
Heaps and heapsort on secondary storage ⋆

R. Fadel a, K. V. Jakobsen a, J. Katajainen a,1 and J. Teuhola b

aDepartment of Computing, University of Copenhagen, Universitetsparken 1,

DK-2100 Copenhagen East, Denmark

bDepartment of Computer Science, University of Turku, Lemminkäisenkatu 14 A,

FIN-20520 Turku, Finland

Abstract

A heap structure designed for secondary storage is suggested that tries to make the
best use of the available buffer space in primary memory. The heap is a complete
multi-way tree, with multi-page blocks of records as nodes, satisfying a generalized
heap property. A special feature of the tree is that the nodes may be partially
filled, as in B-trees. The structure is complemented with priority-queue operations
insert and delete-max. When handling a sequence of S operations, the number of

page transfers performed is shown to be O
(

∑S
i=1 (1/P) log(M/P) (Ni/P)

)

, where

P denotes the number of records fitting into a page, M the capacity of the buffer
space in records, and Ni the number of records in the heap prior to the ith operation
(assuming P ≥ 1 and S > M ≥ c · P , where c is a small positive constant). The

number of comparisons required when handling the sequence is O
(

∑S
i=1 log2 Ni

)

.

Using the suggested data structure we obtain an optimal external heapsort that

performs O
(

(N/P) log(M/P) (N/P)
)

page transfers and O (N log2 N) comparisons

in the worst case when sorting N records.

Key words: Secondary storage, priority queues, heaps, sorting, heapsort.

⋆ A preliminary version of this work appeared as “External heaps combined with
effective buffering” in Proceedings of the Computing: The Australasian Theory Sym-

posium, Australian Computer Science Communications 19, 2 (1997), 72–78.
1 Partially supported by the Danish Natural Science Research Council under con-
tracts 9400952 (Project “Computational Algorithmics”) and 9701414 (Project “Ex-
perimental Algorithmics”).

Preprint submitted to Elsevier 3 November 1998

1 Introduction

The traditional data structure for implementing a priority queue is the heap
(see, e. g., [8]). It is a complete binary tree with the heap property : the priority
of a parent is always higher than or equal to the priorities of its children.
Thus the root contains the maximum. Of course, the order can also be the
opposite — one may talk about max-heaps and min-heaps. The two important
priority-queue operations (in addition to creation) against a max-heap are
(1) insert, which inserts a record with an arbitrary priority into the heap,
and (2) delete-max, which extracts a record with the highest priority from
the heap. In both cases, the heap property should be restored. Perhaps the
best-known application of the heap structure is heapsort [10,20] which is one
of the few in-place sorting methods guaranteeing an O (N log2 N) worst-case
complexity 2 when sorting N records in the primary memory of a computer.

However, there are some applications, for example, large minimum-spanning-
tree problems and extremely large sorting tasks, where the data collection
may be too large to fit in primary memory. In a two-level memory model,
the typical measure of complexity is the number of pages transferred between
fast primary memory and slow secondary storage. For this reason, the internal
algorithms are not applicable as such. Our intention is to generalize the heap
into an effective external data structure. In part, this was already done by
Wegner and Teuhola in their external heapsort [19]. Their heap had the same
structure as the internal heap, namely a complete binary tree, but the nodes
were extended to whole pages and node comparisons were replaced by node
merges. A clear advantage of external heapsort over external mergesort is that
the former operates in minimum space. Another “in-situ” sorting algorithm
was presented in [15], based on quicksort.

The external heapsort in [19] cannot be improved if we assume that the buffer
space in primary memory is of a fixed size. What happens if we express the
complexity as a function of both problem size N (in records) and buffer-
space capacity M (in records), keeping the page size P (in records) fixed? We
could keep the top part of the heap always in primary memory, resulting in
O ((N/P) log2 (N/M)) page transfers. This is, however, asymptotically worse

than the best possible bound Θ
(

(N/P) log(M/P) (N/P)
)

, obtained by external

O (M/P)-way mergesort [1].

Our intention is to create an external heap organization that tries to make
the best use of the available primary memory. Especially, we try to achieve
the same complexity for external heapsort as for multi-way mergesort. We
will adopt some features from B-trees [5], which have become the standard

2 In this article, we use loga x as a shorthand notation for max (1, ln x/ ln a).

2

comparison-based external search structure. Their virtues are balance, large
fanout (implying short paths from root to leaf), and flexibility, due to the
“slack” allowed in the loading factor of pages (usually between 0.5 and 1). It
turns out that all these properties can be transferred to external heaps. One
may wonder, how a B-tree would manage as a priority queue. The maximum
is easily found from the rightmost leaf (which could be buffered). Inserting
(as well as deleting) records is quite efficient. However, a more careful study
reveals that the B-tree cannot compete with the heap to be described. The
B-tree contains “too much” order, and maintaining that order does not pay
off. This is confirmed by the experiments in Section 6.

In a virtual-memory environment, where the user has no control over the
page-replacement policy, the best utilization of the physical resources is not
possible. For instance, Alanko et al. [4] noticed that (internal) heapsort sorts
N records with O (N log2 (N/P)) page transfers in such an environment. The
behaviour of several priority-queue structures in virtual memory was studied
by Naor et al. [14]. In their experiments a P -way heap was superior to the
B-tree [5] and to the splay tree [16]. They also observed that a P -way heap
(P ≥ 2) supports both the insert and delete-max operations with O (logP N)
page transfers (even though the delete-max operation has the internal cost
of O (P logP N)). The key observation in the present paper is that an even
more efficient heap structure is obtained by letting the fanout be O (M/P)
and storing O (M/P) pages in every node. Now, however, we must ourselves
control the movement of pages to and from secondary storage. Some operating
systems actually provide this facility for the users (see, e. g., [11–13,21]).

