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Abstract. In a decision tree model, Ω(n log
2
n −

∑

m

i=1
ni log

2
ni + n)

is known to be a lower bound for sorting a multiset of size n containing
m distinct elements, where the ith distinct element appears ni times.
We present a minimum space algorithm that sorts stably a multiset in
asymptotically optimal worst-case time. A Quicksort type approach is
used, where at each recursive step the median is chosen as the par-
titioning element. To obtain a stable minimum space implemention, we
develop linear-time in-place algorithms for the following problems, which
have interest of their own:
Stable unpartitioning: Assume that an n-element array A is stably parti-
tioned into two subarrays A0 and A1. The problem is to recover A from
its constituents A0 and A1. The information available is the partitioning
element used and a bit array of size n indicating whether an element of
A0 or A1 was originally in the corresponding position of A.
Stable selection: The task is to find the kth smallest element in a multiset
of n elements such that the relative order of identical elements is retained.

1 Introduction

The sorting problem is known to be easier for multisets, containing identical
elements, than for sets, in which all elements are distinct. The complexity of an
input instance depends on the multiplicities of the elements. When only three-
way comparisons are allowed, Ω(n log2 n −

∑m
i=1 ni log2 ni + n) is known to be

a lower bound for sorting a multiset with multiplicities n1, n2, . . . , nm (where
n =

∑m
i=1 ni) [19]. Mergesort and Heapsort can be adapted to sort multisets in

O(n log2 n − ∑m
i=1 ni log2 ni + n) time [21] (without knowing the multiplicities

beforehand). An optimal in-place implementation based on Heapsort also exists
[19], but due to the nature of Heapsort this algorithm is not stable, i.e., the
relative order of identical elements is not necessarily retained. The main concern
of this paper is, how to ensure time-optimality, space-optimality, and stability
at the same time, i.e., the problem left open by Munro and Raman [19].

In our accompaning paper [11] we proved that randomized Quicksort can
be adapted to sort a multiset stably and in-place such that the running time

⋆ Presented at the 3rd Scandinavian Workshop on Algorithm Theory, Helsinki, July
1992.



will be optimal up to a constant factor with high probability. In the present
paper we improve this result by showing that multisets can be sorted in optimal
time also in the worst case. To adapt Quicksort for sorting multisets, one should
perform a three-way partition at each recursive step [24]. For this purpose, we
use the linear-time, in-place algorithm for stable partitioning presented in [11].
The standard way to make Quicksort worst-case optimal is to use the median as
the partitioning element.

The basic problem encountered is how to select the kth smallest element in a
multiset of n elements such that the relative order of elements with equal values
is the same before and after the computation. This is called the stable selec-
tion problem. Actually, we shall also study the following variant of the selection
problem, called the restoring selection problem: find the kth smallest of n ele-
ments such that after the computation the elements are in their original order.
The latter problem has applications in other areas, e.g., in adaptive sorting (cf.
[17]). An in-place solution for both of these problems is immediately obtained,
if we scan through the elements and calculate for each the number of smaller
elements. This will, however, require O(n2) time. On the other hand, if we allow
O(n) extra space, the linear-time selection algorithm [1] (or its in-place variant,
see [14]) can be used to solve the problems simply by coupling with each ele-
ment its original position. After the selection, the elements are easily permuted
to their original positions (cf. [12, Section 5.2, Exercise 10]).

To solve the restoring selection problem, we implement the prune-and-search
algorithm of Blum et al. [1] more carefully. The algorithm is based on repeated
partitioning. Therefore the fast, in-place algorithm for stable partitioning is used
here. In order to reverse the computation we need a space-efficient solution for
the unpartitioning problem defined as follows. Assume that an array A of size
n undergoes a stable partition. Let the resulting subarrays be A0 and A1 with
respective sizes n0 and n1. The problem is to recover A from its constituents
A0 and A1. The information available is the partitioning element used and a
bit array containing n0 zeros and n1 ones. The interpretation of the ith b-bit in
position j is that the ith element of Ab is the jth element of A (b ∈ {0, 1}). In
Section 3 we introduce an algorithm for stable unpartitioning that runs in linear
time and requires only a constant amount of additional space.

