
Simple parallel algorithms for the replacement

edge problem and related problems on

spanning trees

Jyrki Katajainen and Jesper Larsson Träff

Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark

Abstract

Let G be a connected, undirected, and weighted graph with n vertices
and m edges. Further, let S be a spanning tree of G and T a minimum
spanning tree of G. In this paper we present parallel algorithms for
solving the following problems:

(a) Given G and T , for each edge e of T , determine a replacement
edge f by which e should be replaced to create a new minimum
spanning tree if e is removed from G.

(b) Given G and T , find a most vital edge of G with respect to T ,
that is, an edge whose removal has the largest impact on the
weight of T .

(c) Given G and S, determine whether S is a minimum spanning
tree.

(d) Given G and T , compute, for each edge e of G, by how much the
weight of e can change without affecting the minimality of T .

The algorithms run in O(log n) time and O(m) space with m pro-
cessors. The problems (a), (b), and (d) are solved on a MINIMUM
CRCW PRAM, whereas the problem (c) is solved on a CREW PRAM.
The algorithms utilizes a simple technique for computing functions de-
fined on paths in rooted trees that might be of independent interest.

1



1 Introduction

We consider the following problem on minimum spanning trees of weighted
graphs. Given a minimum spanning tree (MST), for each tree edge, determine
a non-tree edge such that whenever the tree edge is removed and replaced
with its corresponding non-tree edge, a new MST results. A very efficient
sequential algorithm exists for this and closely related problems [5, 13, 14].
In this paper a new, fast parallel algorithm for this replacement edge prob-
lem is presented. The algorithm is based on a simple preprocessing of the
spanning tree which allows an efficient computation of functions defined on
paths joining a pair of vertices.

Actually, we can solve a slightly more general problem, where the min-
imum replacement edge is computed for every edge of a specific spanning
tree. The formal definition of the problem is as follows. Let G = (V, E) be
a connceted, undirected, and weighted graph with vertex set V , edge set E
and weight-function weight:E→IR. Let n and m denote the number of ver-
tices and edges of G, respectively. We assume that m ≥ n. Let S = (V, ES)
be a spanning tree of G. The replacement edge problem is to determine, for
each tree edge e ∈ ES, a non-tree edge f ∈ E \ ES of least weight among
the non-tree edges with the property that, if e is replaced with f in S, a
spanning tree in the graph G′ = (V, E \ {e}) results. If such an edge exists,
f is called a (minimum) replacement edge of e. As showed by Tarjan [13],
the replacement edge problem can be solved sequentially in O(mα(m, n))
time and space (where α is a functional inverse of Ackermann’s function) by
using path compression techniques. In this paper we present a fast, parallel
algorithm for the replacement edge problem. Our algorithm runs in O(log n)
time and O(m) space with m processors on a CRCW PRAM.

The heart of our solution is a simple algorithm for computing path prod-
ucts on a tree. Given a tree T , any two vertices v and w of T induce a unique
path T (u, v) in T . For any vertex pair {v, w}, their path product with respect
to some associative operation is the product of labels of the edges on path
T (v, w). In our case we are given a collection of vertex pairs and the task is
to compute all the products along the corresponding paths efficiently in par-
allel. A related problem studied by us is that of performing path labellings.
Here we are given a collection of vertex pairs and the task is to label the
edges on the corresponding paths with some label so that, if an edge gets
more than one label, only the minimum one is preserved.

2



An algorithm for the replacement edge problem for spanning trees obvi-
ously solves the replacement edge problem for MSTs. By using path prod-
uct and path labelling techniques, a number of related problems concerning
MSTs can be solved as efficiently as the replacement edge problem. In this
paper we consider the problems of

(a) finding the most vital edge(s) of a graph with respect to an MST,

(b) verifying that a given spanning tree is minimum,

(c) performing sensitivity analysis of an MST.

