
BIT 25 (1985). 61 1-622

MARTTI PENTTONEN and JY RKI KATAJAINEN

Department of Computer Science, University of Turku, SF-20500 Turku, FINLAND

Abstract.

The complexity of sorting with pointer machines and successor-predecessor random access
machines is studied. The size of the problem is defined as the length of the problem string. A
linear time algorithm is achieved for sorting by pointer machines. For successor-predecessor
random access machines linear time is sufficient in a special case.

1. Introduction.

It is well-known that sorting, when best done, takes O(n logn) time. In this
paper we pose two questions about this statement. Which model of
computation is used? How is the size n of the problem defined?

We shall define the size of the sorting problem as the length of the input
string, which is the concatenation of the keys separated by punctuation symbols.
This gives us a uniform base for the comparison of algorithms, Sometimes in
the literature the size of the problem is omitted or so vaguely defined that a
direct comparison of complexity results is not possible.

In this paper we shall consider the complexity of sorting with pointer
machines defined by Schonhage [8] and with random access machines. '4s to
the pointer machines, Schonhage [8] used radix sort [5] for sorting keys with
respect to equality. In fact, his technique can rather easily be extended for
sorting keys of equal length with respect to their k-ary values in linear time, as
well. We shall show that the same holds true for sorting keys of arbitrary
length.

When sorting with random access machines, we restrict ourselves to the
problems having a uniform key length. We shall show that the radix sort [53
will work in linear logarithmic time for "typical" key lengths, but for very long
or very short keys, the time complexity approaches O(n logn). It remains open
whether the linear time is possible in all cases. In fact, we do not need full
arithmetic power of random access machines, only successor and predecessor
operations are needed. A related work for more powerful random access

Received January 1984. Revised April 1985.

6 12 NIARTTI PENTTOKEN AND JYKKI KATAJAINEN

machines under a uniform cost criterion is irkpatrick and Reisch [3].

e shall consider keys that are nonempty strings over the binary alphabet.
The binary values of the keys induce a linear order among them, thus for
Instance 1101 < 10011, because 13 < 19.

We shall use the symbol X as the separator of the keys. The sorting problem is
to compute the function mapping any input string

where the keys w i are binary strings, to the string

where p is a permutation of (0.1,. . ., t - l) such that W,(,, W , , , , ,, (i = 0,
l,. . ., t - 2) in the linear order of binary numbers. The size of the sorting
problem is the length of the input string (or the number of letters 0, 1, li: in it).

Thus, for example, the size of 110 # 10 # 01 # 1001 # # is 16, and when sorted it
becomes 01 tr 10 ti 110 R 1001 R $. One should note that we sort according to the
binary value and not according to the lexicographic order. In the latter case the
result would be 01 # 10 # 1001 110 ##.

3. Sorting in linear time with pointer machines.

In this section we shall show that a pointer machine sorts any problem of size
n in time O(n). Of course, this does not contradict the well-known [l] lower
bound that sorting t keys requires Q(t log t) comparisons of keys.

The definition of the pointer machine was proposed already by Kolmogorov
and Uspenskij [6] and by Knuth [4, Section 2.6.1. A fundamental study was
done by Schonhage [83. Tarjan [g] also has used this kind of machine.

A pointer machine (P M) has an input tape which is scanned by a one-way
read-only head, and an output tape with one-way write-only head. We assume
that input and output alphabets contain only letters 0, 1, and g. The memory of
a PM is a graphlike structure, bearing resemblance with a dynamic record
structure which is available in many programming languages. A memory cell
consists of k pointers labelled with the letters from a pointer alphabet P , where
k is a fixed number, k > 2. There are k letters in the pointer alphabet, and
different pointers of a cell are labelled with different letters. Thus, there is a one-
to-one correspondence between pointers and labels. The memory structure can
be considered as a digraph whose edges are labelled and which has a constant
fan out k.

For the access to the cells of the memory, there is a special centre pointer
which points to a cell called the centre of the memory. All nodes are accessed
via the centre. The computation starts with a centre whose pointers are all

NOTES ON THE COMPLEXITY OF SORTING IN ABSTRACT MACHINES 613

empotent, i.e. they point from the centre to ~tself. If pl, p2,. . ., p, are pointer
labels, we denote by n(p,p,. . .p,) the cell which is accessed from the centre by
following the pointers p,, p,, . . ., p,. Especially, n(e) refers to the centre
Whenever a new cell is created, the pointer ne is set to it, and its own pointers
are set to itself.