In Section 4 we show how the restoring selection problem is solved in linear
time using O(n) extra bits. By means of this, we are able to develop an algorithm
for stable selection that requires linear time and only O(1) extra space. This
algorithm presented in Section 5 is then used in the final sorting algorithm
which we describe and analyse in Section 6.

Before proceeding we define precisely what we mean by a minimum space or
in-place algorithm. In addition to the array containing the n elements of a mul-
tiset, we allow one storage location for storing an array element. This is needed,
for example, when swapping two data elements. The elements are regarded to be
atomic. They can only be moved and compared with the operations {<, =, >}
in constant time. Moreover, we assume that a constant number of extra storage
locations, each capable for storing a word of O(log2 n) bits, is available and that



operations {<, =, >, +,−, shift} take constant time for these words. An unre-
stricted shift operation takes two integer operands v and i and produces ⌊v · 2i⌋.

2 Tools for building minimum space algorithms

In this section we briefly review the basic techniques for minimum space algo-
rithms.

Blocking: The input array is divided into equal sized blocks. Often blocking
with blocks of size

√
n or log2 n works well. (This requires that good estimates

for the numbers
√

n and log2 n are available but these are easily computed from
n in O(n) time.) Most efficient in-place algorithms in the literature are based on
the blocking technique (see, e.g., [7–9, 20, 22, 23]).

Internal buffering: Usually some blocks are employed as an internal buffer
to aid in rearranging or manipulating the other blocks in constant extra space.
This idea dates back to Kronrod [13] (see also [22]) and is frequently used in
minimum space algorithms. If the goal is a stable algorithm, the internal buffer
should be manipulated carefully, since otherwise the stability might be lost.

Block interchanging: A block X can be reversed in-place in linear time by
swapping the pair of end elements, then the pair next to the ends, etc. Let XR

be X reversed. The order of two consecutive blocks (not necessarily of the same
size) X and Y may be interchanged by performing three block reversals, namely
Y X = (XRY R)R. This idea seems to be part of computer folklore.

Bit stealing: Let x and y be two elements, which are known to be distinct.
Depending on the order, in which the elements are stored in the array, extra
information is obtained. The order xy, x < y, may denote a 0-bit and the order
yx a 1-bit. This technique has been used for example by Munro [18] in his implicit
dictionary. With ⌈ log2(n + 1)⌉ stolen bits it is possible to implement a counter
taking values from the interval [0..n], but the manipulation of this counter will
take O(log2 n) time.

Packing small integers: Let us assume that we have t small integers each
represented by m bits. That is, the integers are from the domain [0..2m − 1].
Further, assuming that t · m ≤ log2 n, the integers can be packed into one word
w of ⌈ log2 n⌉ bits. Let us number the bits of w from right to left such that the
righmost (least significant) bit has number 0 and the leftmost bit has number
⌈ log2 n⌉ − 1. Now the integer ij (j = 1, 2, . . . , t) is stored by using the bits
(j − 1)m, . . . , jm − 1 of w. Each integer is easily recovered from w in constant
time if multiplications and divisions by a power of 2 are constant time operations.
The value v of ij is obtained as follows:

v = {w − [(w shift −jm) shift jm]} shift −(j − 1)m.

(Observe that in our algorithms m can be chosen to be a power of 2, so we do
not need general multiplication.) With a code similar to this the value of ij can
be updated. Previously the packing technique has been used for example in [2,
15].

In some in-place algorithms also the modification of the input data is allowed
(see, e.g., [4, 6] or [23, Theorem 3.2]). However, we consider this as an illegal trick.



