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Abstract. Trajectory data is becoming increasingly available and the
size of the trajectories is getting larger. In this paper we study the prob-
lem of compressing spatio-temporal trajectories such that the most com-
mon queries can still be answered approximately after the compression
step has taken place. In the process we develop an O(n logk

n)-time im-
plementation of the Douglas-Peucker algorithm in the case when the
polygonal path of n vertices given as input is allowed to self-intersect.

1 Introduction

Technological advances in location-aware devices, surveillance systems, and elec-
tronic transaction networks are producing more and more opportunities to trace
moving individuals. Consequently, an eclectic set of disciplines including geog-
raphy [?], database research [?], animal-behaviour research [?], and transport
analysis [?] shows an increasing interest in movement patterns of various enti-
ties moving in various spaces over various times scales (see also the survey by
Gudmundsson et al. [?]).

Large sets of data on the movement of entities create the problem of storing,
transmitting, and processing this data. Hence, simplifying this data becomes
an important problem. Recently, Cao et al. [?] proposed a way of modelling
trajectories in 3-dimensional space so that a 3-dimensional path simplification
techniques could be applied. Their idea works well in practice and in their ex-
periments the compression rate is in most cases well over 90%. However, their
approach has two main drawbacks that we improve on in this paper.

1. They argued that most spatio-temporal queries in databases are com-
posed of the following five types of queries: where-at , when-at , intersect , nearest-

⋆ Part of this research was conducted when the author visited Sydney Research Lab-
oratory at NICTA. The research of this author was partially supported by the Dan-
ish Natural Science Research Council under contract 272-05-0272 (project “Generic
programming—algorithms and tools”).

⋆⋆ NICTA is funded through the Australian Government’s Backing Australia’s Ability
initiative, in part through the Australian Research Council.



neighbour and spatial -join. However, in their paper they were only able to prove
that their approach is “sound” (to be defined) for three of the five query types.
In this paper we show that by making a small modification to their model one
can prove that all the queries can be approximated.

2. They used the Douglas-Peucker path simplification algorithm which in 3-
dimensional space has a running time of O(n2). In our specific case we show that
it can be approximated in O(n logk n) time, where k depends on the model.

Simplifying polygonal paths is a well-researched area in cartography, geo-
graphic information systems, digital image analysis, and computational geom-
etry. However, trajectories differ from polygonal paths, because trajectories do
not only contain information about a sequence of locations, but also when an
entity has been at these locations. Therefore, simplifying trajectories differs from
simplifying polygonal paths, as we might wish to preserve some temporal infor-
mation. The movement of a point object p is described by a sequence of coordi-
nates given at n time steps 〈(x1, y1, t1), . . . , (xn, yn, tn)〉. The aim is to simplify
the trajectory such that both spatial and temporal information is maintained.

In this paper we propose an approach that enables us to use 3-dimensional
path simplification algorithms that compute a simplified path containing a sub-
set of the vertices of the original path. The computational problem of path
simplification is to compute an optimal or minimum ε-simplification, i.e. an
ε-simplification with as few vertices as possible. In applications, this can consid-
erably reduce storage space and processing time.

Imai and Iri [?] formulated the path simplification problem graph theoret-
ically: construct a directed acyclic graph that models all possible edges in a
simplification and compute a shortest path in the graph. Their algorithm runs
in O(n2 log n) time. Chan and Chin [?], and Melkman and O’Rourke [?] improve
this running time to quadratic. Most of the known algorithms use O(n2) time
and space. An exception is the algorithm by Agarwal and Varadarajan [?] that
achieves O(n4/3+δ) time and space, where δ > 0 is an arbitrarily small constant.
However, their algorithm only works for the L1 metric.

Since the problem of developing a near-linear time algorithm for computing
the optimal ε-simplification remains unsolved, several heuristics have been pro-
posed. The most widely used heuristic is the Douglas-Peucker method [?] (and
its variants), originally proposed for simplifying curves under the Hausdorff error
measure. For a real number ε > 0, the polygonal path 〈v1, . . . , vn〉 is approx-
imated as follows. If every vertex vi, for 1 < i < n, has a distance at most ε
to the line ℓ determined by v1 and vn, accept the line segment (v1, vn) as an
approximation for the whole path. Otherwise, split the path at a vertex further
than ε from line ℓ and recursively approximate the two pieces. A straightforward
implementation requires O(n) time to find the point furthest from line ℓ. Since
the recursion depth can be linear, the running time is bounded by O(n2).

