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ABSTRACT

This paper concerns the worst case running time of the
minimal spanning tree algorithm presented by Bentley and
Friedman.

For a set of N points in k-dimensinal Euclidean space
the worst case performance of the algorithm is shown to

be 0(N*logN), for k>2 and 0(N?), for k=1.
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t. Indroduction

de shall study the special minimal spanning tree (MST) problem
where a set of N points in k~-dimensional HBuclidean space is to be
connected in such a way that the sum of the lengths of the H-1
straight line segments is minimal. The problem can be solved by
the method of Rentley and TFriedman /1/. We shall discuss the
runninz time of this alegorithm in the worst case. Nevalainen,
Ernvall and Katajainen /2/ gave a simplified version of the
alzorithm. It is easy to see that the worst case of these
M3T-alzorithms is the same. So  we shall consider only the
gimplified version.

The alzorithm of /2/ functions as follows. At first W single point
subtrees called fragments are formed. After this, at each step,
the fragment of minimal size is joined to the nearest frasment
with a minimal line sezment. The process continues until there is
only one fragment 1left which is the MST. To facilitate the
choosing of the minimal distance a vriority queue that stores the
distance to the nearest neighbour for each point of a fragment is
maintained for each frazment. Because points are added to the
fragment in the course of the ©process, for some wvpoints their
nearest neigshbour is no lonser outside the fragsment. If this kind
of distance 1is met on the top of the priority gqueue we must search
the nearest neighbour of the voint outside the fragment by means
of a k-d tree /1/ and update the gueue.

The k-d tree is a binery tree in which each node represents a
subcollection of +the 9points. In an internal node it is told how
the subcollection is partitioned into two disjointed subsets. At
each node the partitioning is =accomplished by dividing the
subcollection at the median value of one of the coordinates. The
root of the tree represents the entire point set and the leaf
nodes contain the actual points. ¥ith each node a set of bounds is
associated, wh ich jointly form a rectilinearly oriented
hyperrectangle in the k-~space, within which all the points of the
particular subcollection must lie.

The nearest neizhbour of a vpoint 1is searched among the points
outside +the particular fragment by usine the k-4 tree and in this
paover this is called the nearest outside neighbour searching. The
searching can be described rpﬂufSlvelv. For an internal node we
first search the subtree in which the discriminator coordinate of
the npoints dis on the same side of the partition value as the
coordinate of the mgiven point. If any part of +the hyperrectangle
of the opposite subtree do intersect a ball centered the given
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point, with radius equal to the current nearest outside neighbour
distance, then that subtree must also be searched. Generally, for
a leatf node, the distance from the gziven point is calculated but
in that c¢ase the wpoint din the leaf node belongs to the sanme
frazment as the given point the leaf node is rejected at once.
Zolnowsky /3/ considered three different choices for the selection

of discriminator coordinates. He showed how the verformance of the

k-d tree depends on the choice in context of the usual nearest
neighbour searching. Wwe shall aonly his id,as and show that the
running time of our M3T-algorithm is @(Nzlo*”) Jin the worst case,
for V)?, if the discriminator is the coordinate in which the
points have the greatest spread in  values. In /2/ a
one-dimensional point Me?wva%WfYJgh for which the running time 1is
Q(X2). We shall show that 0(N2) is the worst case unner bound for
k=1,

{

study

2.1 The upper and lower bounds for k>2

In the MST-algorithm the number of the points to be merged into
the blgger frazments is at most (N/Z)logﬂ /?2/. In the worst case,
for all of these points the nearest outside neighbour has to be
searched. The worst thing that could happen is that the entire k-d
tree must be searched each time. S0 we have a straigshforward upper
bound O(N logN) for the worst case complexity of the algorithm.

Now let us give a point set in the two-dimensional space for which
the running time of the MST-alzorithm reaches the ahove upper
bound. Let us assume the number of the points is a power of 2, say
§=2% (s»2). We choose the first N/2 points as

g=2fi-1
(s+ 2 |=--2],0) , for 1<icH/2
j=olL 27
and the next N/2-1 points as
1
(0, ~s=5), Tor N/2<i<\N.

N-i

2

Finally we choose the ¥ th point as (0,8) (See Figure 1).

1)
The symbols 0, Q, 0 for functions { and 3 denot«:
(i) f(x)=0(2(x)) iff there exists a positive constant C such

o~

that for every x f(x)<Cs(x) (unper bhound),

(1) f(x)=Q(a(x)) iff tnere exists a positive constant D such
that for every x f(x)>Dz(x) (lower bound),

(111) f(x)=0(zg(x)) iff f(x)=0(g(x)) and F{x)=Q(g(x)) (tight
bound) .
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Figure 1. An example of the worst case voint set fo

Because the point set on the y-axis is expressed with decreasing
density all of the points belong to the same fragment after the
fragments of size one have been considered. On the x-axis we get
first HN/4 fragments of equal size, then N/8 frazments of equal
size etce We know that the number of tho nearest outside neiszhbour
searches is totally (N/4)log(/2)+N/2 /2/ because every oriority
in a priority queue of a fragment on the x-axis must be updated.
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For these points the spread in the y-coordinate is one unit
greater than +that in the x-coordinate. Thus the discriminator of
tne root of the k-d tree is the y-coordinate. The points on the
y-axis and those on the x-axis are put dinto the different
subcollection. The points on the y-axis have zero spread in the
x=-coordinate. So the discriminator coordinate is th e - ooomilnafﬂ
for each node in the subtree representing the subecollection. Henc
tnhe search ball of each point on the x-axis must intersect thp
cctangle of each point on the y-axis.

