BIT 23 (1983), 2-8

ON THE WORST CASE OF A MINIMAL SPANNING
TREE ALGORITHM FOR EUCLIDEAN SPACE

JYRKI KATAJAINEN
Department of Mathematical Sciences, University of Turku, SF-20500 Turku 50, Finland

Abstract.

This paper concerns the worst case running time of the minimal spanning tree algorithm pre-
sented by Bentley and Friedman.

For a set of N points in k-dimensional Euclidean space the worst case performance of the
algorithm is shown to be @(N? log N), for k = 2 and O(N?), for k = 1.

Keywords: minimal spanning tree, Euclidean space, k-d tree.

1. Introduction.

We shall study the special minimal spanning tree (MST) problem where a
set of N points in k-dimensional Euclidean space is to be connected in such
a way that the sum of the lengths of the N—1 straight line segments is minimal.
The problem can be solved by the method of Bentley and Friedman [1]. We
shall discuss the running time of this algorithm in the worst case. Nevalainen,
Ernvall and Katajainen [2] gave a simplified version of the algorithm. It is
easy to see that the worst case of these MST-algorithms is the same. So we
shall consider only the simplified version.

The algorithm of [2] functions as follows. At first N single point subtrees
called fragments are formed. After this, at each step, the fragment of minimal
size is joined to the nearest fragment with a minimal line segment. The process
continues until there is only one fragment left which is the MST. To facilitate the
choice of the minimal distance a priority queue that stores the distance to the
nearest neighbour for each point of a fragment is maintained for each fragment.
Because points are added to the fragment in the course of the process, for
some points their nearest neighbour is no longer outside the fragment. If this
kind of distance is met on the top of the priority queue we must search the
nearest neighbour of the point outside the fragment by means of a k-d tree
[1] and update the queue.

Received October 5, 1982. Revised November 6, 1982.

ON THE WORST CASE OF A MINIMAL SPANNING TREE ALGORITHM. .. 3

The k-d tree is a binary tree in which each node represents a subcollection of
the points. In an internal node it is told how the subcollection is partitioned
into two disjoint subsets. At each node the partitioning is accomplished by
dividing the subcollection at the median value of one of the coordinates. The root
of the tree represents the entire point set and the leaf nodes contain the actual
points. With each node a set of bounds is associated, which jointly form a
rectilinearly oriented hyperrectangle in k-space, within which all the points of
the particular subcollection must lie.

The nearest neighbour of a point is searched among the points outside the
particular fragment by using the k-d tree and in this paper this is called the
nearest outside neighbour search. The search can be described recursively.
For an internal node we first search the subtree in which the discriminator
coordinate of the points is on the same side of the partition value as the coordinate
of the given point. If any part of the hyperrectangle of the opposite subtree does
intersect a ball centered at the given point, with radius equal to the current
nearest outside neighbour distance, then that subtree must also be searched.
Generally, for a leaf node, the distance from the given point is calculated but
in case the point in the leaf node belongs to the same fragment as the given
point the leaf node is rejected at once.

Zolnowsky [3] considered three different choices for the selection of dis-
criminator coordinates. He showed how the performance of the k-d tree
depends on the choice in context of the usual nearest neighbour search. We
shall apply his ideas and show that if the discriminator is the coordinate in
which the points have the greatest spread in values, then the running time of
our MST-algorithm is ©(N? log N) !) in the worst case for k = 2. In [2] a
one-dimensional point set was given for which the running time is Q(N?).
We shall show that O(N?) is the worst case upper bound for k = 1.

2. The worst case study.

2.1 The upper and lower bounds for k = 2.

In the MST-algorithm the number of points to be merged into bigger
fragments is at most (N/2) log N [2]. In the worst case, for all of these points
the nearest outside neighbour has to be searched. The worst thing that could

) The symbols O, Q, @ for functions f and g denote:
(i) f(x)|= O(g(x)) iff there exists a positive constant C such that for every x f{x) £ Cg(x) (upper
bound).

(i1) f(x) = Q(g(x)) iff there exists a positive constant D such that for every x f{x) = Dg(x) (lower
bound).