The most vital edge problem, which consists of finding an edge of a graph
G whose removal has the largest impact on the weight of any MST of G
(the weight of a tree being the sum the weights of its edges), has recently
been considered in isolation [7, 8, 11]. It is worth noting that the algo-
rithms proposed implicitly solve the replacement edge problem for MSTs,
and that the replacement edge problem is a bottleneck in these solutions.
Our new algorithm provides a considerably faster solution to the most vital
edge problem than previous parallel algorithms [8, 11]. For a comparison,
the two parallel algorithms given by Hsu et al. [8] run in time O(n1+ε) with
n1−ε processors, for 0 < ε < 1, and O(m log(m/N)/N + nα(m, n) log(m/n))
with N ≤ (m log m)/(nα(m, n) log(m/n)) processors, respectively. These al-
gorithms are neither fast nor very parallel. An even slower algorithm was
given by Suraweera and Maheshwari [11], running in O(m) time using m+n
processors.

Given a graph G and a spanning tree S of G, the MST verification problem

is that of determining whether S is an MST of G. For the verification of
MSTs, a linear-time algorithm was presented by Dixon et al. [5]. However,
the best known parallel algorithm uses the naive approach in which the whole
MST is re-computed. The fast parallel algorithms for finding MSTs (see, e.g.,
[3, 10] seem to require a CRCW PRAM. Our verification algorithm runs on
a CREW PRAM with the same efficiency.

Given a graph G and its MST T , the MST sensitivity analysis problem is
to compute, for each edge e of G, by how much the weight of e can change
without affecting the minimality of T . For the sensitivity analysis of MSTs,
an optimal sequential algorithm (with an unknown complexity) was given by
Dixon et al. [5]. As far as we know, our algorithm is the first logarithmic
algorithm for this problem.

3



When solving the replacement edge, the most vital edge, and the MST
sentitivity analysis problems, we use a MINIMUM CRCW PRAM as our
model of computation. In this model write conflicts are resolved as follows:
If two or more processors concurrently try to write a value to the same
memory location, the smallest value is written into that location. From a
practical point of view this model is (in all likelihood) unrealistically strong.
By the well-known simulation theorem (see, e.g., [6]), the MINIMUM CRCW
PRAM model, like the CREW PRAM model, can be simulated with only
logarithmic time overhead by the EREW PRAM model. Our results can
therefore immediately be translated to an EREW PRAM with a logarithmic
decrease in efficiency. The use of the MINIMUM CRCW PRAM model
considerably simplifies the exposition, and is justified, since we have been
unable to give a faster algorithms running directly in the EREW PRAM
model.

The rest of the paper is organized as follows. In Section 2 a simple tech-
nique for computing path products on (rooted) trees is introduced. In Section
3 a similar technique for labelling paths on (rooted) trees is presented. These
techniques are needed in Section 4, where a solution to the replacement edge
problem is given. Some obvious applications of both the replacement edge
algorithm and the tree preprocessing techniques are also given in Section 4.
In Section 5 open problems and possible improvements are discussed.

2 Computing path products on trees

Given a tree T of n vertices, one is often interested in computing some
function defined on the labels of edges on the unique path joining two vertices,
like summing the weights of the edges or finding an edge of minimum weight.
In our case we are given a collection of m vertex pairs, and we want to
compute in parallel the product, with respect to any associative operation,
of the edge labels on the path joining the vertices of each pair. In Subsection
2.1 we show how all these products can be computed in O(log n) time with
m processors after O(log n) preprocessing with n processors on a CREW
PRAM. The drawback of this solution is that it requires O(n log n + m)
space. In Subsection 2.2 we reduce the space requirement to O(n + m)
without affecting the time performance. Our approach is reminiscent of that
for preprocessing and answering queries on Euler tours used in [15].

4



2.1 A solution by using non-linear space

Let T = (V, E) be a rooted tree with root r ∈ V . We assume that the
representation T consists of the adjacency lists of the vertices such that

(a) each vertex is represented by a symbolic integer name, i.e., V = {1, 2, . . . , n},

(b) each undirected edge {v, w} ∈ E is present twice in the representation
of T , once as arc (v, w) in the adjacency list of v and once as arc (w, v)
in the adjancency list of w, and

(c) we have a direct access from arc (v, w) to arc (w, v) and vice versa.

