
u n i ve r s i t y o f co pe n h ag e n

Københavns Universitet

The impact of using combinatorial optimisation for static caching of posting lists

Petersen, Casper; Simonsen, Jakob Grue; Lioma, Christina

Publication date:
2015

Document Version
Author final version (often known as postprint)

Citation for published version (APA):
Petersen, C., Simonsen, J. G., & Lioma, C. (2015). The impact of using combinatorial optimisation for static
caching of posting lists. Paper presented at Asia Information Retrieval Societies Conference, Brisbane,
Australia.

Download date: 06. nov.. 2015

The Impact of using Combinatorial Optimisation
for Static Caching of Posting Lists

Casper Petersen, Jakob Grue Simonsen, and Christina Lioma

University of Copenhagen, Copenhagen, Denmark,
cazz@di.ku.dk, simonsen@di.ku.dk, c.lioma@di.ku.dk

Abstract. Caching posting lists can reduce the amount of disk I/O
required to evaluate a query. Current methods use optimisation proce-
dures for maximising the cache hit ratio. A recent method selects posting
lists for static caching in a greedy manner and obtains higher hit rates
than standard cache eviction policies such as LRU and LFU. However,
a greedy method does not formally guarantee an optimal solution. We
investigate whether the use of methods guaranteed, in theory, to find an
approximately optimal solution would yield higher hit rates. Thus, we
cast the selection of posting lists for caching as an integer linear pro-
gramming problem and perform a series of experiments using heuristics
from combinatorial optimisation (CCO) to find optimal solutions. Using
simulated query logs we find that CCO yields comparable results to a
greedy baseline using cache sizes between 200 and 1000 MB, with modest
improvements for queries of length two to three.

Keywords: posting list, caching, combinatorial optimisation

1 Introduction

A posting list consists of a term t and n ≥ 1 postings, each containing the ID of a
document where t occurs, and other information required by the search engine’s
scoring function, e.g. the frequency of t in each document [6]. Posting list caching
can reduce the amount of disk I/O involved [13, 14] in query processing, affords
higher cache utilisation and hit rates than result caching [12], and can combine
terms to answer incoming queries.
Our contribution: We show that static caching of posting lists can be modelled
in a principled manner using constrained combinatorial optimisation (CCO), a
standard method that has yielded great improvements in many fields [9, Chap.
35], and we provide a principled investigation of whether CCO would yield better
solutions (preferably using modest extra computational resources) than greedy
methods. Using simulated query logs for a range of cache sizes, we perform a
sequence of experiments that show that results using combinatorial optimisation
is comparable to the greedy baseline of Baeza-Yates et al. using 200-1000 MB
cache sizes, with some modest improvements for queries of length two to three.

2 Related Work

Much prior work has been devoted to caching posting lists [3, 4, 5, 6, 10, 11,
13, 14, 15]. Zhang et al. [15] benchmark five posting list caching policies and
find LFU (least frequently used – cache members are evicted based on their
infrequency of access) to be superior, and that cache hit rates for static posting
list are similar to the LFU, but with less computational overhead. An integrated
cache that merges posting lists of frequently co-occurring terms to build new
posting lists in the inverted index is used by Tolosa et al. [14]. Using a cost
function that combines disk lookup and CPU time, the integrated cache improves
performance over standard posting list caching by up to 40%. Combinatorial
optimisation for caching has not been investigated to the same degree: Baeza-
Yates et al. [5] cache query terms based on their frequencies in a query log, and
obtain ≈20% reduction in memory usage without increasing query answer time.
Baeza-Yates et al. [3] extend this approach by caching query terms using (i) their
frequency in a query log weighted by (ii) their frequency in a collection. Posting
lists with the highest weight are then cached. This method obtains higher hit
rates than their approach in [5], dynamic LRU (least recently used) and dynamic
LFU for all cache sizes. We propose an extension of [3] which uses a principled
method to select posting lists for static caching. Next, we describe the original
method by Baeza-Yates et al., and our extension.

