Today's program

Sequence comparison

Jyrki Katajainen

Department of Computing University of Copenhagen

My main sources

William R. Pearson, Protein sequence comparison and protein evolution, *ISMB95 Tuto-rial* (1995)

João Setubal and João Meidanis, *Introduction to Computational Molecular Biology*, PWS Publishing Company (1997)

Mike Paterson and Vlado Dančík, Longest common subsequences, *Proceeding of the 19th International Symposium on Mathematical Foundations of Computer Science*, *Lecture Notes in Computer Science* **841**, Springer-Verlag (1994), 127–142

James J. Hunt, Kiem-Phong Vo, and Walter F. Tichy, Delta algorithms: an empirical analysis, *ACM Transactions on Software Engineering and Methodology* **7** (1998)

Symbols and sequences

In biological applications the symbols can be

amino acids;

a protein is a sequence of amino acids;

bases in DNA molecules;

each cell of an organism has a few very long DNA molecules; such a molecule is called a **cromosome**.

In a computer these symbols are often represented using one-letter codes.

Similarity of molecular sequences

Definitions: Let U and V be two sequences, and let – denote a space (not in U or V).

An alignment between U and V is defined as the insertion of spaces in arbitrary locations so that they end up with the same size. No space in U should be aligned with a space in V.

Let $\sigma \begin{pmatrix} x \\ y \end{pmatrix}$ denote the **score** between two symbols x and y. Given an alignment, its *score* is the sum of the scores of the corresponding symbols.

Problem: Compute the **similarity** between U and V, i.e., the score of the best alignment (maximum score).

Example: Assume that
$$\sigma\left(x\atop x\right)=+1$$
, $\sigma\left(x\atop y\right)=-1$, and $\sigma\left(-\atop x\right)=-2$. Then the optimal

alignment between A B D D E F G H I and A B D E G K H I has score 2.

Dynamic programming

Let s[i,j] denote the similarity between the prefixes of X[1:i] and Y[1:j]. That is, we are trying to compute s[m,n].

A recursive definition for matrix s, exploiting an obvious optimal subproblem property, is given as follows.

$$s[i,j] = \max \left\{ \begin{array}{l} s[i-1,j-1] + \sigma \begin{pmatrix} X[i] \\ Y[j] \end{pmatrix}, \\ s[i-1,j] + \sigma \begin{pmatrix} X[i] \\ - \end{pmatrix}, \\ s[i,j-1] + \sigma \begin{pmatrix} - \\ Y[j] \end{pmatrix}, \end{array} \right\}$$

Computing the similarity

The following algorithm fills the similarity matrix row by row.

Global-similarity(
$$X,Y$$
) \triangleright Runtime: $O(mn)$

1 $m \leftarrow length(X)$

2 $n \leftarrow length(Y)$

3 $s[0,0] \leftarrow 0$

4 for $j \leftarrow 1$ to n

5 $s[0,j] \leftarrow s[0,j-1] + \sigma\left(\begin{array}{c} - \\ Y[j] \end{array}\right)$

6 for $i \leftarrow 1$ to m

7 $s[i,0] \leftarrow s[i-1,0] + \sigma\left(\begin{array}{c} X[i] \\ - \end{array}\right)$

8 for $j \leftarrow 1$ to n

$$s[i,j] \leftarrow \max \begin{cases} s[i-1,j-1] + \sigma\left(\begin{array}{c} X[i] \\ Y[j] \end{array}\right), \\ s[i,j-1] + \sigma\left(\begin{array}{c} X[i] \\ - \end{array}\right), \\ s[i,j-1] + \sigma\left(\begin{array}{c}$$

10 return s[m, n]

Example: global alignment

	j	0	1	2	3	4	5	6	7	8	9
i		Y	A	В	D	D	Ε	F	G	Н	I
0											← -18
1	A	[↑] -2	7	← -1	ųα	↓ ⁵	← -7	¹ 9	← -11	↓ -13	← -15
2		[↑] -4									
3		^-6									
4	Ε	^_8	^-5	[^] -2	[↑] 1	₹2	~2	O	← -2	← -4	← 6
5	G	-10	^-7	^-4	^-1	O ^z	$^{^{\backprime}}$	<u>~1</u>	Γ	← -1	←
6	K	-12	^ <u>-</u> 9	^-6	^-3	√ 2	~ 1	Q [×]	O ^z	O [×]	← -2
7	H	-14	-11	^_8	^-5	^-4	^-3	[↑] -2	~ 1	\checkmark 1	~1
8	I	-16	-13	-10	[†] -7	[↑] -6	[↑] -5	[†] -4	[†] -3	[↑] -1	~2