In this paper we show how the algorithm can be implemented more efficiently
if we allow the distance computation to be approximate. That is, assume that
we are given ε > 0 and that a segment ℓ is about to be tested. Let p be the point
furthest from ℓ, and let d be the smallest distance between p and ℓ. We say that



we have an α-approximation, for α > 1, if and only if ℓ is accepted if d ≤ ε and
discarded if d > α · ε. Note that this implies that ℓ can be either accepted or
discarded if ε < d ≤ α · ε.

A crucial aspect of simplification algorithms is how the distance between a
point and a line segment is measured. Originally in the Douglas-Peucker algo-
rithm, the Euclidean distance between a point and a line is used (line model),
where the line is defined by the corresponding line segment. This can lead to
counter-intuitive simplifications. That is why we also use the Euclidean dis-
tance from a point to a line segment (line-segment model). Even though the
Douglas-Peucker algorithm does not output the minimum number of vertices
and its worst-case running time is O(n2), it is often used due to its simplicity
and efficiency in practice. However, in the case where the path is assumed to
be non-self-intersecting, or even monotone, faster methods have been developed.
Hershberger and Snoeyink [?] showed that in the line model the running time
can be improved in the case where the path does not self-intersect by making
use of the fact that the furthest point has to be a vertex of the convex hull of the
point set. Allowing O(n log n) preprocessing they showed how the furthest point
can be found in O(log n) time. This was later improved further to O(n log∗ n) in
[?] by the same authors. We will use a similar approach with two crucial differ-
ences: the input path may self-intersect, and we consider both the line and the
line-segment models. The contribution of this paper is threefold:

1. We consider the problem of simplifying trajectories and modify the model
by Cao et al. [?], such that the five types of queries proposed in [?] can be
approximated in a sound way (Section 2). As a result it follows that the
3-dimensional path simplifications can be used to compress trajectories.

2. We propose an algorithm that produces an approximate Douglas-Peucker
simplification of a trajectory, i.e. a z-monotone path in 3-dimensional space
(Section 4). That is, given two real values ε > 0 and δ > 0, the output is a
(1 + δ)ε-simplification. The running time of our algorithm is O( 1

δ2n log2 n)

in the line model and O( 1
δ2n log3 n) in the line-segment model. Previously

no sub-quadratic time (approximation) algorithm was known.

3. In the process we present anO(n log2 n)-time (line model) and anO(n log3 n)-
time (line-segment model) implementation of the Douglas-Peucker algorithm
in the plane in the case where the polygonal path can self-intersect (Sec. 3).

Due to space constraints, all proofs and figures have been omitted and can be
found in the full version.

2 Modelling trajectories

In this section, we introduce our model for trajectories, which generalises the
results in [?]. We give some preliminary definitions e.g. of spatio-temporal queries
and soundness of distance functions. Then we describe our model and prove its
effectiveness regarding soundness.



2.1 Preliminaries

According to Cao et al. [?] most spatio-temporal queries are composed of the
following five types of queries: where-at , when-at , intersect , nearest-neighbour
and spatial -join. We state the semantics of the two most basic queries where-at
and when-at on a trajectory T = 〈(x1, y1, t1), . . . , (xn, yn, tn)〉 as follows.

– where-at(T, t) returns the location of the entity corresponding to T at time
t according to T . If t < t1 or t > tn, then the answer is undefined.

– when-at(T, x, y) returns the time t at which a moving object on trajectory
T is expected to be at location (x, y). If the location is not on the trajectory,
or the moving object visits the location more than once, or is stationary at
the location, then the answer is undefined.5

Also the notion of soundness of distance functions is discussed in [?]. For
a trajectory T , let q(T ) denote the answer of some spatio-temporal query q
with input T . To make the dependence on both ε and the underlying distance
function dist explicit, we let a (dist , ε)-simplification denote a simplification that
is computed using dist .

Definition 1. Let T be a trajectory and T ′ its (dist , ε)-simplification. The dis-
tance function dist is sound for query q, if for each ε there exists a bound δ,
such that |q(T, .)− q(T ′, .)| ≤ δ. For the where-at query |q(T, t)− q(T ′, t)| is the
Euclidean distance between the two points given as answers, and for the when-
at query |q(T, x, y)−q(T ′, x, y)| is the difference between the two returned times.