3 Stable minimum space unpartitioning

The heart of our selection and sorting algorithms will be the linear-time, min-
imum space algorithm for stable partitioning given in [11]. Another important
subroutine is a fast, minimum space algorithm for stable unpartitioning which
is the topic of this section. We show that the computation of the partitioning
algorithm is reversible, even if the steps executed are not recorded.

In an abstract setting the stable partitioning problem can be defined as fol-
lows: Given an n-element array A and a function f mapping each element to the
set {0, 1}, the task is to rearrange the elements such that all elements, whose
f -value is zero, come before elements, whose f -value is one. Moreover, the rela-
tive order of elements with equal f -values should be retained. Let the resulting
subarrays be A0 and A1. For the sake of simplicity, we call the elements of A0

zeros and elements of A1 ones. The stable unpartitioning problem is to recover
A from its constituents A0 and A1. The information available is the f -function
and a placement array, a bit array of size n indicating whether an element of
A0 or A1 was originally in the corresponding position of A. Observe that in our
formulation of the problem it is essential that f is known during unpartitioning.

Stable merging can be seen as a special case of stable unpartitioning, since
the placement array is easily created by scanning the input of a merging problem
with two cursors. By unpartitioning the original merging problem is solved. This
indicates that it might be possible to generalize the algorithms for stable merging
to solve the stable unpartitioning problem. Generally, this cannot be done since
most algorithms for stable merging utilize the fact that the Ab-elements appear
in sorted order. In unpartitioning this is not necessarily the case. However, there
are great similarities between our unpartitioning algorithm and parallel merging
algorithms given in [10].

The stable unpartitioning is easily done in linear time when O(n) extra space
is available. Algorithm A to be described next does this by scanning the place-
ment array and storing the site together with each Ab-element. During the scan
two cursors C0 and C1 are maintained, the former pointing to A0 and the lat-
ter to A1. Initially, Cb will point to the first element of Ab. If the jth position
contain the bit b, then the Cbth element of Ab is coupled with its site j and the
counter Cb is advanced. After computing the sites, the elements are permuted
to their final positions without using excess memory space (this permutation
problem was ranked as a one-hour exercise by Knuth [12, Section 5.2, Exercise
10]). Hence we have

Lemma 1. Algorithm A solves a stable unpartitioning problem of size n in O(n)
time with n + O(1) counters, each requiring at most ⌈log2(n + 1)⌉ bits.

For the time being let us assume that n, the number of elements is a power of
2. Lateron we show how to get rid of this assumption. In our improved algorithms
we divide the input into blocks by using a blocking factor lg n or 2(lg n)/2 (≈ √

n),
where lg n denotes the smallest power of 2 greater than or equal to log2 n. Since
n is assumed to be a power of 2, it is divisible by both of these blocking factors.



Before proceeding, we will introduce some terminology. Let us call a block
containing only zeros as a 0-block and a block containing only ones as a 1-block.
If a block is a 0-block or 1-block it is called a 0/1-block. Further, let 0&1-block
denote a block consisting of two sequences, a sequence of zeros followed by a
sequence of ones. The basic idea of our algorithms is simply to transform the
original problem to n/t similar subproblems of size t. That is, by using the
terminology introduced above, the goal is to transform one 0&1-block of size n
to n/t 0&1-blocks of size t such that in each subblock the number of zeros and
ones is equal to that of 0- and 1-bits in the corresponding part of the placement
array. Hence, after this transformation the subproblems can be solved locally.

When the input array is divided into the blocks of size t, one complication
is that one of the blocks might be a 0&1-block while the others are 0/1-blocks.
The single 0&1-block is handled as follows. We first interchange the zeros of the
block to the end of the input array and then move them gradually into the blocks
they belong. This can be done by repeated block interchanges. Each zero of the
0&1-block takes part in at most n/t interchanges, whereas each one of the input
takes part in at most two block interchanges. Therefore the total work done here
is O(n). The blocks at the end of the array are called finished if they got all their
zeros. The last unfinished, or half-finished, 1-block may have obtained only some
of the zeros that should be there. The half-finished block is however seen as a
1-block, though the zeros at the end are kept untouched.

