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Motivation

1 Text coherence (TC) is...
“The extent that a reader can understand the relations between
ideas in a text ” [McNamara and Kintsch, 1996]
A property of well-written texts
Major factor for comprehension

2 Recent effective TC models have not been used in IR tasks

3 Use TC models to improve select IR tasks

4 TC models based on entity grids will improve performance of:
Sentence ordering task (automatic summarisation)
Reranking results (ad hoc retrieval)

over competitive baselines
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Basis: Entity Grid Model
Coherence Model 1: Entropy
Coherence Model 2: Graph Metrics

Entity Grid Model
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From Entity Grid Model to Entropy Models
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0s)s8l0BOY)MAN8
0s)o8l0I)THESE8

EXAMPLElBIGRAMS

1 Extract n-grams in row-wise fashion
2 Calculate n-gram probabilities using MLE

p(ei) =
f (ei )
|E| , p(ei |ei−1) =

f (ei−1,ei )
f (ei )

3 Entropy score:
Hk=0(E) = −

∑
ei∈E

p(ei) log2 p(ei)

4 Coherence score:
C = 1

Hk (E)
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From Entity Grid Model to Graph Models (1/2)
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From Entity Grid Model to Graph Models (2/2)

SIMPLE GRAPH

S1

S4 S3

S2 S5

1 Assumption:
Graph topology reflects text coherence

2 Graph topology captured using graph metrics
PageRank
Clustering coefficient
Betweenness
Entity distance
Adjacent Topic Flow
Adjacent Weighted Topic Flow
Non adjacent Topic Flow
Non adjacent Weighted Topic Flow

3 Captures either local or global coherence
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Experiment 1: Sentence Reordering
Experiment 1: Results
Experiment 2: Reranking
Experiment 2: Results

Experiment 1: Setup

Evaluate using sentence reordering task

Datasets:
Earthquake (100 documents, articles, curated, 257.3 avg.)
Accidents (100 documents, narratives, curated, 223.5 avg.)

Performance measure: accuracy

Baselines:
Entity Grid Model [Barzilay and Lapata, 2008]
Hidden Markov Model [Barzilay and Lee, 2004]

Tuned baselines against untuned coherence models
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Experiment 1: Sentence Reordering
Experiment 1: Results
Experiment 2: Reranking
Experiment 2: Results

Experiment 1: Results

Method Earthquakes Accidents
Acc. ±% Acc. ±%

BASELINES Entity grid model 69.7∗ – 67.0∗ –
HMM-based model 60.3∗ – 31.7∗ –
Entropy-0 order 75.0 +7.6% 73.0∗ +9.0%

ENTROPY Entropy-1 order 64.0 −8.2% 70.0∗ +4.5%
Entropy-2 order 64.0 −8.2% 70.0∗ +4.5%

GRAPH

PageRank 75.0 +7.6% 73.0∗ +9.0%
Clustering Coef. 67.0 −3.9% 66.0∗ −1.5%
Betweenness 73.0∗ +4.7% ‡77.0∗ +14.9%
Entity Distance ‡76.0 +9.0% 75.0∗ +11.9%
Adj. Topic Flow 70.0∗ +0.4% 74.0∗ +10.4%
Adj W. Topic Flow 61.0∗ −12.5% 66.0∗ −1.5%
nAdj. Topic Flow 70.0 +0.4% 70.0 +4.5%
nAdj. W. Topic Flow 70.0 +0.4% 70.0∗ +4.5%

Large length sentences
Spatial proximity != semantic relatedness
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Experiment 1: Sentence Reordering
Experiment 1: Results
Experiment 2: Reranking
Experiment 2: Results

Experiment 2: Setup

Assumption:
More coherent documents are more relevant documents

Rerank top-1000 retrieved documents:
R̂SV d = RSVd × α+ (1− α)COHd

Spam filtered ClueWeb09 cat. B. (≈ 16M documents)

Dirichlet-smoothed unigram query likelihood language model

Queries 150–200 (TREC WebTrack 2012)

Performance measures: MRR, P@10, MAP, ERR@20

Tuned baseline and R̂SV . 5-fold cross-validation
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Spam filtered ClueWeb09 cat. B. (≈ 16M documents)

Dirichlet-smoothed unigram query likelihood language model

Queries 150–200 (TREC WebTrack 2012)

Performance measures: MRR, P@10, MAP, ERR@20

Tuned baseline and R̂SV . 5-fold cross-validation
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Experiment 2: Results

Method MRR ±% P@10 ±%
Baseline 20.57 – 19.80 –
Entropy-0 order 49.50 +140.6% 33.00 +66.7%
PageRank 49.85 +142.3% 34.40 +73.7%
Clustering Coef. 51.82 +151.9% 34.60 +74.7%
Betweenness 49.74 +141.8% 36.40 +83.8%
Entity Distance 34.18 +66.2% 22.40 +13.1%
Adj. Topic Flow 55.73 +170.9% 34.20 +72.7%
Adj. W. Topic Flow 51.60 +150.8% 34.20 +72.7%
nAdj. Topic Flow 50.62 +146.1% 34.40 +73.7%
nAdj. W. Topic Flow 50.79 +146.9% 34.60 +74.7%

Coherence improves early precision
Entity distance is consistently the weakest
Coherence a discriminative feature of relevance
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Conclusion

Text coherence (TC) is crucial for conveying and acquiring
information from documents

TC models based on entity grids not used before for IR tasks

We make two contributions:
1 Propose two classes of TC models that may be useful for NLP
2 We show that several of these TC models are useful for retrieval

TC may be discriminative feature of relevance

Complements findings by [Bendersky et al., 2011] and
[Tan et al., 2012]
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Thank you for your attention
cazz@di.ku.dk – @cpdiku
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