A pointer machine has a fixed program which is a sequence of labelled or
unlabelled instructions, separated by semicolons. A label is a letter from a
program label alphabet and it is separated from the following instruction by a
colon. The set of instructions that are available is the following:

instruction
input l,, l , , I

output h
goto 1
halt
create new cell

move centre to n(u)

meaning
causes the next input symbol a E {0,1 # j to be read and the
control transferred to the instruction with the label l,, 1,
or l,, respectively,
outputs the symbol b, b E {O,l, #),
transfers the control to the instruction labelled with 1,
ends the computation,
creates a new cell with idempotent pointers and sets the
pointer new to it,
where u E P* U {new), moves the centre to the cell n(u),

set p from n(u) to n(r) where U, u E P* U {new), sets the p-pointer from n(u) to
n (0 1,

if n(u) = n(v) then I causes the instruction I of previous types to be
executed if the cells n(u) and n(u) are same.

The set of instructions is given in order to state exactly, what are the
elementary steps of the PM. However, for the sake of readability we use if-
then-else, while-do, and repeat-until control structures which can easily be
translated into the basic formalism. Additionally, we assume that a cell can be
labelled by a letter from a memory alphabet. The letter can easily be replaced
by an additional pointer. Indeed, this technique is explained in [8]. We denote
by c(p,p,. . .pj) the letter contained in the cell n(plp,. . .pj). In the following the
pointers not explicitly mentioned are all idempotent, i.e. they point to the cell
itself. We do not even draw idempotent pointers in a figure. The pointer
alphabet is hereafter assumed to be (B, E, K, L, S) .

The time complexity of a P M program is simply the number of instructions
executed.

Fig. l. An Schain.

14 ARTTI PEN'TTONEN AND JYRKI KATAJAINEN

EXAMPLE 3. I . The following small program constructs an S-chuir;
corresponding to a sorting problem. For input 101 # 110 # 100 f B the resulrs is seen
in Figure 1.

re

set E from n (E S) to n (E)
set E from n(e) to n(ES)
c (E) +- input

until c (E) = and c (EE) =
set S from n (E) to n(e)
set E from n(e) t~ n(e).

Fig. 2. Memory structure before length sorting.

Sorting by a PM is done in two stages. During the first stage the key words
W , of the input string W , # W , % . . . # W , - , ## are read and distributed to lists of
words of equal length, when initial zeroes are not counted. Consequently, in the
first stage the keys are sorted on a very coarse level. We shall see that this can
be done in linear time. To complete the sorting, the lists formed during the first
stage are stored, This is done in the second stage in linear time using radix list
sorting [5] . The final output is the concatenation of the sorted sublists.

Our definition of the sorting problem requires that the leading zeros of the
keys must not be omitted while sorting. This requirement causes some minor
inconveniencies in the constructions, as for example 0010, 11, and 010 are to be
considered as having equal length two.

LEMMA 3.1. There is Q P M which sorts the problem W , 8 W , . . . # W , - , # # of
size n in time O (n) into the increasing order of the lengths of W,, when the leading
zeros are not counted,

PROOF. Denote w = W , W , . . . # W - , # # = a,a,. . .a, (ai E {0,1, #)). While
reading the input string, two chains of cells are constructed. The cells in the S-
chain contain the input letters a,, U,, , . ., a, in the origmal order. The other
chain is constructed with L-pointers, and it will be used for measuring the
length of a key. In the L-chain, the S-pointer of a cell is used to collect the keys

NOTES ON THE COMPLEXITY OF SORTING IN ABSTRACT MACHINES 615

of that length. Those S-pointers are initially ide potent meaning that the
corresponding lists are empty. Also two additional pointers
and E (for end) are set from the centre to n (S) ; they will mark the beginning
and the end of the active key. Finally, the pointer K is set from the centre to
n(L) corresponding to the list of keys of the length 1. For input 10 I f 110 # 11 #%,

for example, the configuratiorl is shown in Figure 2.