Let the leader of a 0-block be its first element and the leader of a 1-block
its last element. Now the basic steps of the transformation, called one-to-many
transformation, are the following (see also Fig. 1):

1. Divide the input array A into blocks of size t.
2. If there exists a 0&1-block then move its zeros to their own blocks.
3. Merge the unfinished blocks such that the sites of their leaders are in sorted

order. This way the elements will come closer to their final positions.
4. Transform the unfinished 0/1-blocks to 0&1-blocks such that each element

is placed in its own block.
5. Move the zeros (if any) at the end of the half-finished block over the ones in

the block.

To perform Step 1 only the value t has to be computed but this is easily
done in linear time. Step 2 requires linear time as well (cf. the discussion above).
Step 5 requires only O(t) time. The most critical parts are the merging of the
blocks (Step 3) and the transformation from 0/1-blocks to 0&1-blocks (Step 4).
We show first that Step 4 can be executed in linear time. The proof of the next
lemma is similar to that given in [10, Section 3.2] or [20, Lemma 2, Step 3].

Lemma 2. Step 4 of the one-to-many transformation can be done in linear time
for any blocking factor t.

Proof. Let X1, X2, . . . , Xn/t be the order of the blocks after the block permuta-
tion in Step 3. Consider any boundary between a 1-block and a 0-block in this
sequence. Since the leader of a 1-block is its last element and the leader of a



0-block is its first element, no element has to be moved across the boundary. Let
us therefore divide the sequence X1, X2, . . . , Xn/t into pieces, where each piece
consists of two subsequences, a sequence of 0-blocks followed by a sequence of
1-blocks. Let us number the pieces from 1 to p.

Consider an arbitrary piece Xi1 , Xi2 , . . . , Xij
and assume that this piece con-

tains ℓi 0-blocks and mi 1-blocks. Now only some of the zeros in the last 0-block
should be moved to the left and some of the ones in the first 1-block should be
moved to the right (see Fig. 2). The zeros to be moved in the last 0-block are
obtained into their correct blocks by performing at most mi block interchanges.
Each one is involved in at most one block interchange. Therefore the work here
is proportional to mi · t. In the same way, one can show that the work required
when moving the ones (now at the end of the first 0&1-block) to the right is
proportional to ℓi · t. Since

∑p
i=1(ℓi + mi) = n/t, the claim follows. ⊓⊔

The question that remains to be answered is how the merging in Step 3 is
implemented. First, assume that the blocking factor is lg n. Now one possibility
is to store the sites of the leaders explicitely. If these are available, Step 3 can be
implemented by using any in-place merging algorithm. Since the blocks are of
equal size they can be easily swapped in time proportional to their size. Hence,
Step 3 can be done O(n) time.

Algorithm B performs the one-to-many transformation as described above
and solves the subproblems of size lg n by Algorithm A. Now Lemma 1 implies
the result of the next lemma.

Lemma 3. Algorithm B solves a stable unpartitioning problem of size n (= 2k)
in O(n) time with O(n/ log2 n) counters, each requiring O(log2 n) bits.

In Algorithm C the sites of the leaders are stored in a bit array. This
means that we need O(log2 n) time when manipulating a site. Hence the to-
tal time needed for the one-to-many transformation is O(n log2 n). However, the
number of element moves is only linear! The resulting 0&1-blocks are unparti-
tioned by Algorithm B. The critical observation is that we have to store only
O(log2 n/ log2 log2 n) counters, each of O(log2 log2 n) bits (and O(1) indices, each
of O(log2 n) bits). The total number of bits required is only O(log2 n). Therefore
we can pack the integers into few words and manipulate them effeciently with
shift operations. Thus each block is handled in O(log2 n) time using O(1) words
of O(log2 n) bits. The performance of Algorithm C is stated in the following
lemma.