When this representation is available, parent p(v) of each vertex v; level ℓ(v)
of each vertex v, i.e., its distance from the root r; as well as lowest common

ancestor lca(v, w) of two vertices v and w can be computed efficiently (see,
for example, [9, Chapter 3]).

Let T (v, w) denote the path in T from vertices v to w; that is, T (v, w) is
the ordered collection vertices and edges met when traversing from v to w.
Further, assume that the edges of T are labelled and let ⊙ be any associa-
tive operation defined on the labels. Our goal is to preprocess T such that
the product of edge labels on any path T (v, w) can be computed efficiently.
Let product(T (v, w)) denote this product; that is, if path T (v, w) contains
vertices v = v0, v1, . . . , vk = w, product(T (v, w)) =

⊙k−1

i=0 label(vi, vi+1).
It is obvious that product(T (v, w)) = product(T (v, u))⊙ product(T (u, w)),

if u = lca(v, w). By using this formula, the product for any path on T is
readily computed from the partial products. Let pk(v) denote the ancestor
of vertex v ∈ V that lies k levels from v. Next we show how the products
upwards, i.e., for the paths of the form T (v, pk(v)), l > 0, can be computed.
By using an analogous construction, which is left for an interested reader,
the products downwards are obtained.

Now we associate with each vertex v ∈ V two arrays Pv and Sv, each of
size ⌊log n⌋. For 0 ≤ i < ⌊log n⌋, Pv[i] will be a pointer 2i levels upwards in
the tree, and Sv[i] will be the product of edge labels along the path from v
to the vertex pointed by Pv[i]. This information can be computed by using
pointer jumping on rooted tree T . The procedure for computing Pv and Sv,
for all vertices v ∈ V , looks as follows.

5



procedure PREPROCESS
par v ∈ V do

Pv[0], Sv[0] ← p(v), label(v, p(v))
for i = 1 to ⌊log n⌋ do

w ← Pv[i− 1]
Pv[i], Sv[i] ← Pw[i− 1], Sv[i− 1]⊙ Sw[i− 1]

Using n processors the procedure obviously runs in O(log n) time. Only
concurrent reading is needed, so the preprocessing can be accomplished on a
CREW PRAM.

Using the information in Pv and Sv, we can answer any path-product
query in logarithmic time. The procedure below computes the product for
path T (v, u), in which u is the ancestor of v that lies k levels from v, k > 0.

function MULTIPLY(T (v, pk(v)):path):label
i, j ← 0, k
while even(j) do i, j ← i + 1, j div 2
Q ← Sv[i]; w ← Pv[i]; i, j ← i + 1, j div 2
while j > 0 do

if odd(j) then Q, w ← Q⊙ Sw[i], Pw[i]
i, j ← i + 1, j div 2

return(Q)

The time complexity of procedure MULTIPLY is proportional to the num-
ber bits in the binary representation of k, which is less than ⌈log n⌉. With
concurrent read capabilities, many processors can simultaneously compute a
path product in logarithmic time.

2.2 A linear-space solution

In the data structure of the previous subsection we associated an array of size
O(log n) with each vertex of the rooted tree T = (V, E). Since T contains
n vertices, the space requirements are in total O(n log n). The main idea,
when reducing this to O(n), is to associate a logarithmic array with only
O(n/ logn) vertices. However, these vertices have to be chosen carefully so
that the time requirements will not be increased asymptotically.

6



Assume that each vertex v of T knows its level ℓ(v) in T . Now we mark
each vertex with the number ℓ(v) mod ⌈log n⌉. We say that the vertices
with the same number belong to the same class. Then we sort the vertices
with respect to their numbers. This sorting of small integers can be done
in O(log n) time with O(n/ log n) processors [4]. After sorting, it is an easy
matter to determine the class with the smallest number of vertices. Let us
mark all the vertices in this particular class and also the root of T , if not
marked already. Let Vx denote the set of marked vertices of V . Observe that
the cardinality of Vx is less than n/ log n + 1.

