W ′ = V . Since u = C′[V ] ∈ ∆1 \ ∆0, we have W ′ ∈
2〈T0(C)〉.

The other cases are trivial.

Definition 20. For any C[] ∈ Θ1, for any V ∈ 2〈∆〉 such that C[V ] ∈ ∆,
for any V ′ ∈ 2〈T0(C)〉, for any ρ ∈ Seq∆(C[V ], V ′), we define N∆(ρ, V, C[]) ∈
2〈T0(C)〉 as follows: N∆(ρ, V, C[]) is the uniqueW

′ ∈ 2〈∆〉 such that R∆(ρ, V, C[]) ∈
Seq∆(C[V ],W ′).

Remark 3. By Fact 10, we have N∆(ρ, V, C[]) ∈ 2〈T0(C)〉.

The two following lemmas will be used in the proof of Proposition 3.

Lemma 9. For any C[] ∈ Θ1, for any V ∈ 2〈∆〉 \ 2〈T0(C)〉 such that C[V ] ∈
∆\∆0, for any U ∈ 2〈T0(C)〉\{0}, for any ρ = (U1, . . . , Un) ∈ Seq∆,K(C[V ], U),
there exists ρ′ ∈ Seq∆,K(C[N∆(ρ, V, C[])], U) such that length∆(ρ

′) < length∆(ρ).

Proof: By induction on n.
We have C[V ] ∈ ∆\∆0 and U ∈ 2〈T0(C)〉\{0}, hence n 6= 0 and length∆(ρ) >

0.
If C[] = �, then N∆(ρ, V, C[]) = U and we can set ρ′ = idU .
If ρ = (C0[u] ⊲C0[] C0[U

′]; ρ0), u ⊲� U ′ and C[] 6= �, then we distinguish
between the following cases:

– if there exists D[] ∈ Θ2 such that C0 = D[V,�] and C[] = D[�, u], then
N∆(ρ, V, C[]) = N∆(ρ0, V,D[�, U ′]); by the induction hypothesis, there ex-
ists ρ′0 ∈ Seq∆,K(D[N∆(ρ0, V,D[�, U ′]), U ′], U) such that length∆(ρ

′
0) <

length∆(ρ0); we set ρ′ = (D[N∆(ρ0, V,D[�, U ′]), u] ⊲D[N∆(ρ0,V,D[�,U ′]),�]

D[N∆(ρ0, V,D[�, U ′]), U ′]; ρ′0);
– if C0[] = C[C′[]] with C′[] ∈ Θ1, then N∆(ρ, V, C[]) = N∆(ρ0, C

′[U ′], C[]); by
the induction hypothesis, there exists ρ′0 ∈ Seq∆,K(C[N∆(ρ0, C

′[U ′], C[])], U)
such that length∆(ρ

′
0) < length∆(ρ0); we set ρ′ = ρ′0;

– if u⊲∆ U
′ and C[] = C0[C

′[]] with C′[] ∈ Θ1 \ {�}, then V ∈ 2〈T0(C)〉;
– if U ′ = 0 and C[] = C0[C

′[]] with C′[] ∈ Θ1 \ {�}, then N∆(ρ, V, C[]) = 0;
we have ρ0 ∈ Seq∆,K(C0[0], U): there exists ρ′0 ∈ Seq∆,K(C0[C

′[0]], U) such
that length∆(ρ

′
0) ≤ length∆(ρ0); now, if V /∈ 2〈T0(C)〉, then length∆(ρ0) <

length∆(ρ).

Lemma 10. For any C[] ∈ Θ1 \ {�}, for any V ∈ 2〈∆〉 \ 2〈T0(C)〉 such
that C[V ] ∈ ∆ \ ∆0, for any U ∈ 2〈T0(C)〉 \ {0}, for any ρ = U1 · · ·Un ∈
Seq∆,K(C[V ], U), we have length∆(R∆(ρ, V, C[])) < length∆(ρ).

Proof: By induction on n.
We have C[V ] ∈ ∆\∆0 and U ∈ 2〈T0(C)〉\{0}, hence n 6= 0 and length∆(ρ) >

0.



