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In many situations text compression is carried out with a previously formed fixed dictionary (code book) expressing
those often-occurring substrings of a text which are to be replaced by code words. The problem of encoding a text in a
space-optimal manner is equivalent to the problem of finding a shortest path between a given pair of vertices in an
acyclic and bandwidth-limited network, By combining an algorithm for finding shortest paths with the string matching
algorithm of Aho and Corasick,' a time-efficient approximation algorithm for the space-optimal encoding is obtained.
The performance of the approximation algorithm depends on the amount of storage space available in the fast memory
of a computer. With an unrestricted, though at most linear working storage on the length of the input text, a space-
optimal encoding is obtained. However, even q fixed internal memory of moderate size guarantees almeost optimal
compression, and in spite of this the running time of the algorithm is comparable to that of the longest match hewristic.
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1. INTRODUCTION

The aim of text compression is to reduce the size of a text
file in order to save storage space in a secondary storage
device or to have a higher throughput in a communication
channel: Text compression may also have some crypto-
graphic value, as has been pointed out, for instance, by
Rubin."

Most text compression schemes described in the
literature arc based on textual substitution:'? frequently
occurring substrings of the text are to be replaced by
some code words which uniquely identify the replaced
data. The code words may be references to a separate
dictionary (code book), to the original text, or even to
the compressed representation of the text.

A typical text compression system coniains the
following three parts:

() an analyser, which constructs a dictionary consist-
ing of strings and the corresponding code words;

(b) anencoder, which performs the actual compression
by using the dictionary, and

(¢) adecoder, which regenerates the original text from
the encoded representation by substituting dictionary
strings for the code words.

Depending on the coding algorithm, the first two parts
may either be separate or intertwined with each other.
In this paper we shall study the encoding of a text,
assuming that the dictionary is given as an input to the
encoder. Alternatively, each text could have a dictionary
of its own. This presupposes that there has been a
preprocessing phase during which the source text is
sampled and the dictionary generated. It is not necessary
to deal here with the way in which the dictionary strings
are chosen. However, it should be noted that the selection
of the best possible dictionary is a difficult task ; as shown
by Storer’® and Fraenkel er al,' the problem is NP-
complete. The inherent difficulty lies in the fact that the
substrings of the optimal dictionary may overlap.
However, several efficient heuristic methods for con-
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structing dictionaries have been proposed; a survey of
these methods has been published in Ref. (3).

We assume that the compression scheme is reversible,
that is to say that the source text can be fully recovered
from the compressed form. The decoding process itself is
usually very simple, basically just a single left-to-right
scan of the compressed form, if the code words are
properly selected. In what follows, both the variable and
the fixed-length code words are accepted.

Different encoding algorithms have been examined by
various authors {e.g. Refs. 3, 5, 13, 15, 19). Given a
dictionary, space-optimal encoeding of a text can be
accomplished in polynomial time. Wagner has given
a nonlinear integer programming formulation to the
problem’ and a dynamic programming algotithm for
finding a shortest compressed form of a given text
string. %

Schuegraf and Heaps' showed that the optimal
encoding problem is equivalent to the problem of finding
a shortest path between a given pair of vertices in a
directed network, and they used a general network
algorithm for finding the shortest path. Rubin®® presented
yet another optimal encoding algorithm, which simul-
taneously maintains several coding possibilities, dis-
carding any alternative as soon as it is found to be non-
optimal.

In general, the optimal encoding algorithms have been
considered impractical because of their computational
cost. Therefore, numerous heuristic algorithms have
been developed, e.g. the longest match heuristic, the
longest fragment first heuristic,'* and the greedy heur-
istic.> The longest match algorithm (LM) processes the
input text from left to right, choosing at each position
the longest dictionary substring which matches the
original text, and replaces the substring by a code word.
This heuristic has been widely used because it is simple,
gives almost the same gain in compression as an optimal
algorithm, and also performs faster,®'®

In this paper we give an optimal algorithm (OPT),
which can be regarded as a refinement of those introduced
by Wagner® and Rubin.'® Although the new algorithm
gives an optimal coding result, a working storage of linear
size on the input text length is needed in extreme cases,
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Moreover, if the input is extensive, the working storage
overflows, resulting in data transfers between the fast
and the slow memories. However, the OPT algorithm is
easily modified to an approximation algerithm (OPT,,,),
which uses a bounded memory (buffer) for handling
the input text piece by piece. Theoretically, OPT,,
guarantees almost optimal compression. In the experi-
ments we have made, it always yielded an optimal coding
result and its running time was comparable to that of the
LM heuristic.

