Entropy and Graph Based Modelling of Document Coherence using Discourse Entities: An Application to IR

Casper Petersen¹

Christina Lioma¹

Jakob Grue Simonsen¹

Birger Larsen²

¹Department of Computer Science University of Copenhagen, Denmark {cazz, c.lioma, simonsen}@di.ku.dk

> ²Department of Communication University of Aalborg, Denmark birger@hum.aau.dk

ACM SIGIR International Conference on the Theory of Information Retrieval 2015 27/09 – 30/09, Northampton, Massachusetts, United States

Motivation

Text coherence (TC) is...

- "The extent that a reader can understand the relations between
- A property of well-written texts
- Major factor for comprehension

- - Sentence ordering task (automatic summarisation)
 - Reranking results (ad hoc retrieval)

Motivation

Text coherence (TC) is...

- "The extent that a reader can understand the relations between ideas in a text" [McNamara and Kintsch, 1996]
- A property of well-written texts
- Major factor for comprehension
- Provide the second s
- Use TC models to improve select IR tasks
- TC models based on *entity grids* will improve performance of:
 - Sentence ordering task (automatic summarisation)
 - Reranking results (ad hoc retrieval)
 - over competitive baselines

Motivation

- Text coherence (TC) is...
 - "The extent that a reader can understand the relations between ideas in a text" [McNamara and Kintsch, 1996]
 - A property of well-written texts
 - Major factor for comprehension
- Recent effective TC models have not been used in IR tasks
- Use TC models to improve select IR tasks
- TC models based on *entity grids* will improve performance of:
 - Sentence ordering task (automatic summarisation)
 - Reranking results (ad hoc retrieval)
 - over competitive baselines

Motivation

- Text coherence (TC) is...
 - "The extent that a reader can understand the relations between ideas in a text" [McNamara and Kintsch, 1996]
 - A property of well-written texts
 - Major factor for comprehension
- Provide the second s
- Use TC models to improve select IR tasks
- TC models based on *entity grids* will improve performance of:
 - Sentence ordering task (automatic summarisation)
 - Reranking results (ad hoc retrieval)
 - over competitive baselines

Motivation

- Text coherence (TC) is...
 - "The extent that a reader can understand the relations between ideas in a text" [McNamara and Kintsch, 1996]
 - A property of well-written texts
 - Major factor for comprehension

Precent effective TC models have not been used in IR tasks

- Use TC models to improve select IR tasks
- TC models based on *entity grids* will improve performance of:
 - Sentence ordering task (automatic summarisation)
 - Reranking results (ad hoc retrieval)
 - over competitive baselines

Motivation

- Text coherence (TC) is...
 - "The extent that a reader can understand the relations between ideas in a text" [McNamara and Kintsch, 1996]
 - A property of well-written texts
 - Major factor for comprehension
- Precent effective TC models have not been used in IR tasks
- Use TC models to improve select IR tasks
- TC models based on entity grids will improve performance of:
 - Sentence ordering task (automatic summarisation)
 - Reranking results (ad hoc retrieval)
 - over competitive baselines

Motivation

- Text coherence (TC) is...
 - "The extent that a reader can understand the relations between ideas in a text" [McNamara and Kintsch, 1996]
 - A property of well-written texts
 - Major factor for comprehension
- Recent effective TC models have not been used in IR tasks
- Use TC models to improve select IR tasks
- TC models based on *entity grids* will improve performance of:
 - Sentence ordering task (automatic summarisation)
 - Reranking results (ad hoc retrieval)
 - over competitive baselines

Basis: Entity Grid Model Coherence Model 1: Entropy Coherence Model 2: Graph Metrics

< ロ > < 同 > < 回 > < 回 > < 回 > <

Entity Grid Model

Basis: Entity Grid Model Coherence Model 1: Entropy Coherence Model 2: Graph Metrics

From Entity Grid Model to Entropy Models

ENTITY GRID

[Barzilay and Lapata, 2008]