Cao et al. [?] define distance functions between a point pm and a line seg-
ment pipj in 3-dimensional space: E2 (2-dimensional Euclidean distance), E3 (3-

dimensional Euclidean distance), Eu (Eu(pm, pipj) =
√

(xm − xc)2 + (ym − yc)2

where pc is the point on pipj with tm = tc) and Et (Et(pm, pipj) = |tm − tc|
where pc is the point on the 2-dimensional projection of pipj onto the xy-plane
that is closest to the 2-dimensional projection of pm onto the xy-plane). They
also show that only the distance function Eu is sound for the where-at query,
and only the distance function Et is sound for the when-at query. Hence, they
propose to use a combined distance function based on Eu and Et which is sound
for both queries. This approach combines the strength of both single distances,
but also their weaknesses. This combined distance function results in the worst
compression ratio among the researched distance functions.

We argue that using Eu gives rise to another problem. Consider a trajectory
where an entity moves with high speed along the x-axis (i.e. y = 0) and changes
slightly its speed. (The effect can be amplified by repeating this pattern.) From
a practical point of view we might wish to simplify this trajectory to a line
segment, as we are not interested in preserving the marginal speed changes of
an entity (e.g. a car) on a long line segment (e.g. a motorway). However, with
the Eu distance we are unable to do so.

5 This definition is taken from [?]. The definition in [?] is similar but considers the
stationary case as a special case.



2.2 Our model

As in [?], we think of a trajectory as a polygonal path in 3-dimensional space.
The x- and y-dimensions correspond to the two spatial dimensions in which the
entities move. The third dimension is the time t, which enables us to preserve
temporal information. If we want to apply a path-simplification algorithm on
such a 3-dimensional path, we need a distance measure between points (or lines
or line segments) in 3-dimensional space. The two spatial dimensions have the
same physical units, but the time dimension has a different unit. We choose to
use the Euclidean distance in 3-dimensional space and therefore propose to use
a conversion parameter α that transforms time units into space units. Given a
point p in 3-dimensional space, the 3-dimensional ball Bp with centre at p and
radius ε contains exactly those points within distance at most ε from p. Hence,
if we would like to know whether point p′ is within distance ε of p, then this is
the same as asking whether p′ is inside Bp.

In our distance function distα, the impact of α can be seen in two different
ways: either as ‘stretching’ the t-axis or as ‘flattening’ the ball Bp. In the former,
we can say that the bigger α, the longer the time axis (i.e. the more spatial length
units that correspond to one time unit), and always consider a perfect ball B as
basis for the distance between two points. In the latter, we keep the coordinate
system fixed, but the bigger α the flatter the ball B in the t-dimension. Formally,
the distance function is defined as follows.

Definition 2. The distance distα between a point pm = (xm, ym, tm) and a line
segment pipj is the shortest Euclidean distance in 3-dimensional space from pm
to a point pc on pipj where 1 time unit is equivalent to α space units, i.e.:

distα(pm, pipj) =
√

(xm − xc)2 + (ym − yc)2 + α · (tm − tc)2

The three distance functions E2, E3, and Eu defined in [?] are special cases
of our distance function, namely dist0 ≡ E2 (where ‘≡’ denotes equivalence),
dist1 ≡ E3, and dist∞ ≡ Eu. Choosing α = 0 renders the time information
irrelevant, and hence it is equivalent to projecting the line segment onto the
xy-plane and using the Euclidean distance on it. This distance function has the
advantage that it does simplify trajectories but it is not sound for the where-
at query. The other extreme, α → ∞, denoted as dist∞, means the ball Bp is
flattened into a 2-dimensional disk, which is parallel to the xy-plane. This means
that the distance between a point p and a line segment pipj is the Euclidean
distance between p and p′, where p′ is the point on pipj that has the same time
value. This distance function has the advantage that it is sound for the where-
at query, but it does not simplify trajectories.

