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Abstract

The following two computational problems are studied:
Duplicate grouping: Assume that n items are given, each of which is

labeled by an integer key from the set {0, . . . , U − 1}. Store the items in
an array of size n such that items with the same key occupy a contiguous
segment of the array.

Closest pair: Assume that a multiset of n points in the d-dimension-
al Euclidean space is given, where d ≥ 1 is a fixed integer. Each point
is represented as a d-tuple of integers in the range {0, . . . , U − 1} (or of
arbitrary real numbers). Find a closest pair, i. e., a pair of points whose
distance is minimal over all such pairs.

In 1976 Rabin described a probabilistic algorithm for the closest-pair
problem that takes linear expected time. As a subroutine, he used a hash-
ing procedure whose implementation was left open. Only years later ran-
domized hashing schemes suitable for filling this gap were developed.

In this paper, we return to Rabin’s classic algorithm in order to pro-
vide a fully detailed description and analysis, thereby also extending and
strengthening his result. As a preliminary step, we study randomized al-
gorithms for the duplicate-grouping problem. In the course of solving the
duplicate-grouping problem, we describe a new universal class of hash func-
tions of independent interest.

It is shown that both of the above problems can be solved by probabilis-
tic algorithms that use O(n) space and finish in O(n) time with probability
tending to 1 as n grows to infinity. The model of computation is a unit-cost
RAM capable of generating random numbers and of performing arithmetic
operations from the set {+,−, ∗,div, log2, exp2}, where div denotes in-
teger division, and log2 and exp2 are the mappings from N to N ∪ {0}
with log2(m) = ⌊log2m⌋ and exp2(m) = 2m, for all m ∈ N. If the oper-
ations log2 and exp2 are not allowed, the running time of the algorithms
increases by an additive term of O(log logU). All numbers manipulated by
the algorithms consist of O(logn+ logU) bits.

We consider two variants of the algorithm for the closest-pair problem.
One uses only O(log n+logU) random bits and still has probability O(n−α)
of exceeding the time bound O(n), where α ≥ 1 is a constant that can be
chosen arbitrarily. The other one uses O(n logn+ logU) random bits, but

reduces the probability that the time bound is exceeded to 2−nΩ(1)
.

The algorithm for the closest-pair problem also works if the coordinates
of the points are arbitrary real numbers, provided that the RAM is able to
perform arithmetic operations from {+,−, ∗,div} on real numbers, where
adiv b now means ⌊a/b⌋. In this case, the running time is O(n) with log2

and exp2 and O(n + log log(δmax/δmin)) without them, where δmax is the
maximum and δmin is the minimum distance between any two distinct input
points.
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1 Introduction

The closest-pair problem is often introduced as the first nontrivial proximity prob-
lem in computational geometry — see, e. g., [21]. In this problem we are given a
collection of n points in d-dimensional space, where d ≥ 1 is a fixed integer, and a
metric specifying the distance between points. The task is to find a pair of points
whose distance is minimal. We assume that each point is represented as a d-tuple
of real numbers, or of integers in a fixed range, and that the distance measure is
the standard Euclidean metric.

In his seminal paper on randomized algorithms, Rabin [22] proposed an algo-
rithm for solving the closest-pair problem. The key idea of the algorithm is to
determine the minimal distance δ0 within a random sample of points. When the
points are grouped according to a grid with resolution δ0, the points of a closest
pair fall in the same cell or in neighboring cells. This considerably decreases the
number of possible closest-pair candidates from the total of n(n − 1)/2. Rabin
proved that with a suitable sample size the total number of distance calculations
performed will be of order n with overwhelming probability.

A question that was not solved satisfactorily by Rabin is how the points are
grouped according to a δ0-grid. Rabin suggested that this could be implemented
by dividing the coordinates of the points by δ0, truncating the quotients to in-
tegers, and hashing the resulting integer d-tuples. Fortune and Hopcroft [12], in
their more detailed examination of Rabin’s algorithm, assumed the existence of
a special operation findbucket(δ0, p), which returns an index of the cell into
which the point p falls in some fixed δ0-grid. The indices are integers in the range
{1, . . . , n}, and distinct cells have distinct indices. Recently, two other (simple)
closest-pair algorithms with linear expected running time were proposed by Golin
et al. [13] and Khuller and Matias [15]. Faced with a similar grouping prob-
lem, both papers refer to a randomized hashing procedure without specifying the
details.

On a real RAM (for the definition see [21]), where the generation of random
numbers, comparisons, arithmetic operations from {+,−, ∗, /,√ }, and find-

bucket require unit time, the random-sampling algorithm of Rabin runs in O(n)
expected time [22]. (Under the same assumptions the closest-pair problem can
even be solved in O(n log log n) time in the worst case, as demonstrated by Fortune
and Hopcroft [12].) Moreover, Rabin’s algorithm is extremely reliable: the prob-
ability that the running time exceeds its expected value by more than a constant
factor is exponentially small, i. e., of the form 2−nΩ(1)

. (We call a probabilistic
algorithm that always returns a correct answer reliable if the probability that the
algorithm exceeds its expected running time by more than a constant factor tends
to 0 as the input size grows to infinity.) Golin et al. present a variant of their
algorithm that is reliable but has running time O(n log n/ log log n).

The above time bounds should be contrasted with the fact that in the alge-
braic computation tree model (where the operations allowed are comparisons and
arithmetic operations from {+,−, ∗, /,√ }, but where indirect addressing is not
modelled), Θ(n log n) is known to be the complexity of the closest-pair problem.
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Algorithms proving the upper bound were provided by, for example, Bentley and
Shamos [6] and Schwarz et al. [24]. The lower bound follows from the correspond-
ing lower bound derived for the element-distinctness problem by Ben-Or [5]. The
Ω(n log n) lower bound is valid even if the coordinates of the points are integers
[26] or if the sequence of points forms a simple polygon [1].

The present paper centers on two issues: First, we completely describe an
implementation of Rabin’s algorithm, including all the details of the hashing sub-
routines, and show that it guarantees linear running time with high probabil-
ity. Second, we modify Rabin’s algorithm so that only very few random bits are
needed, but still a reasonable reliability is maintained.1

As a preliminary step, we address the question of how the grouping of points
can be implemented when onlyO(n) space is available and the strong findbucket
operation does not belong to the repertoire of allowed operations. An important
building block in the algorithm is an efficient solution to the duplicate-grouping
problem (sometimes called the semisorting problem), which can be formulated as
follows: Given a set of n items, each of which is labeled by some integer key from
the set {0, . . . , U − 1}, store the items in an array A of size n so that entries with
the same key occupy a contiguous segment of the array, i. e., if 1 ≤ i < j ≤ n
and A[i] and A[j] have the same key, then A[k] has the same key for all k with
i ≤ k ≤ j. Note that full sorting is not necessary, since no order is prescribed
for items with different keys. In order to simplify notation in the following, we
will ignore all components of the items excepting the keys; in other words, we will
consider the problem of duplicate grouping for inputs that are multisets of integers
from {0, . . . , U − 1}. It will be obvious that our algorithms can be extended to
solve the general duplicate-grouping problem.

For solving the duplicate-grouping problem, one can employ perfect-hashing
schemes in the style of [11], which work in linear expected time. Actually, the
original procedure from [11] is not suitable, the reason being that it is not able
to deal properly with repeated values, which may occur when the hashing scheme
is used as a subroutine in Rabin’s algorithm (or in those of [13] or [15]). One
solution would be to use the dynamic perfect-hashing scheme of [10], which is
able to accommodate duplicates. However, this algorithm does not offer any
guarantees on the running time beyond the fact that its expectation is linear.
As the duplicate-grouping algorithm is to be used as a subroutine in the closest-
pair algorithm, which we want to be reliable, we provide an alternative solution.
Assuming that U is a power of 2 given as part of the input, the problem is shown
to be solvable in O(n) time with high probability using arithmetic operations from
{+,−, ∗,div} only. If U is not known, we have to spendO(log logU) preprocessing
time on computing a power of 2 greater than the largest input number. That is,
the running time is linear if U = 22

O(n)
. Alternatively, we get linear running time

if we accept log2 and exp2 among the unit-time operations. It is essential to

1In the algorithms of this paper randomization occurs in computational steps like “pick a
random number in the range {0, . . . , r− 1} (according to the uniform distribution)”. Informally
we say that such a step “uses ⌈log

2
r⌉ random bits”.
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note that our algorithms for duplicate grouping are conservative in the sense of
[16], i. e., all numbers manipulated during the computation have O(log n+ logU)
bits.