Lemma 4. Algorithm C solves a stable unpartitioning problem of size n (= 2k)
in O(n log2 n) time, using an array of O(n) bits and a constant amount of words
of O(log2 n) bits, but makes only O(n) moves.

The space requirements can be further reduced by using bit stealing. (Note
that in order to use bit stealing the f -function must be known.) Let us now divide
the input into blocks of size

√
n (or more precisely into blocks of size 2(lg n)/2).

The first c
√

n zeros and c
√

n ones are saved in an internal buffer, where c is



a suitably chosen constant. Of course, it might happen that we do not have as
many zeros or ones as needed. Such an input instance is however easily solved
by moving the elements we fall short of to their proper places one-by-one. For
example, if we run short of zeros, each zero would be involved in at most c

√
n

block interchanges, whereas each one in at most one interchange. This totals
O(n) time. The same can be done if we run short of ones. Hence, assume that
we have sufficiently many zeros and ones.

One can view the merging task in the one-to-many transformation as an
unpartitioning problem (cf. the discussion in the beginning of this section). Now
this unpartitioning is implemented by Algorithm C and the elements of the
internal buffer are used to steal the bits needed. The new placement array is
computed in linear time by scanning through the original placement array. Since
the size of the placement array created is about

√
n it can be stored as a part

of the internal buffer. Step 3 of the transformation requires O(
√

n log2 n) time
for comparisons and index calculations, and O(

√
n) block swaps; so O(n) time

in total. Hence, the whole transformation requires linear time. The subproblems
of size

√
n are also solved by Algorithm C and the bits required are stolen from

the internal buffer. The post-processing step, where the elements of the internal
buffer are moved to their proper places, is again done in linear time by repeated
block interchanges.

We have thus obtained a new algorithm, call it Algorithm D, which is as fast
as Algorithm C but requires only a constant amount of additional space.

Lemma 5. Algorithm D solves a stable unpartitioning problem of size n (= 2k)
in O(n log2 n) time and constant extra space, but makes only O(n) moves.

Our final algorithm, Algorithm E is again based on lg n-blocking. The general
structure of Algorithm E is similar to that of the previous algorithms. Now Algo-
rithm D is employed for implementing Step 3 of the one-to-many transformation
and Algorithm B for unpartitioning the blocks of size lg n. As in Algorithm D the
one-to-many transformation takes O(n) time, but now only a constant amount
of additional space is needed. As in Algorithm C, we use the technique of pack-
ing small integers to solve the subproblems in O(log2 n) time with a constant
number of words of O(log2 n) bits. The total time for solving the subproblems
is linear. Therefore Algorithm E requires O(n) time and O(1) extra space.

Up to now we have assumed that n, the number of elements is a power of 2.
If this is not the case, the following method can be used to reduce the original
problem to subproblems, whose size is a power of 2. First, compute by repeated
doubling the largest 2k that is smaller than n. Second, scan through the first 2k

positions of the placement array and count the total number of 0-bits n0 and
1-bits n1 in there. Third, interchange the block of zeros (if any) lying after the
first n0 zeros with the block of the first n1 ones. Fourth, unpartition the first
2k elements with Algorithm E. Finally, use the same method for unpartitioning
the last n − 2k elements. Since Algorithm E runs in linear time, the running
time of this method is proportional to

∑0
k=⌊log

2
n⌋ 2k, which totals O(n) time.

As comparared to Algorithm E, the space requirements are increased only by an
additive contant. Hence, we have proved the following theorem.



Theorem 1. A stable unpartitioning problem of size n can be solved in O(n)
time and O(1) extra space.

4 Restoring selection

In this section we implement the (slow) linear-time selection algorithm of Blum et
al. [1] to solve the restoring selection problem space-efficiently. In the next section
this algorithm is then used to solve the stable selection problem in minimum
space.

