Experiments with a Closest Point Algorithm in Hamming Space

O. Nevalainen, J. Katajainen, University of Turku, Finnland

Key-words: Search trees, multidimensional searching,
best-match searching, data bases.

Abstract: A search tree structure originally intro-
duced by Burkhard and Keller (Some Approaches
to Best-Match File Searching, CACM Vol. 16, p.
230) is studied experimentally. The best-match
searching time depends on the final minimal di-
stance between the search point and the points
in the search tree. Some modifications aiming at
better performance are also proposed. For the pur-
pose of comparison some tests with the well-known
k-d tree are performed.

Stichworte: Suchbdume, mehrdimensionale Suche,
,.best-match-Suche, Datenbanken.

Zusammenfassung: Eine Suchbaumstruktur, die ur-
spriinglich von Burkhard und Keller (Some Appro-
aches to Best-Match File Searching, CACM Bol. 16,
p. 230) stammt, wird experimentell untersucht. Die
,,best-match’-Suchzeit hdngt von der endgiiltigen
Minimaldistanz zwischen dem Suchpunkt und den
Punkten im Suchbaum ab. Es werden auch einige
Abéanderungen, die auf eine Leistungsverbesserung ab-
zielen, vorgeschlagen. Zu Vergleichssprachen wer-
den einige Tests mit dem bekannten k-d-Baum
vorgenommen.

1 Introduction

Let S be a set of n points in a k-dimensional Hamming
space, i.e. the points are k-tuples of the form

X = (X, Xs,..., Xg), Where each component x; belongs
to a finite set C; of say m; different values. Then the
distance of two points x and y in S is defined as the
Hamming distance H(x, y) giving the number of com-
ponents in which x and y differ:

k
H(x,y) = > d(xi,)

i=1

Angewandte Informatik 5/82
0013-5704/82/5 0277-05 $ 02.00/0

where
1,fora#b
d(a,b)=

0,fora=b.

Further, let q=(q;, q2, ---» 9k) be a query point
possibly not in S. The problem is to find a point in S
nearest to q. This is the so-called nearest neighbour,
closest point or best matching point of q.

The Hamming closest point problem is faced in some
data base applications [2], [7]. Here the records corres-
pond to the points of the Hamming space and the
attributes of the records correspond to the components
of the k-dimensional points. Given a query record one
may wish to find a record in the data base closest to
it in Hamming sense. This means that we are searching
for a record with most matching attribute values. An
other possible application of the closes point problem
is met in the compression of formatted data files by
spanning trees [3]. Here a static file is given as a span-
ning tree or a spanning forest where only the differences
form the father nodes (records) are stored. In the con-
struction of a minimal spanning tree we must repeatedly
solve the closes point problem [1], [6] and it is evident
that an efficient data structure supporting the searches
is useful when writing an algorithm for the construction
of a minimal spanning tree with the Hamming distance.
A large number of techniques solving the closest point
problem or some of its many variants habe been devel-
oped and analyzed, for a survey see [5]. A common
feature of these techniques is to try to take advantage
of the geometric configuration of the point set. This
in turn causes that their efficiency is in many cases
dependent on the distance measure in use. Most ana-
lyses are for L,-metrics, which are of the form

Dy (x,y) = [Zlx; — y; IP]/P.

In some cases, like in file searching, the distance of the
objects is measured by Hamming distance which does
not belong to the class of L,-metrics.

In the present paper we make experiments with a
particular data structure solving the closest point pro-
blem stated above. Burkhard and Keller [2] give three
different data structures for the Hamming variation of
the problem. A search tree (or forest) is constructed
in such a way that each node classifies a subset of points

277

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

according to the distance to the root node. Branches
which are too far away from the query point are exclu-
ded when searching for a closest point. If the prepro-
cessing time, i.e. the time needed for constructing the
search tree, is also included in the total processing
time of the closest point application, the techniques
(File structure 2 and 3 of [2]) using a forest are im-
practical. Even the experimental results of Burkhard
and Keller favour the single tree approach (File structure
1) which is the object of interest in the present paper.
We start (Section 2) by introducing a Burkhard-Keller
tree with a new parameter, mac-leaf-size, which serves
as the stopping limit for the recursion in the construc-
tion of the subtrees. By using this parameter we can
control the height of the tree to give a better perfor-
mance. Theoretical analysis of the algorithm seems
to be difficult and therefore only experimental results
on the efficiency of the searching are given (Section 3).
A comparison with the well-known k-d tree searching
[4] is also made.