Technically as an ingredient of the duplicate-grouping algorithm, we introduce
a new universal class of hash functions — more precisely, we prove that the class
of all multiplicative hash functions [17] is universal in the sense of [7]. This class
seems quite attractive, since the functions in the class can be evaluated very
efficiently (only multiplications and shifts of binary representations are needed).
Actually, we know of no other universal class whose functions can be evaluated
more cheaply.

On the basis of the duplicate-grouping algorithm we give a rigorous analy-
sis of several variants of Rabin’s algorithm, including all the details concerning
the hashing procedures. For the core of the analysis, we use an approach com-
pletely different from that of Rabin, which enables us to show that the algorithm
can also be run with very few random bits. Further, the analysis of the algo-
rithm is extended to cover the case of repeated input points. (Rabin’s analysis
was based on the assumption that all input points are distinct.) The result re-
turned by the algorithm is always correct; with high probability, the running
time is bounded as follows: On a real RAM with arithmetic operations from
{+,−, ∗,div, log2, exp2}, the closest-pair problem is solved in O(n) time, and
with operations from {+,−, ∗,div} in O(n+ log log(δmax/δmin)) time, where δmax

is the maximum and δmin is the minimum distance between distinct input points
(here adiv b = ⌊a/b⌋, for arbitrary positive real numbers a and b). For points
with integer coordinates in the range {0, . . . , U − 1} the latter running time can
be estimated by O(n + log logU). For integer data, the algorithms are again
conservative.

The rest of the paper is organized as follows. In Section 2, two algorithms
for the duplicate-grouping problem are presented. The algorithms are based on
the universal class of multiplicative hash functions. The randomized closest-pair
algorithm is described in Section 3 and analyzed in Section 4. The last section con-
tains some concluding remarks and comments on experimental results. Technical
proofs regarding hash functions, the problem of generating primes, and probability
estimates are given in the three parts of an appendix.

2 Randomized duplicate grouping

In this section we present two randomized algorithms for solving the duplicate-
grouping problem. As technical tools, we discuss a simple universal class of hash
functions and a method for generating numbers that are prime with high proba-
bility.
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2.1 A deterministic algorithm for duplicate grouping

For a specification of the duplicate-grouping problem see the introduction. Let
S = {x1, x2, . . . , xn} be the multiset to be grouped, containing n integers from the
set {0, . . . , U − 1}. When O(n + U) space is available, the duplicate grouping is
easily done in O(n) time. E. g., we can use the following naive algorithm, similar
to one phase of radix sort (see [2]): Assume that the input numbers are stored in
an array S[1..n]. Let L[0..U − 1] be an array whose possible entries are headers
of lists (this array need not be initialized). The array S is scanned three times
from index 1 to index n. During the first scan, for i = 1, . . . , n, the entry L[S[i]] is
initialized to point to an empty list. During the second scan, the element xi = S[i]
is inserted in the list with header L[S[i]]. During the third scan, the groups are
output: For i = 1, . . . , n, if the list with header L[S[i]] is nonempty, this list is
written to consecutive positions of the output array and L[S[i]] is made to point
to an empty list again.

Unfortunately, the naive duplicate-grouping algorithm wastes space. Space
efficiency can be achieved by compressing the work area by means of hashing:
using a randomized hashing scheme, the duplicate-grouping problem can be solved
in linear time and space with high probability.

2.2 Duplicate grouping via multiplicative universal

hashing

Here we demonstrate how to perform duplicate grouping by means of a simple
application of universal hashing, as introduced by Carter and Wegman [7]. We
first assume that U is a known power of 2, say U = 2k (the opposite case is
discussed at the end of Subsection 2.3).

For ℓ ∈ {1, . . . , k}, consider the class Hk,ℓ := {ha | 0 < a < 2k, and a is odd}
of hash functions from {0, . . . , 2k − 1} to {0, . . . , 2ℓ − 1}, where ha is defined by

ha(x) = (ax mod 2k) div 2k−ℓ , for 0 ≤ x < 2k.

The class Hk,ℓ contains 2
k−1 hash functions (it is not hard to see that they are all

distinct). The following is proved in Section A of the appendix.

Lemma 2.1. Let k and ℓ be integers with 1 ≤ ℓ ≤ k. If x, y ∈ {0, . . . , 2k − 1} are
distinct and ha ∈ Hk,ℓ is chosen at random, then

Prob
(

ha(x) = ha(y)
)

≤ 1

2ℓ−1
.

Remark 2.2. The lemma says that the class Hk,ℓ consisting of all “multiplicative
hash functions” is 2-universal in the sense of [20, p. 140] (this notion slightly
generalizes that of [7]). As discussed in [17, p. 509] (“the multiplicative hash
method”), the functions in this class are particularly simple to evaluate, since the
division and the modulo operation correspond to selecting a segment of the binary
representation of the product ax, which can be done by means of shifts. Other
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universal classes use functions that involve division by prime numbers [11, 7],
arithmetic in finite fields [7], matrix multiplication [7], or convolution of binary
strings over the two-element field [18], operations that are more expensive than
multiplications and shifts unless special hardware is available.

It is worth noting that the class Hk,ℓ of multiplicative hash functions may be
used to improve the efficiency of the static and dynamic perfect-hashing schemes
described in [11] and [10], in place of the functions of the type x 7→ ax mod p, for
a prime p, which were used in these papers, and which involve integer division.

The following is a well-known property of universal classes (see, e. g., [11]).

Lemma 2.3. Let n, k and ℓ be positive integers with ℓ ≤ k and let S be a set of
n integers in the range {0, . . . , 2k − 1}. Choose h ∈ Hk,ℓ at random. Then

Prob(h is 1–1 on S) ≥ 1− n2

2ℓ
.

Proof. By Lemma 2.1,

Prob
(

h(x) = h(y) for some x, y ∈ S
)

≤
(

n

2

)

· 1

2ℓ−1
≤ n2

2ℓ
.

Theorem 2.4. Let U ≥ 2 be a known power of 2 and let α ≥ 1 be an arbitrary
integer. The duplicate-grouping problem for a multiset S of n integers in the range
{0, . . . , U − 1} can be solved by a (conservative) probabilistic algorithm that needs
O(n) space and O(αn) time on a unit-cost RAM with arithmetic operations from
{+,−, ∗,div}; the probability that the time bound is exceeded is bounded by n−α.
The algorithm requires fewer than logU random bits.

Proof. Let k = logU and ℓ = ⌈(α + 2) log n⌉ (unsubscripted “log” always denotes
the logarithm to base 2) and assume without loss of generality that 1 ≤ ℓ ≤ k.
It is easy to compute 2ℓ in O(α log n) time. The elements of S are grouped as
follows. First, a hash function h from Hk,ℓ is chosen at random. Second, each
element of S is mapped under h to the range {0, . . . , 2ℓ − 1}. (Since the mod

operation can be expressed in terms of −, ∗, and div, the hash function can be
evaluated in O(1) time.) Third, the resulting pairs (x, h(x)), where x ∈ S, are
sorted by radix sort according to their second components. (Since the values of h
are integers of ⌈(α + 2) log n⌉ bits each, they can be sorted by radix sort with n
buckets in α+3 rounds, that is, in O(αn) time — see, e. g., [2, p. 77 ff.].) Fourth,
it is checked if all elements of S that have the same hash value are in fact equal.
(This is easily done in O(n) time. In case the check indicates that the algorithm
has failed, one can get a correct output by sorting in O(n log n) time, without
impairing the linear expected running time.)

The total running time of the algorithm is O(αn). The space requirements are
dominated by those of radix sort, which needs O(n) space. The result obtained
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after radix sorting is correct if h is 1–1 on the (distinct) elements of S, which
happens with probability

Prob(h is 1–1 on S) ≥ 1− n2

2ℓ
≥ 1− 1

nα
,

by the previous lemma. It is immediate that the algorithm is conservative and
that the number of random bits needed is k − 1 < logU .

2.3 Randomized duplicate grouping via perfect hashing

We now show that there is another, asymptotically even more reliable, duplicate-
grouping algorithm that also works in linear time and space. The algorithm is
based on a randomized perfect-hashing scheme introduced by Bast and Hagerup
[3].

The perfect-hashing problem is the following: Given a multiset S ⊆ {0, . . . , U−
1}, for some universe size U , construct a function h:S → {0, . . . , c|S|}, for some
constant c, so that h is 1–1 on (the distinct elements of) S. In [3] a parallel
algorithm for the perfect-hashing problem is described; we need the following
sequential version.

Fact 2.5 ([3]). Assume that U is a known prime. Then the perfect-hashing prob-
lem for a multiset of n integers from {0, . . . , U − 1} can be solved by a proba-
bilistic algorithm that requires space O(n) and runs in O(n) time with probability

1 − 2−nΩ(1)
. The hash function produced by the algorithm can be evaluated in

constant time.