So we have ρ = (C0[u]⊲C0[] C0[U
′]; ρ0) with ρ0 ∈ Seq∆,K(U ′, U), u ⊲� U ′

and C[] 6= �; we distinguish between the following cases:

– there existsD[] ∈ Θ2 such that C0 = D[V,�] and C[] = D[�, u]:R∆(ρ, V, C[]) =
R∆(ρ0, V,D[�, U ′]); by the induction hypothesis, we have length∆(R∆(ρ0, V,D[�, U ′])) <
length∆(ρ0);

– if C0[] = C[C′[]] with C′[] ∈ Θ1 and u /∈ 2〈T0(C)〉, then R∆(ρ, V, C[]) =
(V ⊲C′[] C

′[U ′]; R∆(ρ0, C
′[U ′], C[])); by the induction hypothesis, we have

length∆(R∆(ρ0, C
′[U ′], C[]))) < length∆(ρ0), hence length∆(R∆(ρ, V, C[])) =

length∆(R∆(ρ0, C
′[U ′], C[]))) + 1 < length∆(ρ0) + 1 = length∆(ρ);

– if C0[] = C[C′[]] with C′[] ∈ Θ1 and u ∈ 2〈T0(C)〉, then R∆(ρ, V, C[]) =
(V ⊲C′[] C

′[U ′]; R∆(ρ0, C
′[U ′], C[])); by the induction hypothesis, we have

length∆(R∆(ρ0, C
′[U ′], C[]))) < length∆(ρ0), hence length∆(R∆(ρ, V, C[])) =

length∆(R∆(ρ0, C
′[U ′], C[]))) < length∆(ρ0) = length∆(ρ);

– if u⊲∆ U
′ and C[] = C0[C

′[]] with C′[] ∈ Θ1 \ {�}, then V ∈ 2〈T0(C)〉;
– if U ′ = 0 and C[] = C0[C

′[]] with C′[] ∈ Θ1 \ {�}, then R∆(ρ, V, C[]) = id0:
length∆(R∆(ρ, V, C[])) = 0.

We will use a procedure called Equal that performs the following one: for any
c0 ∈ T0(C), for any u, v ∈ E, after the execution of the procedure Equal(u, v),
no value of any global variable changed; moreover if JuKV,c0 = JvKV,c0 , then the
procedure Equal(u, v) returns true; otherwise, it returns false.

Redex(n) :=
Local aux;
if Def(L(n)) then for j := 1 to A do

if L(Succ(n)(A − j + 1)) 6= ⊥ then aux := Redex(Succ(n)(A − j + 1));
if aux 6= ⊥ then return aux; fi;

fi;
od;
return n;

else return ⊥;

Fig. 2. Procedure Redex

In the procedure Redex, the procedure Def is a procedure executed in constant
time such that, for any l ∈ D∪C∪{x1, . . . , xV }∪{⊥}, if l ∈ D, then the procedure
returns true; otherwise it returns false.

The procedure Computation calls two procedures Redex and Subst, which have
the following properties:

– For any V ∈ V(c0), for any n ∈ E such that JnKV,c0,U = V , the execution
time of the procedure Redex(n) is in O(|V |).

– Let c0 ∈ T0(C). Let V ∈ V(c0) \ V0(c0). Let n ∈ E such that JnKV,c0,U = V .
Let w1, . . . , wK ∈ I(c0)∪{⊥}. Letm be the result of the procedure Redex(n).
Let 〈Y |D[]〉 be the leftmost-innermost redex of V . Assume that p = M .



Subst(p, n,m,w1, . . . , wK) :=
if n = m then Comp(p)(1) := w1; . . . ; Comp(p)(K) := wK ; L(p) := ⊥;

else L(p) := L(n);
M := M + 1; Succ(p)(1) := M ; Subst(M,Succ(n)(1), m,w1, . . . , wK);
. . . ;
M := M + 1; Succ(p)(A) := M ; Subst(M,Succ(n)(A), m,w1, . . . , wK);

fi;

Fig. 3. Procedure Subst

Then, after the execution of the procedure Subst(p, n,m,w1, . . . , wK), we
have JpKV,c0,U = D[

∑

j ∈ {1, . . . ,K}
wj 6= ⊥

wj ]. Moreover, apart from M , which

increased, no value of any global variable changed. The execution time is in
O(|V |).

