Today’s program

A5\
> Sequence comparison

Y

/(:,y)

Xz
Jyrki Katajainen

Department of Computing
University of Copenhagen

© Performance Engineering Laboratory

My main sources

William R. Pearson, Protein sequence com-
parison and protein evolution, ISMB95 Tuto-
rial (1995)

Joao Setubal and Joao Meidanis, Introduc-
tion to Computational Molecular Biology,
PWS Publishing Company (1997)

Mike Paterson and VIado DancCik, Longest
common subsequences, Proceeding of the
19th International Symposium on Mathemat-
ical Foundations of Computer Science, Lec-
ture Notes in Computer Science 841, Sprin-
ger-Verlag (1994), 127-142

James J. Hunt, Kiem-Phong Vo, and Wal-
ter F. Tichy, Delta algorithms: an empirical
analysis, ACM Transactions on Software En-
gineering and Methodology 7 (1998)

© Performance Engineering Laboratory 2

Symbols and sequences

In biological applications the symbols can be

e amMino acids;

a protein is a sequence of amino acids;

e bases in DNA molecules;

each cell of an organism has a few very
long DNA molecules; such a molecule is
called a cromosome.

In a computer these symbols are often rep-
resented using one-letter codes.

© Performance Engineering Laboratory 3

Similarity of molecular sequences

Definitions: Let U and V be two sequences,
and let - denote a space (not in U or V).

An alignment between U and V is de-
fined as the insertion of spaces in arbi-
trary locations so that they end up with
the same size. No space in U should be
aligned with a space in V.

Let 0(5) denote the score between

two symbols and y. Given an align-
ment, its score is the sum of the scores
of the corresponding symbols.

Problem: Compute the similarity between
U and V, i.e., the score of the best align-
ment (maximum score).

Example: Assume that o < i) = +1, o (z)

—1, and o (
x

alignment between A BDD EF G H Iand
ABDEGKHTIhas score 2.

> — —2. Then the optimal

ABDDEFGHTI
A B

D-EGKHTI

) Performance Fnaineerina | aboratorv A4

Dynamic programming

Let s[i,j] denote the similarity between the
prefixes of X[1:4] and Y[1:j]. That is, we are
trying to compute s[m, n].

A recursive definition for matrix s, exploiting
an obvious optimal subproblem property, is
given as follows.

e . X[\
5[2_17]_1]—'_0 (Y[]])7

s[t,5] = max s[i—1,j5]+o0o X_[z] : >

| slt,7—1]4o0o Y] |

© Performance Engineering Laboratory 5

Computing the similarity

The following algorithm fills the similarity ma-
trix row by row.

Global-similarity(X,Y) >Runtime: O(mn)

1 m <« length(X)

2 n < length(Y)

3 s[0,0] « O

4 for j<1ton

5 sl0.) e slo -1l 7)

6 fori+1tom

7 s[i,0] « s[i—1,0]40 (XL)

8 for j<—1ton
s[i—1,7—1]4o (3)55%

9 sli, 5] « max{ sli—1,5]+0 |),
sli,j—1]+o Y_[j]

10 return s[m,n]

© Performance Engineering Laboratory 6

X

Vg

/

Example: global alignment

j 01 2 3 456 7 8 9
i Y ABDDETFTGHI
0 X|0|22|7a|T6| 8[F10-12 14 1618
1 A2~ 0115355571 Tob11013015
2 B |-4/-1|"2|0|2|4|%6|"8[-10-12
3 D|[t-6™-3]T0("8| T |T1|53| 55| 57| Do
4 E|[r-8[t-5/-2[11|2|"2| 0 |2|%a|"6
5 G1-10M-7[-4/-1%0 |~ ™ [N 1|5
6 K {-12M-9|T-6[-3[~2[~1|%0 |0 |0 |0
7 HT-14-117-8(1-5|1-4|"-3|T-2/ 1| ¢ |1
8 I1-14-13-1Q"-7|M-6(-5|M-4[1-3|T-1|"2

© Performance Engineering Laboratory

Local similarity scores

A local alignment between X and Y is an
alignment between a substring of X and a
substring of Y.

