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Abstract. 

The complexity of sorting with pointer machines and successor-predecessor random access 
machines is studied. The size of the problem is defined as the length of the problem string. A 
linear time algorithm is achieved for sorting by pointer machines. For successor-predecessor 
random access machines linear time is sufficient in a special case. 

1. Introduction. 

It is well-known that sorting, when best done, takes O(n logn) time. In this 
paper we pose two questions about this statement. Which model of 
computation is used? How is the size n of the problem defined? 

We shall define the size of the sorting problem as the length of the input 
string, which is the concatenation of the keys separated by punctuation symbols. 
This gives us a uniform base for the comparison of algorithms, Sometimes in 
the literature the size of the problem is omitted or so vaguely defined that a 
direct comparison of complexity results is not possible. 

In this paper we shall consider the complexity of sorting with pointer 
machines defined by Schonhage [8] and with random access machines. '4s to 
the pointer machines, Schonhage [8] used radix sort [5] for sorting keys with 
respect to  equality. In fact, his technique can rather easily be extended for 
sorting keys of equal length with respect to their k-ary values in linear time, as 
well. We shall show that the same holds true for sorting keys of arbitrary 
length. 

When sorting with random access machines, we restrict ourselves to the 
problems having a uniform key length. We shall show that the radix sort [53 
will work in linear logarithmic time for "typical" key lengths, but for very long 
or very short keys, the time complexity approaches O(n logn). It remains open 
whether the linear time is possible in all cases. In fact, we do not need full 
arithmetic power of random access machines, only successor and predecessor 
operations are needed. A related work for more powerful random access 
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machines under a uniform cost criterion is irkpatrick and Reisch [3]. 

e shall consider keys that are nonempty strings over the binary alphabet. 
The binary values of the keys induce a linear order among them, thus for 
Instance 1101 < 10011, because 13 < 19. 

We shall use the symbol X as the separator of the keys. The sorting problem is 
to compute the function mapping any input string 

where the keys w i  are binary strings, to the string 

where p is a permutation of (0.1,. . ., t -  l )  such that W,(,, W , , , ,  ,, (i = 0, 
l,. . ., t - 2 )  in the linear order of binary numbers. The size of the sorting 
problem is the length of the input string (or the number of letters 0, 1, li: in it). 

Thus, for example, the size of 110 # 10 # 01 # 1001 # #  is 16, and when sorted it 
becomes 01 tr 10 ti 110 R 1001 R $ .  One should note that we sort according to the 
binary value and not according to the lexicographic order. In the latter case the 
result would be 01 # 10 # 1001 110 ##. 

3. Sorting in linear time with pointer machines. 

In this section we shall show that a pointer machine sorts any problem of size 
n in time O(n). Of course, this does not contradict the well-known [l] lower 
bound that sorting t keys requires Q(t log t )  comparisons of keys. 

The definition of the pointer machine was proposed already by Kolmogorov 
and Uspenskij [6] and by Knuth [4, Section 2.6.1. A fundamental study was 
done by Schonhage [83. Tarjan [ g ]  also has used this kind of machine. 

A pointer machine ( P M )  has an input tape which is scanned by a one-way 
read-only head, and an output tape with one-way write-only head. We assume 
that input and output alphabets contain only letters 0, 1, and g. The memory of 
a PM is a graphlike structure, bearing resemblance with a dynamic record 
structure which is available in many programming languages. A memory cell 
consists of k pointers labelled with the letters from a pointer alphabet P ,  where 
k is a fixed number, k > 2. There are k letters in the pointer alphabet, and 
different pointers of a cell are labelled with different letters. Thus, there is a one- 
to-one correspondence between pointers and labels. The memory structure can 
be considered as a digraph whose edges are labelled and which has a constant 
fan out k. 