Apart from being more general, our approach to be able to choose α has the
advantage of allowing any distance function between dist0 ≡ E2 and dist∞ ≡ Eu.
Intuitively, we can fine-tune the trade-off between ‘soundness’ and ‘sensible sim-
plification’, and we can prove distα to be sound for all α under certain conditions.
To make this more precise, we incorporate the speed of entities in our consider-
ations, where the speed sℓ along the line segment ℓ is defined as the distance in
the xy-plane divided by the time difference corresponding to ℓ.



Theorem 1. Let ℓ = pipj be a line segment with speed sℓ that is part of a
(distα, ε)-simplification of the trajectory T = 〈p1, . . . , pi, . . . , pj , . . . , pn〉, and let
t be any moment of time with i ≤ t ≤ j. Then we have:

|where-at(T, t) − where-at(ℓ, t)| ≤ δs :=
ε

sin(arctan α
sℓ

)

The previous theorem tells us that the bigger α
sℓ

becomes the smaller gets δs.
Hence, the distance function distα is sound according to Definition 1 for the
where-at query for any α > 0 as long as 0 < sℓ <∞. However, in practice only a
restricted range of values for α might be sensible. For instance setting α = smax,
where smax is the maximum speed along the trajectory, results in δs ≤

√
2 · ε for

the entire trajectory. Also values smaller than smax might make sense for α in
practice. In this case, the slower the speed on a line segment of the simplification
is, the smaller δs is. In the same way as for the where-at query we also obtain
that the when-at query is sound for distα, if α 6= 0 and sℓ > 0.

Theorem 2. Let ℓ = pipj be a line segment with speed sℓ that is part of a
(distα, ε)-simplification of the trajectory T = 〈p1, . . . , pi, . . . , pj , . . . , pn〉, and
let (x, y) be any point that lies exactly once on both the projections of ℓ and
〈pi, . . . , pj〉 onto the xy-plane. Then we have:

|when-at(〈pi, . . . , pj〉, x, y) − when-at(ℓ, x, y)| ≤ δt :=
ε

sin(arctan sℓ

α )

Hence, the smaller sℓ

α is, the bigger δt is. In practice it is sensible to assume that
the speed of entities is bounded from above, it is unreasonable to assume that
all entities have a minimum speed; this would forbid an entity to be stationary.
Being able to choose α allows a user to fine-tune the trade-off between spatial
and temporal soundness of distα, as reflected by Theorems 1 and 2.

Cao et al. show in [?] that, if a distance function is sound for the where-at
query, then it is also sound for the nearest-neighbour and intersect queries, and
hence, Theorem 1 carries over to those queries, too. The spatial -join is special in
the sense that the query itself uses a distance function between trajectories. For
α1 ≤ α2 we have that distα1

(pm, pipj) ≤ distα2
(pm, pipj). From results in [?]

it then follows that distα2
is sound for the spatial -join that uses the Hausdorff

distance function based on distα1
as distance function between trajectories.

We believe that the definition of the when-at query as given in [?] is too
strict. When considering the soundness of a distance function, we compare the
original trajectory T and its simplification T ′. Although all points of T ′ have
a distance to T of at most ε, we could expect that when-at(T, x, y) or when-
at(T ′, x, y) is undefined for almost all points (x, y), which renders any reasoning
about soundness to be difficult. Hence, we propose different semantics for the
when-at query. As simplified trajectories are approximations anyway, we allow
a query region instead of a query point.

– apx -when-at(T, x, y, λ) returns a time t at which a moving object on trajec-
tory T is expected to be within distance λ from location (x, y). If there is no
such location on the trajectory, then the answer is undefined.



It seems impossible to prove the soundness of this query in the same sense as
above. However, we can prove that apx -when-at will report a point at time t
for which it holds that the entity must have been close to (x, y) at some point
in time that is close to t. That is, we can prove a ‘soundness’ bound that has
both a spatial and temporal error. To simplify the statement of the theorem we
define set-apx -when-at(T, x, y, λ) as reporting the set of time points when the
trajectory T is within distance λ from (x, y). For a trajectory T we use T (t) to
denote the position in the xy-plane of the entity along T at time t.

Theorem 3. Let P be a (distα, ε)-simplification of trajectory T = 〈p1, . . . , pn〉.
Given a query point q = (x, y) in the xy-plane, let t1 be the time reported
by apx-when-at(P, x, y, λ + ε). There exists a time point t2 in set-apx-when-
at(T, x, y, λ+ 2ε) such that |t1 − t2| ≤ ε/α and |T (t1) − P (t2)| ≤ ε.