(i) flx) = Og(x)) iff Aix) = O(g(x)) and flx) = Q(g(x)) (tight bound).

4 J. KATAJAINEN

happen is that the entire k-d tree must be searched each time. So we have a
straightforward upper bound O(N? log N) for the worst case complexity of
the algorithm.

Now let us give a point set in the two-dimensional space for which the

running time of the MST-algorithm reaches the above upper bound. Let us
assume the number of the points is a power of 2, say N = 2° (s = 2). We choose
the first N/2 points as

< N2

/—\
1)
+
1%
DM
N
—
N
P
——
<
v
>
o]
-
IA
IA

1 ;
and the next N/2—1 points as (0, 5w) , for N/2 < i < N. Finally we choose

the Nth point as (0, N) (see Figure 1).

point A
‘number |y
32% 32
3181/2
!
/
'
/
!
A
/
4
,I 309 1/4
!
!
/
! 29¢ 1/8
II ¢ 1/16
/
/ /
/ 7
. / 7/
19 ,' //’
181y .7
i7bs 5689 ... o oo 30T X
[4
12 3... 16 point

Figure 1. An example of the worst case point set for N = 32. \n !mee r

Because the point set on the y-axis is expressed with decreasing density all
the points belong to the same fragment after the fragments of size one have
been considered. On the x-axis we get first N/4 fragments of equal size, then

ON THE WORST CASE OF A MINIMAL SPANNING TREE ALGORITHM. .. 5

N/8 fragments of equal size etc. We know that the number of the nearest
outside neighbour searches is totally (N/4) log (N/2)+ N/2 [2] because every
priority in a priority queue of a fragment on the x-axis must be updated.

For these points the spread in the y-coordinate is one unit greater than that in
the x-coordinate. Thus the discriminator of the root of the k-d tree is the
y-coordinate. The points on the y-axis and those on the x-axis are put into dif-
ferent subcollections. The points on the y-axis have zero spread in the x-
coordinate. So the discriminator coordinate is the y-coordinate for each node
in the subtree representing the points on the y-axis. Hence the search ball of
each point on the x-axis must intersect the rectangle of each point on the
y-axis.

The number of the nearest outside neighbour searches for this point set
is Q(N log N) each demanding Q(N) operations. So, the running time of the
MST-algorithm is Q(N? log N). To sum up we know the algorithm has a worst
case time complexity of @(N? log N) for k = 2.

2.2 The upper bound for k = 1.

In one-dimensional space points are on a line. The fragments consist of
adjacent points on the line. In the worst case during the search of the nearest
neighbour of a fragment for each point of that fragment the nearest outside
neighbour must be determined. It is further possible that in connection with
each search all the leaf nodes containing a point of the fragment and two
successive leaf nodes must be visited in the k-d tree. Thus in the worst case,
m+2 adjacent leaf nodes are visited when the size of a fragment is m.

We now count the number of nodes visited in the k-d tree during the
search procedure. Since a constant time is spent in each node when searching
the nearest neighbour, the number of nodes counted in this way indicates the
complexity of the algorithm.

We denote the closest common ancestor of the fragment F (cca(F)) by a node
which is the root of the smallest possible subtree containing all of the adjacent
m+2 leaf nodes. Let F’ < F be the subset which contains the points in the
leaf nodes of the left subtree of cca(F) and F’’ the corresponding subset for the
right subtree of cca(F). The complete subtree, whose root is cca(F”) is called 4
and the subtree whose root is cca(F”) is called B. In Figure 2 the situation is
described in the case where cca(F) is the root of the whole tree.

The nodes visited during the search are on the path from the root of the
k-d tree to cca(F’) and to cca(F’’) and in the subtrees 4 and B. We shall first
count the number of nodes on the path. This number is at most 2k where &
is the height of the k-d tree. At most O(N log N) nearest outside neighbour
searches have to be done [2]. Thus the total number of nodes visited in order
to reach both these two nodes is at most O(N log® N).

When we count the number of nodes in the subtrees 4 and B we get a rough

6 J. KATAJAINEN

cca(F)

O\C e o ® L .I.