For the access to the cells of the memory, there is a special centre pointer 
which points to a cell called the centre of the memory. All nodes are accessed 
via the centre. The computation starts with a centre whose pointers are all 
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empotent, i.e. they point from the centre to ~tself. If pl, p2,. . ., p, are pointer 
labels, we denote by n(p,p,. . .p,) the cell which is accessed from the centre by 
following the pointers p,, p,, . . ., p,. Especially, n(e )  refers to the centre 
Whenever a new cell is created, the pointer ne is set to it, and its own pointers 
are set to itself. 

A pointer machine has a fixed program which is a sequence of labelled or 
unlabelled instructions, separated by semicolons. A label is a letter from a 
program label alphabet and it is separated from the following instruction by a 
colon. The set of instructions that are available is the following: 

instruction 
input l,, l , ,  I 

output h 
goto 1 
halt 
create new cell 

move centre to n(u)  

meaning 
causes the next input symbol a E {0,1 # j to be read and the 
control transferred to the instruction with the label l,, 1,  
or l,, respectively, 
outputs the symbol b, b E {O,l, #), 
transfers the control to the instruction labelled with 1, 
ends the computation, 
creates a new cell with idempotent pointers and sets the 
pointer new to it, 
where u E P* U {new), moves the centre to the cell n(u), 

set p from n(u) to n(r)  where U, u E P* U {new), sets the p-pointer from n(u) to 
n (0 1, 

if n(u)  = n(v) then I causes the instruction I of previous types to be 
executed if the cells n(u)  and n(u) are same. 

The set of instructions is given in order to state exactly, what are the 
elementary steps of the PM. However, for the sake of readability we use if- 
then-else, while-do, and repeat-until control structures which can easily be 
translated into the basic formalism. Additionally, we assume that a cell can be 
labelled by a letter from a memory alphabet. The letter can easily be replaced 
by an additional pointer. Indeed, this technique is explained in [8]. We denote 
by c(p,p,. . .pj) the letter contained in the cell n(plp,. . .pj). In the following the 
pointers not explicitly mentioned are all idempotent, i.e. they point to the cell 
itself. We do not even draw idempotent pointers in a figure. The pointer 
alphabet is hereafter assumed to be (B, E, K, L, S ) .  

The time complexity of a P M  program is simply the number of instructions 
executed. 

Fig. l. An Schain. 
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EXAMPLE 3. I .  The  following small program constructs an S-chuir; 
corresponding to a sorting problem. For input 101 # 110 # 100 f B the resulrs is seen 
in Figure 1. 

re 

set E from n ( E S )  to n ( E )  
set E from n(e)  to n(ES)  
c ( E )  +- input 

until c ( E )  = and c (EE)  = 
set S from n ( E )  to n(e)  
set E from n(e) t~ n(e). 

Fig. 2. Memory structure before length sorting. 

Sorting by a PM is done in two stages. During the first stage the key words 
W ,  of the input string W ,  # W ,  % . . . # W , - ,  ## are read and distributed to lists of 
words of equal length, when initial zeroes are not counted. Consequently, in the 
first stage the keys are sorted on a very coarse level. We shall see that this can 
be done in linear time. To complete the sorting, the lists formed during the first 
stage are stored, This is done in the second stage in linear time using radix list 
sorting [ 5 ] .  The final output is the concatenation of the sorted sublists. 

Our definition of the sorting problem requires that the leading zeros of the 
keys must not be omitted while sorting. This requirement causes some minor 
inconveniencies in the constructions, as for example 0010, 11, and 010 are to be 
considered as having equal length two. 

LEMMA 3.1.  There is Q P M  which sorts the problem W ,  8 W , .  . . # W , - ,  # #  of 
size n in time O ( n )  into the increasing order of the lengths of W,, when the leading 
zeros are not counted, 

PROOF. Denote w = W ,  W , .  . . # W - ,  # #  = a,a,. . .a, (ai E {0,1, #)). While 
reading the input string, two chains of cells are constructed. The cells in the S- 
chain contain the input letters a,, U,, , . ., a, in the origmal order. The other 
chain is constructed with L-pointers, and it will be used for measuring the 
length of a key. In the L-chain, the S-pointer of a cell is used to collect the keys 
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of that length. Those S-pointers are initially ide potent meaning that the 
corresponding lists are empty. Also two additional pointers 
and E (for end) are set from the centre to n ( S ) ;  they will mark the beginning 
and the end of the active key. Finally, the pointer K is set from the centre to 
n(L)  corresponding to the list of keys of the length 1. For input 10 I f  110 # 11 #%, 

for example, the configuratiorl is shown in Figure 2. 

