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Abstract
It is convenient to use monads to make a domain-specific library
for working with probabilistic models and computations. However,
representing the computed distributions efficiently can be challeng-
ing. The straightforward way of representing a discrete distribution
as a list of possible outcomes paired with their probability can lead
to a humongous representation. We show how to use a symbolic
representation of distributions that allows us to compute exact ex-
pected values or make simulations, while keeping the memory us-
age low and without losing the nice monadic interface and algebraic
properties.

1. Introduction
Working with probability distributions can be tricky and hard to
get right. Fortunately it is possible to make a nice embedded proba-
bilistic language as a monadic library that makes it simple to spec-
ify probabilistic models, which can then either be used to compute
exact distributions or can be used for approximate simulations.

The core of such a monadic library is the representation of
distributions, the usual choice is to represent a distribution as a list
of outcomes paired with their likelihood see for instance [Filinski
1996, chap. 4] and [Erwig and Kollmansberger 2006]. To recap the
Haskell implementation from [Erwig and Kollmansberger 2006]:

type Probability = Float
newtype Dist a = D {unD :: [(a,Probability)]}

where we represent probabilities as floating point number between
0 and 1; Dist a is a distribution over elements of type a; and we
have the invariant the probabilities in the list should sum up to 1.

With distribution represented as lists it is deceivingly elegant
to define a probability monad, that is to make Dist an instance of
Monad, likewise we can make Dist an instance of Functor and
Applicative, see Figure 1.

Figure 1 also contains the functions choice and uniform for
building distributions and the function expected for computing
the expected value of a disribution given a valuation function.

2. The Problem
The first thing that should worry us, as noted in [Filinski 1996], is
that Dist does not uniquely define distributions. That is, there are
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instance Monad Dist where
return x = D [(x, 1)]
(D d) >>= f = D [(y,q∗p) | (x,p) ← d

, (y,q) ← unD (f x)]

instance Functor Dist where
fmap f (D d) = D [(f x,p) | (x,p) ← d]

instance Applicative Dist where
pure = return
df <∗> dx = df >>= \f → dx >>= \x → return (f x)

choice :: Float → a → a → Dist a
choice p x y | 0.0 <= p && p <= 1.0 = D [(x, p), (y, 1-p)]

uniform :: [a] → Dist a
uniform xs = D [(x, 1 / total) | x ← xs]

where total = fromIntegral (length xs)

type Valuation a = a → Float

expected :: Valuation a → Dist a → Float
expected value dist =

sum $ map (\(x,p)→ p ∗ value x) $ unD dist

Figure 1. Monadic library, with probability distributions repre-
sented as lists.

no canonical Dist representation for a given distribution. Thus,
the monadic laws does not hold if we compare representations.
However, if we consider Dist an abstract type that can only be
observed by calling expected, or if the elements in the distribution
allow ordering we can make a function toSorted:

toSorted :: Ord a => Dist a → [(a, Probability)]

that return a sorted list where equal elements have been collated,
thus forming a canonical representation. We shall sometimes call
this process normalisation. Now the monadic laws holds up to
equivalence of what can be observed about distributions.

A somewhat inherent problem when we want to represent dis-
tributions explicitly is that they can quickly get big. For instance, if
we want to find the sum of rolling a die three times:

die = uniform [1..6]
threeDice = (+) <$> die <∗> ((+) <$> die <∗> die)

we will build a Dist value with 63 elements (in this particular
case we can normalise the distribution to only have 16 unique el-
ements, but remember that we cannot always normalise distribu-
tions). However, what is more worrisome is that if we want to com-
pute an expectation of a distribution or normalise it, then we have to
fully evaluate the distribution and hold it in memory. For instance,

Unpublished 1 2011/8/11



data Dist a where
Certainly :: a → Dist a -- only possible value
Choice :: Probability → Dist a → Dist a → Dist a
Fmap :: (a → b) → Dist a → Dist b
Join :: Dist(Dist a) → Dist a

certainly = Certainly

djoin :: Dist(Dist a) → Dist a
djoin ddist =

case ddist of
Certainly a → a
Choice p d1 d2 → Choice p (djoin d1) (djoin d2)
_ → Join ddist

instance Functor Dist where
fmap f (Certainly x) = Certainly $ f x
fmap f (Fmap g d) = Fmap (f . g) d
fmap f (Join d) = Join $ fmap (fmap f) d
fmap f d = Fmap f d

instance Applicative Dist where
pure = certainly
df <∗> dx = djoin $ fmap (flip fmap dx) df

instance Monad Dist where
return = certainly
m >>= g = djoin $ fmap g m

Figure 2. Symbolic representation of distributions

just computing the sum of rolling a six-sided die eight times will
take up nearly 2GB of RAM1 if we don’t use normalisation.