3 Posting Lists Caching

Greedy Posting Lists Caching Consider a list of queries, each of which con-
sists of one or more terms and a cache of finite capacity. Let Fq(t) denote the
number of queries that contain term t in some query logQL and Fd(t) the number
of documents that contain t in some collection C. A greedy strategy to posting
list selection chooses the query terms (representing posting lists) with the high-
est Fq(t) until cache space is exhausted as in [5]. However, Baeza-Yates et al.
[3] observe a trade-off between terms with high Fq(t) and high Fd(t) as these
have long posting lists that consume substantial cache space. They address this
trade-off by using the ratio Fq(t)/Fd(t), called QTFDF, to select terms for static
caching by (i) calculating QTFDF of each t ∈ QL ∩C, (ii) sorting terms in de-
creasing value of QTFDF and (iii) caching the terms with the highest QTFDF
until cache space is exhausted. The method of [3] is thus a clever variation of
the profit-to-weight ratio approach first used by Dantzig [8].

Selecting which posting lists to load into the cache is a 0-1 knapsack problem
[3, 4]: given a knapsack with capacity c and n items c1, . . . , cn having values
v1, . . . , vn and weights w1, . . . , wn, take the items that maximise the total value
without exceeding c. An item can only be selected once and fractions of items
cannot be taken. As the knapsack optimisation problem is NP-hard and cannot
in general be solved optimally using a greedy strategy [7, Chap. 16], we next
describe how to formulate posting list selection as a combinatorial optimisation
problem which, in theory, would find an approximately optimal solution.

Combinatorial Optimisation for Posting Lists Caching We formalise
the observation of [3] that a trade-off exists between Fq(t) and Fd(t) as follows:
terms should be cached that yield the highest possible Fq(t) subject to the
constraint that the total size of the posting lists of cached terms should not
exceed cache size. This is a classic CCO problem (a fact already noted by [3], but
without formalisation or reported experiments). We cast posting list selection as
an integer linear program of the form:

max
∑n

i=1 vixi (1)

subject to
∑n

i=1 wixi ≤ c (2)

xi ∈ {0, 1}, 1 ≤ i ≤ n (3)

where
∑n

i=1 vixi is the objective function,
∑n

i=1 wixi ≤ c and xi ∈ {0, 1}, 1 ≤
i ≤ n are constraints where xi represents a term ti (a posting list). A solution
is a setting of the variables xi; a feasible solution is a solution that satisfies all
constraints; and an optimal solution is a feasible solution with maximal value of
the objective function. We consider only optimal solutions here. Eq. (2) states
that the total weight of the selected terms cannot exceed c, and Eq. (3) that
each term is either selected or discarded. We set vi = Fq(ti) and wi = Fd(ti),
and refer to the method described here as the CCO method.

We emphasise two points. First, the CCO method maximises the chance of
a query term cache hit, but does not consider disk I/O a factor. We can do
this using a multi -objective CCO problem where one objective function seeks to
minimize disk I/O (using the length of the posting list of xi as values vi) and
a second objective function that seeks to maximise the number of cache hits.
Second, if a term is selected its entire posting list is loaded. Another approach
is to allow fractions of posting lists to be loaded and access the main index as
needed. This may be useful if e.g. each posting list is sorted so access to the
main index is reduced. We leave both topics as future work.

4 Simulating queries

Query logs from large search engines are typically not publicly available in large
numbers. Instead, we construct simulated query logs using (i) the method of
Azzopardi et al. [2] and (ii) random sampling from a large synthetic query log.

Known-item queries We construct synthetic query logs containing known-
item queries using the method of [1, 2] as follows: We first select a document dk
from the collection (with uniform probability), then select a query length l and
then select l terms t1,...,l from the document language model (LM) of dk with
probability p(ti|Θd) and add ti to q. p(ti|Θd) is a mixture of (i) the maximum
likelihood estimate of a term occurring in a document and (ii) a background
model p(t) (maximum likelihood estimate of t in the collection). Estimating (i)
is done using one of two LMs [1]. The popular LM is given by

p(ti|dk) = n(ti, dk)/
∑
tj∈dk

n(tj , dk) (4)

where ti, tj are terms in dk and n(ti, dk) is the term-frequency of ti in dk. The
discriminative LM is given by

p(ti|dk) = b(tj , dk)/p(ti) ·
∑
tj∈dk

b(tj , dk)/p(tj) (5)

where b(tj , dk) = 1 if term tj occurs in dk.

Sampling from a large query log We use the anchor text query log from
ClueWeb091 as starting point, which contains 500M triplets of the form <URL,
anchor text, fq> where fq is the frequency of the tuple <URL, anchor text>.
From this query log, we sample with replacement to generate new query logs.