We use the network formulation for the encoding
problem, Because of the special characteristics of the
input networks, the shortest-path problem is theoretically
interesting. First, the arcs of a network are generated
simultaneously with the shortest path computation; they
are not given explicitly as an input. Secondly, the vertices
of a network can be arranged linearly one after another
and each arc can emanate from a vertex only to one of its
immediate neighbours on the right. Thirdly, the arc
weights are small integers. It is easy to see that the
networks are acyclic, which means that the single-source
shortest path problem can be solved in linear time, if the
model of computation is a random access machine (see
c.g. Ref. 18, section 7.2). In our case, however, the
problem networks are typically far too big to fit into the
fast memory of a computer. Hence we assume a two-level
machine model in complexity issues. In other words, the
complexity of an algorithm is determined by the number
of memory blocks transferred between the internal and
the external memories.

The paper is organised as follows. Section 2 recalls the
equivalence of the encoding problem and the shortest-
path problem. Section 3 presents the space-optimal
encoding algorithm, based on a general algorithm for
finding a shortest path in acyclic networks. Also the time
and space complexities of the algorithm are analysed. In
Section 4 the compression gains achieved with the
OPT,; algorithm, using different types of dictionaries,
are compared with those obtained by the optimal
algorithm. The experimental results are summarized in
Section 5 and there are some concluding remarks in
Section 6.

2. THE PROBLEM

In this section we define the encoding problem and
introduce the corresponding network formulation for
the problem.

Eet us assume that a text string over some finite (input)
alphabet and a coding dictionary are given. The
dictionary consists of a collection of (substring, code
word) — pairs. The dictionary is assumed to be complete
in the sense that there is at least one way to represent
every text string as a concatenation of the code words.
Therefore we assume that the dictionary contains all the
members of the input alphabet as substrings. The code
words are bit strings, not necessarily of equal length, It
1s assumed that the coding scheme is instantaneous, i.e.
that the mapping between a code word and a substring is
uniquely defined and independent of the context in which
the code word is used. The problem is to determine how
the input text should use the dictionary strings in order
to minimise the storage requirements.

Example I. Assume that the characters of the input
text are represented in a maching which uses 8-bit bytes.
In this situation it is often convenient to use all the
available 256 bit strings as fixed-length code words. Each
character of the input text is chosen as an element in the
dictionary, and the remaining bit combinations are assig-
ned to some frequently occurring substrings. [

Let n be the length of the original text in characters,
The space-optimal encoding can be understood as the
finding of the shortest path between the start and the end
vertices in a directed and weighted network G = (V, E).
¥ is the set of vertices, V = {v,,v,,..., v,}, and E the set
of arcs containing m elements, each of which corresponds
to a possible substitution of a substring by a code word.
Hence E contains the directed arc (v,,v,, ), if there exists
a dictionary string of length & (d > () which matches the
original text at positions i+1,...,i+d. The weight (or
cost) of an arc is the number of bits in the corresponding
code word.

Each path from the source v, to the sink », corresponds
to a compressed representation of the source text. From
the completeness of the dictionary it follows that at least
one such path exists, Furthermore, because every
character of the input alphabet is an element in the
dictionary, the network contains a base path, i.e. (v, z,.,)
is an arc of the network for i=0,1,2,...,n—1. It is
evident that the shortest path (the path of minimal
weight) from the source to the sink corresponds to the
minimum compressed form of the text string.

Example 2. Consider the string THIS_IS_IT and the
dictionary

Substring T H I 5

TH HIS 1S 1S_ IT

Code word t h i 3
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The shortest path from v, to vy, is VU0 V0,,, if the code
words are of equal length. The compressed form -of the
string is added. [T

It is clear that the encoding networks are acyclic and
their vertices are initially in topological order, i.e. if (v,
v,) is an arc of G, then i < j. The difference j, which is
bounded above by the length of the longest substring of
the dictionary, is usually small. A weighted network with
these properties is called an acyclic bandwidth-limited
network® because the band of non-zero values around
the diagonal of the conventional distance matrix defines
the network totally.

A vertex v 15 a cut vertex, if G—v is not a connected
network, Also the sink and the source are cut vertices. In
our application this definition may also be stated as
follows: a vertex v, is a cut vertex, if there does not exist
an arc (v, v,), such that j < i < k and there is a path from
the source to v, and z,. This means that all paths from the
source to the sink must go through all cut vertices. For
example, the vertices v,, v;, #, and v, are cut vertices in
the network of Example 2.

