BIT 21 (1981). 46-54

FINDING MINIMAL SPANNING TREES
IN A EUCLIDEAN COORDINATE SPACE

O. NEVALAINEN, J. ERNVALL and J. KATAJAINEN

Abstract.

The minimal spanning tree problem of a point set in a k-dimensional Euclidean space is
considered and a new version of the multifragment MST-algorithm of Bentley and
Friedman is given. The minimal spanning tree is found by repeatedly joining the minimal
subtree with the closest subtree. A k-d tree is used for choosing the connecting edges.
Computation time of the algorithm depends on the configuration of the point set: for
normally distributed random points the algorithm is very fast. Two extreme cases
demanding O(nlogn) and O(n?) operations, n being the cardinality of the point set, are also
given.

Key-words: Minimal spanning trees. Euclidean distance. Graph theory. Closest point
problem, Multidimensional search trees, k-d tree.

1. Introduction

In this paper we consider the following special minimal spanning tree (MST)
problem.

“Given a set of n points in a k-dimensional Euclidean space, connect the points
with n— 1 straight line segments in such a way that the resulting graph is connected
and the sum of the lengths of the straight line segments, called edges, is minimal.”

One way to solve this problem is to use one of the various algorithms
determining the MST of a connected undirected graph. In the case of a point set,
the graph is complete, containing e=n(n—1)/2 edges and the cost of an edge is the
distance between the end points. One such algorithm is that of R. C. Prim. [13] and
E. W. Dijkstra [8] working in O(n?) time (abbreviated hereafter as PDA). For a
graph with e=Q(n' **), ¢ being some fixed number, D. B. Johnson [10] gives an
O(e) version of Prim’s algorithm. Here priority queues with update are used. J. K.
Kruskal’s greedy algorithm [11] uses a single priority queue for the selection of
minimal edges and works in O(elogn) time. The edges are partitioned into subsets
according to the increasing cost in A. C. Yao’s O(eloglogn) algorithm [16] and
delayed merging of the cost priority queues is used in the O(eloglogn) algorithm
of P. Cheriton and R. E. Tarjan [5]. See also [1, p. 154 and p- 218] for two
algorithms working in O(eloge) and O(e) time.

Received June 4, 1980. Revised January 12, 1981.

FINDING MINIMAL SPANNING TREES IN A EUCLIDEAN COORDINATE SPACE 47

Despite its simplicity, PDA is for a complete graph the most effective of the
algorithms above: it works in O(n?) time also in this case, whereas for example
Yao’s algorithm demands O(n*loglogn) time.

If the points are in the plane (k=2) one can apply the Voronoi-diagrams in the
writing of an O(nlogn) MST-algorithm, as shown by M. I. Shamos and D. Hoey
[14]. It has also been shown that Q(nlogn) is the lower limit for the time
complexity when k =2 [4]. Note that Q(eloglogn) is the corresponding limit for a
general graph. For k=2 A. K. Dewdney [7] outlines the design of an MST-
algorithm using the Voronoi-diagrams.

J. L. Bentley and J. H. Friedman [3] give two fast MST-algorithms for the
Euclidean MST-problem. For normally distributed random points the observed
average running time is proportional to rlogn for these methods. We take a
closer look at the second of the MST-algorithms, called a multifragment
algorithm by Bentley and Friedman (BFMA). The technique in the algorithm is
first to form n single point subtrees, called point fragments. From these we then
pick one located in the lowest density area of the points. Then we may connect it
to the nearest fragment with a minimal length edge. After this we continue by
increasing the merged bigger fragment. The edges are determined by a
multidimensional search tree, the k-d tree [2]. This structure partitions the point
set into disjoint subsets of nearly the same size according to discriminator values
in different dimensions and after O (knlog n) preprocessing it supports the searching
for the closest point of an arbitrary point in expected O(nlogn) time. Thus
normally we can omit a great number of distance calculations.

Further to facilitate the choosing of the minimal edge a priority queue [1], that
stores for each fragment point the distance to the nearest neighbour, is
maintained. Because points are added to the fragment, some of the minimal
distances (priorities) become unreal in the course of the process, i.e. the nearest
neighbour of a point is no longer outside the fragment. Thus when searching in
the priority queue for the shortest edge we must disregard the unreal priorities,
recalculate them by means of the k-d tree and reinsert them into the queue as real
priorities.

The increasing of a particular fragment is continued until either n—1 edges
have been found or the inclusion of a new edge demands more than ¢, (a fixed
parameter) unreal priorities to be deleted from the distance priority queue. In the
first case the MST is completed. In the second case if single point fragments exist
a new one in a low density area is again selected and the same proceés continues.
Finally the fragments are joined with minimal edges in increasing order of the
number of points in the fragments.