(1) Computation(n) :=
(2) Local k,m, i,m′,M0, C, w1, . . . , wK ;
(3) if L(n) = ⊥ then

(4) for k := 1 to K do

(5) if Comp(n)(k) 6= ⊥ then

(6) D := D + 1;
(7) Result(D) := Comp(n)(k);
(8) fi;
(9) od;

(10) else m := Redex(n);
(11) for i := 1 to Inp-Max do

(12) if Equal(Inp(i),m) then m′ := i; fi;
(13) od;
(14) C := 0; W (0) := ⊥;
(15) for j in C0 ∪ {c ∈ T0(C); c E c0} do

(16) if V al(m′)(j) then C := C + 1; W (C) := j; fi;
(17) od;
(18) for h1, . . . , hK := 0 to C do

(19) w1 := W (h1); . . . ; wK := W (hK);
(20) M := M + 1;
(21) Subst(M,n,m,w1, . . . , wK);
(22) Computation(M);
(23) od;
(24) fi;

Fig. 4. Procedure Computation



Lemma 11. Let c0 ∈ T0(C). Let Q ≤ O. Let V ∈ VQ(c0). Let n ∈ E such

that JnKV,c0,U = V . Let Y : V1(c0) \ V0(c0) → {true, false}I(c0) such that, for
any V ′ ∈ V1(c0) \ V0(c0), for any c ∈ I(c0), Y (V ′)(c) = true if, and only if,
Val(inp(c0)

−1(V ′))(c) = true. After the execution of the procedure Computation(n),
the following properties hold:

– apart from M and D, which increased, and apart from Result, no value of
any global variable changed;

– the increasing of D is bound by (Card(I(c0)) + 1)Q·K ·K;
– for any c ∈ I(c0), there exists j ∈ {1, . . . , D} such that Result(j) = c if, and

only if, there exists V ′ ∈ V0(c0) such that c ∈ Supp(V ′) and V ⊲∗
Y V

′.

Proof: The proof is by induction on Q. Notice that L(n) 6= ⊥ ⇔ V /∈ V0(c0).
The key-point to notice that the execution time of the procedure Computation(n)

is polynomial in the size of c0 is to notice that we can bound Inp-Max by
Q · Card(I(c0))A·(K+1) = Q · (S + |c0|)A·(K+1).

B.1 The correctness of the algorithm follows from the two following

propositions:

Proposition 3. Let c0 ∈ T0(C). Let m ∈ N, let f ∈ Dm, let C1, . . . , Cm ∈
2〈T0(C)〉, let c ∈ I(c0), let o ∈ {1, . . . , Inp-Max}, let ρ ∈ Seq∆,K(f(C1, . . . , Cm), c)
such that JoKV,c0 = f(C1, . . . , Cm). Then, at some moment of the execution of
the algorithm, we have Val(o)(c) = true.

Proof: By induction on length∆(ρ). By Lemma 8, there exist C′
1, . . . , C

′
m ∈

2〈T0(C)〉, U ∈ 2〈∆〉 and ρ′ ∈ Seq∆,K(U, c) such that Supp(C′
1) ⊆ Supp(C1), . . . ,

Supp(C′
m) ⊆ Supp(Cm), f(C′

1, . . . , C
′
m)⊲∆ U and length∆(ρ

′) < length∆(ρ).
Notice that we cannot have length∆(ρ) = 0.
Let q be the number of occurrences of elements of D in r. For any j ∈

{1, . . . , q}, we define Uj ∈ V(c0), Ej [] ∈ Θ1, Yj ∈ V1(c0) \ V0(c0), Gj ∈ 2〈T0(C)〉
and ρj ∈ Seq∆,K(Uj , c) by induction on j in such a way that U1, . . . , Uq−1 /∈
V1(c0) and Uq ∈ V1(c0):