Next we build an auxiliary tree T ′ = (Vx, Ex) above tree T . Hence,
the vertices of T ′ are just the vertices in Vx. Tree T ′ is built such that
there is a direct access (pointer) from a vertex v in T to the corresponding
vertex in T ′ and vice versa. Edge {v, u} is included in Ex whenever path
T (v, u) exists and it does not contain any marked vertices. The edges of Ex

are labelled with product(T (v, u)). The construction of T ′ is easily done in
O(log n) time with n processors. We simply allocate one processor for each
marked vertex of T , and let those to search for their closest marked ancestor.
The corresponding products can be computed at the same time. Due to the
construction of Vx, each processor will finish its search after O(log n) steps.
The full representation of T ′ is obtained by sorting (cf. [12, 15]). After this,
tree T ′ is preprocessed as described in Subsection 2.1. When doing this, we
also store with each pointer Pv[i] the last edge on the path from v to the
ancestor pointed by Pv[i].

To answer path-product queries, we partition each path [T (v, pk(v)) into
three pieces: T (v, x), T (x, y), and T (y, pk(v)), where x is the closest marked
ancestor of v and y is the closest marked descendant of pk(v) on path T (v, pk(v)).
(Observe that some of these paths might be of the form T (u, u), but these
can be ingnored from further considerations.) Vertex x is easily found by
traversing T upwards until a marked vertex is encountered. When x and z,
which is the closest marked ancestor of pk(v), are available y can be found by
using T ′: find the logarithmic pointer chain from x to z and pick up y from
the last pointer of this chain. The product of T (y, pk(v)) is again computed
by traversing T upwards. The product of T (x, y) is computed in T ′. When
the products of these subpaths are computed, the product of the whole path
is obtained in constant time.

It is easily seen that the processing of a path-product query requires
O(log n) time with n processors. In tree T we need only parent pointers.

7



The full data structure of Subsection 2.1 is needed for tree T ′, but since it
contains O(n/ logn) vertices, the space consumption is reduced to O(n).

The discussion of this section is summarized in the following

Theorem 1: Given a tree T of n vertices and a collection {p1, p2, . . . , pm}
of m paths on T . All path products product(pi), i = 1, . . . , m, can be com-
puted in O(log n) time with m processors, after O(log n) preprocessing with
n processors on a CREW PRAM. The total amount of space required for
these computations is O(n + m).

Proof: The rooted version of T can be constructed in O(logn) time and
O(n) space with O(n/ log n) processors (see [9, Chapter 3]). This construc-
tion gives us the parent pointer p(v) for each vertex v. We need also the
functions ℓ(v), giving the level of vertex v, and lca(v, w), giving the lowest
common ancestor of two vertices v and w. These functions can be evaluated
in constant time, after a proper preprocessing taking O(log n) time and O(n)
space with O(n/ log n) processors (see [9, Chapter 3]). The other parts of
the claim follow from the above discussion. 2

3 Performing path labellings on trees

In this section we consider the problem of labelling paths on a tree of n
vertices. We are given a collection C of m paths on the tree and a label
associated with each path. The labels are drawn from some totally ordered
universe. We use ∞ to denote the largest element of this universe. For
the sake of simplicity, we assume that all the path labels are distinct. The
problem is to label each edge on the given paths with the corresponding label
such that, if an edge will get many labels, only the smallest one is preserved
with it. Our purpose in this section is to show how the labels can be assigned
in O(log n) time with m processors.

As in Section 2, it is enough to solve the problem for rooted trees. There-
fore, let T be a rooted tree represented by the adjacency lists (with the
additional pointers). We consider here only how the path labellings are per-
formed for the paths of the form T (v, pk(v)). The general problem is solved
by dividing each path T (v, w) into two pieces by using the lowest common
ancestor of v and w.

