SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 16(3), 269-276 (MARCH 1986)

Syntax-directed Compression of Program Files

JYRKI KATAJAINEN, MARTTI PENTTONEN AND JUKKA TEUHOLA
University of Turku, Department of Computer Science, SF-20500 Turku, Finland

SUMMARY

Parsing can be applied to compress source programs. A suitably encoded parse tree, together with
the symbol table, constitutes a very compact representation of the program. The paper reports a
Prolog implementation of the method, including automatic, syntax-directed, encoder zand
decoder generators. The test results show compression gains of 50-60 per cent.

KEY WORDS Text compression Syntax-directed parsing Logic programming

INTRODUCTION

The effectiveness of text compression depends on how much information is available
about the structure of the text. The encoding can be based on

(1) single characters (e.g. Huffman code)

(2) pairs, triples or longer blocks of characters (e.g. Rubin’s method')

(3) overall structure of the text.

As information about the structure of the text increases from (1) to (3), the compression
gain, too, is expected to grow. Hence, for example, if the syntax of a program file is
taken into account, a better compression gain should be achievable than when using
compression based on mere characters. Also natural language has a certain structure, but
it is so complicated that compression based on that is hardly feasible.

Here we assume that the text to be compressed conforms with a context-free grammar.
Thus our method 1s suitable only for a specific subset of text files; source files of programs
constitute the main application area. The principle of the method is very simple: given the
grammar and a source program, the parse tree of the latter is generated. The nodes of the
tree are then stored in preorder, encoded as compactly as possible.

Each context-free grammar has a corresponding Szilard (or derivation) language.”
The leftmost Szilard word of a program is the sequence of productions (or production
labels) in its leftmost derivation. This sequence is equivalent to the preorder representa-
tion of the parse tree. It was observed by Penttonen® that every context-free language L
can be expressed in the form £(L") where L' is the leftmost Szilard language of a grammar
in Greibach normal form generating L and & is a letter-to-letter homomorphism. So, if the
grammar 1s in Greibach normal form, reproduction of the original program simplifies to a
homomorphism. In the general case, the program is reconstructed by applying, from
left-to-right, the productions in its Szilard word. In our application this means that the
reproduction of the original text is a very simple task, basically just replacement of
production labels.

0038-0644/86/030269-08$05.00 Received 13 March 1984
© 1986 by John Wiley & Sons, Ltd.

270 J. KATAJAINEN, M. PENTTONEN AND J. TEUHOLA

GENERAL DESCRIPTION

The steps of the compression method are partly parallel with the phases commonly
applied in compilers.” Our task is however simpler because we do not have to worry
about the semantics of the program, just its syntax. Here the encoding of the parse tree 1s
a counterpart of code generation in compiling.

Figure 1 shows the proposed steps for compression (b) and decompression (c). In
order to achieve a general, language-independent system, we have added a preliminary
phase (a), which generates programs for scanning, parsing and deparsing. The
generators take as input the lexical and syntactical specifications of the language, and are
executed only once. Another, but slower, possibility would be to read these specifica-
tions each time before the actual (de)compression.

The lexical analyser (scanner) discards the useless characters, divides the remaining
text into fokems and classifies them into syntactic terminals (keywords, operators,
punctuation symbols) and user terminals (constants and identifiers). The tokens are
defined as regular expressions,* and the scanning can be performed by a program
operating like a finite automaton. The user terminals are gathered into the symbol table.

The parser generates the parse tree, the nodes of which are indices of two kinds: labels
of grammar productions and pointers to symbol table entries. The tree can be simplified
because syntactic terminals are not needed and internal nodes yielding nothing but one
non-terminal or one user terminal may be omitted. Linearization of the parse tree means
that we list its nodes in preorder. The final encoding of the list elements can be
performed using the conventional compression techniques, e.g. Huffman encoding. The
result of the compression procedure consists of the encoded list, together with the
symbol table, which is also stored as compactly as possible.