3. The Solution
The problem with the list-based representation in Figure 1 is that
we are too eager to bring the representation to a kind-of normalised
form. That is, we eagerly compute the probabilities for each out-
come. What we should do instead is just postpone the computation
of probabilities and make sure that we can traverse the distribution
in a lazy fashion.

Figure 2 show a more symbolic representation of distributions
where we use a generalised algebraic data type (GADT) with four
constructors: Certainly x for the distribution with just one ele-
ment, x; Choice p d1 d2 is the combined distribution of d1 and
d2, where there is p probability of choosing an element from d1;
Fmap f d is the same distribution as d with f applied to all out-
comes, that is all probabilities are unchanged; and Join d for flat-
tening a distribution of distributions. Making this representation an
instance of Monad, Functor, and Applicative is straight-forward
and almost falls out naturally from the given types, we use the the
monadic identities for making some slight optimisations in fmap
and djoin, but they could just as well have been just the construc-
tors Fmap and Join.

What is important to note, are the optimisations which are not
made. For instance, while it is semantically unproblematic to let
fmap distribute over Choice, doing so will be disastrous. Because
that will destroy sharing, and more importantly it may introduce
an exponentially number of new nodes. The given formulation of
fmap will at most grow the height of distribution tree with one
node, although it may also recreate an initial path of Join nodes.
As we shall see in the following section, the bounded growth is
an important property of fmap. Likewise, it is unproblematic to
make a library without the Join and Fmap constructors, however

1 Using GHC version 6.12.3 on Mac OS X (Snow Leopard).

this will inhibit the important property that fmap only grow the
representation with one node, thus it can lead to huge values.

This representation still have the problem of non-canonical rep-
resentation for a distribution. For instance, the following Dist val-
ues all represent the same distribution:

v1 = Choice 0.6 (Certainly 2) (Certainly 4)
v2 = Choice 0.5 (Certainly 2) (Choice 0.2 (Certainly 2)

(Certainly 4))
v3 = Choice 0.4 (Certainly 4) (Choice 0.5 (Certainly 2)

(Certainly 2))

and this just using Choice (and Certainly). Thus, we shall settle
for the same kind of observable equivalence of distributions that we
have for the list-based representation.

The interesting things to notice with this representation is that,
when we construct new distributions we do not eagerly compute
probabilities, and we are able to delay the flattening of distributions.
Interestingly, we can apply a function to the leaves of a distribution
of distribution, without flattening (joining) it first (see the function
clause of fmap for Join).

3.1 Computing Expected Values
The symbolic representation allows us to compute expected results
for a distribution in a compositional manner, where we lazily unfold
the distribution:
expected :: Valuation a → Dist a → Float
expected v dexp =

case dexp of
Certainly a → v a
Choice p d1 d2 → p ∗ (expected v d1)

+ (1-p) ∗ (expected v d2)
Fmap f d → expected (v . f) d
Join d → expected id (fmap (expected v) d)

Where the interesting parts are that we compute the values of the
two distributions of Choice independently, and we that we only
do some minimal bookkeeping in the traversal of Fmap and Join
(recall that fmap will only introduce at most a single new Fmap
node). Thus, we are be able to compute expected values in near
constant space. The only unlimited space is stack-space in the
recursive calls for Choice, however we could write expected to
be tail-recursive by using an accumulating parameter. This is not
done here for clarity of presentation.

3.2 Sampling Distributions
Similar to how we compute expected values, we can use the sym-
bolic representation to write a sampling function that simulate sam-
pling from the distribution. Figure 3 gives two definitions for sam-
pling a distribution. The straightforward way, sampleGen, were we
use a random number generator and draw one random number per
Choice constructor. Another way to define a sampling function,
sample, is to map random real numbers in the interval [0; 1[ to ele-
ments from the distribution, as done in [Ramsey and Pfeffer 2002].
In this definition we only need one number from the random num-
ber generator. However, it is no longer straightforward to argue that
sample returns values from the distribution with the right probabil-
ities, the proof is given in [Ramsey and Pfeffer 2002], however the
proof relies on real real numbers with arbitrarily many (random)
bits of precision.

3.3 Normalisation
If the elements of a distribution is ordered then we would like to
be able to observe a normalised view of a distribution. That is, a
mapping from the elements of the distribution to probabilities.