The existence of the cut vertices was perceived by
Rubin'® (although he did not use the network termin-
ology). The text string may be cut into separate pieces
at cut vertices without losing optimality. Therefore the
original problem recurs as a set of smaller subproblems
which can be solved independently. The number of the
cut vertices will depend greatly on the characteristics of
the dictionary substrings and on the input text.

The following notation is used throughout the
paper:

a = the size of the input alphabet,

Bt = [log, a], the minimal length of an input character in
bits (byte length),

S =45,5,...5,, the text string to be encoded,

|§| = the number of characters in S,

D = the dictionary used for the encoding,

i, = the ith substring of D, i=1,...,k,

|L.| = the length of /, in multiples of Bz,

Imax=max {|1,| }i=1,...,k},

L= llll+|12!+"‘+|lk|

¢, = the code word corresponding to the substring /;

tlc; || = the length of ¢; in bits,

cmin =min {||c;|[f |[i=1L,..., &k}

cmax = max ¢ || {i=1,...,k},

A(D,S8) = the compressed form of the string S,
achieved with the dictionary I and the encoding algor-
ithm A

|| A(D, 8)}| = the length of A(D, S) in bits,

r=|]A(D,S) ||/{| S|*Bf), the compression ratio,

distance (v;) = the minimum distance from the source
to the vertex v, and

parent (v} = the predecessor of the vertex », on the
shortest path

3. A SPACE-OPTIMAL ENCODING
ALGORITHM AND ITS COMPLEXITY

In this section we present a new optimal encoding
algorithm, based on the network formulation. Although
the shortest path from the source to the sink is all we
need, the algorithm will aiso find the shortest paths from
the source to all the other vertices that can be reached
from the source. The time and space complexities of the
algorithm are also analysed.

3.1 The algorithm

In the general algorithm for shortest paths in acyclic
networks *® we first perform the initialisations: distance
(v,) =0 and parent (r,)=0. Then all the vertices,
except the source, are scanned in topological order, and
for each vertex v, we calculate

distance (y;) = min {distance (v,) + weight (v,2,)| (v,,v;)

is an arc in the network},

and assign parent (v,) to be the vertex v, that corresponds
to this minimum (in what follows, the parent is expressed
indirectly using an index to the dictionary). It is easy to
see that each vertex and each arc is considered only once
in this process. After computing the shortest path by
using the parent pointers,

In our application, the topological ordering of the
nodes is implicitly defined as the order in which the
characters are read from an input file. The existence of
the cut vertices reduces the storage requirements, because
the shortest path can be buffered and output immediately
after a cut vertex has been found. If the buffer becomes
full and no cut vertex has yet been found, we have to cut
the network at a vertex which possibly does not belong
to the shortest path. This situation is discussed in more
detail in the next section.

The encoding algorithm consists of three parts; the
computation of the shortest path, the string matching
process for determining the arcs of the network, and the
output process.

The shortest-path process and its communication with
the other processes is shown in Fig. 1. The algorithm
operates similarly to that of Wagner,*® but processes the
string in the forward direction and uses the cut vertices
to make the text file compression feasible.”® The
correctness of the algorithm follows directly from the
correctness of the general algorithm for finding shortest
paths in acyclic networks,

The arcs of the network are produced with the extended
trie structure (or the pattern-matching machine) intro-
duced by Aho and Corasick.! First a trie (Ref. 8, section

procedure encode(S: string; D: dictionary);
Y% This procedure will encode the text S =35,5,...5,
Y% with the dictionary D =[({,c) |i=1,2,....k}
Create an extended trie containing the dictionary substrings I;
Initialise the buffer;
distance (v): = 0; pareni (v,): = 0; cutpoint: = 0;
for each character s, in S do
Consult the exterded trie 1o find the set IND of indices which
defines those substrings which match with the original text
and end at the position §,
distance (v,): = 00;
for each index i in IND do
d: =l |5 w: =le,|;
if distance (v) > distance (v,_,) +w then distance(v,): = dis-
tance (v, )+ w; parent(v,): = i;
if j-imax > cutpoint then
move parent (v } into the output buffer;

F=lmazx
if v, ... Is @ cut vertex then
Traverse the shortest path in the buffer outputting the code
words,
Reset the buffer; cutpoint: = j—Imax;
for j: = Imax—1 downte O do move parent(p__,) inte the output
buffer; output the shortest path codes from the buffer;

end encode;

Figure 1. The encoding algorithm. The block structure is implied
by the indentation.
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(@) T, H, I, S8 _

HIS,

1§, IS,
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Figure 2. (a) The dictionary strings. () The trie consisting of the strings which are shown inside the nodes (these strings initialise the
ontput sets). (c) The extended trie with the final output sets. The broken lines represent the failure transitions.