The decompression procedure starts with the scanning and decoding the results of the
final encoding step of compression, producing the symbol table and the list of indices, 1n
the same form as above. The deparsing of the list re-establishes the parse tree (now with
terminal symbols included). The productions are applied from left-to-right, expanding
the non-terminals repeatedly. In fact, we can do this in the same manner as macros are
developed. All we need to know is the number of non-terminals (‘arity’) and their
positions in the right sides of productions. The identifiers are fetched from the symbol
table when references to them are encountered. The token list is obtained as the yield of
the tree, i.e. the leaves in preorder. Finally, the list must be formatted into the standard
‘layout’ of the language, using some prettyprinting program.

The currently existing automatic program formatters are often rather restricted, n
that their primary purpose is to perform the indentation of lines. What we need 1s a more
sophisticated tool, which also decides about spacing and dividing the text into lines. It
should be realized that there are more than one ‘correct’ way to do the formatting.
Different programmers prefer different styles of layout, hence an ideal system would
provide several options to choose from. If the formatting requires parsing information, it
would be natural to embed the formatter in the decompression procedure (in the ‘yield’
step), where the parse tree is still available.

Figure 2 presents a simple grammar and some of the data occurring during the
compression of a sample program. .

PROLOG PROTOTYPE

Warren® has demonstrated that the ‘logic programming’ language Prolog® is suitable for writing
compilers. Hence it is not surprising that we found it convenient for our task, too.

COMPRESSION OF PROGRAM FILES 271

(a)
rules for
. . grammar
lexical analysis <
scanner parser deparser
generator generator generator
scanner parser deparser
(b) source program (c) compressed program
scannin scanning &
9 decoding
token list symbol table symbol table index list
parsing deparsing
parse tree parse tree
linearization yield
\
index list token list
encoding encoding formatting
compressed program source program T

Figure 1. The compression system: (a) preliminary phases for the language; (b) compression;
(¢) decompression

272

J. KATAJAINEN, M. PENTTONEN AND J. TEUHOLA

(a)
Lexical information Grammar
- Syntactic terminals: pl: program -->'BEGIN' statements 'END'
'BEGIN', '"END', ';', ':=' p2: statements --> statement ';' statements
- User terminals: ql: statements --> statement
IDENTIFIER, INTEGER p3: statement --> IDENTIFIER ':=' expression
- IDENTIFIER: LETTER(LETTER|DIGIT)* ph: statement --> '
- INTEGER: DIGIT(DIGIT)* q2: expression --> IDENTIFIER
- LETTER: 'A',...,'Z' q3: expression --> INTEGER
- DIGIT: '0',...,'9"
(b) BEGIN (c)
ALPHA:=10;
BETA:=ALPHA; 10,ALPHA,BETA
END ootfotofort]11o]101f010]011|111]110]100
v Vi
. scanning &
scanning decoding
BEGIN,ALPHA, :=,10,;, i1: 10 il1: 10 / \
BETA, :=,ALPHA, ; ,END i2: ALPHA i2: ALPHA pl1p2p3i2itp2p3i3i2ph
N i3: BETA i3: BETA ~y e
parsing deparsing
linearization
p1p2p3i2ilp2p3i3izph BEGIN ALPHA := 10 ; BETA := ALPHA ; END
encoding R
encoding .
(3-bit code . formatting
XX, ix->x+[&) (compact list)
BEGIN
10,ALPHA,BETA ALPHA := 10
ootfotrofotrft10]101]010f011][111]110]100 BETA := ALPHA;
END

Figure 2. An example of compression: (a) input for the preliminary phase; (b) steps in a sample compression;

(c) corresponding decompression

COMPRESSION OF PROGRAM FILES 273

Our prototype implementation 1is in accordance with the main lines of the previous
section. However, some simplifications were made, partly due to Prolog. The scanner
generator was not 1mplemented instead, we wrote language specific scanners for our test
cases. The scanning was performed in two commonly applied steps:* prescanning and
actual scanning. In the latter step the tokens were recognized by Prolog predicates,
which were specifically ordered to ensure correct interpretation.