The performance of our heap structure is as follows. When handling an inter-
mixed sequence of insert and delete-max operations, starting from an empty
heap, the number of page transfers is O

(

∑S
i=1

(

(1/P) log(M/P) (Ni/P)
))

and

the number of comparisons O
(

∑S
i=1 log2 Ni

)

. Here P denotes the number of
records fitting into a page, M the capacity of the buffer space in records, Ni

the number of records in the heap prior to the ith operation, and S is the
number of operations (P ≥ 1, S > M ≥ c · P, c ≈ 2). This results in ex-

ternal heapsort that performs O
(

(N/P) log(M/P) (N/P)
)

page transfers and

O (N log2 N) comparisons in the worst case when sorting N records.

A data structure, called buffer tree, with a similar performance as ours has
been developed by Arge [2,3]. His structure is an (a, b)-tree which also supports
off-line search and delete operations. In measuring performance, the basic dif-
ference from our approach is that he expresses the (amortized) complexity of
the operations as a function of P , M , and S, but not Ni. In sorting this differ-
ence is not essential, since the total number of operations and the maximum
size of the structure are about the same. The buffer tree is quite complicated
whereas the heap structure explored in this paper is conceptually simple and

3

practical, as confirmed by the experiments.

The rest of the paper is organized as follows. The new data structure is de-
scribed in Section 2. In Section 3 the procedures for accomplishing the two
priority-queue operations, insert and delete-max, are presented. The external
and internal complexities of these operations, as well as that of external heap-
sort, are analysed in Sections 4 and 5, respectively. In Section 6 the results of
the simulation experiments are reported. Finally, in Section 7 some conclusions
are drawn and extensions to the repertoire of operations are discussed.

2 Data structure

We assume that the elements to be stored in the heap are fixed-size records,
each having a priority attribute. Priorities need not be unique; ties are broken
arbitrarily in delete-max. The fixed-size assumption is not absolutely neces-
sary, but allowing variable-size records would complicate the presentation. In
the formal description of the heap data structure we use two parameters:

• P is the number of records fitting into a page. We assume that P ≥ 1, i. e.,
a page should be at least as large as a record. Every page might contain
some header information, O (1) pointers, but P is measured in records, not
including the space used by these pointers.

• m denotes the (maximum) fanout of the heap nodes and also the number
of pages storing records in a node. We assume that m ≥ 2.

The value of m, which should be as large as possible, is determined by the
amount of space available in primary memory. Due to efficiency reasons, pri-
mary memory must accommodate m+O (1) pointers and 2m+2 pages storing
records. Hence, the value of m depends on the application in question and the
environment where the application is run. In general, m is Θ (M/P) in which
M denotes the amount of primary memory available, measured in records.

The main part of the data structure (see Fig. 1) consists of a heap with the
following properties:

• Each node is composed of six parts: (a) a block of m pages, containing
records in ascending order of priority; (b) m pointers to its children; (c) m
pointers to the last records of the children, that is, a page and an offset
inside this page are specified; (d) a pointer to its parent; (e) a pointer to its
predecessor with respect to the normal numbering of nodes in a heap; and
(f) the order number of the node among its siblings (needed in delete-max).

• The generalized heap property holds: for any record x in a node v and any
record y in a child of v, the priority of x is higher than or equal to the

4

Merge buffer Insert buffer

Heap for m-way merge

Root page
buffer

Pointer to the last leaf

Primary memory

Secondary storage

Fig. 1. The internal and external data structures for m = 3.

priority of y.
• The heap is otherwise complete, except that the lowest level can be in-

complete: its nodes are arranged to the left, as in a normal binary heap.
Therefore, the position of the last node of the heap is uniquely defined, and
we can maintain a pointer to it. We keep this pointer in primary memory.
The parent of the last node is the only internal node whose degree may be
between 1 and m, all other internal nodes have m children.

• Each node, except the last leaf, is at least half full, i. e., contains at least
⌈Pm/2⌉ records. This is called the load condition. A node with (temporarily)
less records is said to be imperfect.

• The last page of the root, containing the highest-priority records, is always
kept buffered in primary memory.

• The pages within a block are either physically consecutive, or two-way

5

linked, so that we can move from page to page in both directions. The latter
alternative would avoid wasting storage space because the empty pages at
the end of each block could be released and reused.

In addition to the last root page, primary memory contains two other buffers.
New records are not immediately inserted in the heap, but gathered in an
insert buffer consisting of m pages. When this buffer space gets full, the con-
tained records are added to the heap as a batch. The records in the insert
buffer are organized as a normal (binary) heap because we have to look for
a record with the highest priority. As in [19], moving records up or down re-
quires merging of blocks. Here we need an auxiliary merge buffer of m + 1
pages. Furthermore, a priority queue (heap) of m pointers is kept in primary
memory, to support m-way merging effectively.

3 Priority-queue operations

In this section we describe how the heap data structure supports the operations
insert and delete-max. The operation find-max, which inspects (but does not
remove) a record with the highest priority, is often included in the repertoire
of priority-queue operations but, since it does not involve any page transfers,
it is uninteresting for us.