5 Experiments

We describe how we simulate repeated queries and how we measure performance.
We evaluate the CCO method against the greedy baseline of Baeza-Yates et al.
[3], using the number of cache hits as our cache performance measure.

Simulating repeated queries The method of Section 4 generates queries oc-
curring exactly once. To generate repeated queries in the synthetic query sets we
do as follows: after simulating a query, we generate a random number r in the
interval (0; 1) and compare it to a threshold τ . If r > τ we duplicate the query.
We fix τ = 0.44 meaning that ∼ 56% of the queries have multiple occurrences [4].
We simulate queries of length l = 1, 2, 3 and generate m = 5 queries from each
document. For query logs simulated using the method in Section 4, we cannot
control repeated queries.

Experimental settings We experiment with cache sizes of 200, 600 and 1000
MB (cache sizes can vary between 100 MB to 16 GB [14]) and fix the size of
a posting to 8 bytes. We use ClueWeb09 cat. B. – a domain-free crawl of ca.
50 million web pages in English – indexed using Indri 5.8 with no stemming
and with stop words removed as collection. We simulate query logs of 1M, 5M
and 10M queries using each of the two LMs from Section 4 and the method
from Section 4 with the anchor text as queries. As in [3], we estimate Fq(t)
from each query log and Fd(t) from the collection. Each CCO problem is solved
using SYMPHONY2 (extensive experiments and tuning using lp solve3 gave
no consistent improvements). We count a cache hit for a query iff at least one
of its terms is found in the cache (see [15] for alternative definitions). A single
hit is sufficient for efficient retrieval as we need only traverse that term’s posting
list, and scan the forward index of each document to determine if remaining
query terms are found. Counting query hits using this linear scan approach is
less efficient than posting list intersection, but in this preliminary work, it allows
us to test the merit of our method.

1 http://lemurproject.org/clueweb09/anchortext-querylog/
2 https://projects.coin-or.org/SYMPHONY
3 http://lpsolve.sourceforge.net/5.5/

6 Findings

We show results for the 5M and 10M query logs generated using the method from
Section 4 in Table 1. Results for all other query logs are qualitatively similar.
We do not report CPU or memory consumption as this cost is likely minimal
compared to indexing and retrieval costs. Across all query logs, query lengths
(qlen) and cache sizes, the overlap coefficient is > 85% and both CCO and the
baseline cache contain approximately the same number of terms. For qlen=1,
CCO and the baseline perform nearly identically for all query logs. For qlen=2,
the discriminative query log gives rise to the largest differences between CCO and
the baseline though these differences are negligible relatively to the total number
of cache hits. For the popular query log, the differences are substantially smaller.
The observations for qlen=3 are identical to those for qlen=2.

Simulated 5M

Discriminative Popular
qlen=1 qlen=2 qlen=3 qlen=1 qlen=2 qlen=3

O
C

200M 0.851 0.884 0.923 0.990 0.973 0.977
600M 0.962 0.934 0.899 0.997 0.987 0.999

1000M 0.952 0.952 0.942 0.995 0.994 0.998

C
T

200M 24938/24951 24922/24920 24973/24974 9311/9310 13799/13782 16841/16845
600M 74648/74483 74725/74740 74780/74752 13804/13803 21483/21473 27568/27557

1000M 114269/115850 122655/123358 124525/124546 16309/16307 25704/25696 33194/33209

C
H

200M 217626/217626 228183/228266 228692/228877 19185/19185 28655/28671 35242/35238
600M 546566/546566 596812/596790 600376/600733 28537/28537 44579/44573 57352/57351

1000M 765793/765793 859142/857718 880740/880132 33768/33767 53531/53529 69370/69366

D
IF

F 200M 0 -83 -185 0 -16 4
600M 0 22 -357 0 6 1

1000M 0 1424 608 1 2 4

Simulated 10M

Discriminative Popular
qlen=1 qlen=2 qlen=3 qlen=1 qlen=2 qlen=3

O
C

200M 0.949 0.957 0.865 0.961 0.929 0.977
600M 0.890 0.909 0.885 0.989 0.982 0.985

1000M 0.910 0.891 0.957 0.999 0.989 0.999

C
T

200M 24988/24958 24955/24926 24954/24935 13892/13886 19404/19335 22775/22799
600M 74589/74537 74468/74591 74642/74562 21623/21614 32962/32919 41095/41170