Fig. 3. Memory structure after length sorting. 

Then the keys are distributed according to their lengths using the program 

while n ( B )  + n(e) do 
while c ( E )  = 0 d o  (pass leading zeroes) 

set E from n(e)  to n(ES)  
end while 
while c (E)  # f ;  do {measure the length of the keys) 

set E from n(e)  to n(ES)  
set K f r o m  n(e)  to n ( K L )  

end while 
set S  from n(e)  to n(ES)  {remember the next key if any} 
set S  from n ( E )  to n ( K S )  {insert the key at the beginning.. .) 
set S  from n ( K )  to n ( B )  {. . .of key list of the same length) 
set B from n(e)  to n ( S )  (initializations for the next key) 
set E fiom n(e)  to n ( S )  
set Kfromr n(e )  to  n(L)  

end while 

The principal while-loop is executed as many times there are keys in W .  The 
first of the two inner while-loops passes the initial zeros of the key. In the second 
inner while-loop, the end of the key is recognized. The remaining statements 
locate the current key to  the beginning of the list corresponding to its length 
and initialize the temporary pointers ready for the next key. In the case of our 
example, the program yields Figure 3, 

A list of keys in the increasing order of lengths can now be output easily, but 
in our case it is not useful, because in the next lemma the lists of keys of equal 
length are sorted according to their binary values. It is obvious that only linear 
time has been used. 
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A 3.2. A problem w - w o  I.. . I W,- 88 of size n, where all keys, wi have 
equal number oj'signijicant bits, can be sorted in O(n)  time b,y a P 

PROOF. Let us assume that the problem w is stored in the memory in an S- 
efore sorting cycles, the S-chain must be prepared for sorting. For each 

key wi, an E-pointer is set from the first letter of wi to the terminator I of wi. 
For all keys, a B-chain is set from the terminator via all bits to the first bit, and 
from the first bit to the last bit. A B-pointer is also set from the centre to the 
first bit of the first key. In addition, two new cells are created. The cell n(K) will 
collect the keys with zero in certain position, and the cell n(L) will collect the 
keys with one, respectively. The E-pointers of the cells n(K) and n(L) will 
indicate the end of the key lists. Initially the lists are empty and thus those E- 
pointers are idempotent. For example, the configuration for 101 # 110 # 100 P is 
as shown in Figure 4. 

V 
Fig. 4. Memory structure before the first distributing cycle. 

In the first cycle, keys ending with 0 are joined to the end of K-list, and the 
keys ending with 1 to the end of L-list. When all keys have been added to their 
respective lists, the K-list and the L-list are concatenated, and the cycle for the 
last but one bit begins. and so forth. This is formalized in the following 
program : 

set E from n(e) to n(e) 
repeat 

while n(B) # n(e) do {distribute all keys) 
if c(BB) = 0 then 

set S from n(KE) to n(B) {join key to the end of K-Iist) 
set E from n(K) to n(BE) 

else 
set S from n(LE) to n(B) {as above, for L-list) 
set E from n(L) to n(BE) 

end if 
if n(BB) # n(B) then {take a new bit if not all bits used) 

set B from n(B) to  n(BBB) 
else 

set E from n(e) to n(L) 
end if 
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{concatenate K-list and L-list) 

(initializations for the next cycle) 

set E from n(L,) t o  n(L )  
until n(E) # n(e)  

Obviously, the inner loop is executed t times, and the outer loop as many times 
as there are bits in the shortest of the keys, or equivalently as many times as 
there are significant bits in the keys. Consequently, the total time is linear. 