3.1 Insert

Inserted records are stored first in the related buffer of m pages. When this
buffer becomes full, it is first sorted internally (by heapsort) and then the
sorted outcome is transferred to the heap as its new last leaf. To restore the
heap property (also called “heapifying” [8]), records are sifted up as follows.
We merge the block of the last leaf with that of its parent (using the merge
area in primary memory). Assume that the merged sequence has r records and
that h of these have priority higher than or equal to the minimum priority
in the parent before the merge. Let k = max(r − h, ⌈Pm/2⌉). Allocate r − k
highest-priority records to the parent, and the rest k to the child. It can be
easily verified that this choice maintains the load condition and restores the
heap condition between the parent and all its children. However, the sift-up
must be repeated for the parent and its grandparent, etc., up to the root, or
until the heap condition is found to hold.

One point in the above procedure needs elaboration. When defining the heap
in Section 2, we stated that the last leaf (L) may be imperfect. Now, having
created a new last leaf (L′), we must check whether L satisfies the load con-

6

dition. If it does not, we swap the two (actually the pointers in their parents)
and sift-up both, one at a time. The sift-up of the last leaf propagates upwards
only in the case that its parent is changed in the swap.

3.2 Delete-max

Due to the heap property, a record with the highest priority is either in the
root or in the insert buffer. Since the root is ordered, its last page buffered, and
the insert buffer is an internal heap, this record is easily found and extracted.
If delete-max makes the buffer page empty, another is read in from the root,
namely the page that logically precedes the one that became empty. If the
root becomes imperfect, i. e. its load drops below ⌈Pm/2⌉, we have to refill
it after delete-max. If the children contain at least ⌈Pm/2⌉ records, we move
precisely ⌈Pm/2⌉ of them with the highest priorities to the root. Note that no
grandchildren need be touched because all nodes (except the last leaf) must
contain this amount of records. If there is only one child and it contains less
than ⌈Pm/2⌉ records, we move all of them to the root, which now becomes
the only node of the heap.

After refilling the root, it may happen that one or more of its children have
become imperfect and must be refilled, in turn. For internal nodes, refilling is
done exactly as for the root. As a result of the refill, the internal node may
remain internal or it may become a leaf. In the latter case, it may still remain
imperfect. Of course, any previous leaf can also become imperfect, after giving
part of its records to the parent. An imperfect leaf, say X, is refilled as follows.
If X is the last leaf, then we do not have to do anything; this is the exception
to the load condition. Otherwise, we have to “steal” records from the last
leaf, denoted L. Let |X| denote the number of records in leaf X. Now we
calculate the sum s = |X| + |L|, and depending on the value of s there are
three possibilities:

(1) If s > Pm, move Pm − |X| highest-priority records from L to X, and
sift-up X.

(2) If ⌈Pm/2⌉ ≤ s ≤ Pm, then merge the blocks of X and L into X, and
sift-up X (deleting L).

(3) If s < ⌈Pm/2⌉, then merge the blocks of X and L into X, and delete
L. Find the new last leaf L′ (predecessor of L, obtained by following the
related pointer) and repeat the process for X and L′. This is guaranteed
to succeed because either X = L′ or |L′| ≥ ⌈Pm/2⌉. After filling X, it
can be sifted up.

From the above discussion it is obvious that we can steal from a certain last
leaf only twice, whereafter it becomes empty and ceases to exist.

7

Let us now study the refill procedure of a single node. How do we find the
⌈Pm/2⌉ records with the highest priorities? The records in blocks are arranged
in ascending order. Moreover, we maintain pointers from the parent to the last
record of each of its children. Therefore, we can merge the blocks of the m
children from back to front, until the required amount of records is obtained.
We call this a partial merge. To make the m-way merge internally efficient,
we use a priority-queue structure in primary memory (see Fig. 1), so that
the next record with the highest priority is always obtained with O (log2 m)
comparisons, instead of m.

Notice that, in merging, most of the front pages in the children’s blocks need
not be touched at all; this is important in respect of the complexity. On the
other hand, the lifted records are put to the front of the parent’s block, so all
parent pages have to be touched, to make room for the new ones.

The refilling process is recursive; we can proceed, e. g., in depth-first order.
However, we want to avoid the recursion stack because its size depends on the
height of the heap and, hence, on the number of records in it. An iterative
traversal of the heap in depth-first order is enabled by parent-child and child-
parent pointers. After backtracking from a child, the pointer to the next child
is obtained from the parent immediately because the order number among
siblings is stored in each child.

We have not explained all details in the above descriptions concerning the
maintenance of pointers, the arrangement of merges, as well as the allocation
and release of storage. However, the inclusion of these features is relatively
straightforward, so their description is omitted.

4 External complexity

The external costs are measured in terms of page transfers (reads and writes).
The complexity will be determined only for an intermixed sequence of insert
and delete-max operations — the worst case of a single operation can be really
bad; for example in delete-max, the refilling may propagate to all nodes of
the heap. It depends on the application whether this is important or not. For
instance, in external heapsort, only the overall cost counts.

As for pointers, we make a very pessimistic assumption that a pointer access
costs as much as a page access. This could be improved, but it would compli-
cate the proofs considerably. Also, the data structures and algorithms should
have been described in greater detail. Our cost estimate means that the result-
ing transfer count will be about twice as high as necessary, since each pointer
access is normally followed by a page/block access.