6.3) representing the substrings of the dictionary is
created. Fig. 26 shows the trie for the strings of Fig. 2a.
Then the trie is extended to allow fast string matching as
follows.! :

(1) For all nodes », except the root, a failure transition
links © to the node w, whose associated string (from the
root to w) is the longest proper suffix of the string
associated with ». The failure transition is used when
there is no child for the current node to match with the
input string,

(2) For all nodes, an output set (possibly empty) is
defined which contains all the substrings of the dictionary
that are either equal to the string associated with the
node or are proper suffixes of it. In our case the output
sets contain pointers to the dictionary.

The extended trie of Fig. 24 is shown in Fig. 2c.

Observe that in order to find the minimum distance
from the source to the current vertex we need to maintain
only /max previous distance values. Therefore we use a
set of Imax elements, consisting of (distance, parent)-
pairs. The parent field is actually a pointer to the
dictionary, and it is used indirectly to find (a) the
difference in the indexes of the current and the parent
vertices, (P) the weight of the arc leading from the parent
vertex to the current vertex, and (c) the actual code word
attached to the arc. When a vertex is transferred from the
set to the output buffer, only the parent field is moved.

The size of the output buffer is not known beforehand
and therefore a dynamic storage allocation is needed.
There are three buffer operations: first, an empty buffer
is created by initialising a free-space indicator, which
indicates where the next parent value is to be stored.
Secondly, a new element is inserted in the next vacant
slot. Thirdly, to output the conients of the buffer, we
traverse the buffer from right to left by following the
parent pointers, turn the pointers, and then traverse the
buffer from left to right, outputting the shortest-path
code words.

The cut vertices are found by maintaining a cut
pointer, which continuously indicates a possible-cut
vertex v,. Each time the procedure finds a new arc (z;_,,
v,), j—d < k < j, the cut pointer is updated to the value
j. When the cut pointer has a value fnax characters

behind the current character, a true cut vertex has been
found and the contents of the output buffer can be stored
and the buffer reset. After this the pointer is initialised to
the current vertex. The initialisation prevents us from
finding all cut vertices (at most fmax in each output
phase). However, in practice this has not even been
necessary because of the numerous cut vertices and the
large size of the buffer compared to the value max.

3.2 A complexity analysis of the optimal algorithm

itis a well-known fact'® that the single-pair shortest-path
problem for acyclic networks can be solved in O(r + m1)
time, where n is the number of vertices of the input
network and m is the number of arcs. This, however,
requires that the model of computation be a random
access machine (RAM). In the case of text files, the
corresponding networks are very large compared to
those in the analyses given in Refs. 15 and 19. Therefore
we assume here a two-level machine model: computation
in the internal memory is much cheaper than the cost of
transferring data between the internal and the external
memories. In this model the best algorithm is that which
needs only a single left-to-right scan over the input
network to produce the compressed form of the string.
Our algorithm will in fact do just that because of the
numerous close-cut vertices. However, in the worst case
the buffer may have to be stored temporarily in the
external memory.

Let us assume that the dictionary and the extended trie
are small enough to fit into the internal memory
simultaneously (in practice they are to a high degree
overlapping data structures). Then the string matching
can be done at the same time as the shortest-path search
and does not demand any extra accesses to the external
memory. For the dictionary and the trie, a working space
of O(L) storage locations is needed.

In the best case, external storage is used only for input
and output yielding a total of {14 r)*a*B¢ bits. In the
worst case, no cut vertex is found and therefore
n*[log, k} bits, where k denotes the number of dictionary
strings, are needed for the output buffer (Fig. 3). As the
final outpuiting and the buffer handling are interleaved
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Original swring, . 4

Encoding process

L 4 Compressed string,
r ¥n *Brbils

1 * Bt bits

Buffer out

\ Al most

Buffer in

n *[log; Kjbits

Figure 3. Space requirements for the encoding process.

with each other, the total storage space for these actions
is in practice substantially less than r+a+ Bt + nsflog, k.