In order to use this perfect-hashing scheme, we need to have a method for
computing a prime number larger than a given number m. In order to find such
a prime, we again use a probabilistic algorithm. The simple idea is to combine
random sampling with a probabilistic primality test as given, e. g., in [23]. Such
algorithms with expected running time polylogarithmic in m have been described
or discussed in several papers, e. g., in [4], [19], and [9]. As we are interested in
the situation where the running time is guaranteed and the failure probability is
extremely small, we use a variant of the algorithms tailored to meet these criteria.
The proofs of the following two lemmas, which include the description of the
algorithms, can be found in Section B of the appendix.

Lemma 2.6. There is a probabilistic algorithm that, for any given integer m ≥ 2,
returns an integer p with m < p ≤ 2m such that the following holds: the running
time is O((logm)4), and the probability that p is not prime is at most 1/m.

By varying this algorithm, we obtain the following extremely reliable version.

Lemma 2.7. There is a probabilistic algorithm that, for any given positive integers
m and n with 2 ≤ m ≤ 2⌈n

1/4⌉, returns a number p with m < p ≤ 2m such that
the following holds: the running time is O(n), and the probability that p is not

prime is at most 2−n1/4
.
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Remark 2.8. The algorithms of Lemmas 2.6 and 2.7 run on a unit-cost RAM with
operations from {+,−, ∗,div}. The storage space required is constant. Moreover,
all numbers manipulated contain O(logm) bits.

Theorem 2.9. Let U ≥ 2 be a known power of 2. The duplicate-grouping problem
for a multiset S of n integers in the range {0, . . . , U − 1} can be solved by a
(conservative) probabilistic algorithm that needs O(n) space on a unit-cost RAM
with arithmetic operations from {+,−, ∗,div}, so that the probability that more

than O(n) time is used is 2−nΩ(1)
.

Proof. Let us call U large if it is larger than 2⌈n
1/4⌉ and take U ′ := min{U, 2⌈n1/4⌉}.

We distinguish between two cases. If U is not large, i. e., U = U ′, we first apply
the method of Lemma 2.7 to find a prime p between U and 2U . Then, the hash
function from Fact 2.5 is applied to map the distinct elements of S ⊆ {0, . . . , p−1}
to {0, . . . , cn}, where c is a constant. Finally, the values obtained are grouped by
the naive algorithm introduced at the beginning of this section. In case U is large,
we first “collapse the universe” by mapping the elements of S ⊆ {0, . . . , U − 1}
one-to-one into the range {0, . . . , U ′ − 1} by a randomly chosen multiplicative
hash function, as described in Subsection 2.2. Then, using the “collapsed” keys,
we proceed as above for a universe that is not large.

It remains to analyze the time requirements and the failure probability of
the algorithm. It is easy to check (conservatively) in O(min{n1/4, logU}) time
whether or not U is large. Lemma 2.7 shows how to find the required prime p in
the range {U ′+1, . . . , 2U ′} in O(n) time with error probability at most 2−n1/4

. In
case U is large, we must randomly choose a function h from Hk,ℓ, where U = 2k is
known and ℓ = ⌈n1/4⌉. Clearly, 2ℓ can easily be obtained in time O(ℓ) = O(n1/4).
The values h(x), for x ∈ S, can be computed in time O(|S|) = O(n); according

to Lemma 2.3 h is 1–1 on S with probability at least 1 − n2/2n
1/4

, which is

bounded below by 1−2−n1/5
if n is large enough. The final naive grouping runs in

deterministic linear time and space, since the size of the integer domain is linear.
Therefore the whole algorithm requires linear time and space, and it is reli-

able since all the subroutines used are reliable. The hashing scheme of Bast and
Hagerup is conservative. The justification that the other parts of the algorithm
are conservative is straightforward.

Remark 2.10. Theorem 2.9 is theoretically stronger than Theorem 2.4, but the
program based on the former result will be much more complicated. Moreover, n
must be very large before the algorithm of Theorem 2.9 is actually significantly
more reliable than that of Theorem 2.4.

In Theorems 2.4 and 2.9 we assumed that U is a known power of 2. If this
is not the case we have to compute a power of 2 larger than U . Such a number
can be obtained by repeated squaring, simply computing 22

i
, for i = 0, 1, 2, 3, . . . ,

until the first number larger than U is encountered. This takes O(log logU) time.
Observe also that the largest number manipulated will be at most quadratic in
U . Another alternative is to accept both log2 and exp2 among the unit-time
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operations and to use them to compute 2⌈logU⌉. As soon as the required power
of 2 is available, the algorithms described above can be used. Thus, Theorem 2.9
can be extended as follows (the same holds for Theorem 2.4, but only with an
inverse-polynomial error probability).

Theorem 2.11. The duplicate-grouping problem for a multiset of n integers in
the range {0, . . . , U − 1} can be solved by a (conservative) probabilistic algorithm
that needs O(n) space and

(1) O(n) time on a unit-cost RAM with operations from {+,−, ∗,div, log2,
exp2}; or

(2) O(n+log logU) time on a unit-cost RAM with operations from {+,−, ∗,div}.

The probability that the time bound is exceeded is 2−nΩ(1)
.

2.4 Duplicate grouping for d-tuples

In the context of the closest-pair problem, the duplicate-grouping problem arises
not for sets of integers from {0, . . . , U − 1}, but for sets of d-tuples of integers from
{0, . . . , U − 1}, where d is the dimension of the space under consideration. Even
if we drop the assumption that d is constant, our algorithms are easily adapted
to this situation with very limited loss of performance. The simplest possibility
would be to transform each d-tuple into an integer in the range {0, . . . , Ud −
1} by concatenating the binary representations of the d components, but this
would require handling (e. g., multiplying) numbers of d logU bits, which may be
undesirable. We sketch a different method, which keeps the components of the d-
tuples separate and thus deals with numbers of O(logU) bits only, independently
of d.

Theorem 2.12. Theorems 2.4 and 2.9 (and 2.11) remain valid if “multiset of
n integers” is replaced by “multiset of n d-tuples of integers” and both the time
bounds and the probability bounds are multiplied by a factor of d.

Proof. (Sketch.) We indicate how the algorithms described in the proofs of Theo-
rems 2.4 and 2.9 have to be changed in order to accommodate d-tuples. Assume
an array S containing n d-tuples of numbers in {0, . . . , U − 1} is given as input.
We treat the components d′ = 1, . . . , d one after the other. Let 1 ≤ d′ ≤ d and as-
sume inductively that the tuples are already grouped with respect to components
1, . . . , d′ − 1. Now choose a hash function for the up to n numbers occurring in
component d′ of the tuples. (In the case of Theorem 2.9, choose a perfect hash
function with range {0, . . . , cn} for this set. In the situation of Theorem 2.4 choose
a multiplicative hash function for this set at random. Actually, in the latter case
the same function should be used for all d′, with 1 ≤ d′ ≤ d, in order to avoid
using more than logU random bits.) Now, in each of the segments of S in which
components 1, . . . , d′−1 are constant, radix sort with respect to the hash value of
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component d′ is applied, using n buckets. This last step needs space O(n), since
the same scratch space for the bucket lists needed in radix sort can be used for all
segments, and it takes time O(n), since radix sort in each of the segments takes
linear time.

3 A randomized closest-pair algorithm

In this section we describe a variant of the random-sampling algorithm of Rabin
[22] for solving the closest-pair problem, complete with all details concerning the
hashing procedure. For the sake of clarity, we provide a detailed description for
the two-dimensional case only.

Let us first define the notion of “grids” in the plane, which is central in the
algorithm (and which is easily generalized to higher dimensions). For all δ > 0,
a grid G with resolution δ, or briefly a δ-grid G, consists of two infinite sets of
equidistant lines, one parallel to the x-axis, the other parallel to the y-axis, where
the distance between two neighboring lines is δ. In precise terms, G is the set

{

(x, y) ∈ R
2
∣

∣

∣
|x− x0|, |y − y0| ∈ δ · Z

}

,

for some “origin” (x0, y0) ∈ R
2. The grid G partitions R

2 into disjoint re-
gions called cells of G, two points (x, y) and (x′, y′) being in the same cell if
⌊(x− x0)/δ⌋ = ⌊(x′ − x0)/δ⌋ and ⌊(y − y0)/δ⌋ = ⌊(y′ − y0)/δ⌋ (that is, G parti-
tions the plane into half-open squares of side length δ).

Let S = {p1, . . . , pn} be a multiset of points in the Euclidean plane. We assume
that the points are stored in an array S[1..n]. The algorithm for computing a
closest pair in S consists of the following steps. The number c is a constant with
0 < c < 1

2
.