Local-similarity(X,Y) >Runtime: O(mn)
m < length(X)
n < length(Y)
best < O
for j <1 ton

1
2

3

4

5 s[0, 5] <—s[O,j—1]—|—0<Y_|.j]>
6 fori:<+1tom

7 s[i,0] « sli—1,0]+o (X1l)
8

for j<—1ton

r O,)
sli—1,7—1]4o0 (;—(Eﬁ' > ;
9 s[i, j] + max ! Sfie1,f]+o X_[??] | >
sli,j—1]+o Y_[j]
10 best <+ max{bets*t, si, 71}

11 return best
© Performance Engineering Laboratory 8

local alignment

Example:

O 1 2 3 45 6 7 8 9

Y ABDDEVFGHI

J

1

o|lo|o|o|o|o|jo|o|NA
o|lo|o|o|o|o|P|J| o
o|lo|o|lo|o|J|P|lolo
o|lo|o|lo|io|FA|P|o|o
o|lojo|lo| Y| FA|lo|o|o
o|lo|jolld| Y| P|lo|o|o
o|lolloP| ~“|lo|lo|o|o
o|lo|PLP|lo|lojo|o|o
o|JV'Y|lo|lo|lo|o|o|o|oO
oO|lo|o|lo|o|lo|o|o|o
<<t m A MY X DO H
O — N M & 10 © & ®©

Optimal local alignment (score 3):

ABD

ABD

© Performance Engineering Laboratory

Possible improvements

The amount of space used can be reduced
to O(m—+n).

This is left as a home exercise. (Hint: Use
divide and conquer.)

Also, there exists an algorithm with time com-
plexity O(dn), where d is the difference be-
tween the maximum possible score and the
optimal score. Thus, the higher the simi-
larity, the faster the answer. Space-saving
versions can also be derived.

Basic idea: compute only the similarities around
the main diagonal; double the distance from
the diagonal until one can be sure that the
solution is optimal.

© Performance Engineering Laboratory 10

Scoring functions

e identity/non-identity function: o i =

M,o<x>=m,anda<_>=g(usually
Yy £Z

g < 0, and naturally m < M).

o —A <o A = 2g<m
C— C g

—AT AT
J(TA—><O<TA> = m closer to M than 2g

The values M =1, m= -1, and g = -2
fulfil these restrictions.

e subadditive functions: f(k1t+ko+ - +kn) <
Sk 1 f(k;). The idea is that k spaces are
more probable than k isolated spaces.

e For protein sequences, the use of PAME
matrices is commonplace. These take
into account the relative replaceability in
an evolutionary scenario.

© Performance Engineering Laboratory 11

Longest common subsequence

Special case: a<x>:Oanda<x>:1.
Y x

Definitions: We say that U = (uq,uo,...,uy)
is a subsequence of X = (z1,z2,...,ZTm)
if there exist indices 1 <41 < <1 <m
such that U = <:ci1,a:i2,...,:cz-k>. U is a
common subsequence of X and Y if U
IS @ subsequence of both X and Y. We
let |U| denote the length of U.

Problem: Given two sequences X and Y, find
their longest common subsequence.

Example: The LCS of the sequences

a br acadabra
1 I T T
a b ¢ ab ab c abbp c a

IS abcaaba and is of length 7.

© Performance Engineering Laboratory 12

Related applications

e compression in revision control systems
e displaying of differences between files

e merging of the changes in two different
files relative to a common base

e saving space when taking backups
e taking checkpoints in database systems

e updating terminal display over a slow net-
work

e distributing updates for software and other
data over the web

e Speech processing
e spell checking

e improving I/O performance when process-
ing data

© Performance Engineering Laboratory 13

Conclusion

The distance between our teaching and real
world is a bit larger than e, but not much
larger.

Y

/(;y)

Xz
Jyrki Katajainen

Department of Computing
University of Copenhagen

© Performance Engineering Laboratory 14