As the data structure of the symbol table we used the AVL tree, the implementation of
which was proposed in Reference 7 (see also Reference 8). Here we use the typical trick
of Prolog that a single procedure can be used for both searching and inserting, as
described by Warren.’

The parser generator transforms the grammar productions one-by-one into corres-
ponding Prolog productions, making up the parsing grammar. For the simple language
of Figure 2 the parsing productions would become as follows:

program{p1(X)) --> ['BEGIN'], statements(X), ['END’].
statements(p2(X,Y)) --> statement(X), [';’], statements(Y).
statements(X) --> statement(X).

statement(p3(X,)) > [identifier(X)], [':="], expression(Y).
statement(p4) --> [].

expression(X) --> [identifier(X)].

expression(X) --> [integer(X)].

This grammar, appended to the common driver program, constitutes the final language-
specific compression program. The deparsing rules are generated similarly, but now
they need not be written in the form of productions, simple predicates are sufficient:

T(['BEGIN’, Statements ‘END’]).
2([Statement, ";’, Statements]).
3([Identifier, ":= ,Expression]).
4]

J).

The terms in Prolog productions are equipped with arguments which carry along the
intermediate results of parsing, so that the parse tree is generated as a by-product of
syntax checking. The use of arguments in Prolog non-terminals bears a close resem-
blance with so called attribute grammars®, a device developed for the description of the
semantics of a programming language. Attributes, when attached to the non-terminals of
a context-free grammar, give it a facility of information exchange between different parts
of a program, producing a non-context-free effect.

As the prototype uses an extremely simple parsing strategy, non-deterministic
top-down left-to-right parsing controlled by backtracking, there are some restrictions and
recommendations in writing the grammar:

(1) Left recursive productions are prohibited, because they would lead to an infinite

loop.

(2) For the sake of compression, empty productions should be avoided, because they
will occur explicitly in tne result (cf. Figure 2).

(3) If the definition of a non-terminal involves many productions, then, for efficien-
cy, they should be ordered so that first are those where the right side begins with a
terminal.

(4) If there are two productions of the form x = vy, ... y;...y, and x = y;y2 ... Vi,
the former should be placed before the latter in the grammar.

A/-\/-\A

274 J. KATAJAINEN, M. PENTTONEN AND J. TEUHOLA

It may be possible to satisfy requirements (1) and (2) automatically. Recommendation
(3) can be fulfilled by simple sorting. The purpose of recommendations (3) and (4) is to
speed up the parsing when the above-mentioned parsing strategy is used. As for empty
productions, there is a trade-off between compression gain and efficiency. For instance
in case (4) the most time efficient form of productions would be: x — v, ... vz,
2=V g - Vo 8> emply.

The final compression of production and symbol indices was performed using
fixed-length binary coding, where the length = [log(#productions + #symbols)]. The
advantage of the Huffman method in the final coding proved to be marginal in our
moderate test cases.

EXPERIMENTS

We tested our system by compressing Pascal programs. Pascal’s syntax'® was rewritten
in order to gain the best possible efficiency. The syntax consisted of 159 productions,
out of which 126 needed a label, i.e. the rest were of the type non-terminal — non-
terminal or non-terminal — user-terminal, and their labels were dropped out of the parse
tree in the reduction step. Note that the reduction has a considerable effect upon the
compression gain for two reasons: first, the number of elements to be encoded decreases,
and secondly, the number of bits required to encode one element may decrease.

In our first program version we found out that parsing of complex mathematical
expressions was a bottleneck. Normally the parsers use additional information about the
precedence and associativity of the operators. To solve the inefficiency, we however
chose another solution: in our application there is no need to produce a semantically
correct parse tree, as long as the original program can be recovered. Hence we applied a
left-to-right parsing scheme for expressions, i.e. the operators were considered as if they
were right associative and had no order of precedence.