1. Fix a sample size s with 18n1/2+c ≤ s = O(n/ log n). Choose a sequence
t[1], . . . , t[s] of elements of {1, . . . , n} randomly. Let T := {t[1], . . . , t[s]} and
take s′ := |T |. Store the elements pt with t ∈ T in an array B[1..s′] (B may
contain duplicates if S does).

2. Deterministically determine the closest-pair distance δ0 of the sample stored
in B. If B contains duplicates, the result is δ0 = 0, and the algorithm stops.

3. Check whether there exists a pair of points whose distance is smaller than
δ0. For this, draw a grid G with resolution δ0 and consider the four different
grids Gi with resolution 2δ0, for i = 1, 2, 3, 4, that overlap G, i. e., that
consist of a subset of the lines in G.

3a. Group together the points falling into the same cell of Gi.

3b. In each group of at least two elements, deterministically find a closest
pair; finally output an overall closest pair encountered in this process.

11



proc randomized-closest-pair (modifies S: array[1..n] of points)
returns (a pair of points)

% Step 1. Take a random sample of size at most s from the multiset S.
t[1..s] := a random sequence in [1..n]
% Eliminate repetitions in t[1..s]; store the chosen elements in an array B.
for j := 1 to s do T [t[j]] := true

s′ := 0
for j := 1 to s do

if T [t[j]] then s′ := s′ + 1; B[s′] := S[t[j]]; T [t[j]] := false

% Step 2. Deterministically compute a closest pair within the random sample.
pa, pb := deterministic-closest-pair(B[1..s′])
δ0 := dist(pa, pb) % dist is the distance function.
if δ0 > 0 then

% Step 3. Consider the four overlapping grids.
for dx, dy ∈ {0, δ0} do

% Step 3a. Group the points.
duplicate-grouping(S[1..n], groupdx,dy,2δ0)
% Step 3b. In each group find a closest pair.
j := 0
while j < n do

i, j := j + 1, j + 1
while j < n and groupdx,dy,2δ0(S[i]) = groupdx,dy,2δ0(S[j + 1]) do j := j + 1
if i 6= j then

pc, pd := deterministic-closest-pair(S[i..j])
if dist(pa, pb) > dist(pc, pd) then pa, pb := pc, pd

return (pa, pb)

Figure 1: A formal description of the closest-pair algorithm.
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In contrast to Rabin’s algorithm [22], we need only one sampling. The sample
size s should be Ω(n1/2+c), for some fixed c with 0 < c < 1/2, to guarantee
reliability (cf. Section 4), and O(n/ log n) to ensure that the sample can be handled
in linear time. A more formal description of the algorithm is given in Fig. 1.

In [22], Rabin did not describe how to group the points in linear time. As
a matter of fact, no linear-time duplicate-grouping algorithms were known at
the time. Our construction is based on the algorithms given in Section 2. We
assume that the procedure “duplicate-grouping” rearranges the points of S so
that all S[i] with the same group index, as determined by the grid cells, are
stored consecutively. Let xmin (ymin) and xmax (ymax) be the smallest and largest
x-coordinate (y-coordinate) of a point in S. The group index of a point p = (x, y)
is

groupdx,dy,δ(p) =

(⌊

x+ dx− xmin

δ

⌋

,

⌊

y + dy − ymin

δ

⌋)

,

a pair of numbers of O(log((xmax − xmin)/δ)) and O(log((ymax − ymin)/δ)) bits.
To implement this function, we have to preprocess the points and compute the
maximum and minimum coordinates.

The correctness of the procedure “randomized-closest-pair” follows from the
fact that, since δ0 is an upper bound on the minimum distance between any two
points of the set S, a closest pair falls into the same cell in at least one of the
shifted 2δ0-grids. Note that the algorithm works correctly even in the case that
sampling or grouping fails. The only harm caused by a failure in the grouping
procedure is that points falling into different cells are grouped together. However,
all the points falling into the same cell are still grouped together, so that a closest
pair will be found. Therefore a failure in sampling or grouping can only increase
the running time. However, we will see in the next section that the running time
is linear with high probability.

Remark 3.1. When computing the distances we have assumed implicitly that the
square-root operation is available. However, this is not really necessary. In Step 2
of the algorithm we could calculate the distance δ0 of a closest pair pa, pb of the
sample using the Manhattan metric L1 instead of the Euclidean metric L2. In
Step 3b of the algorithm we could compare the squares of the L2 distances instead
of the actual distances. Since even with this change δ0 is an upper bound on
the L2-distance of a closest pair, the algorithm will still be correct; on the other
hand, the running-time estimate for Step 3, as given in the next section, does not
change. (See the analysis of Step 3b following Corollary 4.4 below.) The square
root operation can also be avoided in the deterministic algorithm as shown, for
example, in [24]. The tricks just mentioned suffice for showing that the closest-
pair algorithm can be made to work for an arbitrary fixed Minkowski metric Lp,
without computing pth roots.

Remark 3.2. The randomized closest-pair algorithm generalizes naturally to any
d-dimensional space. Note that while two shifts (by 0 and δ0) of 2δ0-grids are
needed in the one-dimensional case, in the two-dimensional case 4 and in the
d-dimensional case 2d shifted grids must be taken into account.
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Remark 3.3. For implementing the procedure “deterministic-closest-pair” a num-
ber of algorithms can be used. Small input sets are best handled by the “brute-
force” algorithm, which calculates the distances between all n(n − 1)/2 pairs of
points; in particular, all calls to “deterministic-closest-pair” in Step 3b are exe-
cuted in this way. For larger input sets, in particular, for the call to “deterministic-
closest-pair” in Step 2, we use an asymptotically faster algorithm. For different
numbers d of dimensions various algorithms are available. In the one-dimensional
case the closest-pair problem can be solved by sorting the points and finding the
minimum distance between two successive points. In the two-dimensional case
one can use the simple plane-sweep algorithm of Hinrichs et al. [14]. In the multi-
dimensional case, the divide-and-conquer algorithm by Bentley and Shamos [6]
and the incremental algorithm by Schwarz et al. [24] are applicable. Assuming
d to be constant, all the algorithms mentioned above run in O(n log n) time and
O(n) space. One should be aware, however, that the complexity depends heavily
on d.

4 Analysis of the closest-pair algorithm

In this section, we prove that the algorithm given in Section 3 has linear time
complexity with high probability. Again, we treat in detail only the case of
two-dimensional problems. Time bounds for most parts of the algorithm were
established in previous sections or are immediately clear: Step 1 of the algorithm
(taking the sample of size s′ ≤ s) obviously uses O(s) time. Since we assumed
that s = O(n/ log n), no more than O(n) time is consumed in Step 2 for finding
a closest pair within the sample (see Remark 3.3). The complexity of the group-
ing performed in Step 3a was analyzed in Section 2. In order to implement the
function groupdx,dy,δ, which returns the group indices, we need some preprocessing
that takes O(n) time.

It remains only to analyze the cost of Step 3b, where closest pairs are found
within each group. It will be shown that a sample of size s ≥ 18n1/2+c, for
any fixed c with 0 < c < 1/2, guarantees O(n)-time performance with a failure
probability of at most 2−nc

. This holds even if a closest pair within each group is
computed by the brute-force algorithm (cf. Remark 3.3).

On the other hand, if the sampling procedure is modified in such a way that
only a few 4-wise independent sequences are used to generate the sampling in-
dices t[1], . . . , t[s], linear running time will still be guaranteed with probability
1 − O(n−α), for some constant α, while the number of random bits needed is
drastically reduced.

The analysis is complicated by the fact that points may occur repeatedly in
the multiset S = {p1, . . . , pn}. Of course, the algorithm will return two identical
points pa and pb in this case, and the minimum distance is 0. Note that in Rabin’s
paper [22] as well as in those of Golin et al. [13] and Khuller and Matias [15] it was
assumed that all input points are distinct, and the problem of duplicate points in
the input was not addressed at all.
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Varying a notion from [22], we first define what it means that there are “many”
duplicates and show that in this case the algorithm runs fast. The longer part
of the analysis then deals with the situation where there are few or no duplicate
points. For reasons of convenience we will assume throughout the analysis that
n ≥ 800.

For a finite (multi)set S and a partition D = (S1, . . . , Sm) of S into nonempty
subsets, let

N(D) :=
m
∑

µ=1

1

2
|Sµ| · (|Sµ| − 1),

which is the number of (unordered) pairs of elements of S that lie in the same
set Sµ of the partition. In the case of the natural partition DS of the multiset
S = {p1, . . . , pn}, where each class consists of all copies of one of the points, we
use the following abbreviation:

N(S) := N(DS) = |{{i, j} | 1 ≤ i < j ≤ n and pi = pj}|.