8



Assume that T has been preprocessed such that each vertex v has the
array Pv of pointers upwards in the tree. Associate with each vertex v one
more array Ev of size ⌊log n⌋ to be used for labelling (sub)paths upwards in
the tree starting at v. More specifically, for each vertex v, some label in Ev[i],
0 ≤ i < ⌊log n⌋ will denote that all edges on the path from v to the ancestor
pointed by Pv[i] are to be labelled by that label. Initially, we give the label
∞ to Ev[i], for all 0 ≤ i < ⌊log n⌋ and for all v ∈ V . This initialization takes
O(log n) time with n processors.

In the algorithm to be presented next, many processors perform labellings
in parallel. When a processor tries to update a label, it uses the rule that
the update is performed only in the case that the written value is smaller
that the current value. At some position, two or more processors might try
to update the same label. Here we rely on the write conflict resolution rule
of the MINIMUM CRCW PRAM which guarantees that the label with the
minimum value will be stored in that place. These two rules guarantee that
the correctness of our algorithm.

To perform the path labellings, we allocate first one processor for each
path in C. Each processor decomposes its path T (v, pk(v)) into subpaths
whose size is a power of 2. This computation is guided by the 1-bits in the
binary representation of l, as done in procedure PRODUCT in Subsection
2.1. The following procedure is executed for all paths of C in parallel.

procedure DECOMPOSE(T (v, pk(v)):path, a: label)
w, i, j ← v, 0, k
while j > 0 do

if odd(j) then Ew[i], w ← a, Pw[i]
i, j ← i + 1, j div 2

To push down the labellings performed so far, we allocate one processor
for each vertex of T and process the paths of length 2i in ⌊log n⌋ rounds,
starting from the longest. At each round the longest paths are halved and
each of them gives its label to the shorter subpaths. Due to concurrent
writing, the smallest label assigned to any subpath will survive for the next
round. More formally, the procedure for pushing down the labels is as follows:

9



procedure PUSHDOWN
par v ∈ V do

for i = ⌊log n⌋ downto 1 do

if Ev[i] < Ev[i− 1] then Ev[i− 1] ← Ev[i]
w ← Pv[i− 1]
if Ev[i] < Ew[i− 1] then Ew[i− 1] ← Ev[i]

In the for-loop of procedure PUSHDOWN above the following invariant
is maintained:

Label Ev[i] has the least value among all paths containing v and
starting 2j , j > i, levels downwards in the tree.

It is easy to prove by induction on ⌊log n⌋ − i that the invariant holds.
Hence, upon termination, Ev[0] contains the label for each tree edge {v, p(v)}.
It is also clear that this push down operation takes O(log n) time with n
processors.

By using a similar technique as in the previous section, the amount of
storage space needed for the path labellings can be reduced from O(n log n+
m) to O(n + m). First, the auxiliary tree T ′ is constructed. Second, each
path T (v, pk(v)) is divided into three parts T (v, x), T (x, y), and T (y, pk(v)),
where x and y are as in Subsection 2.2. Third, the path labellings for the
paths T (v, x) and T (y, pk(v)) are done by using the parent pointers in T ,
whereas T (x, y) is labelled in T ′ as described above. Finally, the labels in T ′

are pushed down to T by assigning one processor for each edge {x, y} of T ′.
These processors simply follow the parent pointers from x to y in T .

To sum up, we have

Theorem 2: Given a tree T of n vertices, a collection {p1, p2, . . . , pm} of m
paths on T , and a label label(pi) associated with each path pi, i = 1, . . . , m.
Each edge e of T can be labelled with the minimum label among those in
{label(pj) | e ∈ pj, j ∈ {1, . . . , m}} in O(logn) time and O(n + m) space
with n + m processors on a MINIMUM CRCW PRAM.