Figure 2. The nodes that must be visited when the nearest outside neighbour is searched for a point
in the fragment F are on the path marked with heavy lines, and in the subtrees 4 and B.

upper bound for the number of nodes actually visited in these subtrees during
the nearest outside neighbour search. Now it is easy to see that the number
of nodes in these subtrees cannot be more than 4m if the size of the fragment
is m. The maximal number of the searches is m for a fragment. Let T(n)
represent the number of the nodes visited in these subtrees before the fragment
with n points has been reached. An upper bound for the number is given by
the recurrence relation

(1) = 0:
T(n) £ Tm)+ T(n—m)+4m?*, n>1

where m < n/2 is the size of the smaller fragment in the previous stage. Now
it can be proved inductively that T(N) < 2N2.

In the worst case during the MST-algorithm O(N?) nodes must be visited.
Thus an upper bound for constructing the MST by the algorithm is O(N?) for
k = 1. When the lower bound result from [2] is taken into account we get
that the running time of the algorithm is @(N?) in the worst case for k = 1.

ON THE WORST CASE OF A MINIMAL SPANNING TREE ALGORITHM. .. 7

3. Refinements to the algorithm.

Instead of using the greatest spread partition criteria in the construction of
the k-d tree the so-called square criteria could give better running times in the
worst case as seen in [3]. The idea is to choose the discriminator as the
coordinate in which the separation of the bounds is currently greatest. However,
in one-dimensional space the two k-d tree structures are the same. Thus the
point set presented in [2] is still valid in order to get Q(N?) performance. This
point set has just the property that during the nearest outside neighbour
searching in the k-d tree all the leaf nodes containing a point of that fragment
must be visited. Additionally this search must be carried out for every point
of the fragment.

An essential refinement is achieved for k = 1 if during the search of the
nearest outside neighbour an entrance to the branches for which every point
belonging to the same fragment as the given point is not allowed. Bentley and
Friedman called this “poisoning”. Then a new label must be added to the
nodes of a k-d tree. The label tells the name of the fragment to which all the
points of the corresponding subtree belong. If the left subtree and the right
subtree of a node contain points from different fragments the label is undefined.

The updating of the labels takes O(NV log? N) time. For each point of a
smaller fragment we must first search the leaf node of that point and then
backtrack towards the root until the updating is no more possible. At most
O(N log N) update operations are performed each demanding O(log V) time.
After this refinement each nearest outside neighbour search takes no longer
than O(2 log N) time because of the special form of the fragments. The number
of the nearest outside neighbour searches is at most O(N log N) and so the
algorithm takes O(N log? N) time in the worst case. It is an open question
whether the method could be applied successfully even to k > 1.

It should be pointed out that after this refinement the algorithm is not yet
optimal, since O(N log N) time is possible by sorting. Perhaps, it is not sensible
to replace the search of the nearest neighbour of a fragment with many nearest
outside neighbour searches. During the algorithm the nearest neighbour of a
fragment must be searched N—1 times and in the worst case this has to be
replaced with (N/2) log N nearest outside neighbour searches. It is worth
studying if there exists a data structure which supports an efficient search of
the nearest neighbour of a fragment.

We have seen that the priority queues became useless because it is possible
to construct point sets for which the nearest outside neighbour search is needed
to each point of the fragment until it is certain which point is the nearest. When
an algorithm with a good performance in the worst case is formed, priority
queues need not be used this way. However, the use of the priority queues is
fundamental in the algorithm of Bentley and Friedman where the fragment is
grown from the area with the lowest local density of points towards the points
closer to each other.

8 J. KATAJAINEN

Acknowledgement;

I wish to thank Jarmo Ernvall and Olli Nevalainen for providing stimulus and
many helpful suggestions for this work.

REFERENCES

1. Jon Bentley and Jerome Friedman, Fast algorithms for constructing minimal spanning trees in
coordinate spaces. IEEE Trans. on Computers. Vol. C-27, No. 2 (1978), 97-105.

2. Olli Nevalainen, Jarmo Ernvall and Jyrki Katajainen, Finding minimal spanning trees in a
Euclidean coordinate space, BIT 21 (1981), 46-54.

3. John Zolnowsky, Topics in Computational Geometry, Stanford University, Ph.D. (1978).