1000M 124251/124127 123925/124091 124632/124350 25872/25876 40122/40096 51247/51247

C
H

200M 240056/240056 246439/246440 246117/246293 28634/28634 40152/40145 48251/48258
600M 629405/629405 662230/662148 664890/664515 44710/44710 68199/68203 86191/86154

1000M 957964/957963 1033190/1033109 1044362/1044852 53631/53629 83379/83374 107333/107332

D
IF

F 200M 0 -1 -176 0 7 -7
600M 0 82 375 0 -4 37

1000M 1 81 -490 2 5 1

Table 1: Results for the Discriminative and Popular 5M and 10M query log for query
lengths = 1,2,3 and cache sizes: 200,600 and 1000 MB. x/y means CCO / baseline. OC

is the overlap coefficient = |X∩Y |
min(|X|,|Y |) . CT is the number of cache terms. CH is the

number of cache hits. Diff is the difference in CH. Entries where Diff >0 (boldfaced).

7 Conclusions and Future Work

We have investigated static posting list caching as a constrained combinatorial
optimisation (CCO) problem and have evaluated this theoretically principled
method against the greedy method of Baeza-Yates et al. [3]. We found both

methods performed similarly for all cache sizes, with some modest gains for the
CCO method. The high values (>85%) of the overlap coefficient in all experi-
ments suggest that both methods mostly identify the same high-frequency query
terms and that differences in cache hits can be attributed to a small set of infre-
quent terms. However, while combinatorial optimisation gives, in theory, optimal
solutions, in practice the quality of the solution also depends on the problem,
the solver and the settings of the solver’s parameters. In future work, we will
investigate (i) how this impacts posting list selection, (ii) if CCO can obtain
consistent performance improvements for domain-specific query logs, and (iii)
the use of multi-objective CCO to balance disk I/O with cache hits and allowing
fractions of posting lists to be cached.

References

[1] Leif Azzopardi and Maarten de Rijke. Automatic construction of known-item
finding test beds. In SIGIR, pages 603–604, 2006.

[2] Leif Azzopardi, Maarten de Rijke, and Krisztian Balog. Building simulated queries
for known-item topics: an analysis using six european languages. In SIGIR, pages
455–462, 2007.

[3] Ricardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vanessa Murdock, Vas-
silis Plachouras, and Fabrizio Silvestri. The impact of caching on search engines.
In SIGIR, pages 183–190. ACM, 2007.

[4] Ricardo Baeza-Yates, Aristides Gionis, Flavio P. Junqueira, Vanessa Murdock,
Vassilis Plachouras, and Fabrizio Silvestri. Design trade-offs for search engine
caching. TWEB, 2(4):20, 2008.

[5] Ricardo Baeza-Yates and Felipe Saint-Jean. A three level search engine index
based in query log distribution. In SPIRE, pages 56–65. Springer, 2003.

[6] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien.
Efficient query evaluation using a two-level retrieval process. In IKM, pages 426–
434. ACM, 2003.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms. MIT Press Cambridge, 2001.

[8] George B. Dantzig. Discrete-variable extremum problems. Operations research,
5(2):266–288, 1957.

[9] Martin Grotschel and László Lovász. Combinatorial optimization. Handbook of
combinatorics, 2:1541–1597, 1995.

[10] Zhen Liu, Philippe Nain, Nicolas Niclausse, and Don Towsley. Static caching of
web servers. In PWEI, pages 179–190. ISOP, 1997.

[11] Xiaohui Long and Torsten Suel. Three-level caching for efficient query processing
in large web search engines. WWW, 9(4):369–395, 2006.

[12] Myron Papadakis and Yannis Tzitzikas. Answering keyword queries through
cached subqueries in best match retrieval models. JIIS, pages 1–40, 2014.

[13] Paricia C. Saraiva, Edleno Silva de Moura, Novio Ziviani, Wagner Meira, Ro-
drigo Fonseca, and Berthier Riberio-Neto. Rank-preserving two-level caching for
scalable search engines. In SIGIR, pages 51–58. ACM, 2001.

[14] Gabriel Tolosa, Luca Becchetti, Esteban Feuerstein, and Alberto Marchetti-
Spaccamela. Performance improvements for search systems using an integrated
cache of lists+intersections. In SPIRE, pages 227–235. 2014.

[15] Jiangong Zhang, Xiaohui Long, and Torsten Suel. Performance of compressed
inverted list caching in search engines. In WWW, pages 387–396. ACM, 2008.