In the present paper we introduce a new variant of the BFM A described above.
The difference lies in the construction of the fragments: here the minimal size
selection rule of Cheriton and Tarjan [5] is used. Now each fragment initially
consists of a single point. After this at each step the fragment of minimal size is
joined with the closest fragment. The process continues until there is only one

48 O. NEVALAINEN, J. ERNVALL AND J. KATAJAINEN

fragment left, which is in fact the required MST. The proof that the resulting tree
is really an MST is given by N. Christofides [6, p. 135]. In comparison to BFM A
our algorithm (NEKM A) thus contains only one way of processing. The limit t,, is
dropped out. Further we no longer need the density estimates of the space. On the
other hand, the selection of the fragment to which a new edge is added now
requires somewhat more labour.

A comparison with previous algorithms indicates that our algorithm works
quite well (Section 2). However, as for BFM A [3] we can find some special cases
where the performance of NEKMA is either very weak or good (Section 3). A
detailed version of the algorithm is given in the Appendix.

The present paper is a shortened version of two working reports by the authors

[9], [12].

2. Computation time

Recall that in BFM A a new fragment is always started in a low density region
of the coordinate space. The aim of this is a decreased number of distance
calculations and priority queue operations. Experiments [3] with spherically
symmetric normally distributed random points have given favourable results. In
our algorithm the hill-climbing feature is not explicitly included and we can
therefore expect weaker results for hill-like distributions.

To get an idea about the computation time of our algorithm we used the
normal distribution to generate a number of point sets of different/sizes (n ranging
from 64 to 1024) and varying dimensionalities (k ranging from 2 to 7). Each time
the MST-problem was solved 15 times for different random numbers.

Fig. 1 shows the total running time of NEKM A and PDA for k=2 and 5. Both
algorithms were written in FORTRAN and run on a DEC-10 computer with a
KA10-processor. The optimizing facility was not used in the compiling. It was
observed that except for very small n-values our algorithm has a much shorter
running time than the Prim-Dijkstra algorithm.

For k<4 the observed running time increases slower than n (logn)>. For higher
dimensionalities the growth in the running time is still faster. The growth,
however, smoothens for large n-values so that it seems probable that at least for
k<6 the asymptotic increase is not faster than n(logn)®. The situation is not
clear for k=7 because of the relatively small upper limit of n.

By using the distance priority queue and the minimal size selection rule it was
our intention to decrease the number of closest point searches. If the distance
priority queue were not used we might need at most (log,n)/2 closest point
searches per node [9]. However, in a case of normally distributed random points
the algorithm makes only about 7=2.0 and 1.5 times n closest point searaches for
k=2 and 5, respectively.

FINDING MINIMAL SPANNING TREES IN A EUCLIDEAN COORDINATE SPACE

———-—— PDA, 5 dimensions
——— ———— PDA, 2 dimensions
i

200 + —— v —— NEKMA, 5 dimensions /

——O —— NEKMA, 2 dimensions
/

Running time [ms]

100 1

/

//7

o Dt

1
T

o

I 1

64 128 256 512
Number of nodes (n)

Figure 1. The observed running time as a function of n (the number of nodes in the graph).

PDA: Prim-Dijkstra nearest neighbour algorithm [15],
NEKMA: Multifragment algorithm of this paper.

49

Table 1. Crossover points of the observed running time curves for different

dimensions (k).

k PDA vs. NEKMA PDA vs. BEMA
2 95 250
3 160 260
4 260 340
5 400 445
6 700 645
7 >1024 920

BIT 21 — 4

50 O. NEVALAINEN, J. ERNVALL AND J. KATAJAINEN

As a result of simulation experiments, we list in Table | for k=2,3, ..., 7 those
n-values for which the curve of the running time of NEKMA crosses the
corresponding curve of PDA. For larger n-values the time taken by the Prim-
Dijkstra algorithm is longer than that of our algorithm. (The given n-values for
NEKMA are only approximate and they depend on the details of the
implementation. Only graph sizes n=2°27,...,2!° were used. For n-values
between these an estimate of the form cn® was used for determining the running
time of PDA and a linear approximation was used for NEKM A.) The table also
shows the corresponding crossover points for BEM A4 as taken from [3]. For small
dimension numbers our algorithm seems to give favourable crossover points.
However, it is not safe to draw very firm conclusions about the relative efficiency
of the two multifragment algorithms: we do not know the quality of the program
used in the experiments of [3], and the behaviour of our algorithm was not tested
for larger n-values.

We distinguish four main operations in our MST-algorithm:

1. Construction of the optimized k-d tree.

2. Selection of a fragment of minimal size and updating of the priority queue of
fragment sizes. :

3. Determining the n—1 edges by which the fragments will be connected.

4. Merging the fragments. .

Operations 1, 2 and 4 can be done in O(nlogn) time [9]. It is hard to give an
exact formula for the execution time of operation 3. The time is of the form

n—1 n—1

H=cy) (r+Dlogm+ Y rT,n).
i=1 i=1

Here subscript i stands for the selection of the ith edge, ¢ is a constant, r, the
number of closest point searches when selecting the edge, n, the size of the smallest
fragment, and T,(x) the time of a closest point search for a point of a fragment
with x points.