Fig. 3. Memory structure after length sorting.

Then the keys are distributed according to their lengths using the program

while n (B) + n(e) do
while c (E) = 0 d o (pass leading zeroes)

set E from n(e) to n(ES)
end while
while c (E) # f ; do {measure the length of the keys)

set E from n(e) to n(ES)
set K f r o m n(e) to n (K L)

end while
set S from n(e) to n(ES) {remember the next key if any}
set S from n (E) to n (K S) {insert the key at the beginning.. .)
set S from n (K) to n (B) {. . .of key list of the same length)
set B from n(e) to n (S) (initializations for the next key)
set E fiom n(e) to n (S)
set Kfromr n(e) to n(L)

end while

The principal while-loop is executed as many times there are keys in W . The
first of the two inner while-loops passes the initial zeros of the key. In the second
inner while-loop, the end of the key is recognized. The remaining statements
locate the current key to the beginning of the list corresponding to its length
and initialize the temporary pointers ready for the next key. In the case of our
example, the program yields Figure 3,

A list of keys in the increasing order of lengths can now be output easily, but
in our case it is not useful, because in the next lemma the lists of keys of equal
length are sorted according to their binary values. It is obvious that only linear
time has been used.

6169 MARYTE PENTTONEN AND JYRKE KATASAINEN

A 3.2. A problem w - w o I.. . I W,- 88 of size n, where all keys, wi have
equal number oj'signijicant bits, can be sorted in O(n) time b,y a P

PROOF. Let us assume that the problem w is stored in the memory in an S-
efore sorting cycles, the S-chain must be prepared for sorting. For each

key wi, an E-pointer is set from the first letter of wi to the terminator I of wi.
For all keys, a B-chain is set from the terminator via all bits to the first bit, and
from the first bit to the last bit. A B-pointer is also set from the centre to the
first bit of the first key. In addition, two new cells are created. The cell n(K) will
collect the keys with zero in certain position, and the cell n(L) will collect the
keys with one, respectively. The E-pointers of the cells n(K) and n(L) will
indicate the end of the key lists. Initially the lists are empty and thus those E-
pointers are idempotent. For example, the configuration for 101 # 110 # 100 P is
as shown in Figure 4.

V
Fig. 4. Memory structure before the first distributing cycle.

In the first cycle, keys ending with 0 are joined to the end of K-list, and the
keys ending with 1 to the end of L-list. When all keys have been added to their
respective lists, the K-list and the L-list are concatenated, and the cycle for the
last but one bit begins. and so forth. This is formalized in the following
program :

set E from n(e) to n(e)
repeat

while n(B) # n(e) do {distribute all keys)
if c(BB) = 0 then

set S from n(KE) to n(B) {join key to the end of K-Iist)
set E from n(K) to n(BE)

else
set S from n(LE) to n(B) {as above, for L-list)
set E from n(L) to n(BE)

end if
if n(BB) # n(B) then {take a new bit if not all bits used)

set B from n(B) to n(BBB)
else

set E from n(e) to n(L)
end if

NOTES ON THE COMPLEXITY OF SORTING IN ABSTRACT 617

{concatenate K-list and L-list)

(initializations for the next cycle)

set E from n(L,) t o n(L)
until n(E) # n(e)

Obviously, the inner loop is executed t times, and the outer loop as many times
as there are bits in the shortest of the keys, or equivalently as many times as
there are significant bits in the keys. Consequently, the total time is linear.

Combining the results of Lemmas 3.1 and 3.2 we get

THEOREM 3.1. The general sorting problem W , # . . . # W,- , # # of size n can be
perjiirmed in O(n) time by a pointer machine.

This result, of course, is optimal as far as the constant coefficient of O(n) is
not taken into account.

NOTE 3.1. Also lexicographic sorting in linear time by PMs is possible. In
fact, it is easier than k-ary sorting, since trie sorting [5] is directly applicable to
PMs.

4. Sorting with random access machines.

The random access machine (RAM) has been proposed as an abstract model
of existing computers. Indeed, the random access machine captures essential
features of the machine languages. In order to achieve generality and simplicity,
several idealizations have been done, for example the memory locations of RAN
can contain arbitrarily large numbers.