Note that if we set α to be greater than the largest speed of the entity then
both where-at and apx -when-at can be sound for small errors at the same time
for any input path. This is the first time any such bound has been shown using a
single distance function, even though it is approximate in both time and space.

3 A fast implementation of the Douglas-Peucker

algorithm for self-intersecting polygonal paths

In this section we present a fast implementation of the Douglas-Peucker algo-
rithm in the case when the polygonal path may self-intersect. We consider two
variants of the algorithm, one which works in the line-segment model and an-
other which works in the line model. Hershberger and Snoeyink [?] gave an
O(n log∗ n)-time algorithm working in the line model when the path does not
self-intersect. However, their approach heavily rely on the fact that the path does
not self-intersect since additional structure can be used in this case to develop
efficient algorithms. Furthermore, their algorithm is developed to work in the
line model, not in the line-segment model. In the self-intersecting case, only the
trivial O(n2) time bound is known, to the best of the authors’ knowledge.

As a first step, we will prove that, just as in the line model, the furthest point
has to be a vertex on the convex hull of the point set (this is the only structural
result we were able to reuse from [?,?]). For simplicity we will throughout this
section assume that no three points lie on a line.

Lemma 1. Given a set of n ≥ 3 points S and a line segment ℓ, the maximum
distance between S and ℓ is defined between a vertex p on the convex hull of S.

An important subproblem that we need to consider is the following.

Problem 1. (Line-segment furthest-point queries (LSFP-queries)) Preprocess an
ordered set of n points p1, . . . , pn in convex position in the plane into a data
structure supporting the following query: given a line segment (pi, pj), 1 ≤ i <
j ≤ n, report the point pk that is furthest from (pi, pj) such that i < k < j.

Below we will prove that the LSFP-query problem can be transformed into
the following problem with only a small loss in time and space complexity.



Problem 2. (Half-plane furthest-point queries (HPFP-queries)) Preprocess a set
of n points p1, . . . , pn in convex position in the plane into a data structure sup-
porting the following query: given a point q and a directed line ℓ, report the
point pi that is furthest from q subject to being to the left of ℓ.

Lemma 2. A set S of n points in convex position in the plane can be prepro-
cessed in 2F (n)+O(n log n) time using O(n)+S(n) space such that LSFP-queries
can be answered in 2Q(n) +O(log n) time, where F (n) is the preprocessing time
needed to store S in a data structure of size S(n) that answers HPFP-queries in
Q(n) time.

The O(n log n) time bound in the above lemma comes from the fact that we
need to compute the convex hull of S. However, if the points in S are sorted
with respect to their x-coordinates in increasing order, then this step can be
done in O(n) time. Unfortunately this improvement will not affect the overall
time complexity of the Douglas-Peucker algorithm.

3.1 Half-plane furthest-point queries

The HPFP-query problem was first studied by Aronov et al. [?] and they showed
the following two results:

Fact 1 (Corollary 5 in [?]) There is a data structure that requires O(n1+β)
space and preprocessing time, and supports HPFP-queries in O(21/β log n) time
on n points in convex position, for any real number β > 0.

Fact 2 (Corollary 11 in [?]) There is a data structure that requires O(n log3 n)
space and polynomial preprocessing time, and supports HPFP-queries in O(log n)
time on n points in convex position.

We present a data structure that has slightly higher query time, but because of
smaller preprocessing time and smaller space consumption our approach leads
to a more efficient implementation of the Douglas-Peucker algorithm.

Lemma 3. One can preprocess a planar set S of n points in convex position
in O(n log n) time using O(n log n) space such that HPFP-queries on S can be
answered in O(log2 n) time.

3.2 Path simplification in the line-segment model

In this section we merge the results into one single data structure. In particular,
we study the problem of preprocessing a polygonal path P with n vertices such
that, given a line segment ℓ and a subpath P ′ of P , the point in P ′ furthest from
ℓ is reported. We will prove the following lemma.