8

4.1 Heaps

As usual, we define the depth of the root of the heap to be zero and that of
any other node one plus the depth of its parent. Moreover, we say that a node
is on level i if its depth is i. The height of the tree is the largest depth of any
node.

Lemma 1 The height of an m-way heap storing N records, such that each
node (except possibly the last leaf) stores at least ⌈Pm/2⌉ records, is bounded
by logm (N/P) + O (1).

Proof Since the number of nodes is bounded by
⌈

N
⌈Pm/2⌉

⌉

and m ≥ 2, it is

obvious that the height of the heap is at most logm (N/P) + O (1) . 2

Let us next analyse the cost of basic subroutines in the insert and delete-max
operations.

Lemma 2 The merging of two sorted blocks occupying p and q pages, respec-
tively, costs 2 (p + q) page transfers. If the p pages reside in primary memory
and p result pages can also stay in primary memory, we need 2q transfers.

Proof The results are obvious because the merging is done by a single scan
over the blocks. 2

Lemma 3 Assume that an imperfect parent of (at most) m children is given,
and each of the children’s sorted blocks consists of at most m pages. A partial
m-way merge of these blocks, gathering the ⌈Pm/2⌉ highest-priority records
and merging them to their parent, requires at most 7m page transfers.

Proof It is again clear that the sorted blocks are scanned sequentially (now
from back). Let us first think about the page reads. We clearly have to touch
at least ⌈m/2⌉ pages. However, for each block, the first and last of the touched
pages may contribute very little to the result (one and zero records may be
lifted from them, in the worst case). Therefore, we get an upper bound 2m +
⌈m/2⌉ for the number of page reads. The blocks are read page-wise into the
merge buffer and the result is written to the front of the parent. Thus, we
have to read also the pages in the parent and move the records forward (no
gaps allowed). This is another ⌈m/2⌉ page reads. All pages in the parent may
have to be rewritten, causing m page writes. Thus, the total number of page
transfers amounts to at most 4m+2 ≤ 5m. When we add the reads and writes
of m pointers, we get the claimed result. 2

9

Now we are ready to analyse the cost of a sequence of insert and delete-max
operations, starting from an empty heap.

Theorem 4 An intermixed sequence of S insert and delete-max operations
requires at most 26

∑SI

j=1

(

(1/P) logm

(

Nij/P
))

+ O (S/P) page transfers in
total, where i1, i2, . . . , iSI

are the indices of insert operations and Nij denotes
the number of records stored in the heap prior to the execution of the ijth insert
operation. Especially, i1 = 1 and N1 = 0.

Proof To prove the result, we shall apply the standard bank-account par-
adigm (for example, see [18]). We assume that each page transfer costs one
euro. To perform all the operations in the sequence, a certain amount of money,
namely 26h/P + O (1/P) euros, are allocated to each record, where h is the
height of the tree at insert time, i. e., h ≤ logm (N/P) + O (1). Here N , in
turn, denotes the number of records in the structure before the insert. Now it
is our intention to show that the allocated money is sufficient to pay all the
page transfers required in the whole sequence of operations (both inserts and
deletes). This will then directly give the claimed result.

We continue the metaphor by saying that the money is deposited to imaginary
accounts, associated with various parts of the data structure. The insert buffer
has an insert account, from which money is withdrawn to pay for the sift-ups
of inserted blocks. Each record has a delete account, containing money to pay
for the refills. In addition, each node has a merge account, which is needed only
when the node becomes the last leaf and the money there is used for paying
the merge of the last leaf with another node, plus the related sift-up. At record
insert, the following amounts are deposited into the individual accounts:

(1) 6h/P + O (1/P) euros to the insert account,
(2) 14h/P + O (1/P) euros to the delete account of the record,
(3) 6h/P + O (1/P) euros to the merge account of the (not yet stored) node

to be created next (if ever).

Let us now analyse the individual operations and steps.

(A) Insert

In most cases a record is inserted in the insert buffer, causing no page trans-
fers. However, the associated money is deposited to the related accounts, as
described above. When the insert buffer gets full (Pm new records), a new last
leaf is created, resulting in one or two sift-up chains (see the algorithm). Each
chain consists of parent-child merges, where the other partner can always be
kept in primary memory (see Lemma 2). The accumulated amount of money
in the insert account is 6hm + O (m) euros because the new height of the tree
is at most one larger than the heights before any of the Pm previous inserts.

10

Thus, there is enough money to pay for sift-ups (4hm+O (m)). The remaining
2hm + O (m) euros are used for reading 2h + O (1) pointers.

(B) Delete-max

Each record has, as explained, a delete account opened at insert time. Now
we should show that it contains a sufficient amount of money for the record
to be lifted up to the root. In fact, we can prove the following invariant :

Each record on level i has 14i/P + O (1/P) euros in its delete account.

First, it should be noticed that inserts do not invalidate the invariant because
we can assume that, when some records are swapped between a parent and its
child, also the money in their accounts is swapped! It is quite normal in the
accounting method to move money around, where appropriate.

In most cases a record with the highest priority is deleted from the buffered
root page (or, in special cases, from the insert buffer). When the buffer page
gets empty, another is read in, namely the one preceding the earlier buffer
page. This costs one access, which is 1/P per record, so that this cost can be
included in the O (1/P) term of the complexity.