Our definition of the RAM is not different from those found in the literature
[l, 2,8], but we have to define it more exactly. In our machine, the memory
locations are considered as bit strings rather than integers. The input and
output of bit strings is rather problematic. We decided to use a buffer for that
purpose. Also we do not need full arithmetics, successor and predecessor
operations are sufficient for our purposes.

The random access machine (RAM') is an abstract machine which consists
of a fixed program, an input tape and an output tape containing words over
{0,1, $1, and a sequence BF, AC, O,1,2,. . . of memory locations containing bit
strings of arbitrary length, sometimes interpreted as integers. BF is called the
inputloutput buffer, through which all input and output is passed. AC is called
the accumulator, in which all computation is done. The bit string contained in
the memory location m is denoted with c(m). The program of a RAM is a finite

6PR ARTTI PENTTONEN AND IYRKI KATAJAIWEN

sequence of labelled or unlabelle
and an instruction is one of the following:

reset

halt
jump l

jumpp 2

loadim n
load m
loadid m
store m
storeid m
SUCC

pred

is attached to the end of c
e instruction labell

respectively,
if c(BF) is nonempty, then the first bit is output and removed
from BF, else # is output,
the input head is reset to the beginning of the input tape
for rereading,
the machine halts the computation,
~ u m p to the instruction labelled with l,
if c(AC) > 0 then jump to the instruction labelled with l ,
else to the next instruction,
c(AC) t n, n is an integer,
c(AC) c c(m), m is a memory location,

W C) + c(c(m)),
c(m) c c W) ,
c(c(m)) +- c(AC),
c(AC) c c(AC) + 1,
c(AC) + c(AC) - 1.

At the beginning of the computation all memory locations are assumed to
contain the empty string or zero.

We shall use logarithmic cost as defined for example in [l]. Whenever data
are handled, the size of the contents and the address must be taken into
account. The following small lemma is needed in our main theorem, but it may
also have some interest of its own,

LEMMA 4.1, For any problem W , # W , # . . . W,-, ## of size n, log t and log log t
can be computed in O(n) time.

PROOF. For the counting of the keys, 4 logt -t4 memory Iocations are used,
four locations for each bit of the binary representation of t. At a moment when
d keys have been counted, the locations , 10, 14,, . . contain the bits of the
binary representation of d, in increasing order of significance. The locations
4,8,12,. . . contain 0, except the last one preceding the highest non-zero bit of
logd, which contains 1. The locations 0, 1,2,3 are used for auxiliary
computations, and the locations 5, 7, 9, 11,. . . are used for the computation of
log log t.

The keys are counted as follows. Each time a key is encountered on the input
tape, the key count whose bits are in the locations 6, 10, 14,. . . is increased by 1.
This is done by successively scanning these locations via a pointer stored in

NOTES ON THE COMPLEX~TU OF SORTING IN ABSTRACT 6 13

location 3. If a new bit is needed (when key count d reaches a power of 2) , the
end marker 1 in one of the locations 4, 8, 12,. . . is moved four locations to the
right. Hence, when all keys have been counted. the end marker is at the location
4 logt.

Analogously, the number of zeros in the locations 8, 12,. . . is counted with
locations 7, 11, 15,. . . until the end mar er 1 is encountered. Here too, a 1 in
one of the locations 5, 9, 13,. . . shows the position of the highest non-zero bit.
Now loglogt can be computed into the location Q by counting the zeros in
locations 5, 9, 13,. . . preceding the end marker 1.

Obviously, the first stage is more time consuming than the second one, and
therefore we can restrict ourselves to the analysis of the first case. Of the t
counting steps, t /2 reach only the lowest bit, t /4 reach the second bit, t/8 the
third bit and so forth. Hence, the total cost of these steps is

as is easily seen by using the quotient test. Hence, the scanning of the input
taking O(n) time is decisive in the time complexity.

It follows from theorem 4.1 and a general simulation theorem of Schonhage
[8] that any problem can be sorted in O(n logn) time by a successor random
access machine. Now we begin to look for a better algorithm. We restrict
ourselves to problems with uniform key length.