2 Burkhard-Keller Search Tree

The points of S are stored into the nodes of a k-ary
tree T such that at the root level all nodes in the branch
i are at the distance i form the root x°, i.e. H(x,x%) =1i
for all x in the subtree T(X, i). The same action is
repeated recursively until the size of a subtree is less
than or equal to “max-leaf-size””, which has a prede-
fined fixed value. Such small subtrees are stored as
linearly linked lists and the father node contains a
pointer to the front of the list, see Fig. 1. A procedure
constructing a Burkhard-Keller tree, called hereafter
the BK tree, is given in the appendix.

The running time of the algorithm depends on the
ordering in which the points are given. In the worst
case the construction of the tree demands an 0(n?)
time. One such case is when the tree degenerates to a
linear list. It is easy to see that a B-K tree is listlike for
a special point set S in which all distances are equal,
i.e. H(x, y) is constant for all pairs of points x, yES.
The time for a random set of points is, however, much

o
12 1z 222

1
/| | |
13 121 123/133\213 223 233\333
/| | \ VAN |
131 21 132 212 33231331 232 323
/ /1IN |
3N 312 221 32 322 332
a)
122
123532 133 13=313=231=331
b) 212=312=221=321

Fig. 1 a) A B-K tree of the point set S = {111, 112,113,121, ...,
333}k = 3 “max-leaf-size” =1.

b) Subtree “122” with “max-leaf-size’ = 3.

branch links

———= sequential links

278

smaller. This will be seen from the experiments with
exact match searching (Section 3). Note that we need
the same number of distance calculation while searching
all the nodes in the tree and while constructing it.

The search for a best matching point of a query point q
is made by first letting the initial quess of the minimal
distance be £ = H(x?, q). The search then proceeds in
the branch £ and the minimal distance is possibly im-
proved in that branch. If a step downwards is no more
possible a different branch at a greater distance from
branch £ is selected and the search continues there.
That all nodes of the tree need possibly not be visited,
follows from the so-called joint cutoff criterion [2]
which is applied in the selection of the branches:

“If x° is the root of some subtree, then it is unneces-
sary to visit the branch t for which | t-H(q, x°)1> £.”

The above condition may easily be derived from the
triangle inequality. A procedure for searching the
best matching point is given in the appendix.

3 Experiments

3.1 Burkhard-Keller tree

If one wants to apply the above file structure in a
practical situation the following questions shoud be
answered:

1) What is the expected percentage of the points in the
search tree one has to visit while making a closest
point search?

2) How should one select the value of the parameter
“max-leaf-size” such that the searching time is
minimal?

Table 1 The percentage R of the distance calculations as a function
of m, the number of different values in a component

£, the minimal distance

k, the number of dimensionality (k = 10).

¢ m m=2 m=4 m=6 m=20
0 0.9 0.5 0.5 0.7
1 2.9 7.5 7.9 7.7
2 7.1 18.8 25.1 51.1
3 13.3 44.0 59.6 90.6
4 21.8 69.1 85.3 98.4
5 333 84.1 95.7 100.0
6 49.3 93.1 99.1 100.0
7 65.2 97.7 100.0 100.0
8 81.1 99.5 100.0 100.0
9 99.7 99.9 100.0 100.0

10 100.0 100.0 100.0 100.0

A number of artificial point sets were generated with a
pseudorandom generator. In each component the
values were integers from the interval [1 : m]. Percentage
R of the points visited is shown in Table 1*) for several

*) A DEC-10 computer with a KA10-processor was used in all
tests. The programming language was FORTRAN-IV.