Combining the results of Lemmas 3.1 and 3.2 we get 

THEOREM 3.1. The general sorting problem W ,  # . . . # W,- ,  # #  of size n can be 
perjiirmed in O(n)  time by a pointer machine. 

This result, of course, is optimal as far as the constant coefficient of O(n) is 
not taken into account. 

NOTE 3.1. Also lexicographic sorting in linear time by PMs is possible. In 
fact, it is easier than k-ary sorting, since trie sorting [5] is directly applicable to 
PMs. 

4. Sorting with random access machines. 

The random access machine (RAM) has been proposed as an abstract model 
of existing computers. Indeed, the random access machine captures essential 
features of the machine languages. In order to achieve generality and simplicity, 
several idealizations have been done, for example the memory locations of RAN 
can contain arbitrarily large numbers. 

Our definition of the RAM is not different from those found in the literature 
[l, 2,8], but we have to define it more exactly. In our machine, the memory 
locations are considered as bit strings rather than integers. The input and 
output of bit strings is rather problematic. We decided to use a buffer for that 
purpose. Also we do not need full arithmetics, successor and predecessor 
operations are sufficient for our purposes. 

The random access machine (RAM') is an abstract machine which consists 
of a fixed program, an input tape and an output tape containing words over 
{0,1, $1, and a sequence BF, AC, O,1,2,. . . of memory locations containing bit 
strings of arbitrary length, sometimes interpreted as integers. BF is called the 
inputloutput buffer, through which all input and output is passed. AC is called 
the accumulator, in which all computation is done. The bit string contained in 
the memory location m is denoted with c(m). The program of a RAM is a finite 
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sequence of labelled or unlabelle 
and an instruction is one of the following: 

reset 

halt 
jump l 

jumpp 2 

loadim n 
load m 
loadid m 
store m 
storeid m 
SUCC 

pred 

is attached to the end of c 
e instruction labell 

respectively, 
if c(BF) is nonempty, then the first bit is output and removed 
from BF, else # is output, 
the input head is reset to the beginning of the input tape 
for rereading, 
the machine halts the computation, 
~ u m p  to the instruction labelled with l, 
if c(AC) > 0 then jump to the instruction labelled with l ,  
else to the next instruction, 
c(AC) t n, n is an integer, 
c(AC) c c(m), m is a memory location, 

W C )  + c(c(m)), 
c(m) c c W ) ,  
c(c(m)) +- c(AC), 
c(AC) c c(AC) + 1, 
c(AC) + c(AC) - 1. 

At the beginning of the computation all memory locations are assumed to 
contain the empty string or zero. 

We shall use logarithmic cost as defined for example in [l]. Whenever data 
are handled, the size of the contents and the address must be taken into 
account. The following small lemma is needed in our main theorem, but it may 
also have some interest of its own, 

LEMMA 4.1, For any problem W ,  # W ,  # . . . W,-, ## of size n, log t and log log t 
can be computed in O(n)  time. 

PROOF. For the counting of the keys, 4 logt -t4 memory Iocations are used, 
four locations for each bit of the binary representation of t. At a moment when 
d keys have been counted, the locations , 10, 14,, . . contain the bits of the 
binary representation of d, in increasing order of significance. The locations 
4,8,12,. . . contain 0, except the last one preceding the highest non-zero bit of 
logd, which contains 1. The locations 0, 1,2,3 are used for auxiliary 
computations, and the locations 5, 7, 9, 11,. . . are used for the computation of 
log log t. 

The keys are counted as follows. Each time a key is encountered on the input 
tape, the key count whose bits are in the locations 6, 10, 14,. . . is increased by 1. 
This is done by successively scanning these locations via a pointer stored in 
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location 3. If a new bit is needed (when key count d reaches a power of 2) ,  the 
end marker 1 in one of the locations 4, 8, 12,. . . is moved four locations to the 
right. Hence, when all keys have been counted. the end marker is at the location 
4 logt. 