Our algorithm will use k-ary radix sorting [5]. The crucial idea is to choose
k so large that it balances with the number of keys. Indeed, k = t proves to be a
good choice. This implies that the keys are not handled as bit strings but as
block strings, each block consisting of log t bits. In fact, the proof is rather
similar to the proof of lemma 3.2, but here we need blocking in order to cover
the cost of pointers.

LEMMA 4.2. Let wo & wl X . . . 8 W,- X & be a sorting problem of t , t > 1,
keys of equal length, and let b = [lwil/[log tll. Then there is a successor-
predecessor RAM that sorts the problem in time O(tb log (tb)).

Fig. 5. a) Memory map of the RAM. b) A key in the map.

620 A R ~ T I PENTTONEN AND JYRRI KATAJAINEN

y lemma 4.1, log log t can be computed in
location loglogt, log t can be represented as a bit vector, and by the techniques
of lemma 4.1 log t bits of the input can be counted (down) and loaded into the
input buffer in O(Iog t) time. A certain memory location, say location 0, is used
for pointing where this block is stored. As there are tb blocks, the cost of storing
addresses is log tb. Hence, the configuration corresponding to the memory map
of Figure 5 can be constructed in O(tb log (tb)) time.

In the map, there are d auxiliary pointers and counters. where d is a small
constant. The next memory locations correspond to the buckets of the radix
sort; p, shows the place of the first key whose active key has t-ary value i, if
any. At the beginning, each p, is empty pointer 0. The last t(b+3) memory
locations contain the keys, each divided in b blocks with three auxiliary
pointers. The first of these pointers, say r,, points to the active block of W,,
initially to the last one, i.e. r, = d + t -t (i + l)(b + 3) - 1. The second pointer si
gives the successor of this key at this stage of the sort, originally
si = d + t + (i + 1)(b + 3) for i = 0,. . ., t - 2 and S,-, = 0. The third pointer ei
shows where the S-chain beginning at wi ends, if wi happens to begin an S-chain.

The sorting consists of b distributing stages and b collecting stages which
alternate. During a distributing stage, each key is added to the end (pointed by
the e-pointer) of the S-chain corresponding to its active block (accessed by the r-
pointer). Assume that the active block of W, be j, i.e. the r-pointer of wi has
value c(c(d + t + i(b + 3))) = j. If c(d +j) = 0, then the S-chain corresponding to j
is empty. In this case wi is made the first and only element of the S-chain of j by
the assignments

c(d+j) + d+t+i (b+3) { p j points to wi)
c (d+t+i (b+3)+2) +- d+ t+ i (b+3) {wi becomes the tail of the S-chain)
c (d+t+i (b+3)+1) +- 0 {wi has no successor)
c(d+t+i(b+3)) t c(d+t+i(b+3))-1 {next active block of wi)

Note that although the assignments seem to contain addition and multiplication,
in fact only indirect addressing, successor and predecessor functions are needed.

If p j = c(d+j) > 0, there are already keys in the j-bucket. In this case wi is
joined to the end of the chain as follows.

c (c (e (d+j)+2)+1)+-d+t+i (b+3) { w i is joined to the end of S-chain}
c(c(d+j)+2) + d+t+i (b+3) becomes the end of S-chain}
c(d+t+i(b+3)+1) +- 0 {wi has no successor)
c(d+t+i(b+3)) c c(d+t+i(b+3))-1 (next activ'e block of wi)

The complexity of these assignments is O(1og (tb)). In this way, following the
S-chain of the previous stage, all keys are distributed to the chains coriesponding

NOTES ON THE COMPLEXITY OF SORTING IN ABSTRACT MACHINES 42 1

to their active blocks, and this operation has taken (t log (tb)) time altogether.
hen a distributing stage has been completed. a collecting stage begins.
y nonempty s-chain beginning at p, (i = 0,. . ., t - l) is appended to the new

S-chain in turn, and p-pointers are set to 0. The collection is
pointer to the bucket area and another pointer to the key area.
is empty, it is passed, and control moves to the next p-p
nonempty bucket is encountered, it is appended to the new chain and the key
pointer of the new S-chain is set to the end of this bucket by the e-pointer of the
first member of this bucket. The total cost of handling p-pointers is O(t log t) ,
and the total cost of moving the key pointer is O(t log (tb)). Hence a collecting
stage can be completed in O(t log (tb)) time.