We first consider the case where N(S) is large; more precisely, we assume
for the time being that N(S) ≥ n. Then, by Corollary C.2 in Appendix C, the
s ≥ 18n1/2+c sample points chosen in Step 1 of the algorithm will contain two
equal points with probability at least 1 − 2−nc

. The deterministic closest-pair
algorithm invoked in Step 2 will identify one such pair of duplicates and return
δ0 = 0; at this point the algorithm terminates, having used only linear time.

For the remainder of this section we assume that there are not too many
duplicate points, that is, that N(S) < n. In this case, we may follow the argument
from Rabin’s paper. If G is a grid in the plane, then G induces a partition DS,G

of the multiset S into disjoint subsets S1, . . . , Sm (with duplicates) — two points
of S are in the same subset of the partition if and only if they fall into the same
cell of G. As in the special case of N(S) above, we are interested in the number

N(S,G) := N(DS,G) = |{{i, j} | pi and pj lie in the same cell of the grid G}|.

This notion, which was also used in Rabin’s analysis [22], expresses the work done
in Step 3b when the subproblems are solved by the brute-force algorithm.

Lemma 4.1 ([22]). Let S be a multiset of n points in the plane. Further, let G
be a grid with resolution δ, and let G′ be one of the four grids with resolution 2δ
that overlap G. Then N(S,G′) ≤ 4N(S,G) + 3

2
n.

Proof. We consider 4 cells of G whose union is one cell of G′. Assume that these 4
cells contain k1, k2, k3, and k4 points from S (with duplicates), respectively. The
contribution of these cells to N(S,G) is b := 1

2

∑4
i=1 ki(ki − 1). The contribution

of the one (larger) cell to N(S,G′) is 1
2
k(k − 1), where k =

∑4
i=1 ki. We want to

give an upper bound on 1
2
k(k − 1) in terms of b.

The function x 7→ x(x− 1) is convex in [0,∞). Hence

1
4
k
(

1
4
k − 1

)

≤ 1
4

∑4
i=1 ki(ki − 1) = 1

2
b.
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This implies

1
2
k(k − 1) = 1

2
k(k − 4) + 3

2
k ≤ 8 · 1

4
k
(

1
4
k − 1

)

+ 3
2
k ≤ 4 · b+ 3

2
k.

Summing the last inequality over all cells of G′ yields the desired inequality
N(S,G′) ≤ 4N(S,G) + 3

2
n.

Remark 4.2. In the case of d-dimensional space, this calculation can be carried
out in exactly the same way; this results in the estimate N(S,G′) ≤ 2dN(S,G) +
1
2
(2d − 1)n.

Corollary 4.3. Let S be a multiset of n points that satisfies N(S) < n. Then
there is a grid G∗ with n ≤ N(S,G∗) < 5.5n.

Proof. We start with a grid G so fine that no cell of the grid contains two distinct
points in S. Then, obviously, N(S,G) = N(S) < n. By repeatedly doubling the
grid size as in Lemma 4.1 until N(S,G′) ≥ n for the first time, we find a grid G∗

satisfying the claim.

Corollary 4.4. Let S be a multiset of size n and let G be a grid with resolution
δ. Further, let G′ be an arbitrary grid with resolution at most δ. Then N(S,G′) ≤
16N(S,G) + 6n.

Proof. Let Gi, for i = 1, 2, 3, 4, be the four different grids with resolution 2δ that
overlap G. Each cell of G′ is completely contained in some cell of at least one of
the grids Gi. Thus, the sets of the partition induced by G′ can be divided into four
disjoint classes depending on which of the grids Gi covers the corresponding cell
completely. Therefore, we have N(S,G′) ≤∑4

i=1 N(S,Gi). Applying Lemma 4.1
and summing up yields N(S,G′) ≤ 16N(S,G) + 6n, as desired.

Now we are ready for analyzing Step 3b of the algorithm. As stated above, we
assume that N(S) < n; hence the existence of some grid G∗ as in Corollary 4.3 is
ensured. Let δ∗ > 0 denote the resolution of G∗.

We apply Corollary C.2 from the appendix to the partition of S (with du-
plicates) induced by G∗ to conclude that with probability at least 1 − 2−nc

the
random sample taken in Step 1 of the algorithm contains two points from the
same cell of G∗. It remains to show that if this is the case then Step 3b of the
algorithm takes time O(n).

Since the real number δ0 calculated by the algorithm in Step 2 is bounded by
the distance of two points in the same cell of G∗, we must have δ0 ≤ 2δ∗. (This is
the case even if in Step 2 the Manhattan metric L1 is used.) Thus the four grids
G1, G2, G3, G4 used in Step 3 have resolution 2δ0 ≤ 4δ∗. We form a grid G∗∗ with
resolution 4δ∗ by omitting all but every fourth line from G∗. By the inequality
N(S,G∗) < 5.5n (Corollary 4.3) and a double application of Lemma 4.1, we obtain
N(S,G∗∗) = O(n). The resolution 4δ∗ of the grid G∗∗ is at least as large as 2δ0.
Hence we may apply Corollary 4.4 to obtain that the four grids G1, G2, G3, G4

used in Step 3 of the algorithm satisfy N(S,Gi) = O(n), for i = 1, 2, 3, 4. But
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obviously the running time of Step 3b is O(
∑4

i=1(N(S,Gi) + n)); by the above,
this bound is linear in n. This finishes the analysis of the cost of Step 3b.

It is easy to see that Corollaries 4.3 and 4.4 as well as the analysis of Step 3b
generalize from the plane to any fixed dimension d. Combining the discussion
above with Theorem 2.11, we obtain the following.

Theorem 4.5. The closest-pair problem for a multiset of n points in d-dimension-
al space, where d ≥ 1 is a fixed integer, can be solved by a probabilistic algorithm
that needs O(n) space and

(1) O(n) time on a real RAM with operations from {+,−, ∗,div, log2, exp2};
or

(2) O(n+log log(δmax/δmin)) time on a real RAM with operations from {+,−, ∗,div},
where δmax and δmin denote the maximum and minimum distance between any two
distinct points, respectively. The probability that the time bound is exceeded is
2−nΩ(1)

.

Proof. The running time of the randomized closest-pair algorithm is dominated by
that of Step 3a. The group indices used in Step 3a are d-tuples of integers in the
range [0, ⌈δmax/δmin⌉]. By Theorem 2.12, parts (1) and (2) of the theorem follow
directly from the corresponding parts of Theorem 2.11. Since all the subroutines
used finish within their respective time bounds with probability 1 − 2−nΩ(1)

, the
same is true for the whole algorithm. The amount of space required is obviously
linear.

Corollary 4.6. The closest-pair problem for a multiset of n points in d-dimen-
sional space with integer coordinates in the range {0, . . . , U − 1}, where d ≥ 1 is
a fixed integer, can be solved by a conservative probabilistic algorithm that needs
O(n) space and

(1) O(n) time on a unit-cost RAM with operations from {+,−, ∗,div, log2, exp2};
or

(2) O(n+log logU) time on a unit-cost RAM with operations from {+,−, ∗,div}.
The probability that the time bound is exceeded is 2−nΩ(1)

.

Proof. Parts (1) and (2) follow from the corresponding parts of Theorem 4.5 and
the fact that δmax/δmin = O(U). It is clear that the randomized closest-pair
algorithm is conservative, since all its subroutines are conservative.

Even if the number of random bits used is severely restricted, we can still
retain an algorithm that is quite reliable.

Theorem 4.7. Let α, d ≥ 1 be arbitrary integers. The closest-pair problem for a
multiset of n points in d-dimensional space can be solved by probabilistic algorithms
with the time and space requirements stated in Theorem 4.5 and Corollary 4.6 that
use only O(α log n+log(δmax/δmin)) or O(α log n+logU) random bits, respectively,
and exceed the time bound with probability O(n−α).
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Proof. We let s := 16α · ⌈n3/4⌉ and generate the sequence t[1], . . . , t[s] in the algo-
rithm as the concatenation of 4α independently chosen sequences of 4-independent
random values that are approximately uniformly distributed in [1..n]. This ran-
dom experiment and its properties are described in detail in Corollary C.4 and
Lemma C.5 in Section C of the appendix. The time needed is o(n), and the num-
ber of random bits needed is O(α log n). The duplicate grouping is performed
with the simple method described in Section 2.2. This requires only O(logU) or
O(log(δmax/δmin)) random bits, respectively. The analysis is exactly the same as
in the proof of Theorem 4.5, except that Corollary C.4 is used instead of Corol-
lary C.2.

Remark 4.8. The worst-case complexity of our closest-pair algorithm is easily
improved to O(n log n), or O(n log n + log log(δmax/δmin)), by solving the small
subproblems (in Step 3b) with an optimal deterministic algorithm (as in Step 2).
This is because

∑m
i=1 ni log ni ≤ n log n if

∑m
i=1 ni = n, and because we never use

more than linear time in sampling or grouping (that is, in Steps 1, 2, and 3a).