When the root gets imperfect, it is refilled by (at most) ⌈Pm/2⌉ highest-
priority records of its children. Refilling may then propagate in the heap ar-
bitrarily wide. In a successful refill, it is sufficient to check that the invariant
holds after the refill. A successful refill moves ⌈Pm/2⌉ records up. According
to Lemma 3, a refill, together with all pointer manipulation, costs at most
7m transfers. Each of the lifted ⌈Pm/2⌉ records pays 14/P euros (withdrawn
from its delete account), which together sum up to the required amount. The
claimed invariant is easily seen to hold, and each record has enough money to
travel all the way to the root.

If refilling does not succeed, the node either is or has become a leaf (after
making its only child, i. e. the last leaf, empty). This case is handled by merging
the imperfect leaf with the last leaf, resulting in a sift-up. The money that each
node has in its merge account (6hm+O (m) euros) is used now. As explained
in the algorithm, a leaf merge can happen only twice for a certain last leaf.
The cost of these two (binary) block merges is at most 5m+O (1), because the
other partner (last leaf) contributes at most m pages to the merges altogether
and each merge results in at most m pages. The cost of two sift-ups is at most
6hm + O (m) (see discussion on insert cost). The sift-ups thus dominate, and
the money in the merge account suffices to defray the cost of the task. After
two merges, the last leaf ceases to exist and its money has been spent.

11

In maintaining the merge accounts, we still have to consider the situation
where the current last leaf is swapped (if imperfect) with the inserted new
last leaf. Actually, we prove the following invariant:

Each node on level i has 6im + O (m) euros in its merge account,
except the last leaf, which may have only 3im + O (m) euros if it is
imperfect.

Immediately after node insert (before the swap), the invariant holds, based
on the initial amount of money given to it. Assume that the heights of the
heap before and after the node insert are h and h′. Obviously, either h′ = h or
h′ = h+1. In case of swapping with the previous last leaf, the new (full) node
exchanges half of the money in its merge account, namely 3h′m+O (m) euros,
with the whole contents of the merge account (3hm+O (m)) of the imperfect
last leaf. After the swap the new node (on level h) has 3hm+3h′m+O (m) ≤
6hm + O (m) euros in its merge account, and the last leaf (on level h′) has
3h′m + O (m) euros. Both quota are sufficient and the invariant holds. 2

It must be emphasized that the complexity result has a tremendous slack in
it. Accessing pointers counts for about half the amount. Therefore, the real
constant factor would be around 13 and even that is pessimistic, i. e., computed
assuming always the worst cases. Moreover, we used the insert operations to
cover all the costs. If there are equally many deletes, i. e. each record is deleted
sooner or later, the complexity per operation is still halved. From Theorem 4
we easily get the following:

Corollary 5 An intermixed sequence of S insert and delete-max operations
requires at most 26

∑S
i=1 ((1/P) logm (Ni/P))+O (S/P) page transfers in total,

where Ni denotes the number of records stored in the heap prior to the execution
of the ith operation. Especially, N1 = 0.

Let N denote the maximum number of records ever stored in the heap. Since
Ni ≤ N for all i and N ≤ S, we have two weaker results:

Corollary 6 An intermixed sequence of S insert and delete-max operations
requires at most 26 (S/P) logm (N/P) + O (S/P) page transfers in total.

Corollary 7 An intermixed sequence of S insert and delete-max operations
requires at most 26 (S/P) logm (S/P) + O (S/P) page transfers in total.

12

4.2 Heapsort

Our starting point was the external heapsort by Wegner and Teuhola [19],
which sorts N records with O ((N/P) log2 (N/P)) page transfers. Now we
improve on this. In principle, we could first build the heap by repeating the
insert operation for each record to be sorted and then extract the records
in sorted order by repeating the delete-max operation. However, we obtain
a better constant factor to the complexity by using a faster heap-building
procedure.

Theorem 8 Given N records stored compactly on ⌈N/P ⌉ pages, an external
heap can be built with O (N/P) page transfers.

Proof The claimed complexity is obtained, e. g., by the following algorithm.
First, compute the number Nℓ of records to be assigned on level ℓ in a complete
external heap will full nodes:

Nℓ =

Pm · mℓ for ℓ = 0, . . . , ℓmax − 1

N −
∑ℓmax−1

ℓ=0 Nℓ for ℓ = ℓmax,

where ℓmax = ⌈logm (N/P)⌉ − 1. Second, partition the set of all records into
subsets R0, . . . , Rℓmax

such that, for ℓ = 0, . . . , ℓmax, |Rℓ| = Nℓ and, for any
record x in Ri, any record y in Rj , and i < j, the priority of x is larger than
or equal to the priority of y. Third, assign these subsets to the heap nodes on
their respective levels. Clearly, this will produce a legitimate heap.