We have proved that both distributing and collecting stages take O(t log (tb))
time each. As there are b blocks in a key, the total time of these stages is
O(tb log (tb)). Outputting, evidently, can be done is O(tb log (tb)) time with the
same technique as inputting. From this lemma we obtain immediately:

THEOREM 4.1. If all keys of the sorting problem W, # W , g.. .# W,-, #% of size n
have the same length k sutifiing log n < k n l - E for some positive constant E,

then the problem can be sorted in linear time by a random access machine.

PROOF. By lemma 4.2 and the first inequality, the problem can be sorted in
time O(tblog(tb)), where b=k l log t . By the second inequality,
log (tb) = log (tkpog t) = O(1og t) . Hence, O(tb log (tb)) = O(tk) = O(n).

If the key length decreases to 1 or grows to n, the time bound of lemma 4.2
approaches O(n log n). In these extremal cases some other algorithms give better
bounds. For very short keys, the trivial algorithm outputting all zeros at the
first reading, all ones at the second reading and so forth, gives a better bound.
As it is well-known [l], mergesort needs O(t log t) comparisons of keys, and one
can see that a successor-predecessor RAM is sufficient for programming it. If
the key length n/t is taken into account, its time complexity with respect to the
length of the input is O(t log t(n/t)) = O(n log t) , which is better than ours for
large key lengths.

We gave a linear time sorting algorithm for pointer machines which, of
course, is optimal. However, in the domain of sorting with other machines there
remain many open problems.

The multitape Turing machine is the traditional model of computation for
complexity studies. Using the polyphase merge method [4] one can show [7]
that a sorting problem of t keys and size n can be solved in O(n log t) time with
a Turing machine having at least three tapes. For two-tape Turing machines
Q(n1og nlogt) is achieved and for one-tape machines O(nt). It would be

622. MAKTTI PENTTONEN AND JVRKi KATMAINEN

now if these time bourn
lexicographic sorting by success

not been able to achieve a goo
according to their k-ary

wn that if the len s at least logarithmic then
ar time. Unfortunately, unlike

does not imply a linear time algorithm even for this case.
Another interesting question is, which assumptions about our

can be weakened. We do not see any easy way to remove the predecessor or
reset instructions or input/output buffer without increasing t h t time bound. The
usefulness of these properties is seen by the following simple test problems. How
fast can a RAM output two copies of an input string without using a buffer or a
reset? How fast can a RAM output the reversal of an input string with or
without the predecessor instruction? These functions can easily be computed in
linear time by Turing machines, but there is no obvious way to compute them
in linear time by RAMS without the abovementioned facilities.

Acknowledgements.

We want to thank Jukka Teuhola for the note 3.1 on trie sorting. We are
grateful to Arnold Schonhage for his criticism on an earlier version of this
paper, and especially for the lemma 4.1.

REFERENCES

1. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algortthms.
Addison-Wesiey, 1974.

2. S. A. Cook and R. A. Reckhow, Tlme bounded random access machines, Journal of Computer
and System Sciences 7 (1973), 354-375.

3. D. Kirkpatrick and S. Reisch, Upper bounds for sorting integers on random access machines.
Theoretical Computer Science 28 (1984), 263-276.

4. D. Knuth, The it of Computer ~ i o ~ m r n m i n ~ , Vol. 1, Fundamental Algorithms, Addison-Wesley
1968.

5. D. Knuth, The Art of Compurcr Programming, Vol. 3, Sorting and Searching. Addison-Wesley,
1975.

6. A. N. Koimogorov and V. A. Uspenskij, K opredelenyu algoritma. Uspehi matematifeskih nauk
XI11 (19581, No 4, 3-28. English translation Amer. ath. Soc. Transi. 29 (1963),
217-245.

7. M. Penttonen and J. Katajainen, Notes on the complexity of sorting in abstract machines. Report
836, Department of Computer Science, University of Turku, 1983.

8. A. SchBnhage, Storage modification machines. SIAM Journal on Computing 9 (1980), 490-508.
9. R. E. Ta jan, A class of algorithms which require nonlinear time to maintain disjoinr sets. Journal

of Computer and System Sciences 18 (1939), 100-127.