The running times of the shortest-path process and the
output process are ({n+m) and O(n), respectively, in the
standard RAM model (2, section 1.3). The time com-
plexity of the string-matching process depends on the
implementation of the trie. A node of the trie could be
implemented by an array of size a, a linked list, or a
binary tree. In our application the maximum number of
children of a node, denoted by c, is always small (except
for the root). This is due to the nature of a typical text.
Aho and Corasick® proved that the construction of the
extended trie takes at most O(L*c) time and that the total
number of transitions during the pattern matching
process is at most O(n«c), if the root is implemented as an
array and all other nodes as linked lists. If all other
nodes, except the root, are implemented as binary trees,
the construction time would be O(L*c*log, ¢), whereas
the processing time would be only O(nlog,¢). The
former alternative yields a total time of O(L*¢+n*c+m)
and the latter O(L*c# log, c+#nxlog, c+m).

Let us next determine the number of storage blocks
transferred between the internal and the external mem-
ories. Let p denote the block (page) size in bits. In the
best case, the buffer never overflows into the external
memory and only [(1 + r)*n*Bt/p+ 0(1)] memory blocks
have to be transferred between the internal and the
external memories. In the worst case, the output buffer
must be twice stored in and retrieved from the external
memory because of the two traversals through the buffer.
However, if the file system allows memory blocks to be
accessed randomly, only one buffer swapping is needed.
The output buffer is managed as a stack (Fig. 4): the

Previous
artificial
cut vertex

?s-fj 11

Input text

contents of the buffer are written into the external
memory block by block until a cut vertex is found. Then
the blocks are read in the reverse order and the shortest
path is output. The latter process is again reversed in
order to arrange the code sequence properly. This can be
done without leaving any gaps inside the blocks because
the block boundaries can be computed, using the distance
values, which are maintained for each vertex in the
shortest path. The technique totals {{n*Br+ 2+n+[log,
k|4 ren*Bi]/p+ O(1)} block transmissions.

In the above we have assumed that random access to
the external memory blocks is possible; we can explicitly
state the absolute address in the file operations. However,
as can be seen from Fig. 4, only sequential access is
needed. Further, the reverse processing of the memory
blocks can be restricted to either reading or writing.

In a sense the algorithm proposed by Wagner!® is a
mirror image of our algorithm: after reversing the
dictionary substrings, the shortest-path calculation pro-
ceeds from the sink to the source and the compressed
form of the string is output without reversing the parent
pointers. If we compress phrases of limited length, the
output buffer does not overflow. In practice, the existence
of the cut vertices, which Wagner did not exploit, usually
leads to a non-overflowing buffer even in the case of large
text files.: :

There is a further interesting variant of our algorithm
if we maintain the parent pointers forwards instead of
backwards. This leads in a natural way to the solution of
Rubin :*¥ maintain at most /max partial codings simul-
taneously, and when a cut vertex is met, output the
shortest partial coding. This approach clearly demands
more internal memory than the solution we have

Following
artificial
cut vericx

= e — >
Contents of buffer [& 11 1 [ .
X / =
LY :L :
N\ v ;

Compressed form [ i G 1t

1

[

il t ]

Figure 4. The phases of the encoding as seen on the external storage device. The page boundaries are denoted by | | and the buffer
boundaries by } . The direction of the processing for the memory blocks above and below is indicated by an arrow.
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proposed, and in the worst case the storage requirements
are too great.

4. THE PERFORMANCE OF THE
OPTIMAL ENCODING ALGORITHM WITH
A RESTRICTED BUFFER

The output buffer of the space-optimal encoding al-
gorithm of Section 3 is unlimited in size. In this section
we analyse the effect of a fixed-length buffer on the
compression gain. As long as the buffer is small enough
to fit into the internal memory, no data has to be moved
between the memory levels and we have a one-
pass encoding algorithm not unlike the longest match
heuristic.

The encoding algorithm with a restricted buffer
(OPT,,,) is very similar to the algorithm in Fig. 1, the
only difference being that we need a procedure for
handling a full output buffer with no cut vertex. In
OPT,,, this is done by determining an artificial cut vertex
which is the vertex with the smallest distance value
among the latest Imax vertices of the set, which serves as
the lengthening piece to the buffer. Ties are resolved in an
arbitrary fashion. The buffer contents are output up to
the artificial cut vertex, and the computation of the
shortest path is continued with the artificial cut vertex as
a new source. Before filling up the buffer again, we need
to update the remaining distance values of the set (those
to the right of artificial cut vertex) according to the
changed situation. Therefore we have to maintain also
the corresponding input characters for the vertices in the
set.

