Program analysis using
3-Vaued Logic

Mooly Sagiv
Tel Aviv University

http://ww.cs.tau.ac.il/~tvla

Tentative Schedule

1. Abstract interpretation in the nutshell
2. Canonical Abstractions of dynamically allocated

storage

3. Abstract interpretation using canonical
abstraction

4. Abstract interpretation using canonical
abstraction

5. Applications& TVLA
6. Advanced Topics

Abstract Interpretation
In the nutshell

Principles of Program Analysis
F. Nielson, H. Nielson, C.L. Hankin (2, 4)

N.D. Jones and F. Nielson. Abstract
nter pretation: a Semantics-Based Tool for
Program Analysis. 1994

Patrick Cousot’ s homepage

Abstract Interpretation
Static Analysis

¢ Automatically identify program properties
— No user provided loop invariants

¢ Sound but incomplete methods
— But can berather precise

¢ Non-standard interpretation of the program operational
semantics
¢ Usages
— Compiler optimization
» Collect static information for program transformations
— Code quality tools
» |dentify potential bugs

» Prove the absence of runtime errors
» Partial correctness

Memory Leakage

List* reverse(List * head)
{
List *rev, *n;
rev = NULL;
while (head '= NULL) {
n = head ® next;

head ® next =rev;

head = n;

}

return rev,

typedef struct List {
int d;
struct List* next;
} List;

leakage of address pointed to by
head

Foundation of Static Analysis

¢ Static analysis can be viewed as
Interpreting the program over an “abstract
domain”

¢ Execute the program over larger set of
execution paths

¢ Guarantee sound results
— Every identified constant is indeed a constant
— But not every constant is identified as such

Even/Odd Abstract Interpretation

¢ Determine if an integer variable is even or odd at
a given program point

Example Program

[* x=7?*/

while (x'=1) do{ /* x=?*/

if (X %2) ==
[* Xx=E */ {x:==x12;} [* x=?*/
else
/¥ x=0 */ {x:=x*3+1 /x=E*/

assert (x %2 ==0); }

[* x=0%*/

Example Program

while (x!=1) do{

If (x%2)==0
{x:=x12;}
else
{x:=x*3+1;
X =x/2;}

Abstract Interpretation

I~
2 \
=
a
Abstract

Concrete

a Descriptors of
D Scts Of stores

Sats of stores

Odd/Even Abstract Interpretation

All concrete states

Odd/Even Abstract Interpretation

All concrete states

Jda
1-2,1,5}

- X € Even

{02}

N\
AV

Odd/Even Abstract Interpretation

All concrete st

Odd/Even Abstract Interpretation

a(X) =if X= /A return L
elseif foral zin X (z%2 == 0)
return E
elseif foral zin X (2062 == 0)
return O

elsereturn ?

ga =ifa=L return A
elseif a=E return Even
elseif a= O return Odd
else return Natural

Example Program

while (x!=1) do{

If (x%2)==0
{x:=x12;}
ese
[* x=0 */ {x=x*3+1 [x=E*/

assert (x %2 ==0); }

?7 O E

?

*’

7?7 O E

O

E|IE E E

Mo Mmoo
m20246
B oA Nm
d
mOOOOO
| -

D x | O—A AN M
o

<

e

O

©

| —

d

N

o

A =
Anu33456
T Nt <t O
O

O H|dANm <
| -

O

c O O-H AN M
O

O +lodam

+1

217 7?7
Ol?7 E O
E|? O E

Abstract interpretation cannot be
always homomorphic (Odd/Even)

{16, 32}

Operational
semantics

X = X/2

- - — = = = = =]

X =X [*2

Abstract
semantics

(8, 16}

L

Abstract (Conservative) interpretation

Operational
semantics
I a
'a
v
abStraCt Statement S» abstract
representationn Abstract representation
semantics

L]

abstract
representation

Abstract (Conservative) interpretation

Operational
semantics
Set of states Slalement S Set of states Set of states
A I.‘
I ,"
¢ H
abstract Statement S - sbstract :
representationl Abstract representation
semantics