5 Conclusions

We have provided an asymptotically efficient algorithm for computing a closest
pair of n points in d-dimensional space. The main idea of the algorithm is to
use random sampling in order to reduce the original problem to a collection of
duplicate-grouping problems. The performance of the algorithm depends on the
operations assumed to be primitive in the underlying machine model. We proved
that, with high probability, the running time is O(n) on a real RAM capable of
executing the arithmetic operations from {+,−, ∗,div, log2, exp2} in constant
time. Without the operations log2 and exp2, the running time increases by an
additive term of O(log log(δmax/δmin)), where δmax and δmin denote the maximum
and the minimum distance between two distinct points, respectively. When the
coordinates of the points are integers in the range {0, . . . , U − 1}, the running
times are O(n) and O(n+ log logU), respectively. For integer data the algorithm
is conservative, i.e., all the numbers manipulated contain O(log n+ logU) bits.

We proved that the bounds on the running times hold also when the collection
of input points contains duplicates. As an immediate corollary of this result we
get that the following decision problems, which are often used in lower-bound
arguments for geometric problems (see [21]), can be solved as efficiently as the
one-dimensional closest-pair problem on the real RAM.

(1) Element-distinctness problem: Given n real numbers, decide if any two of
them are equal.

(2) ε-closeness problem: Given n real numbers and a threshold value ε > 0,
decide if any two of the numbers are at distance less than ε from each other.
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In the light of these results, one should not attach exaggerated weight to a proof
showing some problem to be at least as hard as, say, the element-distinctness
problem.

Finally, we would like to mention practical experiments with our algorithms.
The experiments were conducted by Tomi Pasanen (University of Turku, Finland).
He found that the duplicate-grouping algorithm based on radix sort (with α =
3), i.e., the algorithm described in Theorem 2.4, behaved essentially as well as
heapsort. For small inputs (n < 50 000) heapsort was slightly faster, whereas for
large inputs heapsort was slightly slower. (Randomized) quicksort turned out to
be much faster than any of these algorithms for all n ≤ 1 000 000. One drawback
of the radix-sort algorithm is that it requires extra memory space for linking the
duplicates, whereas heapsort (as well as in-place quicksort) does not require any
extra space. One should also note that in some applications the word length of the
actual machine can be restricted to, say, 32 bits. This means that when n > 211

and α = 3, the hash function h ∈ Hk,ℓ (see the proof of Theorem 2.4) is not
needed for collapsing the universe; radix sort can be applied directly. Therefore,
the integers must be long before the full power of our methods is utilized.
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A Multiplicative universal hashing

We prove the following lemma from Section 2.

Lemma 2.1. Let k and ℓ be integers with 1 ≤ ℓ ≤ k. If x, y ∈ {0, . . . , 2k − 1} are
distinct and ha ∈ Hk,ℓ is chosen at random, then

Prob
(

ha(x) = ha(y)
)

≤ 1

2ℓ−1
.

Proof. Fix distinct integers x, y ∈ {0, . . . , 2k − 1} with x > y and abbreviate x− y
by z. Let A = {a | 0 < a < 2k and a is odd}. By the definition of ha, every a ∈ A
with ha(x) = ha(y) satisfies

|ax mod 2k − ay mod 2k| < 2k−ℓ.

Since z 6≡ 0 (mod 2k) and a is odd, we have az 6≡ 0 (mod 2k). Therefore all
such a satisfy

az mod 2k ∈ {1, . . . , 2k−ℓ − 1} ∪ {2k − 2k−ℓ + 1, . . . , 2k − 1}. (A.1)
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In order to estimate the number of a ∈ A that satisfy (A.1), we write z = z′2s

with z′ odd and 0 ≤ s < k. Since the odd numbers 1, 3, . . . , 2k − 1 form a group
with respect to multiplication modulo 2k, the mapping

a 7→ az′ mod 2k

is a permutation of A. Consequently, the mapping

a2s 7→ az′2s mod 2k+s = az mod 2k+s

is a permutation of the set {a2s | a ∈ A}. Thus, the number of a ∈ A that
satisfy (A.1) is the same as the number of a ∈ A that satisfy

a2s mod 2k ∈ {1, . . . , 2k−ℓ − 1} ∪ {2k − 2k−ℓ + 1, . . . , 2k − 1}. (A.2)

Now, a2s mod 2k is just the number whose binary representation is given by the
k−s least significant bits of a, followed by s zeroes. This easily yields the following.
If s ≥ k−ℓ, no a ∈ A satisfies (A.2). For smaller s, the number of a ∈ A satisfying
(A.2) is at most 2k−ℓ. Hence the probability that a randomly chosen a ∈ A satisfies
(A.1) is at most 2k−ℓ/2k−1 = 1/2ℓ−1.

B Generating primes

In this section, we provide proofs of Lemmas 2.6 and 2.7.

Lemma 2.6. There is a probabilistic algorithm that, for any given integer m ≥ 2,
returns an integer p with m < p ≤ 2m such that the following holds: the running
time is O((logm)4), and the probability that p is not prime is at most 1/m.

Proof. The heart of the construction is the probabilistic primality test of Rabin
[23] (see also [9]). If an arbitrary number x of b bits is given to the test as an
input, then the following holds.

(a) If x is prime, then Prob(the result of the test is “prime”) = 1;

(b) if x is composite, then Prob(the result of the test is “prime”) ≤ 1/4;

(c) performing the test once requires O(b) time, and all numbers manipulated
in the test are O(b) bits long.

By repeating the test t times, the reliability of the result can be increased such
that for composite x we have

Prob(the result of the test is “prime”) ≤ 1/4t.

In order to generate a “probable prime” that is greater thanm we use a random
sampling algorithm. We select s (to be specified later) integers from the interval
{m+ 1, . . . , 2m} at random. Then these numbers are tested one by one until the
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result of the test is “prime”. If no such result is obtained the number m + 1 is
returned.

The algorithm fails to return a prime number (1) if there is no prime among
the numbers in the sample, or (2) if one of the composite numbers in the sample
is accepted by the primality test. We estimate the probabilities of these events.

It is well known that the function π(x) := |{p| p ≤ x and p is prime}| satisfies

π(2x)− π(x) ≥ x

3 ln(2x)
, for x ≥ 1.

(For a complete proof of this fact, also known as “Finsler’s inequality”, see [25,
Sects. 3.10 and 3.14].) Hence, for all m ≥ 1 the number of primes in the set
{m+ 1, . . . , 2m} is at least m/(3 ln(2m)). We choose

s := s(m) := ⌈3(ln(2m))2⌉

and
t := t(m) := max{⌈log2s(m)⌉ , ⌈log2(2m)⌉}.

(Note that t(m) = O(logm).) Then the probability that the random sample
contains no prime at all is bounded by

(

1− 1

3 ln(2m)

)s

≤
(

(

1− 1

3 ln(2m)

)3 ln(2m)
)ln(2m)

< e− ln(2m) =
1

2m
.

The probability that one of the (at most) s composite numbers in the sample will
be accepted is smaller than

s(m) · (1/4)t ≤ s(m) · 2− log2s(m) · 2− log2(2m) =
1

2m
.

Summing up, the failure probability of the algorithm is at most 2 · (1/(2m)) =
1/m, as claimed. If m is a b-bit number, the time required is O(s · t · b), that is,
O((logm)4).

Remark B.1. The problem of generating primes is discussed by Damg̊ard et al. [9]
in greater detail. Their analysis shows that the proof of Lemma 2.6 is overly
pessimistic. Therefore, without sacrificing the reliability, the sample size s and/or
the repetition count t can be decreased; in this way considerable savings in the
running time are possible.

Lemma 2.7. There is a probabilistic algorithm that, for any given positive integers
m and n with 2 ≤ m ≤ 2⌈n

1/4⌉, returns a number p with m < p ≤ 2m such that
the following holds: the running time is O(n), and the probability that p is not

prime is at most 2−n1/4
.
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Proof. We increase the sample size s and the repetition count t in the algorithm
from Lemma 2.6 above, as follows:

s := s(m,n) := 6 · ⌈ln(2m)⌉ · ⌈n1/4⌉

and
t := t(m,n) := 1 + max{⌈log2s(m,n)⌉, ⌈n1/4⌉}.

As above, the failure probability is bounded by the sum of the following two terms:

(

1− 1

3 ln(2m)

)s(m,n)

< e−2⌈n1/4⌉ < 2−1−n1/4

and
s(m,n) · (1/4)t(m,n) ≤ 2−(1+⌈n1/4⌉) ≤ 2−1−n1/4

.