Al 5/82

Table 2 a) B-K tree
The observed running time [sec])
as a function of “max-leaf-size” max-leaf-size £
for different m and # values; 0 1 2 3 4 5 6 7 8 9 10
n=1000;k = 10. m=4 110.005 0.12 0.29 0.76 1.23 154 1.70 1.72 1.80 1.75 1.75
9 10.005 0.06 0.15 0.34 0.52 0.64 0.69 0.72 0.73 0.73 0.72
110.006 0.13 042 1.02 154 164 180 1.80 1.77
51 0.005 0.07 0.25 0.58 0.82 0.92 0.95 0.94 0.95
m=6 9 10.006 006 0.19 043 0.58 0.68 0.70 0.72 0.71 0.71
20 | 0.009 0.06 0.21 0.42 056 0.61 0.62 0.63
50 | 0.015 0.04 0.25 0.51 0.60 0.64 0.73 0.65 0.64 0.62 0.58
100 | 0.027 0.07 0.30 0.49 0.52 0.58 0.60 0.57 0.57 0.60 0.59
-3 110.006 0.10 043 1.09 149 1.65 1.70 1.71 1.80 1.80 1.70
9 1 0.006 0.04 0.22 046 0.61 0.67 0.69 0.70 0.69 0.70 0.70
m=10 1| 0.007 0.13 0.54 1.28 1.67 1.73 1.77 1.73 1.69 1.71 1.80
91 0.006 0.06 0.28 0.59 0.68 0.82 0.81 0.84 0.79 0.78 0.80
b) k-d tree
max-leaf-size £
0 1 2 3 4 5 6 7 8 9
m=4 1] 0.15 0.14 0.29 0.41 0.64 0.83 1.03 1.14 1.19 1.20
16 | 0.05 0.05 0.13 0.22 0.33 0.36 0.38 0.39 0.40 0.40
1 0.09 0.12 0.18 0.42 0.59 0.79 1.02 1.14 1.19 1.21
2 | 0.06 0.16 0.15 0.29 043 059 0.74 0.77 0.83 0.84
4| 0.05 0.06 0.10 0.23 0.33 0.42 0.51 0.53 0.55 0.55
=6 81 0.06 0.05 0.15 0.18 0.30 040 0.43 0.46 0.45 0.45
16 | 0.02 0.05 0.14 0.20 0.31 0.37 0.40 0.40 0.40 0.40
32| 0.04 0.06 0.13 0.25 0.32 0.37 0.37 040 0.39 0.39
m=8 11 0.13 0.14 0.17 0.39 0.54 0.80 0.99 1.12 1.20 1.21
16 | 0.02 0.06 0.12 0.20 0.30 0.35 0.37 0.38 0.39 0.38
m=10 1 0.08 0.09 0.19 0.36 054 0.76 0.98 1.13 1.19 1.20
16 | 0.03 0.04 0.10 0.19 0.28 0.36 0.37 0.38 0.39 0.39

k, m, £ combinations. The query points were generated
from random points of the tree by changing the wanted
number (§) of components in a point outside the range
[1:m]. These components were selected randomly,
too. To find the minimal number of distance calcula-
tions we used in the tests the parameter value “max-
leaf-size” = 1. Further the size of the point set was

n = 1000 and for each (¢, m)-combination the searching
was repeated one hundred times. We observe that the
number of distance calculations is very low for exact
match queries (for £ =0, R <1 %). When § increases
the percentage strongly approaches 100 %.

In Table 2 we have the observed running time of the
best match searching for some combinations of “max-
leaf-size”, m and &. The values in the table are means
of 10,000 random search repetitions for § = 0 and
means of 100 repetitions for § = 1. (Note that actually
one should for £ = 0 search once all the points in the
search tree.) The modest number of repetitions for
£ 2> 1 causes a large variation in the observed running
time. In addition the time measuring instrument of
DEC-10 computer is rather inaccurate. From the re-
sults it is evident that for m = 6 the optimal “max-
leaf-size” is ca. 5—9 for the case of exact match sear-
ches. For £-values greater than or equal to one a larger
“max-leaf-size” gives still better results. A value of

Al 5/82

“max-leaf-size”

chosen from the interval [5 : 20] is

reasonable. This result looks natural if we remember
from Table 1 that R reaches 100 % quite rapidly and
then a linear list works best.

3.2 kd tree

A further data structure for multidimensional sear-
ching is the k-d tree [4]. In it each internal node divi-
des a hypercube of the coordinate space into two
parts according to a discriminator value in a chosen
coordinate direction. The discriminating value in each
internal node is selected as the median value in the
range of the chosen discriminator coordinate. Then all
points with a coordinate value less than the discrimi-
nator value belong to the left subtree of the internal
node and all points with a coordinate value greater
than the value to the right subtree. The partitioning
process is recursively repeated in the left and the right
subtree until less than or equal to “max-leaf-size”
points exist in the leaf hypercubes, Fig. 3.