Challenges in Abstract Interpretation

Finding appropriate program semantics (runtime)
Designing abstract representations
e What to forget
e What to remember
e Summarize crucial information
Designing Abstract Transformers
Scalability
e Large programs
e Missing source code
Precise enough

Runtime vs. Abstract Interpretation
(Software Quality Tools)

Runtime Abstract
Effectiveness Missed Errors False alarms
L ocate rare errors
Cost Proportional to Proportional to program’s
program’s Size
execution

Constant Propagation Abstract
|nterpretation

& Determine if avariable has a constant value at a
given program point

Constant Propagation Lattice

[Var ® Z7]*
[X>T,y -7]
[X~T,y ~0] [X—1,y —>T]

o [X-1,y»0] [x~0,y ~0] [X~1,y~0] [x~1y~1]

E i S

1

Example Constant Propagation

¢ Abstract representation set
of integer values and and
extravalue “T” denoting
variables not known to be
constants

¢ Conservative
Interpretation of +

+#|T7 |01 |2

Example Constant Propagation (Cont)

¢ Conservative
Interpretation of *

*# |7 |0 1 |2

T T 0 T T

0 0O |0 0O |0

1 T 0 1 2

2 T 0 2 4
T 0

Example Program x.+y o1z

X=5
X=93 [X~Dy »T,Z » T]
y=1, y;7
It (getc()) [X -5, y—7, 2 - T]
y=X+2: y=x+2
7= X +y [X-5,y »7, zw[gtn—»& Yy »7,Z » T]
[X — Y, ~7,Z — T]
z;x+y

[X-5,y »7,z2 »12]

Example Program (2)

It (getc())
X=3,y=2

else
X=2;y=3

Z=X+y;

X5y »7,2 »7

X5y »T,2

[XT,y »T,Z »T]

X

V[X/HN,Z —T]
=3 X=

2

y=3

2,y >3,

Z=X+Yy

, [x - Z -]

[XT,y »T,Z »T]

Undecidability Issues

¢ It iIsundecidable if aprogram point is reachable
IN some execution

¢ Some static analysis problems are undecidable
even If the program conditions are ignored

The Constant Propagation Example

while (getc()) {
If (getc()) x 1=x 1+1;
If (getc()) x 2=x 2+ 1,

If (getc()) x n=x_n+1,;

}
y = truncate (1/ (1 + p?(x_1, X_2, ..., X_n))
[* 1sy=0 here?*/

Coping with undecidabilty

¢ Loop free programs
¢ Simple static properties
¢ Interactive solutions

¢ Conservative (sound) estimations

— Every enabled transformation cannot change the

meaning of the code but some transformations are not
enabled

— Non optimal code

— Every potential error is caught but some “false alarms’
may be issued

Analogies with Numerical Analysis

¢ Approximate the exact semantics

¢ More precision can be obtained at greater
computational costs

— But sometimes more precise can also be more efficient

Origins of Abstract Interpretation

¢

¢

® 6 6 O 0 o

[Naur 1965] The Gier Algol compiler

“"A process which combines the operators and operands of the source
text in the manner in which an actual evaluation would haveto do it,
but which operates on descriptions of the operands, not their value”

[Reynolds 1969] Interesting analysis which includes infinite domains
(context free grammars)

[Syntzoff 1972] Well foudedness of programs and termination

[Cousot and Cousot 1976,77,79] The general theory

[Kamm and Ullman, Kildall 1977] Algorithmic foundations

[Tarjan 1981] Reductions to semi-ring problems

[Sharir and Pnueli 1981] Foundation of the interprocedural case
[Allen, Kennedy, Cock, Jones, Muchnick and Scwartz]

Some Industrial Success Stories

¢ [Array bound checks for IBM PL.8 Compiler]
¢ Polyspace

¢ Absint

¢ Prefix/Intrinsa

¢ SLAM

Conclusions

¢ Abstract interpretation is a powerful technique
¢ Scalesto different programming styles
¢ Allows specifications

¢ Proving near-commutativity becomes hard for
complicated language constructs and abstractions
— Pointers
— Destructive updates