– we set U1 = U and ρ1 = ρ′; let 〈Y1|E1[]〉 be the leftmost-innermost redex of
U1; we set G1 = N∆(ρ1, Y1, E1[]);

– for any j ∈ {1, . . . , q − 1}, we set Uj+1 = Ej [Gj ]; by Lemma 9, there
exists ρj+1 ∈ Seq∆,K(Uj+1, c) such that length∆(ρj+1) < length∆(ρj); let
〈Yj+1|Ej+1[]〉 be the leftmost-innermost redex of Uj+1; we setGj+1 = N∆(ρj+1, Yj+1, Ej+1[]).

Applying q times Lemma 10 and the induction hypothesis, we obtain: for any j ∈
{1, . . . , q}, at some moment, for any o ∈ {1, . . . , Inp-Max} such that JoKV,c0 = Yj ,
for any c′ ∈ Supp(Gj), we have Val(o)(c′) = true. But for any j ∈ {1, . . . , q},
for any o ∈ {1, . . . , Inp-Max}, for any c′ ∈ I, if at some moment, we have
Val(o)(c′) = true, then, after this moment, we always have Val(o)(c′) = true.
Therefore, at some moment, for any j ∈ {1, . . . , q}, for any o ∈ {1, . . . , Inp-Max}
such that JoKV,c0 = Yj , for any c

′ ∈ Supp(Gj), we have Val(o)(c′) = true.



Let Y : V1(c0) \ V0(c0) → {true, false}I(c0) such that, for any j ∈ {1, . . . , q},
for any c′ ∈ Supp(Gj), Y (Yj)(c

′) = true. We have c0 ∈ Supp(Gq) and U1 ⊲Y U2,
. . . , Uq1 ⊲Y Uq, Uq ⊲Y Gq: we apply Lemma 11.

Proposition 4. Let c0 ∈ T0(C). Let m ∈ N, let f ∈ Dm, let C1, . . . , Cm ∈
2〈T0(C)〉, let c ∈ I(c0), let o0 ∈ {1, . . . , Inp-Max} such that Jo0KV,c0 = f(C1, . . . , Cm)
and, at some moment of the execution of the algorithm, we have Val(o0)(c) =
true. Then f(C1, . . . , Cm)⊲∗

K c.

Proof: Let N be the number of times that the line 4 is executed before that
Val(o)(c) = true and let i0 ∈ {1, . . . , Inp-Max} be the value of i when we execute
the line 4 with o = o0 and Result(j) = c for the first time. The proof is by induc-
tion on (N, i0) lexicographically ordered. Due to the procedure Inf-Inp, there ex-
ist C′

1, . . . , C
′
m ∈ 2〈T0(C)〉 such that Card(Supp(C′

1)), . . . ,Card(Supp(C
′
m)) ≤ K,

Supp(C′
1) ⊆ Supp(C1), . . . , Supp(C

′
m) ⊆ Supp(Cm) and Ji0KV,c0 = f(C′

1, . . . , C
′
m).

Notice that we cannot have N = 0.
Let Y : V1(c0) \ V0(c0) → {true, false}I(c0) such that, for any V ′ ∈ V1(c0) \

V0(c0), for any c
′ ∈ I(c0), Y (V ′)(c′) = true if, and only if, Val(inp−1(V ′))(c′) =

true. By Lemma 11, there exist s ∈ {1, . . . , R} and C ∈ V0(c0) such that
c ∈ Supp(C) and JInst(i0)(s)KV,c0 ⊲∗

Y C. Applying the induction hypothesis,
we obtain JInst(i0)(s)KV,c0 ⊲∗

K C. Due to the procedure Inst-Init(), we have
f(C′

1, . . . , C
′
m) ⊲∆ JInst(i0)(s)KV,c0 . Due to the procedure Inst-Init(), we have

Card(Supp(C1)), . . . , Card(Supp(Cm)) ≤ K. If follows that f(C1, . . . , Cm)⊲∗
K c.