We study next the worst-case compression gains of
OPT,,,.. The four dictionary types to be considered are
the following.

(1) A dictionary with fixed-length code words, called
here also a code-uniform dictionary.

{2} A non-lengthening dictionary, in which the length
of any code word never exceeds that of the corresponding
dictionary substring, ie. ||c;|| <]{| times B for all
i=1,2,...,k. This guarantees that the length of the
encoded form of a text string can never be longer than
the original string.

(3) A suffix dictionary, which contains, in addition to
the /-strings, also all their proper suffixes.

(4) A general dictionary, in which none of the above
restrictions need be present.

In all cases we assume that every character of the input
alphabet is a dictionary string. Thus the bandwidth-
limited network corresponding to an input text will
always have a base path. This guarantees that, although
a heuristic may at some point choose a path different
from.the optimal, 1t will not fail to proceed.

Let OPT,(D,8) and OPT(D,S) denote the com-
pressed form of a text string § obtained when using the
dictionary D in the optimal algorithm with a buffer of
size buf (measured in [log, £]-bit units) and the optimal
algorithm with an unrestricted buffer. Further, let R
denote the ratio | |OPT, (D, S)||/|| OPT(D, S)||. For an
unbounded buffer we have trivially R = 1. The relative
loss caused by a bounded buffer is only of the order
Imax® /buf. The next theorem shows also that the OPT,,
algorithm is not sensitive to the type of dictionary
used.

Theorem. Let D be a dictionary and S a text string. The

following bounds are valid for the compressed forms
obtained by the optimal algorithm with a restricted
buffer of size buf.

{a} If D is an arbitrary dictionary, then

Imax(imax — Nemax

€< Rgl
+ buf cmin

(b} If D is a code-uniform dictionary, then

Imax(imax—1)
buf ’

(¢} If D is a non-lengthening dictionary, then

I<R<14

Imax(lmax—1)Bt

1+ ,  cmin < Br < cmax

buf cmin
< R<
Imax(Imax — 1)emax .
14+ - ,  omin < cmax < Bt
buf emin
and

{d) If D is a suffix dictionary, then

Imax emax
buf cmin
Proof. (@) Let G =(V,E) be the bandwidth-limited

network corresponding to the string S and the dictionary
D. Let

Il<R<14

Uy = Uy Uy s Ops oy Uy 00y, =0,

be the artificial cut vertices produced by the OPT,
algorithm. Further, let

OpsUpaens Vps Uy,
be those optimal path vertices which are nearest and to
the right of the corresponding artificial cut vertices v,
This implies that the vertices v, cand o, , may coincide for
some j. Finally, let

vsl, vai’ e U*’hﬂ

be those optimal path vertices which have been nearest
(to the right or to the left) to the corresponding o,

vertices and reside in the set (which serves asalengthemng
piece to the buffer) at the moment the buffer overfiows.
Again, v, and v, may coincide for some j. By the
dcﬁmtlon of the ﬁandwidth-limited networks, at least
one of any /max successive vertices is always on the
optimal path. The situation is illustrated in Fig. 5.

The distance computed by OPT,,, is denoted by dist
(») to distinguish it from the corresponding quantity
distance (v) of the optimal algorithm. By the definition of
the artificial cut vertex, it is obvious that

dist (v, ) = distance (v, ) < distance (v, ).

Let us approximate the distance between two consecuttive
artificial cut vertices vy, and Uiy, . When the output buffer
overflows, dist(v, ) i$ the minimum dist value of the
vertices in the set’” Hence,

dist (v,.j“) —dist (vf ) < dist {v, ]) dist {v, )
< distance (v, ) distance (v.)
£341 Ty
+ (Imax—1)cmax
) distance (v, )
+ (Imax — 1) crmax.

< distance (v

The second inequality follows from the fact that the
difference in the dist values must not exceed the length of
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Figure 5. The artificial cut vertices o, , their right neighbours v, and set neighbours v, .