- Extract n-grams in row-wise fashion
- Calculate n-gram probabilities using MLE

$$p(e_i) = \frac{f(e_i)}{|E|}, \qquad p(e_i|e_{i-1}) = \frac{f(e_{i-1},e_i)}{f(e_i)}$$

- Entropy score: $H_{k=0}(E) = -\sum_{e_i \in E} p(e_i) \log_2 p(e_i)$
- Coherence score: $C = \frac{1}{H_k(E)}$

Basis: Entity Grid Model Coherence Model 1: Entropy Coherence Model 2: Graph Metrics

From Entity Grid Model to Entropy Models

EXAMPLE BIGRAMS (s,s) (BOY,MAN) (s.o) (I.THESE) CONFIDENCE HOPE THESE THE ИAN ۲oU ğ s s s $\frac{S_1}{S_2}$ $\frac{S_3}{S_4}$ s s s 0 _ _ s s 0 o

ENTITY GRID

[Barzilay and Lapata, 2008]

Extract n-grams in row-wise fashion

Calculate n-gram probabilities using MLE

$$p(e_i) = \frac{f(e_i)}{|E|}, \qquad p(e_i|e_{i-1}) = \frac{f(e_{i-1},e_i)}{f(e_i)}$$

Entropy score: $H_{k=0}(E) = -\sum p(e_i) \log_i$

• Coherence score: $C = \frac{1}{H_k(E)}$

Basis: Entity Grid Model Coherence Model 1: Entropy Coherence Model 2: Graph Metrics

From Entity Grid Model to Entropy Models

EXAMPLE BIGRAMS (s,s) (BOY,MAN) (s.o) (I.THESE) CONFIDENCE HOPE THESI **THE** ИAN ۲oU ğ s s s S₁ S₂ S₃ s s s o _ _ s s s 0 o

ENTITY GRID

[Barzilay and Lapata, 2008]

- Extract n-grams in row-wise fashion
- Calculate n-gram probabilities using MLE

$$p(e_i) = rac{f(e_i)}{|E|}, \qquad p(e_i|e_{i-1}) = rac{f(e_{i-1},e_i)}{f(e_i)}$$

- Entropy score: $H_{k=0}(E) = -\sum_{e_i \in E} p(e_i) \log_2 p(e_i)$
- Coherence score: $C = \frac{1}{H_k(E)}$

Basis: Entity Grid Model Coherence Model 1: Entropy Coherence Model 2: Graph Metrics

From Entity Grid Model to Entropy Models

EXAMPLE BIGRAMS

(s,s) (BOY,MAN) (s,o) (I,THESE)

	MAN	HOPE	CONFIDENCE	BOY		THEM	1	THESE
S₁	s	s	s	-	-	-	-	Ι
S ₂	-	-	-	s	-	-	-	Ι
S₃	s	-	-	-	s	0	-	Ι
S ₄	-	—	-	s	-	-	s	0
S₅	s	-	-	-	0	-	-	-

ENTITY GRID

[Barzilay and Lapata, 2008]

Extract n-grams in row-wise fashion

Calculate n-gram probabilities using MLE

$$p(e_i) = \frac{f(e_i)}{|E|}, \qquad p(e_i|e_{i-1}) = \frac{f(e_{i-1},e_i)}{f(e_i)}$$

Entropy score:

$$H_{k=0}(E) = -\sum_{e_i \in E} p(e_i) \log_2 p(e_i)$$

Coherence score: $C = \frac{1}{H_k(E)}$

Basis: Entity Grid Model Coherence Model 1: Entropy Coherence Model 2: Graph Metrics

From Entity Grid Model to Entropy Models

EXAMPLE BIGRAMS (s,s) (BOY,MAN) (s,o) (I,THESE) W

	MAN	HOPE	CONFIDEN	ВОҮ	You	THEM	-	THESE
S₁	s	s	s	-	-	-	-	Ι
S ₂	-	-	-	s	-	-	-	Ι
S₃	s	-	-	-	s	0	-	-
S4	-	-	-	s	-	-	s	0
S₅	s	-	-	-	0	-	-	Ι