Let us recall the essence of the prune-and-search algorithm for selecting the
kth smallest element in the multiset S of n elements (cf. the implementation
given in [5, Algorithm 3.17] which requires O(log2 n) extra space):

1. If n is “small” then determine the median p of S in a brute force manner
and return p.

2. Divide S into ⌊n/5⌋ blocks of size 5, ignore excess elements.
3. Let M be the set of medians of these blocks. Compute the median p of M

by applying the selection algorithm recursively.
4. Partition S stably into three parts S<, S=, and S> such that each element

of S< is less than p, each element of S= is equal to p, and each element of
S> is greater than p.

5. If |S<| < k ≤ |S<| + |S=| then return p. Otherwise call the selection algo-
rithm recursively to find the kth smallest element in S< if k ≤ |S<|, or the
(k − |S<| − |S=|)th smallest element in S> if k > |S<| + |S=|.

Next we describe the implementation details that will make it possible to
restore the elements into their original positions. In Step 1 the median of small
sets is computed by the quadratic algorithm that will not move the elements.
(We do not specify, when to switch to the brute force algorithm, but refer to
any textbook on algorithms, e.g., [5, Section 3.6].) In Step 3 the medians of the
blocks are also found without moving the elements. To access a block median
we store an offset indicating the place of the median inside the block. Here we
need 3n/5 + O(1) bits in total. A convenient place to store the set M is at the
front of the input array. In [5, Algorithm 3.17] it is shown how the elements of
M are moved in-place. It is easy to reverse this computation.

In Step 4 the multiset S is partitioned stably by using the linear-time mini-
mum space algorithm [11]. Now we use 2n bits to indicate whether before par-
titioning the corresponding position contained an element of S<, S=, or S>. By
using the stable unpartitioning algorithm developed in Section 3, we can reverse
the computation done in Step 4. In Step 5 it is again convinient to move the
multiset S⋄(⋄ ∈ {<, >}) that we shall work with to the front of the array. If the
multisets are stored in order S<, S>, S= or S>, S<, S=, the block interchanges
performed can be easily reversed.

The sizes of the manipulated multisets are stored in unary form. At each
“recursive call” we have to store also the type of the call telling whether the
procedure was called in Step 3 or Step 5. When these sizes and types are available



the recursive calls can be handled iteratively. The overall organization of the
storage is simply a “stack” of bit sequences. Of course, these sequences are stored
in a bit array. From the standard analysis of the prune-and-search algorithm it
follows that the total number of extra bits needed is linear.

We summarize the above discussion in the following theorem.

Theorem 2. The restoring selection problem of size n can be solved in O(n)
time using an extra array of O(n) bits and a constant amount of words of
O(log2 n) bits.

In adaptive sorting it is extremely important not to destroy the existing order
among the input data. Therefore our algorithm for restoring selection could be
used to improve the space-efficiency of some adaptive sorting algorithms, e.g.,
that of Slabsort presented in [16]. We leave it as an open problem whether there
exists a minimum space algorithm for restoring selection. Such an algorithm
would make it possible to develop new in-place sorting algorithms that are also
adaptive.

5 Stable selection

Next we show that stable selection is possible in linear time in minimum space.
Our construction is based on a minimum space algorithm for selecting an ap-
proximate median. When this is used as a subroutine in the standard prune-
and-search algorithm (cf. Section 4), instead of the median-of-medians method,
an in-place algorithm for stable selection is obtained.

Let S = {x1, x2, . . . , xn} be a multiset. Further, let the rank of an element
xj ∈ S be the cardinality of the multiset {xi ∈ S | xi < xj or (xi = xj and
i ≤ j)}. An element x is said to be an approximate median of S, if there exists
an element xi ∈ S such that xi = x and that the rank of xi is in the interval
[αn..(1 − α)n], for some fixed constant α, 0 < α ≤ 1/2. In the following, we
do not try to determine any value for the constant α; the existence of such a
constant is enough for our purposes.