Partitionings are performed bottom-up, so that we first determine the leaf
level, then the next higher level, and so on. In order to extract the records of
level ℓ, we have to solve a selection problem, where we determine the highest-
priority record belonging to level ℓ. In this selection, the records on levels
ℓ + 1, ℓ+2, . . . are already excluded. Selection of the highest-priority record on
level ℓ can be done with O

(

∑ℓ
i=0 (Ni/P)

)

page transfers by adapting the linear

selection algorithm developed for primary memory [6]. This is straightforward
because the essential parts of the algorithm are linear scans, otherwise the
processing can be done in primary memory. Partitioning makes also (trivially)

O
(

∑ℓ
i=0 (Ni/P)

)

page transfers. By summing up and assuming that m ≥ 2,
we obtain that the total number of page transfers performed is bounded by

O

ℓmax−1
∑

ℓ=0

ℓ
∑

i=0

(Ni/P) + Nℓmax
/P

13

= O

ℓmax−1
∑

ℓ=0

ℓ
∑

i=0

(

Pm · mi/P
)

+ Nℓmax
/P

≤O

ℓmax−1
∑

ℓ=0

(

2 · Pm · mℓ/P
)

+ Nℓmax
/P

≤O
(

4 · Pm · mℓmax−1/P + Nℓmax
/P

)

= O (N/P + Nℓmax
/P)

= O (N/P) . 2

Theorem 9 Given N records stored compactly on ⌈N/P ⌉ pages, external
heapsort can sort these with at most 14 (N/P) logm (N/P) + O (N/P) page
transfers.

Proof Referring to the proof of Theorem 4, we note that the insert account is
not needed now because the heap is built off-line with O (N/P) page transfers
as described in Theorem 8. Also, the merge account can be avoided; we can
let any leaf be imperfect, not just the last one, because the height of the heap
does not grow after building it. We only need the delete account of records,
which got an initial deposit of 14h/P + O (1/P) euros each. Altogether we
make at most

O (N/P) +
N

∑

i=1

(14hi/P + O (1/P))

≤O (N/P) +
N

∑

i=1

(14 logm (N/P) /P + O (1/P))

= 14 (N/P) logm (N/P) + O (N/P)

page transfers. 2

Compared to external n-way mergesort, the complexity of which is known to
be only 2 (N/P) logn (N/P) + O (N/P), our algorithm seems clearly inferior.
Observe that here n can be larger than m since mergesort uses less internal
space than heapsort. It is, however, obvious that our constant factor is highly
exaggerated. Pointer manipulation costs are overestimated and many approx-
imations were overly pessimistic. Experimental comparison between the two
sorting methods is reported in Section 6.

To compare the methods with respect to their space usage, we first have to
fix the assumed implementation of mergesort. A pointer-free implementation
would require O (N/P) extra pages to keep the intermediate results. It is thus
more economic to apply a pointer-based solution, where a page slot can be

14

reused as soon as its contents have been read to the internal buffer. This ver-
sion is comparable to our external heapsort; both require a constant number
of pointers per page. The external heap has the additional cost, due to frag-
mentation, that every node can have an almost-empty last page, resulting in
O (N/Pm) extra pages.

5 Internal complexity

The internal costs of insert and delete-max are counted as the number of pri-
ority comparisons. Notice that the number of record moves cannot be higher
than a constant times the number of comparisons, because either (1) the deci-
sion about record movement is done only after its priority has been compared
with some other, or (2) a block move is accompanied by a corresponding num-
ber of comparisons. Also the number of pointer manipulations is at most of the
same order as the number of priority comparisons. Altogether, the total num-
ber of all internal operations performed is proportional to that of comparisons.
However, here we refrain from giving upper bounds to constant factors.

5.1 Heaps

Again we compute the complexity for a sequence of insert and delete-max op-
erations, starting from an empty heap. The following theorem gives an asymp-
totic complexity which was proved the best possible in [17].

Theorem 10 An intermixed sequence of S insert and delete-max operations
requires O

(

∑S
i=1 log2 Ni

)

priority comparisons in total, where Ni denotes the
number of records stored in the heap prior to the execution of the ith operation.
Especially, N1 = 0.

Proof Assume that the indices of insert operations are i1, i2, . . . , iSI
and the

indices of delete-max operations j1, j2, . . . , jSD
.

Let us first analyse the costs of inserts. The ikth insert in a non-full insert
buffer costs O (log2 Bik) comparisons, where Bik is the number of records cur-
rently in the buffer. Since Bik ≤ Nik , the cost is O (log2 Nik) comparisons.
When the insert buffer becomes full, it is sorted, using O (Pm log2 (Pm))
comparisons. Let b⌊Pm/2⌋+1, . . . , bPm denote the indices of insert operations for
the last ⌈Pm/2⌉ records in the buffer. At the inserts of these records, the
total number of records in the heap has been at least ⌊Pm/2⌋. Therefore, the
sorting cost can be estimated by

15

O (Pm log2 (Pm))≤O (Pm log2 (2Nbk
)) for k = b⌊Pm/2⌋+1, . . . , bPm.

The cost per insert bk is O (2 log2 2Nbk
) or O (log2 Nbk

). This means that half of
the records in the insert buffer “pay” the sorting, in the amortized sense. In a
sift-up, binary parent-child merges are performed, using the merge buffer. The
cost per page is O(P) comparisons. Now we utilize Theorem 4, from which we
get an upper bound for the number of pages handled. By multiplying this by
the number of comparisons per page we get O

(

P ·
∑SI

k=1 ((1/P) logm (Nik/P))
)

comparisons, which is at most O
(

∑SI

k=1 log2 Nik

)

, as required.