When we are searching for the nearest neighbour of a
query point we first recursively search for it in the
subtree where the query point lies. When the searching
in a subtree is finished we return to the root of the
subtree and go to the other subtree if the hypercube

279

running
time
[sec] oo —— —2 B-Ky
o
/
15 °
/o___o k-dy
(e}
10 -~
O/
oo o——o 3-Kg
o
05 | /
o
O/
Z
O

0 1 2 3 [5 6 7 8 9 £

Fig. 2 The observed running time per one search operation for best

match searches, a detail from Table 2;m=6, k=10, n=1000.

B-K;: Burkhard-Keller tree, ‘“max-leaf-size”=1
B-Kg: Burkhard-Keller tree, “max-leaf-size”=9
k-dy: k-d tree, “max-leaf-size”=1

k-djg: k-d tree, “max-reaf-size”=16

.- simple scanning

determined by it can contain points which possibly
have more matching coordinates than the current
nearest neighbour. As a matter of fact we must repeat
the procedure for the whole k-d tree.

There are some possibilities to optimize a k-d tree
[4]. First, in each hypercube the discriminator is se-
lected from the coordinate in which the range of the
values is largest. Second, “max-leaf-size” can be selected
optimally. Because of implementation details we can use
as the number of points and “max-leafsize” only values
which are powers of two. In our tests the value 16 gave
the best running time. Note that for a Euclidean case, 8
was the optimal value for “max-leaf-size” [6].

As a result of test runs Table 2b shows the running time
as a function of “max-leaf-size” and the final distance
&. The test situation was the same as for B-K trees.

3.3 Comparison of the results

When comparing the B-K tree and k-d tree (Tables 2a
and b), we observe that a k-d tree is superior in the

discriminafor coordinate
discriminator value

Search
Time
[sec]

Naive

0,5 k-d (&)

B-K(2)

k-d(2)
J—
/

01

_ — —— k-d(0)

B-K(0)
64 1024 2048 N

Fig. 4 Search time as a function of the number of points (n); m=6;
k=10.

B-K (¢): Burkhard-Keller tree, ‘““max-leaf-size’’=9;
k-d (£): k-d tree, “‘max-leaf-size”’=16;

NAIVE: trivial method.

case studied. (Form =6, £ = 8, a B-K tree needs twice
the time needed by k-d tree.) See also Fig. 4 for a
graphical presentation of the results. The graphs of
the running time look quite similar. It should be noted
that the implementation of the k-d tree is more sophisti-
cated: internal nodes of the k-d tree are stored as a heap
whereas in the B-K tree a twoway linking is applied.
Further the linking is avoided also in the leaves of the
k-d tree;

Finally in Fig. 4 we show the observed average search
time for a B-K tree and a k-d tree. For exact match
queries the B-K tree works very well whereas for partial
match queries the graphs indicate a rather weak running
time. The same figure also shows the running time of a
naive algorithm scanning all points. It is interesting
to note that in this particular case for example for

£ = 4 the size of the point set must be at least 1000
that for a long run of closest point searches the k-d

tree is profitable as to the running time. For a k-d
tree the graph runs below that of naive solution, when
n=64and £ = 2.

Fig. 3 A k-d tree for the point set {000, 001,002, 100, 200, 222,
102,201, 111,110, 220, 020, 121,021, 101, 0103}. The steps when
searching for the closest point of the point 122 are shown inside
circles beside the lines. After step @ £=2 and after @ £=1. The
nearest neighbour found is point 102.

280 Al 5/82

4 Concluding Remarks

A new cutoff criterion in the construction of a multi-
dimensional search tree by Burkhard and Keller [2]
was introduced. This parameter aims at better perfor-
mance by the well-known technique of using bucket-
like leaf nodes in a tree. Experiments with random
point sets indicate that the optimal leaf size depends on
the final distance in the closest point queries. For in-
creased final minimal distance a greater leaf size works
better.

The advantage gained by the use of B-K trees is lost
when the final minimal distance grows. This is due to
the nature of Hamming distance which gives only
little information from distance comparisons. For
exact match queries the structure is very fast. By opti-
mizing the storage structure of the tree it would surely
be possible to decrease the time taken by a B-K tree.
Further one can perhaps develop a reasonable technique
to optimize the selection of root nodes when con-
structing the tree. An interesting open question is also
the updating of the search tree.

Experiments with k-d trees show the power of the
structure also in Hamming case. Like B-K trees, the
method is sensitive to the final minimal distance but
in comparison to the naive solution it gives an improved
processing time also for rather large minimal distance.

