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Visualizing and representing the evolution of topological features
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Abstract

Simplicial complexes are discrete representations of
topological spaces that are practical for computational
studies. The first three Betti-numbers (indicating the
number of components, tunnels and voids), as well as
the topological persistence of each such feature, is well-
defined and can be efficiently computed for simplicial
complexes embedded in 2D and 3D [1, 2].

We introduce a novel representation of the evolution
of topological features in simplicial complexes using so-
called tunnel-trees in 2D and void-trees in 3D. This new
representation makes it possible to analyze topological
evolution by applying tools for analysis of binary trees.
Furthermore it supplies a new method for visualizing
topological evolution.

Introduction

A simplicial complex, K, is a set of simplices where any
face of a simplex in K is also in K and the intersec-
tion of two simplices in K is either empty or a face of
both simplices. Delfinado and Edelsbrunner [1] define
a filter to be a sequence of simplices, σ1, σ2, . . . , σn,
where Ki = {σ1, σ2, . . . , σi} is a simplicial complex for
any choice of i (see left part of Figure 1). The filter
represents the evolution of a simplicial complex and
will be the focus of the methods described here. The
topological features of a complex can be described us-
ing the Betti-numbers, βd, which indicate the rank of
the dth homology group. The first three Betti-numbers
(β0, β1, β2) can be interpreted more intuitively as the
number of components, holes, and voids respectively.
A O(nα(n))-time algorithm exists to calculate the evo-
lution of βd as a simplicial complex is grown using a
filter [1]. This method identifies each k-simplex, σi, as
either positive if it creates a new k-cycle and thereby
increases βk, or negative if it changes a k-cycle into a k-
boundary and thereby decreases βk−1. For each positive
k-simplex, σi, the negative (k + 1)-simplex, σj , that is
responsible for turning the k-cycle, created by σi, into a
k-boundary can be efficiently identified [2]. The differ-
ence between the indices of such two simplices is defined
to be the persistence of the k-cycle represented by σi.
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Tunnel- and void-trees

One interesting observation about tunnels in simplicial
complexes embedded in 2D is that, often, when a posi-
tive 1-simplex (edge) is added to the complex, it splits
one tunnel in two. If the empty space around the com-
plex is considered a bounding tunnel, then every positive
edge will split an existing tunnel in two. Similarly, if
the entire space around a simplicial complex embedded
in 3D is considered a bounding void, then a positive 2-
simplex (triangle) always splits an existing void in two.

Based on this observation we define a tunnel-tree (or
β1-tree) of a 2D filter to be a binary tree where each
node represents a distinct tunnel (see right part of Fig-
ure 1). The root is the bounding tunnel, and the leaves
are triangular tunnels that will not be split further.
With each node n we associate the positive edge that
represents the tunnel, ε(n), and with each leaf, we as-
sociate the negative triangle that fills this tunnel, τ(n).
The tunnel-tree is ordered such that for any node n,
the triangle of the rightmost leaf, τ(Tree-Max(n)), is
the triangle that ’destroys’ ε(n) and hence determines
its persistence. A void-tree (or β2-tree) of a 3D filter is
defined in a similar fashion, only with positive triangles
as nodes and negative tetrahedra as leaves.

A βk-tree is constructed by running through the filter
backwards as shown in Algorithm 1. Leaves are created
when a negative (k+ 1)-simplex is encountered and the
roots of leaves are connected when positive k-simplices
are encountered.

Algorithm 1 Build a βk-tree given a filter

1: Create a ’bounding node’, nb
2: for i = n to 1 do
3: if σi is a negative (k + 1)-simplex then
4: Create a new node, n, and set τ(n)← σi

5: else if σi is a positive k-simplex then
6: (n0, n1) ← Nodes of the two (k + 1)-simplices

adjacent to σi

7: (n0, n1)← (Root(n0),Root(n1))
8: Swap n0 and n1 if τ(Tree-Max(n0)) is

younger than τ(Tree-Max(n1))
9: Create a new node n with n.left ← n0,

n.right← n1, and ε(n.left)← σi

10: end if
11: end for
12: return Root(nb)
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Figure 1: Left: A 2D filter. For all positive k-simplices, σi, the (k + 1)-simplex, σj , responsible for turning the
k-cycle, represented by σi, into a k-boundary is indicated as well. Right: The tunnel-tree (β1-tree) of the filter.
Both ε(n) and τ(n) are shown for each node if they are defined.

In line 4, the (k + 1)-simplex can be associated with
its node using a hash-map. This ensures that locating
the nodes of adjacent (k + 1)-simplices in line 6 can
be performed in constant time. In line 6, if one of the
(k + 1)-simplices adjacent to σi is not defined then the
bounding node nb is used instead. If σi has no adjacent
(k+ 1)-simplices then a new node is created for n0, and
n1 is set to nb. Line 8 guarantees that the youngest
simplex in a subtree can always be found by going to
the far right in the tree using Tree-Max.

A βk-tree may be arbitrarily unbalanced, so a
straightforward implementation will run in O(n2) time
worst case. The Tree-Max-method can be improved
to O(1) time by maintaining the maximum of each sub-
tree as they are constructed. A data structure similar to
disjoint-sets can be used to make the Root method run
in O(α(n))-time, so the entire method runs in O(nα(n))
worst case time.

Applications

One attractive property of βk-trees is that they give an
alternative representation of the topological evolution
of a filter. This can be used in several ways.

First, the fact that simplices in the subtree of a par-
ticular node will tend to be spatially close to each other
gives rise to a new definition of local persistence. A par-
ticular edge, representing a tunnel, might be deemed
particularly persistent if its subtree contains more than
a certain number of nodes. Such a definition of persis-
tence will not be affected by the addition of simplices
outside the tunnel.

Using a Delaunay complex and the radius of the
smallest empty circumcircle to generate an α-filter [3],
the arrangement of a particular sub-tree also gives an

indication of the shape of the corresponding feature. For
instance, a node with an unbalanced sub-tree indicates
a tunnel that is narrowing, whereas a balanced node
indicates a constant width.

For some applications, a tree might be a better vi-
sualization of the topological evolution than e.g. k-
triangles [2]. The above mentioned properties of locality
can be computationally analyzed, but they can also be
derived simply by inspecting βk-trees. The length of
edges in the tree can furthermore be scaled to reflect
the difference in birth time of the ε(n) simplices.

Another interesting property of βk-trees is that all
(k+1)-simplices within a particular tunnel/void are eas-
ily identified by locating the node in the tree with the
desired ε(n) and then collecting all leaves in the subtree
using any tree-traversal method. In this manner the
area of tunnels/volume of voids, for instance, is easily
calculated.

Finally, any analysis method that works on trees is
now applicable to topological evolutions. For instance
the topology of two point-sets can be compared by find-
ing the tree-edit-distance between the tunnel-trees (or
void-trees) of their respective α-filters.
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