This proves the bound 2−n1/4
on the failure probability. The running time is

O(s · t · ⌈log2m⌉) = O((logm) · n1/4 · (log logm+ log n+ n1/4) · logm) = O(n).

C Random sampling in partitions

In this section we deal with some technical details of the analysis of the closest-
pair algorithm. For a finite set S and a partition D = (S1, . . . , Sm) of S into
nonempty subsets, let

P (D) := {π ⊆ S | |π| = 2 ∧ ∃µ ∈ {1, . . . ,m} : π ⊆ Sµ}.

Note that the quantity N(D) defined in Section 4 equals |P (D)|. For the anal-
ysis of the closest-pair algorithm, we need the following technical fact: If N(D)
is linear in n and more than 8

√
n elements are chosen at random from S, then

with a probability that is not too small two elements from the same subset of
the partition are picked. In principle, the lemma was proved in [22, Lemma 6].
In Subsection C.1 we give a totally different proof, resting on basic facts from
probability theory (viz., Chebyshev’s inequality), which may make it more con-
spicuous why the lemma is true than Rabin’s proof. Further, it will turn out that
full independence of the elements in the random sample is not needed, but rather
that 4-wise independence is sufficient. This observation is crucial for a version of
the closest-pair algorithm that uses only few random bits. The technical details
are given in Subsection C.2.
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C.1 The sampling lemma

Lemma C.1. Let n, m and s be positive integers, let S be a set of size n ≥ 800,
let D = (S1, . . . , Sm) be a partition of S into nonempty subsets with N(D) ≥ n,
and assume that s random elements t1, . . . , ts are drawn independently from the
uniform distribution over S. Then if s ≥ 8

√
n,

Prob
(

∃i, j ∈ {1, . . . , s}∃µ ∈ {1, . . . ,m} : ti 6= tj ∧ ti, tj ∈ Sµ

)

> 1− 4
√
n

s
. (C.1)

Proof. We first note that we may assume, without loss of generality, that

n ≤ N(D) ≤ 1.1n. (C.2)

To see this, assume thatN(D) > 1.1n and consider a process of repeatedly refining
D by splitting off an element x in a largest set in D, i.e., by making x into a
singleton set. As long as D contains a set of size

√
2n + 2 or more, the resulting

partition D′ still has N(D′) ≥ n. On the other hand, splitting off an element from
a set of size less that

√
2n+2 changes N by less than

√
2n+1 =

√

200/n ·0.1n+1,
which for n ≥ 800 is at most 0.1n. Hence if we stop the process with the first
partition D′ with N(D′) ≤ 1.1n, we will still have N(D′) ≥ n. Since D′ is a
refinement of D, we have for all i and j that

ti and tj are contained in the same set S ′
µ of D′

⇒ ti and tj are contained in the same set Sµ of D;

thus, it suffices to prove (C.1) for D′.
We define random variables Xπ

i,j , for π ∈ P (D) and 1 ≤ i < j ≤ s, as follows:

Xπ
i,j :=

{

1 if {ti, tj} = π,
0 otherwise.

Further, we let

X :=
∑

π∈P (D)

∑

1≤i<j≤s

Xπ
i,j .

Clearly, by the definition of P (D),

X = #{(i, j) | 1 ≤ i < j ≤ s ∧ ti 6= tj ∧ ti, tj ∈ Sµ for some µ } ≥ 0.

Thus, to establish (C.1), we only have to show that

Prob(X = 0) <
4
√
n

s
.

For this, we estimate the expectation E(X) and the variance Var(X) of the
random variable X, with the intention of applying Chebyshev’s inequality:

Prob
(

|X − E(X)| ≥ t
)

≤ Var(X)

t2
, for all t > 0. (C.3)

25



(For another, though simpler, application of Chebyshev’s inequality in a similar
context see [8]).

First note that for each π = {x, y} ∈ P (D) and 1 ≤ i < j ≤ s the following
holds:

E(Xπ
i,j) = Prob(ti = x ∧ tj = y) +Prob(ti = y ∧ tj = x) =

2

n2
. (C.4)

Thus,

E(X) =
∑

π∈P (D)

∑

1≤i<j≤s

E(Xπ
i,j) (C.5)

= |P (D)| ·
(

s

2

)

· 2

n2
= N(D) · s

2

n2
·
(

1− 1

s

)

.

By assumption, s ≥ 8
√
n ≥ 8

√
800, so that 1 − 1/s ≥ 1/1.01. Let α := s/

√
n.

Using the assumption N(D) ≥ n, we get from (C.5) that

E(X) ≥ α2

1.01
. (C.6)

Next we derive an upper bound on the variance of X. With the (standard)
notation

cov(Xπ
i,j , X

π′

i′,j′) = E(Xπ
i,j ·Xπ′

i′,j′)− E(Xπ
i,j) · E(Xπ′

i′,j′)

we may write

Var(X) = E(X2)− (E(X))2 =
∑

π,π′∈P (D)

∑

1≤i<j≤s
1≤i′<j′≤s

cov(Xπ
i,j , X

π′

i′,j′). (C.7)

We split the summands cov(Xπ
i,j, X

π′

i′,j′) occurring in this sum into several classes
and estimate the contribution toVar(X) of the summands in each of these classes.
For all except the first class, we use the simple bound

cov(Xπ
i,j , X

π′

i′,j′) ≤ E(Xπ
i,j ·Xπ′

i′,j′) = Prob(Xπ
i,j = Xπ′

i′,j′ = 1).

For i ∈ {1, . . . , s}, if ti = x ∈ S, we will say that i is mapped to x. Below we
therefore bound the probability that {i, j} is mapped onto π, while at the same
time {i′, j′} is mapped onto π′. Let J = {i, j, i′, j′}.

Class 1. |J | = 4. In this case the random variables Xπ
i,j and Xπ′

i′,j′ are inde-

pendent, so that cov(Xπ
i,j , X

π′

i′,j′) = 0.

Class 2. |J | = 2 and π = π′. Now E(Xπ
i,j · Xπ′

i′,j′) = E(Xπ
i,j), so the total

contribution to Var(X) of summands of Class 2 is at most

∑

π∈P (D)

∑

1≤i<j≤s

E(Xπ
i,j) = E(X).
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Class 3. |J | < |π ∪ π′|. In this case J cannot be mapped onto π ∪ π′, so
Xπ

i,j ·Xπ′

i′,j′ ≡ 0 and cov(Xπ
i,j , X

π′

i′,j′) ≤ 0.
Since |J | ∈ {2, 3, 4} and |π ∪ π′| ∈ {2, 3, 4}, the only case not covered above

is |J | = 3 and |π ∪ π′| ∈ {2, 3}. In order to simplify the discussion of this final
case, let us call the single element of {i, j} ∩ {i′, j′} the central domain element.
Correspondingly, if |π ∪ π′| = 3, we call the single element of π ∩ π′ the central
range element. The argument proceeds by counting the number of summands of
certain kinds as well as estimating the size of each summand.

Class 4. |J | = 3. The central domain element and the other elements of {i, j}
and {i′, j′} can obviously be chosen in no more than s3 ways.

Class 4a. |J | = 3 and π = π′. By definition, π = π′ can be chosen in
N(D) ways. Furthermore, Xπ

i,j = Xπ
i′,j′ = 1 only if the central domain element

is mapped to one element of π, while the two remaining elements of J are both
mapped to the other element of π, the probability of which is (2/n)(1/n)(1/n) =
2/n3. Altogether, the contribution to Var(X) of summands of Class 4a is at most
s3 ·N(D) · 2/n3 ≤ 2.2s3/n2.

Class 4b. |J | = 3 and |π∪π′| = 3. The set π∪π′ can be chosen in
∑m

µ=1

(|Sµ|
3

)

ways, after which there are three choices for the central range element and two
ways of completing π (and, implicitly, π′) with one of the remaining elements of
π ∪ π′. Xπ

i,j = Xπ′

i′,j′ = 1 only if the central domain element is mapped to the
central range element, while the remaining element of {i, j} is mapped to the
remaining element of π and the remaining element of {i′, j′} is mapped to the
remaining element of π′, the probability of which is 1/n3. It follows that the total
contribution to Var(X) of summands of Class 4b is bounded by

(

m
∑

µ=1

|Sµ|(|Sµ| − 1)(|Sµ| − 2)

)

·
( s

n

)3

≤
(

m
∑

µ=1

(|Sµ| − 1)3

)

·
( s

n

)3

. (C.8)

We use the inequality
∑m

µ=1 a
3
µ ≤

(

∑m
µ=1 a

2
µ

)3/2

(a special case of Jensen’s in-

equality, valid for all a1, . . . , am ≥ 0) and the assumption (C.2) to bound the right
hand side in (C.8) by

(

m
∑

µ=1

|Sµ|(|Sµ| − 1)

)3/2

·
( s

n

)3

≤ (2 · 1.1n)3/2 ·
( s

n

)3

= 2.23/2 ·
(

s√
n

)3

< 3.3α3.