Analogously, the number of zeros in the locations 8, 12,. . . is counted with 
locations 7, 11, 15,. . . until the end mar er 1 is encountered. Here too, a 1 in 
one of the locations 5,  9, 13,. . . shows the position of the highest non-zero bit. 
Now loglogt can be computed into the location Q by counting the zeros in 
locations 5, 9, 13,. . . preceding the end marker 1. 

Obviously, the first stage is more time consuming than the second one, and 
therefore we can restrict ourselves to  the analysis of the first case. Of the t 
counting steps, t /2 reach only the lowest bit, t /4  reach the second bit, t/8 the 
third bit and so forth. Hence, the total cost of these steps is 

as is easily seen by using the quotient test. Hence, the scanning of the input 
taking O(n) time is decisive in the time complexity. 

It follows from theorem 4.1 and a general simulation theorem of Schonhage 
[8] that any problem can be sorted in O(n logn) time by a successor random 
access machine. Now we begin to look for a better algorithm. We restrict 
ourselves to problems with uniform key length. 

Our algorithm will use k-ary radix sorting [5].  The crucial idea is to choose 
k so large that it balances with the number of keys. Indeed, k = t proves to be a 
good choice. This implies that the keys are not handled as bit strings but as 
block strings, each block consisting of log t bits. In fact, the proof is rather 
similar to the proof of lemma 3.2, but here we need blocking in order to cover 
the cost of pointers. 

LEMMA 4.2. Let wo & wl X . . . 8 W,- X & be a sorting problem of t ,  t > 1, 
keys of equal length, and let b = [lwil/[log tll. Then there is a successor- 
predecessor RAM that sorts the problem in time O(tb log (tb)). 

Fig. 5. a) Memory map of the RAM. b) A key in the map. 
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y lemma 4.1, log log t can be computed in 
location loglogt, log t can be represented as a bit vector, and by the techniques 
of lemma 4.1 log t bits of the input can be counted (down) and loaded into the 
input buffer in O(Iog t)  time. A certain memory location, say location 0, is used 
for pointing where this block is stored. As there are tb blocks, the cost of storing 
addresses is log tb. Hence, the configuration corresponding to the memory map 
of Figure 5 can be constructed in O(tb log (tb)) time. 

In the map, there are d auxiliary pointers and counters. where d is a small 
constant. The next memory locations correspond to the buckets of the radix 
sort; p, shows the place of the first key whose active key has t-ary value i, if 
any. At the beginning, each p, is empty pointer 0. The last t(b+3) memory 
locations contain the keys, each divided in b blocks with three auxiliary 
pointers. The first of these pointers, say r,, points to the active block of W,, 
initially to the last one, i.e. r, = d + t -t (i + l)(b + 3) - 1. The second pointer si 
gives the successor of this key at this stage of the sort, originally 
si = d + t + (i + 1)(b + 3) for i = 0,. . ., t - 2 and S,-, = 0. The third pointer ei 
shows where the S-chain beginning at wi ends, if wi happens to begin an S-chain. 

The sorting consists of b distributing stages and b collecting stages which 
alternate. During a distributing stage, each key is added to the end (pointed by 
the e-pointer) of the S-chain corresponding to its active block (accessed by the r- 
pointer). Assume that the active block of W, be j, i.e. the r-pointer of wi has 
value c(c(d + t + i(b + 3))) = j. If c(d +j) = 0, then the S-chain corresponding to j 
is empty. In this case wi is made the first and only element of the S-chain of j by 
the assignments 

c(d+j) + d+t+i (b+3)  { p j  points to wi) 
c (d+t+i (b+3)+2)  +- d+ t+ i (b+3)  {wi becomes the tail of the S-chain) 
c (d+t+i (b+3)+1)  +- 0 {wi has no successor) 
c(d+t+i(b+3)) t c(d+t+i(b+3))-1 {next active block of wi) 

Note that although the assignments seem to contain addition and multiplication, 
in fact only indirect addressing, successor and predecessor functions are needed. 