Let us now consider delete-max. A record with the highest priority is found
either from the root or from the insert buffer with one comparison, but keep-
ing the latter in shape costs O (log2 Bjk

) comparisons (for Bjk
records in the

buffer), which is O (log2 Njk
). In case of an imperfect root, one or more refills

are required. In a refill, an m-way merge is performed, the complexity of which
is not any more linear, because an internal priority queue must be maintained.
The cost per page is O (P log2 m) comparisons. Merging leaves and the follow-
ing sift-up cost O (P) comparisons per page, as in insert. Again, by Theorem 4,

we get O
(

(P + P log2 m) ·
∑SI

k=1 ((1/P) logm (Nik/P))
)

comparisons, which is

at most O
(

∑SI

k=1 log2 Nik

)

. In other words, again the inserts cover both insert
and delete costs. This completes the proof of the theorem. 2

5.2 Heapsort

Using Theorem 10, it is trivial to derive the internal complexity of external
heapsort.

Theorem 11 External heapsort sorts N records with O (N log2 N) priority
comparisons.

Proof If N ≤ Pm, we can do the whole job in the insert buffer, i. e., we
use internal heapsort which requires O (N log2 N) comparisons. Now, assume
that N > Pm and think first of a simplified version of external heapsort, im-
plemented as N inserts followed by N delete-max operations. We can apply
Theorem 10 directly: we replace Ni by the upper bound N and S by 2N ,
and obtain O

(

∑2N
i=1 log2 N

)

= O (N log2 N) comparisons. The more advanced
heap-building algorithm of Theorem 8 makes only a linear number of com-
parisons. Thus, we only need to include the last N terms, corresponding to
delete-max operations, in the previous sum. This improves the constant factor
in O (N log2 N). 2

16

As for the internal complexity, external heapsort is satisfactory since its per-
formance is asymptotically the same as that of internal heapsort.

6 Experimental results

A number of test runs were performed with the suggested external heap struc-
ture, in order to investigate its usefulness in practice. Here we report only a
few results and restrict ourselves to recording the external behaviour. A more
detailed experimental study can be found in [9].

Actually, the tests were only simulations of the real operations. The operating
system was not trusted; we wanted to have full control of all page transfers.
Two simulators were implemented. The first simulates external memory usage,
offering operations PageRead and PageWrite for the use of the programmer.
The number of these operations is counted. The second simulates virtual mem-
ory and applies the LRU (Least Recently Used) page-replacement algorithm.
In this environment the programmer can use the memory as if it were an in-
ternal array. The simulator keeps track of the pages in primary memory and
counts the number of page transfers. The simulator is simplified so that a
replaced page is rewritten to secondary storage also in a case where the page
was not changed.

In the experiments only page transfers of interest were measured, that is, the
transfers of the pages containing records only. The page transfers performed
when accessing pointers, program segments, temporary variables, or other such
data structures are not included in the counts.

Our first experiment compared the performance of three priority-queue struc-
tures:

(1) An m-way heap as described in the preceding sections. A technical dif-
ference from the theoretical description was that the whole root was
buffered, for simplicity.

(2) A P -way (internal) heap implemented using the virtual-memory simula-
tor, and

(3) a P -way B-tree used as a priority queue, with highest-priority records kept
in a buffer of M/P pages, and the page transfers controlled by explicit
PageRead and PageWrite commands.

Notice that both insert and delete-max have logarithmic external complexity
also for the B-tree, but the base of logarithm is P . Moreover, the amortized
complexity of delete-max has a factor 1/P since the rightmost leaf is buffered.

17

50 000

100 000

150 000

200 000

250 000

P-way heap
in virtual
memory

B-tree as a
priority queue

External heap

20 000 40 000 60 000 80 000 100 000

Number of operations

Number
of page
transfers

Fig. 2. The average number of page transfers per insert/delete-max operation when
P = 50 and M/P = 50.

The test setting was such that we first inserted a certain number N of records
into the structure, and then started to execute insert and delete-max opera-
tions randomly, both having 50% probability. The measurements were taken
during this latter period. The total number of page transfers for subsequent
N operations is shown in Fig. 2, for page size P = 50 and primary memory
size M = 50P . As expected, the external heap is by far the best of the three
data structures tested. The observation that the B-tree is slightly better than
the P -way heap in virtual memory is not quite in agreement with the results
obtained in [14]. Apparently, the difference results from the fact that we did
not try to take advantage of page alignments in the virtual-memory simulator.
This increases the number of page transfers to about the double, compared to
the optimal alignment of sibling sets in the P -way heap.

The second experiment concerned sorting. Our external heapsort was, natu-
rally, compared with external mergesort, which is the de facto standard in
practice. Moreover, the theoretical complexities of the two are asymptotically
the same, as well as the buffer sizes (up to a constant factor). The outdegree m
of the external heap and the order n of merging were somewhat smaller than

18

100 000

200 000

300 000

400 000

200 000 400 000 600 000 800 000 1 000 000

Input size

Number
of page
accesses External

heapsort

Mergesort

Fig. 3. The number of page transfers for the two external sorting programs when
P = 50 and M/P = 50.

M/P , due to the auxiliary structures in the primary memory. Comparison
with hillsort presented in [19] would have been unfair because it uses only a
constant number of buffer pages.

In the external mergesort, the sorting was carried out bottom-up, without
recursion. The initial sorted lists of size 2

3
m pages were created by internal

mergesort. The algorithm had also an extra workspace, equal to the input
size, in secondary storage. The merging passes were done from the initial area
to the working space and back in alternating order.

The number of page transfers performed by the two sorting methods is de-
picted in Fig. 3 for P = 50 and M/P = 50. It seems that at least our current
(non-optimized) version of external heapsort does not quite reach the efficiency
of mergesort. The heap-building procedure was implemented using normal in-
sert operations. The faster off-line procedure could probably improve the re-
sults. Anyway, for practical purposes, we suggest the m-way external heap to
be used mainly as a priority queue, not for external sorting. The latter appli-
cation is at least theoretically interesting, due to its optimality, up to constant
factors.

