
Course Syllabus
Project course: Development studio, Spring 2011, Block

3 and 4 – DRAFT
Instructors: Klaus Marius Hansen (KMH), Sune Lomholt (SL),

Erik Frøkjær (EF)

January 7, 2011

Responsible Klaus Marius Hansen
Office DIKU-SC, Njalsgade 128, 24-5-50
Mobile phone 6371 2721
Email klausmh@diku.dk
Webpage http://www.diku.dk/~klausmh

Course web See Absalon
Lecture hours Mondays 13:00 - 15:00, location TBD
Exercise hours Wednesdays 9:00 - 16:00, location TBD

Description
Development studio is a place where software development is taught and where
developers practise. In this course the focus is on software development in a
broad sense covering all aspects of modern development processes. This includes
requirements development, system and software design, software construction,
testing, and integration of the system solution in its use context.

Preceding Courses / Prerequisites
Good programming skills (comparable to a computer science bachelor).

Organization
The course activities are anchored around project work which expands over two
quarters. In the projects the students are supposed to solve demanding real-life
problems whose specification and solution requires active end-user participation.
There can be two types of project providers: 1) Partners from industry. 2)
Researchers or research labs from our university. Project providers, who wish
to offer development tasks, should get their project idea approved in advance

1

klausmh@diku.dk
http://www.diku.dk/~klausmh


by the course team. Moreover, project providers must be willing to participate
actively in the development process as domain experts and reviewers.

The groups choose their own project guided by the instructors with the
constraints that it must i) develop a software product, ii) be implemented to run
on mobile devices (specifically a Google Android device), and iii) be of sufficient
scope. Furthermore, the groups are required to follow an agile development
methodology (specifically the Scrum methodology) and focus on incremental
delivery of quality software.

It is strongly recommend that you start thinking about projects as soon as
possible.

Lectures and exercises are designed to support the development project and
the course plan will thus be adjusted during the course depending on what
projects require. A part of Scrum is regular, short status meetings; these will
form the base of exercise classes in the course.

Tentative course topics
The students will be divided into teams of 3-4 people that will work together
on a software development project. The course contains material both on the
development of useful software and of reflection on the development of such
software. The course topics include:

• requirements analysis

• software design and software architecture

• software development methods and processes (including agile software de-
velopment)

• user involvement

• testing (including test-driven development)

• review and inspection

• documentation and reverse engineering

• software quality

• process improvement

The concrete set of topics is dependent on the needs of the software development
projects undertaken by the groups.

2



Course material
There is no required book for the course. Notes and papers will be made avail-
able on Absalon.

Students are expected to find material on Android development themselves;
however, if you need additional material, it is suggested that you buy [1]. An-
droid equipment (HTC Desire phones) will be made available for students.

Grading
In order to be allowed to take the final exam, a number of obligatory exercises
must be handed in and approved. These mostly consist of project deliverables.
Project deliverables are handed in as group assignments in the form of a short
report and program code (for Scrum deliverables).

The final exam is an individual, written take-home exam based on your
project (due 2011-06-22). Grading is done on the 7-point grading scale, with 02
needed to pass.

Draft Course Plan
Teaching starts Monday 2011-01-31 and ends Wednesday 2011-06-15.

In general, Monday will be used for lectures and Wednesdays will be used
for exercise classes including weekly Scrum meetings and possibly including
practical workshops. Groups are intended to also use Wednesdays for joint
work.

Deliverables have to be handed in on Fridays in the week they are scheduled
for.

3



Week Monday Wednesday Deliverable
05 Course introduction.

Project management.
Development processes
[14, 13] (SL, KMH)

Android introduction
and tutorial. Group
formation (KMH)

06 Scrum [11] (SL) Android architec-
ture and development
(KMH)

1. Android exer-
cise

07 Requirements [9, 15]
(SL)

Version control. Prod-
uct and process brief
presentation (KMH)

2. Sprint #0
(Product and pro-
cess brief)

08 User involvement [5]
(EF)

Test-Driven Develop-
ment. Scrum meeting
(KMH)

09 (Not scheduled) (Not scheduled)
10 Scrum demo. Scrum

planning (KMH)
3. Sprint #1
(Scrum)

11 Software design and
patterns [6] (KMH)

Build management.
Scrum meeting (KMH)

12 Software architecture
[4] (KMH)

Guest lecture on
Android in practive
(Silverbullet). Scrum
meeting (KMH)

13 Scrum demo. Scrum
planning (KMH)

4. Sprint #2 (De-
sign)

14 (Protected week) (Protected week)
15 Documentation. Re-

verse engineering [7]
(KMH)

Scrum meeting (KMH)

16 (Easter) (Easter)
17 (Easter) Scrum demo. Scrum

planning (KMH)
5. Sprint #3
(Documentation)

18 Inspection and review
[8]. Guest lecture on
operation (KMH)

Scrum meeting (KMH)

19 Quality and metrics [3,
2] (KMH)

Scrum meeting. In-
spection workshop
(KMH)

20 Scrum demo. Scrum
planning (KMH)

6. Sprint #4
(Quality)

21 Process improvement
[12] (SL)

Scrum meeting (KMH)

22 Reflective systems de-
velopment [10] (KMH)

Scrum meeting (KMH)

23 Scrum demo (KMH) 7. Sprint #5 (Pro-
cess)

24 (Whitsun) On exam (KMH)
25 Final exam hand-in

4



References
[1] W. Frank Ableson, Charlie Collins, and Robi Sen. Unlocking Android. A

Developer’s Guide. Manning, second edition, 2010.

[2] L. Bass, P. Clements, and R. Kazman. Achieving qualities. In Software
Architecture in Practice, chapter 5, pages 99–128. Addison-Wesley, second
edition, 2003.

[3] L. Bass, P. Clements, and R. Kazman. Understanding quality attributes. In
Software Architecture in Practice, chapter 4, pages 71–98. Addison-Wesley,
second edition, 2003.

[4] L. Bass, P. Clements, and R. Kazman. What is software architecture? In
Software Architecture in Practice, chapter 2, pages 19–46. Addison-Wesley,
second edition, 2003.

[5] K. Bødker, F. Kensing, and J. Simonsen. Tools and techniques. In Partici-
patory IT design: designing for business and workplace realities, chapter 9.
The MIT Press, 2004.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign patterns: Elements of reusable object-oriented software, pages 107–116,
151–161, 207–217, 257–271, 315–323. Addison Wesley, 1995.

[7] P. Grubb and A.A. Takang. Software maintenance: concepts and practice,
chapter 7, 11.5. World Scientific Pub Co Inc, 2003.

[8] IEEE. IEEE Standard for Software Reviews. Technical Report IEEE Std
1028-1997, IEEE Computer Society, 1997.

[9] Dean Leffingwell. A user story primer. In Agile Software Requirements,
chapter 6. Addison Wesley, 2010.

[10] Lars Mathiassen. Reflective systems development, 1998. Dr. Techn. Dis-
sertation. Aalborg University.

[11] Ken Schwaber and Jeff Sutherland. Scrum guide. Scrum.org, 2009.

[12] Ian Sommerville. Process improvement. In Software Engineering, chap-
ter 28. Addison-Wesley, 8th edition, 2007.

[13] Ian Sommerville. Project management. In Software Engineering, chapter 5.
Addison-Wesley, 8th edition, 2007.

[14] Ian Sommerville. Software processes. In Software Engineering, chapter 4.
Addison-Wesley, 8th edition, 2007.

[15] Karl E. Wiegers. The essential software requirement. In Software Require-
ments, chapter 1. Microsoft Press, second edition, 2003.

5