ENTITY GRID

[Barzilay and Lapata, 2008]

Extract n-grams in row-wise fashion

Calculate n-gram probabilities using MLE

$$p(e_i) = \frac{f(e_i)}{|E|}, \qquad p(e_i|e_{i-1}) = \frac{f(e_{i-1},e_i)}{f(e_i)}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Entropy score:

$$H_{k=0}(E) = -\sum_{e_i \in E} p(e_i) \log_2 p(e_i)$$

• Coherence score: $C = \frac{1}{H_k(E)}$

Basis: Entity Grid Model Coherence Model 1: Entropy Coherence Model 2: Graph Metrics

< ロ > < 同 > < 回 > < 回 >

From Entity Grid Model to Graph Models (1/2)

Approach by [Guinaudeau and Strube, 2013]

Basis: Entity Grid Model Coherence Model 1: Entropy Coherence Model 2: Graph Metrics

From Entity Grid Model to Graph Models (2/2)

SIMPLE GRAPH

Assumption: Graph topology reflects text coherence

- Graph topology captured using graph metrics
 - PageRank
 - Clustering coefficient
 - Betweenness
 - Entity distance
 - Adjacent Topic Flow
 - Adjacent Weighted Topic Flow
 - Non adjacent Topic Flow
 - Non adjacent Weighted Topic Flow

Captures either local or global coherence

Basis: Entity Grid Model Coherence Model 1: Entropy Coherence Model 2: Graph Metrics

From Entity Grid Model to Graph Models (2/2)

Assumption:

Graph topology reflects text coherence

Graph topology captured using graph metrics

- PageRank
- Clustering coefficient
- Betweenness
- Entity distance
- Adjacent Topic Flow
- Adjacent Weighted Topic Flow
- Non adjacent Topic Flow
- Non adjacent Weighted Topic Flow

Captures either local or global coherence

SIMPLE GRAPH

Basis: Entity Grid Model Coherence Model 1: Entropy Coherence Model 2: Graph Metrics

From Entity Grid Model to Graph Models (2/2)

Assumption:

Graph topology reflects text coherence

Graph topology captured using graph metrics

- PageRank
- Clustering coefficient
- Betweenness
- Entity distance
- Adjacent Topic Flow
- Adjacent Weighted Topic Flow
- Non adjacent Topic Flow
- Non adjacent Weighted Topic Flow

Captures either local or global coherence

SIMPLE GRAPH

Basis: Entity Grid Model Coherence Model 1: Entropy Coherence Model 2: Graph Metrics

From Entity Grid Model to Graph Models (2/2)

Assumption:

Graph topology reflects text coherence

Graph topology captured using graph metrics

- PageRank
- Clustering coefficient
- Betweenness
- Entity distance
- Adjacent Topic Flow
- Adjacent Weighted Topic Flow
- Non adjacent Topic Flow
- Non adjacent Weighted Topic Flow
- Captures either local or global coherence

SIMPLE GRAPH

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 1: Setup

• Evaluate using sentence reordering task

Datasets:

- Earthquake (100 documents, articles, curated, 257.3 avg.)
- Accidents (100 documents, narratives, curated, 223.5 avg.)
- Performance measure: accuracy
- Baselines:
 - Entity Grid Model [Barzilay and Lapata, 2008]
 - Hidden Markov Model [Barzilay and Lee, 2004]
- Tuned baselines against untuned coherence models

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 1: Setup

- Evaluate using sentence reordering task
- Datasets:
 - Earthquake (100 documents, articles, curated, 257.3 avg.)
 - Accidents (100 documents, narratives, curated, 223.5 avg.)
- Performance measure: accuracy
- Baselines:
 - Entity Grid Model [Barzilay and Lapata, 2008]
 - Hidden Markov Model [Barzilay and Lee, 2004]
- Tuned baselines against untuned coherence models

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 1: Setup

- Evaluate using sentence reordering task
- Datasets:
 - Earthquake (100 documents, articles, curated, 257.3 avg.)
 - Accidents (100 documents, narratives, curated, 223.5 avg.)