19

7 Conclusion and further work

We have described an external priority-queue organization, which is a natural
generalization of the traditional heap organization in primary memory. Multi-
page nodes with a large fanout imply a very small height for the heap, which
keeps the number of page transfers low. The key point is an effective utilization
of the primary memory. The obtained complexity for priority-queue operations
can be considered satisfactory because it guarantees asymptotically optimal
performance for external heapsort, in respect of both external and internal
complexity. Our frame of reference includes only comparison-based techniques.
For special distributions or restricted domains of priorities, better results may
be obtained by other means.

It would be of interest to develop efficient algorithms for maintaining some
special types of priority queues on secondary storage. The applications we
have had in mind are that of finding a minimum spanning tree in an undi-
rected graph and that of computing a shortest path tree in a directed graph.
The standard solutions to these problems (for example, see [8]) use a prior-
ity queue which, in addition to insert and delete-min, supports an operation
for decreasing priority values. This presupposes that the records also contain
a unique key (or address) and that there exists a search mechanism for the
records by this key. However, we have not been able to develop a data struc-
ture which could be used to solve, for example, the minimum-spanning-tree
problem faster than by the method of Chiang et al. [7].

Acknowledgements

We would like to thank Jesper Bojesen who detected a severe error in an
earlier version of the sift-up algorithm.

References

[1] A. Aggarwal and J. S. Vitter, The input/output complexity of sorting and
related problems, Communications of the ACM 31 (1988), 1116–1127.

[2] L. Arge, The buffer tree: a new technique for optimal I/O-algorithms,
Proceedings of the 4th Workshop on Algorithms and Data Structures, Lecture
Notes in Computer Science 955 (Springer-Verlag, Berlin/Heidelberg, 1995),
334–345.

20

[3] L. Arge, Efficient external-memory data structures and applications. BRICS
Dissertation DS-96-3 (Department of Computer Science, University of Aarhus,
Århus, 1996).

[4] T.O. Alanko, H. H.A. Erkiö and I. J. Haikala, Virtual memory behavior of some
sorting algorithms, IEEE Transactions on Software Engineering SE-10 (1984),
422–431.

[5] R. Bayer and E. M. McCreight, Organization and maintenance of large ordered
indexes, Acta Informatica 1 (1972), 173–189.

[6] M. Blum, R.W. Floyd, V. Pratt, R. L. Rivest and R.E. Tarjan, Time bounds
for selection, Journal of Computer and System Sciences 7 (1973), 448–461.

[7] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff and
J. S. Vitter, External-memory graph algorithms, Proceedings of the 6th Annual

ACM-SIAM Symposium on Discrete Algorithms (ACM, New York and SIAM,
Philadelphia, 1995), 139–149.

[8] T.H. Cormen, C.E. Leiserson and R. L. Rivest, Introduction to Algorithms (The
MIT Press, Cambridge, 1990).

[9] R. Fadel and K.V. Jakobsen, Data structures and algorithms in a two-level
memory, M. Sc. Thesis (Department of Computing, University of Copenhagen,
Copenhagen, 1996).

[10] R. W. Floyd, Algorithm 245, Treesort 3, Communications of the ACM 7 (1964),
701.

[11] K. Harty and D. R. Cheriton, Application-controlled physical memory
using external page-cache management, Proceedings of the 5th International

Conference on Architectural Support for Programming Languages and Operating

Systems, ACM SIGPLAN Notices 27 (1992), 187–197.

[12] K. Krueger, D. Loftesness, A. Vahdat and T. Anderson, Tools for the
development of application-specific virtual memory management, Proceedings

of the 8th Annual Conference on Object-Oriented Programming Systems,

Languages, and Applications, ACM SIGPLAN Notices 28 (1993), 48–64.

[13] D. McNamee and K. Amstrong, Extending the Mach external pager interface to
accommodate user-level page replacement policies, Technical Report 90-09-05
(Department of Computer Science and Engineering, University of Washington,
Seattle, 1990).

[14] D. Naor, C.U. Martel and N. S. Matloff, Performance of priority queue
structures in a virtual memory environment, The Computer Journal 34 (1991),
428–437.

[15] H. W. Six and L. Wegner, Sorting a random access file in situ, The Computer

Journal 27 (1984), 270–275.

[16] D. D. Sleator and R. E. Tarjan, Self-adjusting binary search trees, Journal of

the ACM 32 (1985), 652–686.

21

[17] D. D. Sleator and R.E. Tarjan, Self-adjusting heaps. SIAM Journal on

Computing 15 (1986), 52–69.

[18] R. E. Tarjan, Amortized computational complexity, SIAM Journal on Algebraic

and Discrete Methods 6 (1985), 306–318.

[19] L. M. Wegner and J. I. Teuhola, The external heapsort, IEEE Transactions on

Software Engineering 15 (1989), 917–925.

[20] J.W. J. Williams, Algorithm 232, Heapsort, Communications of the ACM 7

(1964), 347–348.

[21] Y. Yokote, The Apertos reflective operating system: the concept and its
implementation, Proceedings of the 7th Annual Conference on Object-Oriented

Programming Systems, Languages, and Applications, ACM SIGPLAN Notices

27 (1992), 414–434.

22