4 Applications

In this section we present various applications for the path computations
given in Sections 2 and 3. We consider here the replacement edge problem

10



(Subsection 4.1), the most vital edge problem (Subsection 4.2), the MST ver-
ification problem (Subsection 4.3), and the MST sensitivity analysis problem
(Subsection 4.4). For all the problems we obtain parallel algorithms which
run in time O(log n) with m processors, where n is the number of vertices
and m the number of edges in the input graph.

In order to avoid repetitions, we assume throughout of this section that
G = (V, E) is a connected, undirected, and weighted graph, S = (V, ES) a
spanning tree of G, and T = (V, ET ) a minimum spanning tree of G. The
edges of G are given in an array so that we have a contant time access to
them. The trees S and T should be represented by the adjacency lists of the
vertices as described in Subsection 2.1.

4.1 Finding a replacement for each spanning tree edge

Recall that the replacement edge problem for a spanning tree S in a graph G
is that of finding a minimum replacement for every edge e of S such that, if
e is removed from S, a new spanning tree results. Our algorithm for finding
all minimum replacement edges is based on the following

Fact 1 (cf. [13, Lemma 6]): Let S = (V, ES) be a spanning tree of a graph
G = (V, E). For each tree edge e ∈ ES, let the set Re contain any non-tree
edge {v, w} ∈ E \ES if and only if path S(v, w) in S contains e. If Re is non-
empty, then a suitable replacement edge for e is an edge with the minimum
weight in Re. If Re is empty, then e has no replacement edge.

The fact gives rise to a simple algorithm. For each non-tree edge {v, w},
we label path S(v, w) in S with the triple (weight(v, w), min(v, w), max(v, w)).
By performing these labelling in parallel as described in Section 3, each tree
edge will get its proper replacement. Observe that the labels are all distinct
as required and that the triples must be compared lexicographically.

The number of non-tree edges is m− n + 1 and the number of vertices in
T is n. Therefore, the following result follows directly from Theorem 2.

Theorem 3: Given a graph G with n vertices and m edges, and any of
its spanning tree S. For every edge of S, its minimum replacement edge in
G can be found in O(log n) time and O(m) space with m processors on a
MINIMUM CRCW PRAM.

11



4.2 Finding a most vital edge of a graph

Recall that a most vital edge (which is unique if all edge weights are different)
of a graph G with respect to a given MST T is an edge of G whose removal
has the largest effect on the weight of T . If G contains bridges (edges whose
removal disconnects G), a most vital edge of G can be taken to be either
undefined or one of the bridges of G.

For a graph G = (V, E), we use G − e to denote the graph (V, E \ {e}
and weight(G) to denote the weight of a MST of G. By the following fact,
the most vital edge problem reduces to that of finding replacement edges for
minimum spanning trees.

Fact 2 (cf. [7, Lemma 1]): Let G be a bridgeless graph and T a minimum
spanning tree of G. Then one of the edges of T is a most vital edge of G
with respect to T .

Proof: A removal of a non-tree edge has no effect on the weight of T . On
the other hand, for each tree edge e of T , weight(G − e) is always greater
than or equal to the weight of T . So a most vital edge can be chosen among
the edges of T . 2

The algorithm for finding a most vital edge of a graph G with respect to
an MST T is as follows.

1. For all edges of T , find their replacement edges in G. Use here the
algorithm of Subsection 4.1.

2. Check whether there exists a tree edge that does not have a replace-
ment. If this is the case, report that a most vital edge is undefined.

3. Otherwise report as a most vital edge, the tree edge e whose replace-
ment f maximizes weight(f)−weight(e). This maximum computation
can be carried out in time O(log log n) with O(n/ log log n) processors
on a CRCW PRAM (see, e.g., [2]).

If no bridges are found in Step 2, G is bridgeless. After constructing a
spanning tree, the computation of all replacement edges therefore provides
an alternative (but not very appealing) way of detecting the bridges of a
graph (cf. [12]).

To sum up, we have

12



Theorem 4: Given a graph G with n vertices and m edges, and a minimum
spanning tree T of G. A most vital edge of G with respect to T can be found
in O(log n) time and O(m) space with m processors on a MINIMUM CRCW
PRAM.