To find an approximate median for a multiset S such that the relative order
of the identical elements is not changed, we use

√
n-blocking. The median of

blocks of size
√

n is computed by the algorithm of Section 4. After computing
the median of a block, the block is partitioned stably and in-place such that
the elements equal to the median come to the front of the block. Then the first
element of each block is used to find the median of medians. Here we use the
trivial quadratic-time algorithm that do not move the elements. It is easy to
see that the final output is an approximate median of S (cf. the analysis of the
standard selection algorithm). The overall running time is linear and the number
of extra bits needed O(

√
n).

This algorithm can be further improved by bit stealing. Next we show how the
extra bits can be stolen from an internal buffer which is created as a preprocessing
step. Our technique is similar to that used by Lai and Wood [14] in their selection



algorithm, or Levcopoulos and Petersson [15] in their adaptive sorting algorithm.
The contribution here is that the bits can be stolen without losing stability.

Assume that t bits are needed, t ∈ O(
√

n). Let S0 denote the first 2t elements
of the original input S. Now sort S0 stably for example by the straight selection
sort algorithm. This takes O(t2) time, that is in our case linear time. First,
consider the case where none of the elements appears more than t times in S0.
By pairing the first element with the (t + 1)st element, the second element with
the (t+2)nd element, and so on, t pairs of different elements are obtained. These
pairs are then used to represent the bits required. An approximate median is then
searched for the elements in S \S0. Since the size of the buffer is proportional to√

n the result will still be an approximate median (under the assumption that
n is large enough, but recall that small multisets are handled separatively).

Second, assume that some element x appears more than t times in S0. Par-
tition S (including S0) stably into two parts: S1 containing the elements equal
to x, and S2 containing the elements not equal to x. If the cardinality of S2

is less than t the input instance is easy. The block S2 is sorted by the stable,
quadratic-time selection-sort algorithm and then S1 is embedded into the result
of this sort by a single block interchange. In this case, even the actual median
can be returned in linear time. If the cardinality of S2 is greater than t, the first
t elements of S1 (forming S3) and the first t elements of S2 (forming S4) are
used to create the internal buffer. To do this the blocks S1 \S3 and S4 are inter-
changed. Finally, an approximate median is searched for the elements belonging
to S \ (S3 ∪ S4).

To summarize, an approximate median of n elements can be found in O(n)
time, using O(1) extra space, such that the relative order of the identical elements
is retained. The routine for finding an approximate median can be applied in
the prune-and-search selection algorithm, instead of using the median-of-medians
method. Hence, the result of the following theorem follows from the analysis of
the prune-and-search algorithm.

Theorem 3. The stable selection problem of size n can be solved in O(n) time,
using only O(1) extra space.

6 Stable sorting of multisets

In this section we describe and analyse a Quicksort type algorithm that sorts
multisets stably in optimal time and minimum space. Let us assume that S, the
multiset to be sorted is non-empty. The basic steps of the algorithm are:

1. Find the median p of S.

2. Partition S stably into three parts S<, S=, S> such that each element of S<

is less than p, each element of S= is equal to p, and each element of S> is
greater than p.

3. Sort the two multisets S< and S> recursively if they are not empty.



In Step 1 the median is determined stably and in-place by the algorithm of
Section 5. Step 2 is implemented stably and in-place by using the algorithm given
in [11]. To avoid the recursion stack in Step 3 we can use the implementation
trick — based on stoppers — proposed by Ďurian [3]. His Quicksort implemen-
tation performs two-way partitions, but it is easily modified to handle three-way
partitions as well. We describe the method here in order to show that stability
is not lost when using stoppers.