First we observe that the computation of expected values can be
generalised, so that floating point numbers is not the only kind of
expected value:
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sample :: Dist a → Float → (a, Float)
sample (Certainly a) r = (a, r)
sample (Choice p d1 d2) r =

if r < p then sample d1 (r/p)
else sample d2 ((1.0-r)/(1.0-p))

sample (Fmap f d) r = (f x, r’)
where (x, r’) = sample d r

sample (Join d) r = sample d’ r’
where (d’, r’) = sample d r

sampleGen :: R.RandomGen g => Dist a → g → (a, g)
sampleGen (Certainly a) g = (a, g)
sampleGen (Choice p d1 d2) g =

sampleGen (if r < p then d1 else d2) g’
where (r, g’) = R.random g

sampleGen (Fmap f d) g = (f x, g’)
where (x, g’) = sampleGen d g

sampleGen (Join d) g = sampleGen d’ g’
where (d’, g’) = sampleGen d g

Figure 3. Two defitions of sampling functions, one that only needs
one random number and one that uses a random number generator.

expectedGen :: (Float → v → v) → (v → v → v)
→ (a → v) → Dist a → v

expectedGen scale comb val dexp =
case dexp of

Certainly a → val a
Choice p d1 d2 → (p ‘scale‘ (expected val d1))

‘comb‘
((1-p) ‘scale‘ (expected val d2))

Fmap f d → expected (value . f) d
Join d → expected id $ fmap (expected val) d

where
expected = expectedGen scale comb

This is just the expected function from Section 3.1 parameterized
with functions to scale a computed value, scale, to combine two
values, comb, and with the valuation of elements, val, has a more
general type.

Now, to compute a normalised view of a distribution we just
need to supply suitable functions for expectedGen. For instance,
we can compute a standard mapping:

normalise :: Ord a => Dist a → Map a Float
normalise = expectedGen scale comb value

where
value a = Map.singleton a 1.0
scale p = Map.map (p ∗)
comb = Map.unionWith (+)

4. Evaluation
To test evaluate the library using the symbolic representation, from
Figure 2, against the library using the list-based representation,
from Figure 1, we have made two simple benchmarks: one based
on the sum of rolling some dice, and one based on find the proba-
bility of getting the hand flush in poker. All benchmark tests were
performed on a lightly loaded MacBook Pro with a Intel Core i5
CPU and 8 GB of RAM, using GHC version 6.12.3. To orchestrate
the benchmarks we use the Haskell library criterion [O’Sullivan
2010], which automatically ensures that the benchmarks are iter-
ated enough times to fit with the resolution of the clock. Further-
more, the criterion performs a bootstrap analysis on the timings
to check that spikes in the load from other programs running on
the computer do not skew the results. Each timing reported is the
average of 50 samplings. Since the standard deviations of these av-
erages are all negligible, we do not report the standard deviations.

4.1 Roll The Dice
To model that we roll a die with d sides n time we define the
functions die and rolls:

die d = [1..d]

rolls d 1 = die d
rolls d n = (+) <$> die d <∗> rolls d (n-1)

Following are the results of finding the expected sum of rolling
a die with 5, 6, and 7 sides eight times:

No. of sides 5 6 7
Symbolic 121 500 1663
List 572 4351 35214

All times are given in milliseconds. Casual glance at an activity
monitor confirm that the symbolic representation only uses a con-
stant amount of memory, whereas the list-based represtation ends
up using 1.5 GB for the final test. As it can be seen form the tim-
ings, the symbolic library still ends up traversing all 78 possible
outcomes.

The example is somewhat contrived as we can drastically cut
down the number of needed computations if we normalise the
distributions as we go along. However, this holds equally for both
representations.

4.2 Flush
A more interesting thing than rolling dice to model, might be the
probability of getting a certain hand in poker. For instance, a flush
(i.e., a hand where all cards have the same colour).

To model the drawing of an extra card and adding it to your
hand we define the function draw:

draw cards = do
card ← uniform (newDeck \\ cards)
return (card:cards)

where cards is your current hand represented as a list, and
newDeck is a complete deck of cards. The full code used for the
modelling can be found in appendix A.

Following are the timings to find the expected chance of getting
a flush when drawing 3, 4, and 5 cards:

No. of cards 3 4 5
Symbolic 40 2547 152000
List 40 2562 —

All times are given in milliseconds. Casual glance at an activity
monitor during the benchmarking confirms that the symbolic rep-
resentation only uses a constant amount of memory, whereas the
list-based representation ends up using too much memory to com-
plete the final test.

5. Related Work
Using a list-based representation for distributions have been sug-
gested and described by [Filinski 1996], [Erwig and Kollmans-
berger 2006], and [Kidd 2007]. Where [Kidd 2007] builds the prob-
ability monad from a toolkit of monad transformers.

The idea of using a Choice operator and a non-normalised form
comes from Troll [Mogensen 2009]. However, the combinators for
building distributions in the Troll implementation is specialised
for computing probabilities of rolling dice, that is distributions of
multisets of integers. And the combinators are hard to generalise
for arbitrary types.

In [Ramsey and Pfeffer 2002] one of the core constructors of
probability monad is also choice. However, it is not clear is the
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Haskell based implementation described in that paper also uses
a list-based representation. To compute expectations efficiently
[Ramsey and Pfeffer 2002] introduces measure terms that are
somewhat related to the symbolic representation presented in this
paper. My guess is that it might be possible to compute a measure
term from the symbolic representation from Section 3, optimise
the measure term, and then compute the expectation from the opti-
mised measure term. However, I haven’t tried that yet.