Sometimes the most vital edge problem is formulated such that an MST
is not given as a part of input. An edge e is then said to be a most vital edge

of a graph G with respect to all MSTs of G if weight(G−e) ≥ weight(G−f),
for every edge f of G. To solve this more general problem we use

Fact 3: Let G be a graph and let T be any of its MST. An edge of T is a
most vital edge of G with respect to all MSTs of G.

Proof: Assume on the contrary that no edge of T is a most vital edge og G.
Let e be an edge of T for which weight(G− e) is maximized. According to
our assumption, for each tree edge of T and therefore also for e, there exists
an edge f of G for which weight(G− e) < weight(G− f).

Now we divide the consideration into two cases.
Case 1. f is a non-tree edge. Since weight(G) ≤ weight(G−e), we have that
weight(G) < weight(G− f). However, this is impossible since the weight of
any MST of G − f should be equal to the weight of T . Therefore, such an
edge f cannot exist.
Case 2. f is a tree edge. Due to our choice of e such a tree edge cannot exist,
since weight(G− e) was assumed to the maximum, for all tree edges.
Since both cases lead to a contradiction, the claim must be correct. 2

By using the above fact and the existing algorithms for finding an MST
of a graph, we can solve the general most vital edge problem.

Corollary 1: Given a graph G with n vertices and m edges. A most vital
edge of G with respect to all MSTs of G can be determined in O(log n) time
and O(m) space with m processors on a MINIMUM CRCW PRAM.

Proof: By Fact 3, any MST T of G can be used to find a most vital edge
of G. An MST of G can be found in time O(logn) with m processors on a
CRCW PRAM [3, 10]. Thus, Theorem 4 implies the claim. 2

4.3 Verification of minimum spanning trees

For the verification, whether a spanning tree is an MST, we use the following

13



Fact 4 [13, Lemma 5]: Let G = (V, E) be a graph and let S = (V, ES) be a
spnning tree of G. A spanning tree S is minimum if and only if, for each edge
{v, w} ∈ E\ES, weight(v, w) ≥ max{weight(x, y) | {x, y} is on the path S(v, w) in S}.

Hence, the MST verification problem reduces to that of computing m−
n+1 path products with respect to the maximum operation. The algorithms
developed in Section 2 can be used here. After computing the path products,
it is easy to chech whether the weight of each non-tree edge is actually larger
than the corresponding path product. Basically, this is nothing but an AND-
computation, that can be carried out in O(1) time with m processors on a
CRCW PRAM (see, e.g., [2]). Thus, by Theorem 1 we have

Theorem 5: Given a graph G with n vertices and m edges, and any of its
spanning tree S. The verification, whether S is an MST of G, can be ac-
complished in O(log n) time and O(m) space with m processors on a CREW
PRAM.

4.4 Sensitivity analysis of minimum spanning trees

As a final application we consider the sensitivity analysis of minimum span-
ning trees. Recall that the problem is to determine, for each edge e of a
graph G, how much the weight of e can change before the (weight of) any
MST of G changes. A result from [14, Corollary 1] gives a solution to the
problem in terms of replacement edges and path queries.

Fact 5 [14, Corollary 1]: Let T = (V, ET ) be an MST of a graph G = (V, E).
For each tree edge e ∈ ET , tree T remains a MST until the weight of e is
increased by more than weight(f)−weight(e), where f is a replacement edge
of e. For each non-tree edge g ∈ E\ET , the tree remains a minimum spanning
tree until the weight of g is decreased by more than weight(g)− weight(h),
where h is a tree edge which is maximum on the tree path induced by g.

Given an MST T , the algorithm below computes the maximum change
∆e for each edge e of G.

1. For every tree edge e of T , find its replacement edge f in G (cf. Sub-
section 4.1) and let ∆e = weight(f)− weight(e).