Lemma 4. A polygonal path P = 〈v1, v2, . . . , vn〉 with n vertices in the plane

can be preprocessed in time O(n log2 n) +
∑logn
i=0 2i+1F ( n

2i )), using O(n log n) +
∑log n
i=0 2iS( n

2i ) space such that, given a line segment ℓ and a subpath P ′ =

〈vi, . . . , vj〉 of P , the point in P ′ furthest from ℓ can be reported in time O(log2 n)+

2
∑logn
i=0 Q( n

2i ), where F (n) is the preprocessing time needed to construct a data
structure of size S(n) that can answer HPFP-queries in Q(n) time.



The standard Douglas-Peucker algorithm iterates over at most n line segments.
Thus, by combining Lemmas 2, 3 and 4 we obtain the following theorem.

Theorem 4. (line-segment model) For a polygonal path P with n vertices in the
plane, the Douglas-Peucker algorithm can be implemented in time O(n log3 n)
using O(n log n) space.

Note that in Lemma 4 presorting could be used to improve the preprocessing
time by a logarithmic factor, but this does not have any effect on the asymptotic
efficiency of the Douglas-Peucker algorithm.

3.3 Path simplification in the line model

Even if Theorem 4 also holds in the line model, the inclusive structure of the
distance queries is not fully utilised. It turns out that path simplification is easier
in the line model. Next we show how both the time and the space bounds can be
improved by a logarithmic factor. The tools used in this improved construction
are basically the same as those used before. The main reason for obtaining this
improvement is that a vertex of a convex hull furthest from a line can be reported
fast by binary search [?] by determining the two tangents parallel to the given
line and returning the furthest of the vertices on these tangents.

The algorithm operates in four steps. First, the vertices on the given polyg-
onal path P of size n are partitioned into canonical sets whose size is a power
of 2. Let the collection of these sets be P = {P1, P2, . . . , Ph}. The size of P1

should be the largest power of 2 no greater than n, the size of P2 the largest
power of 2 no greater than n− |P1|, and so on. That is, h ≤ ⌈log n⌉. Second, the
canonical sets of P are presorted according to their x-coordinate. Let S be the
corresponding collection of sorted sets of vertices. Also, associate each vertex in
a sorted set with its index in the polygonal path. Third, the convex hulls of the
canonical sets are computed. Let the resulting collection be C. Due to presorting,
the computation of each convex hull only takes linear time if we use Graham’s
convex-hull algorithm. Fourth, the recursive subroutine, to be described next, is
called with ε, P , P, S, and C.

Assume that the input of the recursive subroutine is real number ε and
polygonal path 〈vi, vi+1, . . . , vk〉 together with the corresponding collections of
canonical sets, sorted sets, and convex hulls. The functioning of the recursive
subroutine is as follows:

1. Compute the furthest point between the polygonal path and the line ℓ deter-
mined by vi and vk. This is done by computing the furthest point between
ℓ and the convex hulls, one by one, and by determining the overall furthest
point. Let vj be this vertex.

2. If the distance between line ℓ and vertex vj is less than or equal to ε, return
the line segment (vi, vk) as a simplification for P and stop this branch of
recursion.

3. Split the path into two subpaths 〈vi, vi+1, . . . , vj〉 and 〈vj , vj+1, . . . , vk〉. Cor-
respondingly, split the canonical set containing vj into smaller canonical sets
whose size is a power of 2. This is done by repeatedly halving the canonical



set containing vj until vj forms a singleton set. For each canonical set cre-
ated during this process, compute the sorted set of vertices by scanning the
sorted set corresponding to the parent canonical set. Finally, compute the
convex hulls of the new canonical sets created. After halving a canonical set,
it and the corresponding sorted set and convex hull are disposed.

4. Call the recursive routine for both subpaths together with the corresponding
collections of canonical sets, sorted sets, and convex hulls.

Let us now analyse the performance of this algorithm for a polygonal path of
n vertices. The amount of work done in the three first steps of the main routine is
dominated by that required by sorting, i.e. the running time is O(n log n). In the
recursive subroutine in connection with each halving, sorted sets are scanned
and convex hulls may be computed, both requiring time linear on the size of
the subpaths considered. Since each vertex is involved in O(log n) halvings, the
overall running time of all splits is O(n log n). At each recursive step, in the
furthest-point calculation the number of convex hulls to be considered is bounded
byO(log n) and each distance computation between a line and a convex hull takes
O(log n) time. Naturally, the number of recursive calls is linear in the worst case.
Therefore, the total running time of the algorithm is O(n log2 n). At any given
point in time, each vertex can be in at most one canonical set. Hence, the space
bound is O(n). The above discussion can be summarised as follows:

Theorem 5. (line model) For a polygonal path P with n vertices in the plane,
the Douglas-Peucker algorithm can be implemented in time O(n log2 n) using
O(n) space.