For the sake of simplicity, we assume that there exist two elements p and q
such that, for all x ∈ S, x < p ≥ q. Further, assume that the multiset S is given
in the array S[1..n], and assign S[n + 1] = p and S[n + 2] = q. If these extra
elements are not available beforehand, we can find such as follows. Let x be
equal to the second largest element of S. We perform now a three-way partition
of S[1..n] stably and in-place by using x as a partitioning element. The first
element equal to x is chosen as p and the the element right after it as q. The
total time required by this preprocessing is clearly linear. The elements smaller
than p can then be sorted by the procedure to be described below.

Consider the case when we are solving the subproblem S[ℓ..h] followed by the
elements p and q as described above. The invariant of the algorithm is that after
sorting S[ℓ..h] the next subproblem to be solved can be determined by using
h only. Let us assume that the median partitions S[ℓ..h] into the three parts
S< = S[ℓ..h<], S= = S[h1+1..ℓ>−1], and S> = S[ℓ>..h]. The correctness of the
algorithm is established by induction. It follows from the induction hypothesis
that the next subproblem after S> can be determined by using h only. Therefore
the main task illustrated in Fig. 3 is to show how S> is recovered after sorting
S<.

Before solving the subproblem S[ℓ..h1] recursively, we swap the elements S[ℓ3]
and S[h+1]. When sorting S<, we can use the first two elements of S= in the role
of p and q because they are greater than any element of S<. If S= is a singleton
set, we can use the first element of S> as q. After the recursion terminates for
S<, that is, sorting is done and swapped elements are restored to their correct
places, we start a scan from h1 +1 until the first element p larger than S[h1 +1]
is found. The index ℓ′ of p is the left border of the next subproblem. Then we
scan further to find the first element q larger than or equal to p. Let the index
of q be h′. We restore the correct order by swaping the elements p and S[h′− 1].
The right border of the next subproblem is therefore h′ − 2. After determining
the borders, the next subproblem can be processed.

Now we are ready to prove our main result.

Theorem 4. Quicksort can be adapted to sort stably a multiset of size n with
multiplicities n1, n2, . . . , nm in O(n log2 n − ∑m

i=1 ni log2 ni + n) time and O(1)
extra space.

Proof. According to the previous discussion our implementation is stably and
in-place. So let us concentrate on analysing the running time of the algorithm.

Let S1, S2, . . . , Sm be the minimum partition of the input into classes of equal
elements. Without loss of generality, we can assume that the elements in Si are



smaller than those in Sj , for all i < j. Furthermore, let the cardinality of these
subsets be n1, n2, . . . , nm, respectively. Now we denote by T (i..k) the time it
takes to sort the classes Si, Si+1, . . . , Sk. Since median finding and partitioning
are done in linear time, there exists a constant c such that the running time of
the algorithm is bounded by the following recurrence

T (i..k) ≤
{

T (i..j − 1) + T (j + 1..k) + c(
∑k

h=i nh) for i < k and
cni for i = k.

Let us use the following shorthand notations: N1 =
∑j−1

h=i nh, N2 =
∑k

h=j+1 nh, N =
∑k

h=i nh. It is easy to establish by induction that T (i..k) ≤
c(N log2 N −

∑k
h=i nh log2 nh +N) (0 log2 0 means 0). This is because Ni ≤ N/2

(i = 1, 2) and therefore N1 log2 N1+N2 log2 N2+nj log2 nj+N1+N2 ≤ N log2 N .
Hence we have proved that T (1..m) ∈ O(n log2 n − ∑m

i=1 ni log2 ni + n). ⊓⊔
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Fig. 1. One-to-many transformation. (a) Example input with n = 16 and lg n = 4.
(b) Placement array. (c) Single 0&1-block is handled. (d) Block permutation is per-
formed. (e) 0/1-blocks are transformed to 0&1-blocks. (f) Half-finished block is cleaned
up.
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Fig. 2. Block sequence Xi1 , Xi2 , . . . , Xij
. A leader of each block is marked by a circle.
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Fig. 3. (a) After a three-way partition of S we swap p′ and p. (b) After sorting S< we
search for the borders of S> by starting a scan from h<.