APPENDIX PROGRAMS FOR A B-K TREE

SUEROQUTINE BUILD(KEY,LINK,ISON,N,K,LSIZE)

THIS SUBROUTINE CONSTRUCTS A BURKKARD-KELLFR TREF OF A SET OF N
K-DIMENSIONAL POINTS (KEY(J,I),J=1,K I=1,N. THF MAXIMAL LFAF SIZR
IS GIVEN BY PARAMETER LSIZE. AT THF TERMINATION OF THF SURROUTINE
THE ROOT OF THE TREF IS THE FIRST POINT (I=1) AND THF RRANCHES OF
THE TREE ARE GIVEN BY (ISON(J,I),J=0,K) FOR THF NODF I (I=1,N). IN
LEAF NODES LINK(I) CONNECTS THE POINTS OF THF LFAF, IN INTFRNAL
NODES LINK(I)=0.

THF SUBROUTINE USES A VECTOR ISTACK(5) TO STORE THE ADDRESSES
OF THE SUBTREES FOR WHICH THE CONSTRUCTION IS NOT COMPLETED.

DIMENSION KEY(10,1),LINK(1),ISON(0:10,1)
DIMENSION ISTACK(500),NS(0:10),10(10)
C THE POINTS INITIALLY FORM A LINEARLY LINKED LIST AND STACK
C CONTAINS THE ADDRESS OF THE LIST.
DO 2 I=1,N
DO 3 J=0,K
ISON(J,1)=0
LINK(I)=I+1
LINK(N)=0
IND=1;ISTACK(IND)=1
C THE MAIN LOOP, TERMINATE WHEN ALL SUBTREES HAVE REEN PROCESSED.

caooacacaaan

(SR

4 IF(IND.EQ.O) RETURN
IADR=ISTACK(IND); IND=IND-1; NEXT=LINK(IADR)
DO 6 J=0,K

6 NS(J)=0
C STORE THF POINT INTO THE SURTREE GIVEN BY THE DISTANCE FROM
C THE ROOT (IADR).
7 IF(NEXT.EQ.O0) GO TO 13
DO 12 I=1,K
12 1Q(I)=KEY(I,NEXT)
J=ID(IQ,KEY,K,IADR); IA=LINK(NEXT)
IF(NS(J).NE.O) GO TO 10
ISON(J,IADR)=NEXT; LINK(NEXT)=0; GO TO 11
[¢} LINK(NEXT)=ISON(J,IADR); ISON(J,IADR)=NFXT
1 NS(J)=NS(J)+1
GET THE NEXT POINT.

NEXT=TIA
GO TO 7
C PUT INTO THE STACK THE BRANCHES TO BE PROCESSED.
13 LINK(IADR)=0
DO 8 J=0,K

IF(NS(J).LE.LSIZE) GC T0 8

IND=IND+1; ISTACK(IND)=ISON(J,IADR)
8 CONTINUE

GO TO 4

END

SUBROUTINE SEARCH(KEY,LINK,ISON,K,IG,KSI,IMIN,ITOT)

THIS SUBROUTINE SFARCHES FOR A POINT (IQ(J),J=1,K) THE CLCSFST
POINT IN THE BURKHARD-KELLFR TREE ((KEY(J,I),J=1,K),(LINK(I),
(IsoN(J,1),J=1,K)),I=1,N). THE MINIMAL DISTANCE IS STORFD IN
KSI AND THF CLOSEST POINT IS (KEY(J,IMIN),J=1,K). THF VARIAPRLF
ITOT GIVES THE TOTAL NUMBER OF DISTANCE CALCULATIONS.

THE PATH FROM THE ROOT TO THE CURRENT NODF OF THE TREE IS
STORED IN A STACK (IOPJ(I),IPNY(T),IPDFL(I),I=1,IND), GIVING THF
POINTER TO A NODE, THE DISTANCE OF THF QUERY POINT FROM THF NODE