The idea of lazily unfolding the representation of distribution
can also be found in [Kiselyov and Shan 2009], who uses lazy
probabilistic search tree as one of their probability monads.

6. Concluding Remarks
Working with probabilistic models as a monadic library is conve-
nient, but if it is not also efficient the charm wears off when trying
to model even moderate examples. In the paper I have presented
a symbolic representation which is almost as elegant as the list-
based representation, and allows us a number of optimisations, for
instance to compute expected result in constant space. However,
time-wise we are no better of asymptotically than the list-based
representation.

Using the symbolic representation for simulations is as easy as
using the list-based representation, and have thus not been treated
in this paper.

The symbolic representation might open up for more optimisa-
tion which are yet to be exploited. For instance, it would be most
interesting to try and port over the implementation of variable elim-
ination [Dechter 1998] from [Kiselyov and Shan 2009].
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A. Poker Hands
The code for modelling poker hands with the library:

data Color = Clubs | Spades | Diamonds | Hearts

deriving (Show, Ord, Eq, Enum)
type Card = (Int, Color)
type Deck = [Card]

newDeck :: Deck
newDeck = [(number, color) | number ← [1..13]

, color ← [Clubs .. Hearts]]

type Trans a = a → Dist a

draw :: Trans [Card]
draw cards = do

card ← uniform $ newDeck \\ cards
return (card:cards)

(∗.) :: Int → Trans a → Trans a
1 ∗. t = t
n ∗. t = \x → ((n - 1) ∗. t) x >>= t

draws :: Int → Trans [Card]
draws n = n ∗. draw

hand :: Int → Dist [Card]
hand n = draws n []

isFlush :: [Card] → Bool
isFlush hand = length (nub (map snd hand)) == 1

flush n = expected (\v → if (isFlush v) then 1 else 0)
(hand n)

B. Full Code Listing
Figure 4 gives the full code listing.
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data Dist a where
Certainly :: a → Dist a -- only possible value
Choice :: Probability → Dist a → Dist a → Dist a
Fmap :: (a → b) → Dist a → Dist b
Join :: Dist(Dist a) → Dist a

certainly = Certainly

choice :: Probability → Dist a → Dist a → Dist a
choice 1.0 d1 _ = d1
choice 0.0 _ d2 = d2
choice p d1 d2 = Choice p d1 d2

instance Functor Dist where
fmap f (Certainly x) = Certainly $ f x
fmap f (Fmap g d) = Fmap (f . g) d
fmap f (Join d) = Join $ fmap (fmap f) d
fmap f d = Fmap f d

instance Applicative Dist where
pure = certainly
df <∗> dx = djoin $ fmap (flip fmap dx) d
_ ∗> dy = dy
dx <∗ _ = dx

djoin :: Dist(Dist a) → Dist a
djoin ddist =

case ddist of
Certainly a → a
Choice p d1 d2 → Choice p (djoin d1) (djoin d2)
_ → Join ddist

instance Monad Dist where
return = certainly
m >>= g = djoin $ fmap g m

uniform :: [a] → Dist a
uniform inp = choices 0.0 inp

where total = fromIntegral $ length inp
choices _ [e] = certainly e
choices n (e:rest) = choice (1/(total-n)) (certainly e) (choices (n+1) rest)

type Valuation a = a → Float

expected :: Valuation a → Dist a → Float
expected value dexp =

case dexp of
Certainly a → value a
Choice p d1 d2 → p ∗ (expected value d1) + (1-p) ∗ (expected value d2)
Fmap f d → expected (value . f) d
Join d → expected id $ fmap (expected value) d

sample :: Dist a → Float → (a, Float)
sample (Certainly a) r = (a, r)
sample (Choice p d1 d2) r = if r < p then sample d1 (r/p)

else sample d2 ((1.0-r)/(1.0-p))
sample (Fmap f d) r = (f x, r’)

where (x, r’) = sample d r
sample (Join d) r = sample d’ r’

where (d’, r’) = sample d r

expectedGen :: (Float → v → v) → (v → v → v) → (a → v) → Dist a → v
expectedGen scale comb value dexp =

case dexp of
Certainly a → value a
Choice p d1 d2 → (p ‘scale‘ (expected value d1))

‘comb‘
((1-p) ‘scale‘ (expected value d2))

Fmap f d → expected (value . f) d
Join d → expected id $ fmap (expected value) d

where
expected = expectedGen scale comb

normalise :: Ord a => Dist a → Map a Float
normalise = expectedGen scale comb value

where
value a = Map.singleton a 1.0
scale p = Map.map (p ∗)
comb = Map.unionWith (+)

Figure 4. Full code listing
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