Table 1. Summary of the performance of the optimal algorithm with
exists in the dictionary

a restricted buffer of size buf. x indicates that the property

Dictionary D
Code- MNon- Upper bound for the ratio

Suffix uniform lengthening [|OPT, (D, S} |/11OPT(D, )|
— — — 1+ Imax(lmax — 1)} emax /(buf cmin)
X — — | +Imax cmax /(buf cmin)

— x — 1+ Imax(max—1)/buf

imax(imax— YVyxmin{Bt, cmax}
—_ — x I+
buf emin

X b — 14 Imax/buf

® — X 1+ Imax emax /(buf cmnin)

— x X 1+ Imax(Imax— 1)/ buf

X b b 1 + Imax/buf

the path which goes from v, to v, and after that takes the

optimal path too, . In the worst case, we have to pay the

cost (Imax—1) cmax to join vy, and v, along the base path.
Thus we have

]
[{OPT,, (D, S)|| = 2 (dist (v,
=0
dlstance ®.)

J—dist(e,)
+ Z (distancew, )—distancev )+ (Imax—1) cmax)

= dlstance (v, )+ h(imax— 1) cmax.

The number of artificial break points is at most
[l S+ 1] < @
buf buf

Further, |S|cmin/imax 1s the minimal length of the
compressed form of the string achieved with any
algorithm and dictionary. Therefore,

Imax(imax—1) cmax.
buf cmin

R<1+

The parts (b}{d) of the theorem can be proved in the
same way by estimating the term (/max — 1) cmax in the
distance calculation according to the dictionary type.

Table 1 summarises the results we have derived for the
OPT,,,, algorithm.

5. EXPERIMENTS

In order to find out whether our network-formulated
algorithm encodes large text files efficiently, we imple-
mented the OPT, . and the LM algorithms.

5.1 Implementation

The implementation of the longest match algorithm is
straightforward. The substrings of the dictionary are
organised into a trie structure. To accomplish fast string
matching, the two top levels of the trie are recorded in a
two-dimensional table.'® Thus the table forms a digram
hash table for a collection of subtries, i.c. the element
(85 5,] points to the subtrie with the prefix s,5,. The input
string is buffered to accomplish a one-pass procedure in
the two-level machine model sense.

The OPT,,; algorithm takes some time to construct the
extended trie before performing the actual encoding
process. The top level of the trie, consisting of the first
characters of the dictionary substrings, is implemented as
an array instead of a list structure. This is advantageous
when the trie is constructed, and also in the actual
encoding process. The trie was not augmented to form a
deterministic finite automation because the. additional
work and space needed was considered too high in
respect of the advantage gained. This means that in order
to process a single input symbol, we may have to use the
failure function more than once to find a match, whereas
in a deterministic automation only one step is needed.
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The output buffer is maintained, using (a) a threshold
size for the buffer string, and (b) a tentative cut vertex
pointer. The threshold size gives the minimum number of
characters the output buffer must contain before the
output process can be triggered. The threshold size is
fixed at some ‘reasonable’ minimum value, say 50-200
characters, to ensure that the buffer is not written out too
frequently (at every cut vertex). The tentative cut vertex
pointer is used to find cut vertices for triggering the
output process. The pointer is initialised to the threshold
size and updated every time an arc is found whose
starting vertex is to the left of the current cut vertex (this,
of course, is not done before the encoding process has
passed the initialisation value of the pointer). While we
are processing a character which is situated (lmax+ 1)
characters ahead of the tentative cut vertex, we know
that the tentative cut vertex pointer is actually de-
termining a true cut vertex. It is then that the buffer is
output. To avoid complications, the threshold size of the
buffer string must always be larger than /max.

The output buffer size is a parametrised to assist in the
determination of the losses due to the restricted buffer
size. During the course of our experiments, however, we
noticed that even a moderate-sized buffer guaranteed an
optimal encoding, because cut vertices were repeatedly
found close to each other. This phenomenon is, of
course, greatly dependent on the dictionary substrings
and their relations to each other, as well as the text string
{0 be encoded. It is our belief, however, that in practical
situations a buffer for, say, 1000 characters is always
enough to guarantee an optimal coding result.

The encoding programs were written in Pascal and run
on a DEC 2060. No optimising was done at the source-
code level, but the ‘optimise’ switch was used in the
compilation.

5.2 Input data

The experiments were performed with five Pascal source
program files and five English text files as input data. The
files were 350044000 characters in length. A code table
was generated for both types of file and then used to
encode all the files of the same type. The dictionary
substrings were generated by using a modification of
Rubin’s incremental coding algorithm.'® The algorithm
searches first for frequently occurring digrams and
replaces them with characters (called codes) which were
not present in the original file. Thereafter, the codes are
treated as ordinary characters, the frequent digrams
and a new set of codes are re-formed and the process
continues until either there are no more code characters
left or no compression gain is achieved in any sub-
stitution. The modified algorithm does not discard any of
the substrings once they are coded. This results in a
collection of dictionary strings, many of which are
proper substrings of others. Thus it only rarely happens
that dictionary substrings partially overlap, without one
being totally included in another.