• Performance measure: accuracy

- Baselines:
 - Entity Grid Model [Barzilay and Lapata, 2008]
 - Hidden Markov Model [Barzilay and Lee, 2004]
- Tuned baselines against untuned coherence models

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 1: Setup

- Evaluate using sentence reordering task
- Datasets:
 - Earthquake (100 documents, articles, curated, 257.3 avg.)
 - Accidents (100 documents, narratives, curated, 223.5 avg.)
- Performance measure: accuracy
- Baselines:
 - Entity Grid Model [Barzilay and Lapata, 2008]
 - Hidden Markov Model [Barzilay and Lee, 2004]
- Tuned baselines against untuned coherence models

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 1: Setup

- Evaluate using sentence reordering task
- Datasets:
 - Earthquake (100 documents, articles, curated, 257.3 avg.)
 - Accidents (100 documents, narratives, curated, 223.5 avg.)
- Performance measure: accuracy
- Baselines:
 - Entity Grid Model [Barzilay and Lapata, 2008]
 - Hidden Markov Model [Barzilay and Lee, 2004]
- Tuned baselines against untuned coherence models

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 1: Results

	Method	Eart	nquakes	Accidents	
		Acc.	±%	Acc.	±%
	Entity grid model	69.7*	-	67.0*	-
DASELINES	HMM-based model	60.3*	-	31.7*	-
	Entropy-0 order	75.0	+7.6%	73.0*	+9.0%
ENTROPY	Entropy-1 order	64.0	-8.2%	70.0*	+4.5%
	Entropy-2 order	64.0	-8.2%	70.0*	+4.5%
	PageRank	75.0	+7.6%	73.0*	+9.0%
	Clustering Coef.	67.0	-3.9%	66.0*	-1.5%
	Betweenness	73.0*	+4.7%	‡ 77.0 *	+14.9%
CDADU	Entity Distance	‡ 76.0	+9.0%	75.0*	+11.9%
GNAFH	Adj. Topic Flow	70.0*	+0.4%	74.0*	+10.4%
	Adj W. Topic Flow	61.0*	-12.5%	66.0*	-1.5%
	nAdj. Topic Flow	70.0	+0.4%	70.0	+4.5%
	nAdj. W. Topic Flow	70.0	+0.4%	70.0*	+4.5%

• Large length sentences

• Spatial proximity != semantic relatedness

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 1: Results

	Method	Eart	nquakes	Accidents	
		Acc.	±%	Acc.	±%
	Entity grid model	69.7*	-	67.0*	-
DASELINES	HMM-based model	60.3*	-	31.7*	-
	Entropy-0 order	75.0	+7.6%	73.0*	+9.0%
ENTROPY	Entropy-1 order	64.0	-8.2%	70.0*	+4.5%
	Entropy-2 order	64.0	-8.2%	70.0*	+4.5%
	PageRank	75.0	+7.6%	73.0*	+9.0%
	Clustering Coef.	67.0	-3.9%	66.0*	-1.5%
	Betweenness	73.0*	+4.7%	‡ 77.0 *	+14.9%
CDADU	Entity Distance	‡ 76.0	+9.0%	75.0*	+11.9%
GNAFTI	Adj. Topic Flow	70.0*	+0.4%	74.0*	+10.4%
	Adj W. Topic Flow	61.0*	-12.5%	66.0*	-1.5%
	nAdj. Topic Flow	70.0	+0.4%	70.0	+4.5%
	nAdj. W. Topic Flow	70.0	+0.4%	70.0*	+4.5%