2. Preprocess T such that the maximum edge on any path in T can be
found efficiently (cf. Section 2).

14



3. For each non-tree edge g = {x, y}, find a tree edge h with the maximum
weight on path T (x, y) in T (cf. Section 2) and let ∆g = weight(g)−
weight(h).

By Theorems 1 and 2, the following result is immediate.

Theorem 5: Given a graph G with n vertices and m edges, and an MST T
of G. The sensitivity analysis of T in G can be carried out in O(log n) time
and O(m) space with m processors on a MINIMUM CRCW PRAM.

5 Concluding remarks

Parallel algorithms for solving the replacement edge problem for spanning
trees and a number of related problems on (minimum) spanning trees were
presented. Our algorithms run in O(log n) time and O(m) space with m
processors, n being the number of vertices and m the number of edges in the
input graph.

Best sequential algorithms for the same problems run in O(mα(m, n))
time or faster, so our parallel algorithms are not work-optimal. By using
a considerably more sophisticated preprocessing of the spanning tree, work-
optimal parallel algorithms for the problems studied might be possible.

Our parallel algorithms use the MINIMUM CRCW PRAM model. This
seems difficult to avoid. Some improvements (with respect to efficiency)
are possible by implementing the algorithms directly on an EREW PRAM
and using more efficient algorithms known for integer sorting (see, e.g., [1]),
instead of general sorting as implicit in the standard simulation.

Acknowledgments

We would like to thank Jens Clausen and Mikkel Thorup for helpful discus-
sions.

15



References

[1] Susanne Albers and Torben Hagerup. Improved parallel integer sorting
without concurrent writing. In Proceedings of the ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 43–472, 1992.

[2] Yrjö Auramo, Jyrki Katajainen, and Juhani Kulmala. Finding the max-
imum in parallel random access machines. Bulletin of the EATCS 52
(1994) 315–334.

[3] Baruch Awerbuch and Yossi Shiloach. New connectivity and MSF algo-
rithms for shuffle-exchange network and PRAM. IEEE Transactions on

Computers C-36 (1987) 1258–1263.

[4] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applica-
tions to optimal parallel list ranking. Information and Control 70 (1986)
32–53.

[5] Brandon Dixon, Monika Rauch, and Robert E. Tarjan. Verification and
sensitrivity analysis of minimum spanning trees in linear time. SIAM

Journal on Computing 21 (1992) 1184–1192.

[6] David Eppstein and Zvi Galil. Parallel algorithmic techniques for com-
binatorial computation. Annual Review of Computer Science 3 (1988)
233–283.

[7] Lih-Hsing Hsu, Rong-Hong Jan, Yu-Che Lee, Chun-Nan Hung, and
Maw-Sheng Chern. Finding the most vital edge with respect to min-
imum spanning tree in weighted graphs. Information Processing Letters

39 (1991) 227–281.

[8] Lih-Hsing Hsu, Peng-Fei Wang, and Chu-Tao Wu. Parallel algorithms
for finding the most vital edge with respect to minimum spanning tree.
Parallel Computing 18 (1992) 1143–1155.

[9] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley,
1992.

[10] Francis Suraweera and Prabir Bhattacharya. An O(log m) parallel algo-
rithm for the minimum spanning tree problem. Information Processing

Letters 45 (1993) 159–163.

16



[11] Francis Suraweera and Piyush Maheshwari. A parallel algorithm for the
most vital edge problem on the CRCW-SIMD computational model.
In Proceedings of the 17th Annual Computer Science Conference, pages
757–766, 1994.

[12] Robert E. Tarjan and Uzi Vishkin. An efficient parallel biconnectivity
algorithm. SIAM Journal of Computing 14 (1985) 862–874.

[13] Robert E. Tarjan. Applications of path compression on balanced trees.
Journal of the ACM 26 (1979) 690–715.

[14] Robert E. Tarjan. Sensitivity analysis of minimum spanning trees and
shortest path trees. Information Processing Letters 14 (1982) 30–33.

[15] Uzi Vishkin. On efficient strong orientation. Information Processing Let-

ters 20 (1985) 235–240.

17