It is risky to draw any further general conclusions concerning the time
complexity of the algorithm. The following notes, however, clarify the significance
of the parameters.

a) Because r;<n;, we have X r;logn,<(n/2)(logn*. Let #=Yr/(n—1). Then
> r;logn; < (n—1)Flogn. Thus if 7 is small perhaps the first term of H does
not dominate the running time of the algorithm.

b) If T,(1) is a good approximation for T,(n,), the expected value of the second
term of H is proportional to-(n—1)7logn. Then for a small 7-value we can
expect a good running time also when n is large.

3. Some special point sets

We next construct a point set for which the number of distance calculations is
very unfavourable. For simplicity we suppose that the points lie on a straight line

FINDING MINIMAL SPANNING TREES IN A EUCLIDEAN COORDINATE SPACE 51

and n is a power of two, say n=2° (s=1).

The method is to form two clusters of equal size (r/2) far from each other so
that the algorithm first forms two separate big fragments and finally connects
them. This is the case if the distance between the point clusters is so large that at
the final step, when selecting the last edge, a new closest point must be searched
for each point of the minimal fragment. Then, if we look back at the two big
clusters, we recursively let both of them consist of two clusters of equal size (n/4)
etc. Finally on the very first level we have n/2 clusters, each consisting of two
points. Again the distance between the points forming a cluster is smaller than the
distance between two clusters. The numbering of the points and the distances
between the clusters on different levels can then be selected in such a way that at
each time one has to calculate a closest point for each point in the minimal
fragment. Then clearly the number of closest point searches is

S = n2+2n/4+4n/8+ ... +25" 25 = (n/2)logn .

On the other hand, by analysing the search operation in the k-d tree we can
count the total number of nodes visited in the search tree (see [12])

3
S = 2n2+74}~152—£—r:s = 0(n?).

Second we consider a point set with decreasing density of points, as shown in
Fig. 2. For this set d(P, P,) <d(P;,{,P;.5),i=1,2,...,n—2, holds. Now the
number of closest point searches is n— 1, which is minimal.

B ok o—o

0
0
o

Figure 2. A point set with decreasing density. The points are indexed from left to right in the order
PP,P,

We suppose that the point with an even index is selected for the median when
constructing the k-d tree. Then by studying the corresponding k-d tree (Fig. 3) we
can calculate the total number of nodes that must be visited in the tree

s—1
S = (s+4Hmn—-1)+ Y n27'3(+1)—1)—5 = O(nlogn) .
i=1
Here the first term in the sum originates from the effort to reach the actual
point, to visit the neighbouring point in the three-point subtree and to return to

the root of the three-point subtree. The remaining terms of S’ result from visiting
the other longer branch.

52 O. NEVALAINEN, J. ERNVALL AND J. KATAJAINEN

If an odd index is selected for the median when constructing the k—d tree, a
somewhat smaller value of S’ is obtained. S’ is nevertheless O(nlogn).

If the order of the points is reversed, i.e. d(P;, P;) >d(P;,, P;1,), fori=1, 2,

.., n—2, the situation changes only a little and the number of closest point
searches is low (now n). Note that the algorithm is sensitive to the order of the
points. We can re-number the points in Fig. 2 in such a way that O(n?) leaf nodes
are to be visited in the k—d tree.

3 4 5 6 7 8 9 10 11 12 13 14 15 16

NUMBER NODES
OF NODES VISITED

X X X X X X X n/2—1 (s+4)+5
X X X X n/ZZ (S+4)+8
X X ' n/23 (s+4)+11

Figure 3. Counting the number of node visits in the k—d tree for a point set with decreasing density.
The path of the search process is shown for Py (heavy lines).

4. Conclusions

A different version of the multifragment MST-algorithm of Bentley and
Friedman was given. The running time of the algorithm is mainly determined by
the number of closest point searches when searching for a new edge and by the
effort of searching for the (uvth) closest point.

Experiments with normally distributed random poinis “indicate that the
algorithm omits many distance calculations and has a low running time. The
observed number of closest point searches for k=2 was only about 2n.

In the worst case O(nlogn) closest point searches are made in the algorithm.
Then the number of node visits in the k—d tree is O(n?). We do not claim,
however, that this is the maximum number of node visits.

The multifragment algorithm using the minimal size selection rule works very
efficiently if the points happen to form a special pattern in the Euclidean space:
for a point set of decreasing density the number of node visits in the k—d tree is
O(nlogn).