Local similarity scores

A **local alignment** between X and Y is an alignment between a substring of X and a substring of Y.

```
Local-similarity(X,Y) \triangleright \mathsf{Runtime} : O(mn)
         m \leftarrow length(X)
1
       n \leftarrow length(Y)
3 best \leftarrow 0
        for j \leftarrow 1 to n
4
               s[\mathtt{0},j] \leftarrow s[\mathtt{0},j-1] + \sigma \left( \begin{array}{c} - \\ Y[j] \end{array} \right)
5
         for i \leftarrow 1 to m
6
               s[i, 0] \leftarrow s[i-1, 0] + \sigma \begin{pmatrix} X[i] \\ - \end{pmatrix}
7
               for j \leftarrow 1 to n
8
                     s[i,j] \leftarrow \max \left\{ \begin{array}{l} s[i-1,j-1] + \sigma \begin{pmatrix} X[i] \\ Y[j] \end{pmatrix}, \\ s[i-1,j] + \sigma \begin{pmatrix} X[i] \\ - \end{pmatrix}, \\ s[i,j-1] + \sigma \begin{pmatrix} - \\ Y[j] \end{pmatrix}, \end{array} \right\}
9
                      best \leftarrow \max\{best, s[i, j]\}
10
11 return best
```

Example: local alignment

Optimal local alignment (score 3):

A B D

A B D

Possible improvements

The amount of space used can be reduced to O(m+n).

This is left as a home exercise. (Hint: Use divide and conquer.)

Also, there exists an algorithm with time complexity O(dn), where d is the difference between the maximum possible score and the optimal score. Thus, the higher the similarity, the faster the answer. Space-saving versions can also be derived.

Basic idea: compute only the similarities around the main diagonal; double the distance from the diagonal until one can be sure that the solution is optimal.

Scoring functions

• identity/non-identity function: $\sigma\left(egin{array}{c} x \\ x \end{array}\right) =$

$$M$$
, $\sigma \left(egin{array}{c} x \\ y \end{array}
ight) = m$, and $\sigma \left(egin{array}{c} - \\ x \end{array}
ight) = g$ (usually $g < 0$, and naturally $m < M$).

$$\sigma \left(\begin{array}{c} -\mathtt{A} \\ \mathtt{C} - \end{array} \right) < \sigma \left(\begin{array}{c} \mathtt{A} \\ \mathtt{C} \end{array} \right) \Rightarrow 2g < m$$

$$\sigma\left(\begin{array}{c} -\mathrm{AT} \\ \mathrm{TA-} \end{array}\right) < \sigma\left(\begin{array}{c} \mathrm{AT} \\ \mathrm{TA} \end{array}\right) \Rightarrow m \text{ closer to } M \text{ than } 2g$$

The values M = 1, m = -1, and g = -2 fulfil these restrictions.

- subadditive functions: $f(k_1+k_2+\cdots+k_n) \leq \sum_{i=1}^k f(k_i)$. The idea is that k spaces are more probable than k isolated spaces.
- For protein sequences, the use of PAMk matrices is commonplace. These take into account the relative replaceability in an evolutionary scenario.

Longest common subsequence

Special case:
$$\sigma \left(\begin{array}{c} x \\ y \end{array} \right) = 0$$
 and $\sigma \left(\begin{array}{c} x \\ x \end{array} \right) = 1$.

Definitions: We say that $U = \langle u_1, u_2, \dots, u_k \rangle$ is a **subsequence** of $X = \langle x_1, x_2, \dots, x_m \rangle$ if there exist indices $1 \leq i_1 < \dots < i_k \leq m$ such that $U = \langle x_{i_1}, x_{i_2}, \dots, x_{i_k} \rangle$. U is a **common subsequence** of X and Y if U is a subsequence of both X and Y. We let |U| denote the length of U.

Problem: Given two sequences X and Y, find their longest common subsequence.

Example: The LCS of the sequences

is abcaaba and is of length 7.

Related applications

- compression in revision control systems
- displaying of differences between files
- merging of the changes in two different files relative to a common base
- saving space when taking backups
- taking checkpoints in database systems
- updating terminal display over a slow network
- distributing updates for software and other data over the web
- speech processing
- spell checking
- improving I/O performance when processing data

Conclusion

The distance between our teaching and real world is a bit larger than ε , but not much larger.

Jyrki Katajainen

Department of Computing University of Copenhagen