GoOteborg, 11 June 2001
Corrections, 15 June 2001

Space-efficient vectors and
deques

Jyrki Katajainen

Bjarke Buur Mortensen

Datalogisk Institut
Kgbenhavns Universitet

5th Workshop on Algorithm Engineering
(to appear)

© Performance Engineering Laboratory 1

Background: the Copenhagen STL

Project start: September 2000

Goal: alternative/enhanced versions of indi-
vidual STL components

Contributors: ca. 20 students have written
parts of the library

Status: first implementations for the most
interesting modules exist

Emphasis: performance engineering, software
engineering, algorithmics

Availability: http://cphstl.dk

Current problem: How to transfer the ex-
isting prototypes to a product?

© Performance Engineering Laboratory 2

std: :vector in the C++ library

operator[] () back ()

f f
b

insert () erase()

«— push back()
— pop_back()

Required by the C++ standard

e sequence operations in O(1) amortized
time

e modifying operations in linear time

e according to a technical correction ele-
ments must be stored contiguously

SGI STL implementation

e standard doubling technique

e unbounded extra space

e n push_backs require ©(n) element moves

© Performance Engineering Laboratory 3

std: :deque in the C++ library

front() operator[]() back()

push front () g f f f «— push back()
pop_front() --— — pop_back()

b

insert() erase()

Required by the C++ standard

e sequence operations in O(1) worst-case
time

e modifying operations in O(min {i,n—i})
time, where 7 is the insertion/erasure point

SGI STL implementation

e two levels: index blocks and data blocks;
data blocks are of a fixed size; only the
two extreme data blocks can be non-full

e unbounded extra space

e O(1) amortized time push operations

© Performance Engineering Laboratory 4

Earlier results
Vectors and deques [Brodnik et al., 1999]

e sequence operations in O(1) worst-case
time

e O(4/n) extra space (measured in elements
and in objects of the built-in types)

e 2(4/n) is a lower bound for the amount
of extra space needed

Vectors [Goodrich and Kloss II, 1999]

e modifying operations in O(nf) amortized
time for any fixed constant € > 0

Deques [Mortensen, 2001]

e some implementation details were miss-
ing in [Brodnik et al., 1999]

e after filling in these details the implemen-
tation got complicated

© Performance Engineering Laboratory 5

Piles (and heaps)
Shape property:
2/O 3
® E E ®

Representation property:

2 3 4 5 6 7 8 9 10 11 12

OOQQOQQQQQOQ

Capacity property:
36)
e

(Order property:

\ 5

© Performance Engineering Laboratory

Levelwise-allocated piles

header levelwise-allocated pile

ONEd

1 |1

0

01

63

e sequence operations in O(1) worst-case
time

e element with index k € [0..n—1] has index
k—2l1092(k+1)] 1 at level |logs(k+1)]

e O(n) extra space

e elements are never moved by push_back
Or pop_back

© Performance Engineering Laboratory 7

Blockwise-allocated piles

header levelwise-allocated twin-pile blockwise-allocated pile

] 0 _— a0
0 | >

] 0 01

1| A

] 0 01
2|1 /| A

] 0 0 0 3
3|7 /1 A

ot
63

e sequence operations in O(1) worst-case
time

e O(4/n) extra space

e elements are never moved by push_back
Oor pop_back

© Performance Engineering Laboratory 8

Faster modifying operations

[Goodrich and Kloss II, 1999]

insert element s between r and ¢

0 3 0 3 3
u|l |r|t T|y|lvjwl |z
first first first

0 3 0 3 0 3

t r|s Tlulv|w| |z {7

f b

first first first

e modifying operations in O(y/n) worst-case
time

e in the twin-pile we have to store double
as many pointers

© Performance Engineering Laboratory 9

Space-efficient deques

front ()
P e ? «a— push front ()
;o — pop_front ()
I
" ~ -«— push back()
B N — pop_back()

'

operator[]() back()

Everything is easy until A or B gets empty.

© Performance Engineering Laboratory

10

What if A gets empty?

Observation: A space-efficient vector can be
constructed backwards, this can be done
piecewise, and the structure can be used
simultaneously during such a construc-

tion.
front ()

? «— push front()

A % R | pop_front ()
g
old B U | v X
o «— push back()

B % Z¢ —» pop_back()

back ()

e sequence operations in O(1) worst-case
time

e modifying operations in O(4/n) time
e O(4/n) extra space

© Performance Engineering Laboratory 11 11

Some experimental results

container push back | pop_back
(ns) (ns)
std: :deque 85 11
std: :vector 115 2
our deque 113 35
our deque (with reorganization) 113 375
container sequential| random
access access
(ns) (ns)
std: :deque 117 210
std: :vector 2 60
our deque 56 160
our deque (with reorganization) 58 162

container 1 000 inserts | 1 000 inserts | 1 000 inserts
(s) (s) (s)
initial size initial size initial size
10 000 100 000 1 000 000

std: :deque 0.07 1.00 17.5

std: :vector 0.015 0.61 12.9

our deque 0.003 0.01 0.04

© Performance Engineering Laboratory 12

12

Future plans

template <
typename element,
typename allocator = std::allocator<element>,
typename implementation =
bounds_checked_vector<element, allocator>

>
class cphstl::vector {

}

Possible std: :vector implementations

e bounds_checked_vector
e contiguous_vector
e iterator_safe_vector

e space_efficient_vector
Possible std: :deque implementations

e bounds_checked_deque
e two_level_deque

e space_efficient_deque '3

) Performance Fnaineerina | aboratorv 13