If p j  = c(d+j)  > 0, there are already keys in the j-bucket. In this case wi is 
joined to the end of the chain as follows. 

c (c (e (d+j )+2)+1)+-d+t+i (b+3)  { w i  is joined to the end of S-chain} 
c(c(d+j)+2) + d+t+i (b+3)  becomes the end of S-chain} 
c(d+t+i(b+3)+1) +- 0 {wi has no successor) 
c(d+t+i(b+3))  c c(d+t+i(b+3))-1 (next activ'e block of wi) 

The complexity of these assignments is O(1og (tb)). In this way, following the 
S-chain of the previous stage, all keys are distributed to the chains coriesponding 



NOTES ON THE COMPLEXITY OF SORTING IN ABSTRACT MACHINES 42 1 

to their active blocks, and this operation has taken ( t  log (tb)) time altogether. 
hen a distributing stage has been completed. a collecting stage begins. 
y nonempty s-chain beginning at p, (i = 0,. . ., t - l )  is appended to the new 

S-chain in turn, and p-pointers are set to 0. The collection is 
pointer to the bucket area and another pointer to the key area. 
is empty, it is passed, and control moves to the next p-p 
nonempty bucket is encountered, it is appended to the new chain and the key 
pointer of the new S-chain is set to the end of this bucket by the e-pointer of the 
first member of this bucket. The total cost of handling p-pointers is O(t log t ) ,  
and the total cost of moving the key pointer is O(t log (tb)). Hence a collecting 
stage can be completed in O(t log (tb)) time. 

We have proved that both distributing and collecting stages take O(t log (tb)) 
time each. As there are b blocks in a key, the total time of these stages is 
O(tb log (tb)). Outputting, evidently, can be done is O(tb log (tb)) time with the 
same technique as inputting. From this lemma we obtain immediately: 

THEOREM 4.1. If all keys of the sorting problem W, # W ,  g.. .# W,-, #% of size n 
have the same length k sutifiing log n < k n l - E  for some positive constant E,  

then the problem can be sorted in linear time by a random access machine. 

PROOF. By lemma 4.2 and the first inequality, the problem can be sorted in 
time O(tblog(tb)), where b=k l log t .  By the second inequality, 
log (tb) = log (tkpog t) = O(1og t ) .  Hence, O(tb log (tb)) = O(tk) = O(n). 

If the key length decreases to 1 or grows to n, the time bound of lemma 4.2 
approaches O(n log n). In these extremal cases some other algorithms give better 
bounds. For very short keys, the trivial algorithm outputting all zeros at the 
first reading, all ones at the second reading and so forth, gives a better bound. 
As it is well-known [l], mergesort needs O(t log t)  comparisons of keys, and one 
can see that a successor-predecessor RAM is sufficient for programming it. If 
the key length n/t is taken into account, its time complexity with respect to  the 
length of the input is O(t log t(n/t)) = O(n log t ) ,  which is better than ours for 
large key lengths. 

We gave a linear time sorting algorithm for pointer machines which, of 
course, is optimal. However, in the domain of sorting with other machines there 
remain many open problems. 

The multitape Turing machine is the traditional model of computation for 
complexity studies. Using the polyphase merge method [4] one can show [7] 
that a sorting problem of t keys and size n can be solved in O(n log t)  time with 
a Turing machine having at least three tapes. For two-tape Turing machines 
Q(n1og nlogt)  is achieved and for one-tape machines O(nt). It would be 
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now if these time bourn 
lexicographic sorting by success 

not been able to achieve a goo 
according to their k-ary 

wn that if the len s at least logarithmic then 
ar time. Unfortunately, unlike 

does not imply a linear time algorithm even for this case. 
Another interesting question is, which assumptions about our 

can be weakened. We do not see any easy way to remove the predecessor or 
reset instructions or input/output buffer without increasing t h t  time bound. The 
usefulness of these properties is seen by the following simple test problems. How 
fast can a RAM output two copies of an input string without using a buffer or a 
reset? How fast can a RAM output the reversal of an input string with or 
without the predecessor instruction? These functions can easily be computed in 
linear time by Turing machines, but there is no obvious way to compute them 
in linear time by RAMS without the abovementioned facilities. 
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