aocnoocacaaaan

Al 5/82

AND THE CURRENT DELTA-VALUF.
DIMENSION KEY(10,1),LINK(1),ISON(0:10,1)
DIMENSION I0(10),IPJ(1000),IPNY(1000),IPDEL(1000)
INITIALIZATIONS
IROOT=1; ICURR=IR0OT; KSI=K+1; IMIN=0; IND=0; ITOT=0
KMUST WE FOLLOW THE LINK?
NEXT=LINK(ICURR)
IF(NEXT.EQ.0) 36,35
STEP DOWN TO THE SON.
J=ID(I1Q,KEY,K,ICURR); ITOT=ITOT+1
IF(KSI.CT.J) 42,43
KSI=J; IMIN=ICURR
IDELTA=0; KP=J+IDELTA; GO TO 41
FOLLOW THE LINK
NEXT=ICURR
J=ID(IQ,KEY,K,NEXT); ITOT=ITOT+1
IF(KSI.GT.J) 44,45
KSI=J; IMIN=NEXT
NEXT=LINK(NEXT)
IF(NEXT.NF.0) 46,37
STEP TOWARDS THE ROOT.
IF(IND.EQ.O) RETURN
IDELTA=IPDEL(IND); J=IPJ(IND); ICURR=IPNY(IND); IND=IND-1
IDELTA=-IDELTA
IF(IDELTA.GE.O) IDELTA=IDELTA+1
IF(ABS(IDFLTA).GT.X) 37,38
ARE THERE ANY BRANCHES LEFT?
KB=J+IDELTA
IF((KB.GT.K).OR.(KR.LT.0)) GO TO 40
DOWN THE BRANCH.

41 NEXT=ISON(KE, ICURR)
IF(NEXT.EQ.0) 40,39

C IS THE BRANCH TOO FAR AWAY?

39 IF(ABS(KB-J).GE.KSI) GO TO 37

C THE SON IS REALLY WISITED, STORE THE CURRENT NODF.

IND=IND+1; IPNY(IND)=ICURR; IPJ(IND)=J; IPDEL(IND)=IDFLTA
ICURR=NEXT; GO TO 24
END
FUNCTION ID(IQ,KEY,K,IADR)
C THIS FUNCTION DETERMINES THE HAMMING DISTANCF OF THF POINT
¢ (1Q(J),J=1,K) AND (KEY(J,IADR),J=1,K).
DIMENSION IQ(10),KFY(10,1)
ID=0
DO 1 J=1,K
IF(IQ(J).NE.KEY(J,IADR)) ID=ID+1
1 CONTINUF
END

C THE MAIN PROGRAM.

DIMENSION KEY(10,1024),LINK(1024),IS0N(0:10,1024),10(10)

C THE MAXIMAL LEAF SIZE

LSIZE=10
C A RANDOM POINT SET. THF COMPONENTS ARE FROM THE RANGF 1 TO L
N=100; K=10; L=6
DO 1t I=1,N
DO 2 J=1,K

2 KEY(J,I)=1+L*RAN(Z)

1 TYPE *,I,(KEY(J,I),J=1,K)

C CONSTRUCTION OF A BURKHARD-KELLER TREE

CALL BUILD(KEY,LINK,ISON,N,K,LSIZE)
100 CONTINUE
C A QUERY POINT
DO 3 J=1,K
3 1Q(J)=1+L¥RAN(Z)
TYPE *,(10(J),J=1,K)
C SEARCHING
CALL SEARCH(KRY,LINK,ISON,K,I0,KSI,IMIN,ITCT)
TYPE *,KSI,IMIN,ITOT,(KEY(J,IMIN),J=1,K)
GO TO 100
END

References

[1] J. L. Bentley, J. H. Friedman: Fast Algorithms for Con-
structing Minimal Spanning Trees in Coordinate Spaces.
IEEE Trans. on Computer C-27. 2 (1978)

[2] W. A. Burkhard, R. M. Keller: Some Approaches to Best-
Match File Searching. Comm. ACM 16,4 (1973)

[31 J. Ernvall, O. Nevalainen: Compact Storage Schemes for
Formatted Files by Spanning Trees. BIT 19, 4 (1979)

[41 J. H. Friedman, J. L. Bentley, R. A. Finkel: An Algorithm
for Finding Best Matches in Logarithmic Expected Time.
ACM Trans. Math. Software 3,3 (1977)

[51 H. Maurer, Th. Ottmann: Manipulating sets of points — a
survey. In: Graphen, Algorithmen, Datenstrukturen:
Workshop 78. Hanser, Miinchen, Wien (1978)

[6]1 O. Nevalainen, J. Ernvall, J. Katajainen: Finding Minimal
Spanning Trees in a Euclidean Space. BIT 21, 1 (1981)

[71 G. Wiederhold: “Database Design”. McGraw-Hill Book

Company, NY (1977)

Zweiteingang am 20.8.1981

281