Large length sentences

• Spatial proximity != semantic relatedness

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 1: Results

	Method	Eart	hquakes	Accidents	
		Acc.	±%	Acc.	±%
	Entity grid model	69.7*	-	67.0*	-
DASELINES	HMM-based model	60.3*	-	31.7*	-
	Entropy-0 order	75.0	+7.6%	73.0*	+9.0%
ENTROPY	Entropy-1 order	64.0	-8.2%	70.0*	+4.5%
	Entropy-2 order	64.0	-8.2%	70.0*	+4.5%
	PageRank	75.0	+7.6%	73.0*	+9.0%
	Clustering Coef.	67.0	-3.9%	66.0*	-1.5%
	Betweenness	73.0*	+4.7%	‡ 77.0 *	+14.9%
CDADU	Entity Distance	‡ 76.0	+9.0%	75.0*	+11.9%
GNAFH	Adj. Topic Flow	70.0*	+0.4%	74.0*	+10.4%
	Adj W. Topic Flow	61.0*	-12.5%	66.0*	-1.5%
	nAdj. Topic Flow	70.0	+0.4%	70.0	+4.5%
	nAdj. W. Topic Flow	70.0	+0.4%	70.0*	+4.5%

- Large length sentences
- Spatial proximity != semantic relatedness

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 2: Setup

- Rerank top-1000 retrieved documents: $\widehat{RSV}_d = RSV_d \times \alpha + (1 - \alpha) COH_d$
- Spam filtered ClueWeb09 cat. B. (\approx 16M documents)
- Dirichlet-smoothed unigram query likelihood language model
- Queries 150–200 (TREC WebTrack 2012)
- Performance measures: MRR, P@10, MAP, ERR@20
- Tuned baseline and \widehat{RSV} . 5-fold cross-validation

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 2: Setup

Assumption:

- Rerank top-1000 retrieved documents: $\widehat{RSV}_d = RSV_d \times \alpha + (1 - \alpha) COH_d$
- Spam filtered ClueWeb09 cat. B. (\approx 16M documents)
- Dirichlet-smoothed unigram query likelihood language model
- Queries 150-200 (TREC WebTrack 2012)
- Performance measures: MRR, P@10, MAP, ERR@20
- Tuned baseline and \widehat{RSV} . 5-fold cross-validation

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 2: Setup

• Assumption:

- Rerank top-1000 retrieved documents: $\widehat{RSV}_d = RSV_d \times \alpha + (1 - \alpha) COH_d$
- Spam filtered ClueWeb09 cat. B. (≈ 16M documents)
- Dirichlet-smoothed unigram query likelihood language model
- Queries 150-200 (TREC WebTrack 2012)
- Performance measures: MRR, P@10, MAP, ERR@20
- Tuned baseline and \widehat{RSV} . 5-fold cross-validation

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 2: Setup

• Assumption:

- Rerank top-1000 retrieved documents: $\widehat{RSV}_d = RSV_d \times \alpha + (1 - \alpha) COH_d$
- Spam filtered ClueWeb09 cat. B. (≈ 16M documents)
- Dirichlet-smoothed unigram query likelihood language model
- Queries 150–200 (TREC WebTrack 2012)
- Performance measures: MRR, P@10, MAP, ERR@20
- Tuned baseline and \widehat{RSV} . 5-fold cross-validation

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 2: Setup

• Assumption:

- Rerank top-1000 retrieved documents: $\widehat{RSV}_d = RSV_d \times \alpha + (1 - \alpha) COH_d$
- Spam filtered ClueWeb09 cat. B. (≈ 16M documents)
- Dirichlet-smoothed unigram query likelihood language model
- Queries 150-200 (TREC WebTrack 2012)
- Performance measures: MRR, P@10, MAP, ERR@20
- Tuned baseline and \widehat{RSV} . 5-fold cross-validation

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 2: Setup

• Assumption:

- Rerank top-1000 retrieved documents: $\widehat{RSV}_d = RSV_d \times \alpha + (1 - \alpha) COH_d$
- Spam filtered ClueWeb09 cat. B. (\approx 16M documents)
- Dirichlet-smoothed unigram query likelihood language model
- Queries 150-200 (TREC WebTrack 2012)
- Performance measures: MRR, P@10, MAP, ERR@20
- Tuned baseline and \widehat{RSV} . 5-fold cross-validation

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 2: Setup

Assumption:

- Rerank top-1000 retrieved documents: $\widehat{RSV}_d = RSV_d \times \alpha + (1 - \alpha) COH_d$
- Spam filtered ClueWeb09 cat. B. (≈ 16M documents)
- Dirichlet-smoothed unigram query likelihood language model
- Queries 150–200 (TREC WebTrack 2012)
- Performance measures: MRR, P@10, MAP, ERR@20
- Tuned baseline and \widehat{RSV} . 5-fold cross-validation

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 2: Results

Method	MRR	±%	P@10	±%
Baseline	20.57	-	19.80	-
Entropy-0 order	49.50	+140.6%	33.00	+66.7%
PageRank	49.85	+142.3%	34.40	+73.7%
Clustering Coef.	51.82	+151.9%	34.60	+74.7%
Betweenness	49.74	+141.8%	36.40	+83.8%
Entity Distance	34.18	+66.2%	22.40	+13.1%
Adj. Topic Flow	55.73	+170.9%	34.20	+72.7%
Adj. W. Topic Flow	51.60	+150.8%	34.20	+72.7%
nAdj. Topic Flow	50.62	+146.1%	34.40	+73.7%
nAdj. W. Topic Flow	50.79	+146.9%	34.60	+74.7%

- Coherence improves early precision
- Entity distance is consistently the weakest
- Coherence a discriminative feature of relevance

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 2: Results

Method	MRR	±%	P@10	±%
Baseline	20.57	-	19.80	-
Entropy-0 order	49.50	+140.6%	33.00	+66.7%
PageRank	49.85	+142.3%	34.40	+73.7%
Clustering Coef.	51.82	+151.9%	34.60	+74.7%
Betweenness	49.74	+141.8%	36.40	+83.8%
Entity Distance	34.18	+66.2%	22.40	+13.1%
Adj. Topic Flow	55.73	+170.9%	34.20	+72.7%
Adj. W. Topic Flow	51.60	+150.8%	34.20	+72.7%
nAdj. Topic Flow	50.62	+146.1%	34.40	+73.7%
nAdj. W. Topic Flow	50.79	+146.9%	34.60	+74.7%

Coherence improves early precision

- Entity distance is consistently the weakest
- Coherence a discriminative feature of relevance

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 2: Results

Method	MRR	±%	P@10	±%
Baseline	20.57	-	19.80	-
Entropy-0 order	49.50	+140.6%	33.00	+66.7%
PageRank	49.85	+142.3%	34.40	+73.7%
Clustering Coef.	51.82	+151.9%	34.60	+74.7%
Betweenness	49.74	+141.8%	36.40	+83.8%
Entity Distance	34.18	+66.2%	22.40	+13.1%
Adj. Topic Flow	55.73	+170.9%	34.20	+72.7%
Adj. W. Topic Flow	51.60	+150.8%	34.20	+72.7%
nAdj. Topic Flow	50.62	+146.1%	34.40	+73.7%
nAdj. W. Topic Flow	50.79	+146.9%	34.60	+74.7%

- Coherence improves early precision
- Entity distance is consistently the weakest
- Coherence a discriminative feature of relevance

Experiment 1: Sentence Reordering Experiment 1: Results Experiment 2: Reranking Experiment 2: Results

Experiment 2: Results

Method	MRR	±%	P@10	±%
Baseline	20.57	-	19.80	-
Entropy-0 order	49.50	+140.6%	33.00	+66.7%
PageRank	49.85	+142.3%	34.40	+73.7%
Clustering Coef.	51.82	+151.9%	34.60	+74.7%
Betweenness	49.74	+141.8%	36.40	+83.8%
Entity Distance	34.18	+66.2%	22.40	+13.1%
Adj. Topic Flow	55.73	+170.9%	34.20	+72.7%
Adj. W. Topic Flow	51.60	+150.8%	34.20	+72.7%
nAdj. Topic Flow	50.62	+146.1%	34.40	+73.7%
nAdj. W. Topic Flow	50.79	+146.9%	34.60	+74.7%