The fact that many short dictionary strings are
substrings of others reduces the alternative ways to
encode a string and thus also the difference between the
results obtained by the optimal and the longest match
algorithms, In some places, on the other hand, there may
be exceptionally many arcs in the problem network. This
is the case when we encode a long string consisting of

identical characters one after another (e.g. the space
character) and when the dictionary contains substrings
in which two, three, four or more identical characters are
concatenated, It is in such sitations that we get the most
benefit from the trie structure of Aho and Corasick.

In our experiments, the longest dictionary substrings
had 14 and 8 characters respectively in the source
program dictionary and the English text dictionary. The
average lengths of the substrings, excluding the single
characters, were 3.4 and 2.6. The distribution of the
lengths of the blocks that can be coded optimally, i.e. the
distances from one cut vertex to another, is shown in
Table 2. The distance 1 expresses the percentage of the
base path steps over which no other arcs pass. Pascal
source programs have many such steps. This is due to the
fact that many substrings of the dictionary are associated
with the identifiers (e.g. variable names) used in the
particular program from which the substrings have been
extracted, and they therefore have no correspondence in
any other program.

Table 2. Distribution of the distances from one cut vertex to
another

Relative number (%)
of blocks in
Distance between

successive cut Pascal source English
vertices (characters) programs text
1 78.7 68.7
2 10.1 24.2
3 29 . 44
4 32 0.8
5 1.3 1.3
610 2.5 0.6
11-20 0.9 0.1
21-30 0.3 0.0
31-50 0.1 0.0
51-100 0.0 0.0

The distance 2 in Table 2 shows the isolated digram
replacements, 1.e. those digram codings which are not
part of a longer, optimally coded block. In the English
texts there are more frequently used digrams and
trigrams (of, —ed, in-, the, and, -ion, -ing, pre-...) than
in the source programs. However, because the source
programs were formatted by means of an indentation,
the effect of the different combinations of carriage
return, line feed, tabulator and space characters begins to
show from distance 4 onwards,

The average block lengths were 1.68 and 1.46 for the
source programs and English texts respectively. If the
base path steps are excluded, the lengths were 4.27 and
2.46. The maximum block length was 66 for program
files and 77 for the English texts.

5.3 Results

Table 3 shows the average encoding times and com-
pression gains for the OPT,,, and LM algorithms. The
calculations are based on the 7-bit ASCII code, and all
the data which are needed to decode the file are stored
within the compressed file.

As can be seen, the difference in compression gains is
nominal, as was expected in the light of ecarlier
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Table 3. Comparison of the OPT, ; and the LM algorithm*

Algorithm

Type of file to be encoded  OPT LM
Pascal source programs

CpPU 121.6 108.8

Compression gain 30.6 30.4
English text

CPU 120.5 110.2

Compression gain 27.3 27.2

CPU refers to the time (ms) needed to encode 1000 bytes,
and the compression gain means the average percentage of
space saved in the encoding as compared to the original file
space.

experiments.'® '® In our test case this is largely due to the
properties of the dictionary substrings and the uniform
coding scheme.” The encoding times of the algorithms are
now comparable, due to the advanced data structures in
the OPT,, algorithm. With short files the OPT,,,
algorithm performed even more rapidly than the LM
heuristic. This was due to the initialisation phase, in
which the OPT,; algorithm used only 2 of the time
required by the LM implementation. The time needed to
encode 1000 bytes was longest for the short files, and as
the file size increased the time gradually decreased. The
figures thus also validate the two-level machine model:
the time needed to transfer the data from the external to
the internal memory and vice versa is indeed a significant
part of the encoding time.

6. CONCLUSIONS

In this paper we have reduced a text encoding problem to
a problem of finding a shortest path in acyclic networks.
The network representing the coding alternatives has
special characteristics which we can take advantage of in
the encoding process for speeding up the shortest-path
search. The network is generated during the encoding
process. This helps us in managing large networks which
are otherwise too extensive to be handled with con-
venticnal algorithms.

An algorithm for space-optimal encoding is presented.
A slight variation of this algorithm led to an effective
approximation algorithm which almost always gua-
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