The number of the nearest outside neighbour searches for this
noint set is Q(d lozil) each demanding Q(N) operations. Now the
running time of the ¥M3T-alzorithm is Q(N%21osl). To sum up we know
the alzorithm has a time complexity that is O(Nzloaﬁ) for k>2.

2.2 The upper bound for k=1

in one-dimensional space points are on a line. The frazsments
consist of adjacent points on the line. In the worst case during
the search of the nearest neighbour of a fragment for each point
of that fragment the nearest outside neighbour must be determined.
It is further possible that in connection with each search all the
leaf nodes containing a vpoint of the frasment and two successive
leaf nodes must be visited in the k-d tree. Thus in the worst
case, m+2 adjacent leaf nodes are visited when the size of a
frazment i3 m.
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dJe are goinzg to count the number of the nodes visited in the k-4
tree during the search procedure. Since a constant time is spent
in each node when searching the nearest neighbour, the number of
the nodes counted in this way indicates the complexity of the
algorithm.

We denote the closest common ancestor of the fragment F ( cecal(l )
5w a node which is the root of the smalles t possihle subtree

,(«_

containinzg all of the adjacent nm+2 leal nodes. Let F'cF be the
subset which contains +the ©points in the leaf nodes of the left

ubtree of cca(F) and F" the corresponding subset for the risgh
ubtree of cca(F). The complete subtree, whose root is cca(F”™) is

@]

S
called A and the subtree whose root is ccal(F") is called RB. In
Figure 2 the ituation is described in the case where oca(?) is

the root of the whoie tree,

cca(F)

o

©
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The nodes thnat must be vigited when the nearest
oatoLdo neighbour is searched for a point of F are on the
path made dark, and in the subtrees A and B.

The nodes visited durine the 3Cdrph are on the path from the root
of the k-4 tree to ccal(lP™) and cca (F") and in the subtrees A
and B. We shall first count the number of the nodes on the vpath.
The number of the nodes on the path is at most 2h where h i* the
heicht of the k-=d tree. At most o(N logN) nearest outside
neighbour searches have to be done /2/. Thus the total number of
the nodes visited in order to reach both of these two nodes is at
most O(N log2i).

When we count the number of the nodes in the subtrees A and B we
zet a rougzh upper bound for the number of the nodes actually

3
vigited in these subtrees during the nearest outside neiszhbour
search. Now it is easy to see that the number of the nodes in
these subtrees cannot be more than 4m 1if the size of the frasment
is m. The maximal number of the searches is m for a fragment. Let
T(n) represent the number of the nodes visited in these subitrees
before the fragment with n points has been reached. An uoper bound
for the number is given by the recurrence relation
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T(1)

T(n) < T(n)+T(n-n)+m¥4n , n>i

03

where m{n/Z is the size of the gsmaller frasment in the ©vprevious
staze. Now it can be proved inductively that T(H) < 2N2.
In the worst case during the M3T-aloorithm O(NZ) nodes must be

visited, Thus an upper bound for constructing the MST by the
algorithn is 0(82%2) for k=1. When the lower bound result from /[/2/
is taken into account we <2et that the rTunning time of the
algorithm is (Nz) in tne worst case for k=1.

3. Refinements to the

Instead of using the greatest spread partition criteria in the
construction of the k-4 tree the so-called square criteria could
give better running times in the worst case as seen in  /3/. The
idea 1s to choose the discriminator as the coordinate in which the
separation of tne Dbounds is currently greatest. However, in
one~dimensional space the two k-4 tree structures are the sanme.
Thus the point set presented in /2/ is still valid in order to get
Q(u?) performance. This point set has just the property that
during the nearest outside neighbour searching in the k-d tree all
the leaf nodes containing a mpoint of that fragment must be
visited. Additionally this search must be carried out for every
point of the fragment.

As rezards the performance of the MST-algorithm, an egsential
refinement is achieved for k=1 if during the search of the nearest
outside neighbour an entrance to the branches whose every point
belongs to the same fragment as the ziven vpoint is not allowed.
Bentley and Friedman called this "poisoning”. Then a mnew label
nmust be added to the nodes of a k~d tree. The label tells the name
of the fragment to which all +the points of the corresponding
subtree belonzgz. If the left subtree and the rizht subtree of a
node contain wvpoints from different fragments the label is
undefined.

The updating of the labels takes O(N 1lo02?N) time. FTor each opoint
of a smaller frazment we must first search the leaf node of that
point and then backtrack towards the root until the undating is no
more ovpossible. At most O(N loz¥N) update overations are performed
each demanding 0(lozli) time. After this refinement each nearest
outside neighbour search takes no lonser 0{2lozi) time because of
the special form of tne fragments. The number of the nearest
outside neighbour searches is at most O(N lozN) and so the
algorithm takes O(#4 loz?2il) time in the worst case. It is an open
question whether the method would be applied successfully even to
k>1.

It should be pointed out that after this refinement the algorithm
is mnot yvet optimal, since 0(N 1lozn) time is possible by the
sorting. Pernaps, it is not sensible to replace the search of +the
nearest neishbour of a fragment with many nearest outside
neizhbour searches. During the alzorithm the nearest neighbour of
a frazment mnust be searched N-1 times and in the worst case this
has to be replaced with (N/2)lozN mnearest outside mneighbour
searches. It 1s worth studying 1if there exists a data structure
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which supoorts an efficient search of the nearest neighbour of
fragment.

because it is

@

de have seen the priority queues e l useless

possible to construct point set or which the nearest outside
neighbour search 1s needed to each point of the fragment until
surely can be said which point is the nearest. Then an algorithn
with a good performance in the worst case is formed, priority
gueues need not be used this way. However, the use of the priority
queues is fundamental in the algorithm of Bentley and Friedman
where the frazment dis grown from the area with the lowest local
density of points towards the points closer each other.
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