- Coherence improves early precision
- Entity distance is consistently the weakest
- Coherence a discriminative feature of relevance

- Text coherence (TC) is crucial for conveying and acquiring information from documents
- TC models based on entity grids not used before for IR tasks
- We make two contributions:
 - Propose two classes of TC models that may be useful for NLP
 - We show that several of these TC models are useful for retrieval
- TC may be discriminative feature of relevance
- Complements findings by [Bendersky et al., 2011] and [Tan et al., 2012]

- Text coherence (TC) is crucial for conveying and acquiring information from documents
- TC models based on entity grids not used before for IR tasks
- We make two contributions:
 - Propose two classes of TC models that may be useful for NLP
 - We show that several of these TC models are useful for retrieval
- TC may be discriminative feature of relevance
- Complements findings by [Bendersky et al., 2011] and [Tan et al., 2012]

- Text coherence (TC) is crucial for conveying and acquiring information from documents
- TC models based on entity grids not used before for IR tasks
- We make two contributions:
 - Propose two classes of TC models that may be useful for NLP
 We show that several of these TC models are useful for retrieval
- TC may be discriminative feature of relevance
- Complements findings by [Bendersky et al., 2011] and [Tan et al., 2012]

- Text coherence (TC) is crucial for conveying and acquiring information from documents
- TC models based on entity grids not used before for IR tasks
- We make two contributions:
 - Propose two classes of TC models that may be useful for NLP
 We show that several of these TC models are useful for retrieval
- TC may be discriminative feature of relevance
- Complements findings by [Bendersky et al., 2011] and [Tan et al., 2012]

- Text coherence (TC) is crucial for conveying and acquiring information from documents
- TC models based on entity grids not used before for IR tasks
- We make two contributions:
 - Propose two classes of TC models that may be useful for NLP
 - We show that several of these TC models are useful for retrieval
- TC may be discriminative feature of relevance
- Complements findings by [Bendersky et al., 2011] and [Tan et al., 2012]

- Text coherence (TC) is crucial for conveying and acquiring information from documents
- TC models based on entity grids not used before for IR tasks
- We make two contributions:
 - Propose two classes of TC models that may be useful for NLP
 - We show that several of these TC models are useful for retrieval
- TC may be discriminative feature of relevance
- Complements findings by [Bendersky et al., 2011] and [Tan et al., 2012]

- Text coherence (TC) is crucial for conveying and acquiring information from documents
- TC models based on entity grids not used before for IR tasks
- We make two contributions:
 - Propose two classes of TC models that may be useful for NLP
 - We show that several of these TC models are useful for retrieval
- TC may be discriminative feature of relevance
- Complements findings by [Bendersky et al., 2011] and [Tan et al., 2012]

Thank you for your attention

cazz@di.ku.dk-@cpdiku

イロト イ団ト イヨト イヨ

Bibliography

13/13

[Barzilay and Lapata, 2008] Barzilay, R. and Lapata, M. (2008). Modeling local coherence: An entity-based approach. *ACL*, pages 1–34.

[Barzilay and Lee, 2004] Barzilay, R. and Lee, L. (2004).

Catching the drift: Probabilistic content models with applications to generation and summarization. *HLT-NAACL*. pages 113–120.

[Bendersky et al., 2011] Bendersky, M., Croft, W. B., and Diao, Y. (2011). Quality-biased ranking of web documents. In *WSDM*, pages 95–104. ACM.

[Guinaudeau and Strube, 2013] Guinaudeau, C. and Strube, M. (2013). Graph-based local coherence modeling. *ACL*, pages 93–103.

[McNamara and Kintsch, 1996] McNamara, D. S. and Kintsch, W. (1996). Learning from texts: Effects of prior knowledge and text coherence. *Discourse processes*, 22(3):247–288.

[Tan et al., 2012] Tan, C., Gabrilovich, E., and Pang, B. (2012). To each his own: personalized content selection based on text comprehensibility. In *WSDM*, pages 233–242. ACM.