FINDING MINIMAL SPANNING TREES IN A EUCLIDEAN COORDINATE SPACE 53

APPENDIX

The following algorithm determines a minimal spanning tree for a point set in a
k-dimensional Euclidean space. The technique is to start with n single point
fragments and repeat n—1 times a construction step where a fragment of
minimum size is selected and joined with a minimal edge to the nearest fragment.

Data structures:

— A k—d tree of the points is used to aid the calculation of minimal distances.

— A priority queue of the fragment sizes helps in the selection of the fragments; an
indexed linked list here works effectively, [5].

— A priority queue of minimal distances to non-fragment points is maintained for
each fragment. Hereafter these are called fragment queues. Because fragment
queues must be merged, 2-3 trees are used in the implementation.

Multifragment algorithm (NEKMA):

1. Construct an optimized k —d tree for the point set.

2. Form n single point fragments and the corresponding fragment queues.
(Initially each fragment consists of a single point with no edges and each
fragment queue consists of a single notation giving the distance between the
point and its nearest neighbour along with the indexes of both points. To avoid
unnecessary distance calculations we initially let the nearest neighbour of each
point be the point itself and thus get the unreal priorities equal to zero.)

3. Form a priority queue of the fragment sizes. (Initially n notations with priority
L)

4. Loop until the number of fragments is one. (Then the MST is ready.)
do select by using the priority queue of the fragment sizes a fragment with
minimal size;
loop until the highest priority in the priority queue of the current minimal
fragment is real do
X « top node in the queue;

Y « closest nonfragment point to X;

Link X to Y;

Delete the unreal priority of X and reinsert its real priority into the fragment
queue;

Repeat:

X « top node of the fragment queue;

Y « node linked to X;

Merge the fragment queue of X with the fragment queue of Y;

Insert edge (X, Y) in the fragment of Y;

Merge the fragment of X into the fragment of Y;

Update the fragment size priority queue by removing the old size notations of
X and Y and by reinserting a notation to reflect the new size of Y’s fragment;
Repeat;

54

10.

11.

12.

13.

14.

15.

16.

O. NEVALAINEN, J. ERNVALL AND J. KATAJAINEN

REFERENCES

- Allred Aho, John Hopcroft and Jeffrey Ullman, The Design and Analysis of Computer Algorithms,

(Addison-Wesley, 1974).

- Jon Louis Bentley, Multidimensional binary search trees used for associative searching, Comm.

ACM, Vol. 18, No. 9, September 1975.

. Jon Louis Bentley and Jerome H. Friedman, Fast algorithms for constructing minimal spanning

trees in coordinate spaces, IEEE Trans. on Computers, Vol. C-27, No. 2, February 1978.

- Jon Louis Bentley and Michael Ian Shamos, Divide-and-conquer in multidimensional space, Proc.

8th Ann. ACM Symp. on Theory of Computing, May 1976.

. David Cheriton and Robert Endre Tarjan, Finding minimal spanning trees, SIAM J. Computing,

Vol. 5, No. 4, December 1976.

.. Nicos Christofides, Graph Theory; An Algorithmic Approach, (Academic Press, 1975).
- A. K. Dewdney, Complexity of nearest neighbour searching in three and higher dimensions, Univ. of

Western Ontario, Techn. Rep. No. 28, June 1977.

. E. W. Dijkstra, 4 note on two problems in connection with graphs, Numerische Mathematik, Bd. 1,

269-271, 1959.

. Jarmo Ernvall, Jyrki Katajainen and Olli Nevalainen, 4 minimal spanning tree algorithm for a point

set in Euclidean space, Rep. 24, Comp. Sci.,,Univ. of Turku, Finland, 1980.

D. B. Johnson, Priority queues with update and finding minimal spanning trees, Inf. Proc. Letters,
Vol. 4, No. 1, 1975.

Joseph B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem,
Proc. Amer. Math. Soc. 7, 48-50, 1956.

Olli Nevalainen and Jarmo Ernvall, A note on a minimal spanning tree algorithm for Euclidean
space, Rep. 25, Comp. Sci., Univ. of Turku, Finland, 1980.

R. C. Prim, Shortest connection networks and some generalizations, The Bell Systems Techn. J.,
November 1957.

Michael Ian Shamos and Don Hoey, Closest-point problems, Proc. 16th Ann. Symp. on Found of
Comp. Sci., October 1975.

V. Kevin and M. Whitney, Algorithm 422 Minimal spanning tree H, Collected Algorithms of
CACM.

Andrew Chi-Chih Yao, An O(|E|loglog|V|) algorithm for finding minimum spanning trees, Inf.
Proc. Letters, Vol. 4, No. 1, September 1975.

DEPARTMENT OF MATHEMATICAL SCIENCES
COMPUTER SCIENCE

UNIVERSITY OF TURKU

SF-20500 TURKU 50

FINLAND