Bounding the contributions of the summands of the various classes to the sum in
equation (C.7), we get (using that n1/2 ≥ 25)

Var(X) ≤ E(X) + 2.2s3/n2 + 3.3α3 = E(X) + (2.2n−1/2 + 3.3)α3

< E(X) + 3.5α3. (C.9)

By (C.3) we have

Prob(X = 0) ≤ Prob
(

|X − E(X)| ≥ E(X)
)

≤ Var(X)

E(X)2
;
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by (C.9) and (C.6) this yields

Prob(X = 0) ≤ 1

E(X)
+

3.5α3

(E(X))2
≤ 1.01

α2
+

3.5 · 1.012
α

.

Since 1.01/α + 3.5 · 1.012 < 4, we get

Prob(X = 0) <
4

α
=

4
√
n

s
,

as claimed.

In case the size of the chosen subset is much larger than
√
n, the estimate in

the lemma can be considerably sharpened.

Corollary C.2. Let n, m and s be positive integers, let S be a set of size n ≥ 800,
let D = (S1, . . . , Sm) be a partition of S into nonempty subsets with N(D) ≥ n,
and assume that s random elements t1, . . . , ts are drawn independently from the
uniform distribution over S. Then if s ≥ 9

√
n,

Prob
(

∃i, j ∈ {1, . . . , s}∃µ ∈ {1, . . . ,m} : ti 6= tj ∧ ti, tj ∈ Sµ

)

> 1− 2−s/(18
√
n).

Proof. Split the sequence t1, . . . , ts into disjoint subsequences of length s′ :=
⌈8√n⌉ ≤ 9

√
n each, with fewer than s′ elements left over. By Lemma C.1, in

each of the corresponding subexperiments the probability that two elements in
the same subset Sµ are hit is at least 1− 4

√
n/s′ ≥ 1

2
. Since the subexperiments

are independent and their number is at least ⌊s/(9√n)⌋ ≥ s/(18
√
n), the stated

event will occur in at least one of them with probability at least 1 − 2−s/(18
√
n).

Clearly, this is also a lower bound on the probability that the whole sequence
t1, . . . , ts hits two elements from the same Sµ.

C.2 Sampling with few random bits

In this section we show that the effect described in Lemma C.1 can be achieved
also with a random experiment that uses very few random bits.

Corollary C.3. Let n, m, s, S, and D be as in Lemma C.1. Then the conclusion
of Lemma C.1 also holds if the s elements t1, . . . , ts are chosen according to a
distribution over S that only satisfies the following two conditions:

(a) the sequence is 4-independent, i. e., for all sets {i, j, k, l} ⊆ {1, . . . , s} of size
4 the values ti, tj, tk, tl are independent; and

(b) for all i ∈ {1, . . . , s} and all x ∈ S we have

1− ε

n
< Prob(ti = x) <

1 + ε

n
,

where ε = 0.0025.
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Proof. This is proved almost exactly as Lemma C.1. We indicate the slight changes
that have to be made. Equation (C.4) is replaced by

E(Xπ
i,j) ≥ 2 ·

(

1− ε

n

)2

≥ 2(1− 2ε)

n2
.

Equation (C.5) changes into

E(X) ≥ N(D) · s
2

n2
· (1− 2ε) ·

(

1− 1

s

)

.

As s ≥ 8
√
800 and ε = 0.0025, we get (1− 2ε)(1− 1/s) ≥ 1/1.01, such that (C.6)

remains valid. The contributions to Var(X) of the summands of the various
classes defined in the proof of Lemma C.1 are bounded as follows.

Class 1: The contribution is 0. For justifying this, 4-wise independence is suffi-
cient.

Class 2: E(X).

Class 3: ≤ 0.

Class 4a: s3 ·N(D) · (2/n3) · (1 + ε)3 ≤ 2.3s3/n2.

Class 4b: (2.2n)3/2 · (s/n3) · (1 + ε)3 ≤ 3.3α3.

Finally, estimate (C.9) is replaced by

Var(x) ≤ E(X) + (2.3n−1/2 + 3.3)α3 < E(X) + 3.5α3,

where we used that n1/2 ≥ 25. The rest of the argument is verbally the same as
in the proof of Lemma C.1.

In the random sampling experiment, we can even achieve quite high reliability
with a moderate number of random bits.

Corollary C.4. In the situation of Lemma C.1, let s ≥ 4⌈n3/4⌉, and let α ≥ 1
be an arbitrary integer. If the experiment described in Corollary C.3 is repeated
independently 4α times to generate 4α sequences (tl1, . . . , tls), with 1 ≤ l ≤ 4α, of
elements of S, then

Prob
(

∃i, j ∈ {1, . . . , s}∃k, l ∈ {1, . . . , α}∃µ ∈ {1, . . . ,m} :

tk,i 6= tl,j ∧ tk,i, tl,j ∈ Sµ

)

> 1− n−α.

Proof. By Corollary C.3, for each fixed l the probability that the sequence tl1, . . . , tls
hits two different elements in the same subset Sµ is at least 1−4

√
n/s ≥ 1−n−1/4.

By independence, the probability that this happens for one of the 4α sequences
is at least 1− (n−1/4)4α; clearly, this is also a lower bound on the probability that
the whole double sequence tli, with 1 ≤ l ≤ 4α and 1 ≤ i ≤ s, hits two different
elements in the same set Sµ.
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Lemma C.5. Let S = {1, . . . , n} for some n ≥ 800 and take s = 4⌈n3/4⌉. Then
the random experiment described in Corollary C.3 can be carried out in time o(n)
using a sample space of size O(n6) (or, informally, using 6 log n + O(1) random
bits).

Proof. Let us assume for the time being that a prime number p with s < p ≤ 2s is
given. (We will see at the end of the proof how such a p can be found within the
time bound claimed.) According to [8], a 4-independent sequence t′1, . . . , t

′
p, where

each t′j is uniformly distributed in {0, . . . , p − 1}, can be generated as follows:
choose randomly 4 coefficients γ′

0, γ
′
1, γ

′
2, γ

′
3 from {0, . . . , p− 1} and let

t′j :=

(

3
∑

r=0

γ′
r · jr

)

mod p, for 1 ≤ j ≤ p.

By repeating this experiment once (independently), we obtain another such se-
quence t′′1, . . . , t

′′
p. We let

tj := 1 + (t′j + pt′′j ) mod n, for 1 ≤ j ≤ s.

Clearly, the overall size of the sample space is (p4)2 = p8 = O(n6), and the time
needed for generating the sample is O(s). We must show that the distribution of
t1, . . . , ts satisfies conditions (a) and (b) of Corollary C.3. Since the two sequences
(t′p, . . . , t

′
p) and (t′′p, . . . , t

′′
p) originate from independent experiments, and each one

of them is 4-independent, the sequence

t′1 + pt′′1, . . . , t
′
s + pt′′s

is 4-independent; hence the same is true for t1, . . . , ts, and (a) is proved. Further,
t′j + pt′′j is uniformly distributed in {0, . . . , p2 − 1}, for 1 ≤ j ≤ s. From this, it is
easily seen that, for x ∈ S,

Prob(tj = x) ∈
{⌊

p2

n

⌋

· 1

p2
,

⌈

p2

n

⌉

· 1

p2

}

.

Now observe that ⌊p2/n⌋ /p2 < 1/n < ⌈p2/n⌉ /p2, and that
⌈

p2

n

⌉

· 1

p2
−
⌊

p2

n

⌋

· 1

p2
≤ 1

p2
<

1

s2
≤ 1

16n3/2
=

1

16
√
n
· 1
n
<

ε

n
,

where we used that n ≥ 800, whence 1/(16
√
n) < 1/400 = 0.0025 = ε. This

proves (b).
Finally, we briefly recall the fact that a prime number in the range

{s + 1, . . . , 2s} can be found deterministically in time O(s log log s). (Note that
we should not use randomization here, as we must take care not to use too many
random bits.) The straightforward implementation of the Eratosthenes sieve (see,
e. g., [25, Sect. 3.2]) for finding all the primes in {1, . . . , 2s} has running time

O

(

∑

p≤
√
2s

p prime

⌈2s/p⌉
)

= O

(

s ·
(

1 +
∑

p≤
√
2s

p prime

1

p

)

)

= O(s log log s),
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where the last estimate results from the well-known fact that

∑

p≤y
p prime

1

p
= O(log log y), for y ≥ 1.

(E. g., this can easily be derived from the inequality π(2n) − π(n) < 7n/(5 lnn),
for n > 1, which is proved in [25, Sect. 3.14].)
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