4 A fast implementation of the Douglas-Peucker

algorithm in 3-dimensional space

In this section, we present a fast, approximate version of the Douglas-Peucker
algorithm in R

3. The algorithm can be used for 3-dimensional paths that are
monotone along the z-axis or for trajectories with two spatial dimensions and
one temporal dimension. In addition to taking as input a distance error threshold
ε, it takes a real number δ > 0, and produces a simplified path that is within a
distance of (1 + δ)ε from every vertex of the original path. It is possible to set
ε = ε∗

1+δ to obtain a distance error bound of exactly some desired value ε∗. In
this case, δ does not affect the distance threshold, but a larger δ may result in
a larger number of vertices in the simplified path. As for the original Douglas-
Peucker algorithm, this approach is a heuristic, and we present no bound on the
number of vertices.

The general idea of the algorithm is as follows. First, we project the vertices of
the original path onto O(1/δ2) rotations of the xy-plane, equally spaced in angle
around the y- and z-axes, yielding a 2-dimensional projection of the original
path that may contain self-intersections. One of the 2-dimensional algorithms
of Section 3 is then executed on each of the planes, up to the point where the



simplified path is to be split at a vertex. At this point, a split vertex has been
chosen for each projection plane, based on the distance in the projection between
that vertex and the proposed simplified line segment. From these potential split
vertices, take the one with the maximum distance to the line segment over all of
the projection planes. Split at this vertex in all planes, and continue executing.
We will show that the original distance between the vertex and the line segment
in R

3 is at most (1 + δ) times the maximum projected distance over all of
the planes. This property allows us to construct an approximate simplification
efficiently in 3-dimensional space.

We start by defining a set Ψ of projection planes. Given two angles 0 ≤ α ≤ π
and 0 ≤ β ≤ 2π, let ψα,β be the plane obtained by rotating the xy-plane around
the y-axis by α radians and around the z-axis by β radians, i.e. the plane with
normal vector 〈sinα cosβ, sinα sinβ, cosα〉. Suppose we wish to perform k =
⌈2π/arccos(1/(1 + δ))⌉ discrete rotations around the y-axis, and 2k around the
z-axis. The angle between successive rotations around either of the axes will be
θ = π/k. Note that for any real δ > 0, it holds that 0 < θ < π/4. Now we can
define a set of projection planes Ψ = {ψiθ,jθ | i, j ∈ Z, 0 ≤ i < (k/2), 0 ≤ j < k}.

Lemma 5. Given a plane with normal vector n̂, there exists a plane ψ∗ ∈ Ψ
with normal vector n̂

∗ such that the angle between n̂ and n̂
∗ is no more than θ.

Given a point p ∈ R
3 and a plane ψ ∈ Ψ , let proj (p, ψ) be the orthogonal

projection of p onto the plane ψ, defined as the point of intersection between
ψ and the line orthogonal to ψ passing through p. To prove an approximation
bound, we first need a bound on the distance between two projected points from
their original distance in R

3.

Lemma 6. Given two points p, q ∈ R
3, it holds that

|pq| cos θ ≤ max
ψ∈Ψ

|proj (p, ψ)proj (q, ψ)| ≤ |pq|

In the Douglas-Peucker algorithm, we are not only interested in the distance
between two points, but also in the distance between a point and a line. We
therefore need to look at the projection of the triangle given by the point and
two points on the line.

Lemma 7. Given three points p, q, r ∈ R
3 such that ∠pqr > 2θ, it holds that

dist(q, pr) ≥ max
ψ∈Ψ

dist(proj (q, ψ), proj (p, ψ)proj (r, ψ)) ≥ dist(q, pr)√
2 − cos2 θ

We are now ready for the final result of this section.

Theorem 6. Given a real number δ > 0, a (1+δ)-approximate Douglas-Peucker
simplification can be computed in the line-segment model in O( 1

δ2n log3 n) time

using O( 1
δ2n log n) space, and in the line model in O( 1

δ2n log2 n) time using
O( 1

δ2n) space.
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