Table I shows some performance figures about the compression of sample programs.
The computer used was DEC-2060, and the Prolog compiler was version 3.3 developed
by D. Warren, F. Pereira and L. Byrd (1981). For the sake of comparison, all sizes are
expressed using the same unit (7-bit ASCII code).

Table I. Test results for Pascal programs

Original ~ Symbol table Index list Compressed Compression Compression Decompression
program (characters) (characters) size (charac- gain (%) time (s) time (s)
(characters) ters)
388 100 95 195 49-7 2-5 0-9
790 152 159 311 60-6 36 1-6
1797 288 451 739 589 385 4-1
3435 397 1012 1409 59-0 21-6 10-4
4254 438 1091 1529 64-1 29-2 10-9
6265 1360 1351 2711 56-7 146-0 15-0

It can be noted that neither the compression gain nor the time consumed grow
smoothly with the size of the source program. Instead, they heavily depend on the
programming style, the length of user symbols and the complexity of expressions. It was

COMPRESSION OF PROGRAM FILES 275

unfortunate that the growth of storage requirements as well as execution time prevented us
from trying out really big programs.

Although scanning in principle takes only linear time, it proved to be rather slow in
our prototype system, as noticed also by Warren.” Thus it may be wise to use some
procedural language, instead of Prolog, for that phase.

No great effort was taken to parse the programs efficiently; the productions were used
almost in the form in which they were input, and the non-deterministic parsing was
controlled only by the built-in backtracking facility of Prolog. Hence, if a subderivation
fails, all work done thereby is lost, which leads to an exponential worst case complexity.

Some improvement in efficiency could be achieved by carefully adding some cut
symbols, decreasing the degree of non-determinism. Sato and Tamaki have done some
research!’ which aims at detecting automatically the deterministic features of Prolog
programs and taking advantage of them. A more conventional approach is to use a better
parsing algorithm—one of the simplest, the Cocke-Kasami-Younger algorithm, ' already
has a cubic time complexity.

A serious question concerns our paradigm of making the compression system
independent of the target programming language. Referring to Kowalski,'* an algorithm
consists of a logic part and a control part. In our case, the grammar corresponds to the
logic of parsing, containing almost no control information except those restrictions and
recommendations mentioned in the previous section. A general parser generator which
does not use control information typical of the grammar in question, can hardly compete
in efficiency with a parser made especially for that grammar.

In contrast to compression times, the decompression times in Table I grow almost
linearly, which could also be expected. The times do not include program formatting.

DISCUSSION

The compression gains achieved in our experiments were fairly good, but we want to
emphasize that it is not justified to compare the power of our method with others,
because all information was not preserved about the source programs. The result of
decompression equals the original program only if both are written applying the same
formatting principles. Slight differences in the outlook of the result are usually
unimportant, but, if not allowed, the scanning phase could be changed so that the token
separators are extracted and stored in a special table. References to them, attached to
tokens, would be carried along during parsing, and would occur explicitly in the result.
Comments could be handled in a similar fashion. Hereby, of course, the compression
gain somewhat reduces. However, if the amount of commentary is large, compression
methods designed for plain text could be applied.

Although our compression method is based on syntactic analysis and in principle
reveals syntactic errors, it is not reasonable to use the compression program for that
purpose. We require that the programs to be compressed are syntactically correct. This
restriction 1is not serious, because incorrect programs are not usually stored for long
periods.

Syntax checking is involved, at least partly, in three different tasks: compression,
formatting and compiling. For saving effort it might be worth while to combine these
tasks, so that parsing is done only once. The compressed program can be regarded as an
intermediate code, from which we can proceed in two directions: either recover the
original program (e.g. for making changes) or complete the compilation process. Hence

276 J. KATAJAINEN, M. PENTTONEN AND]. TEUHOLA

the source and compiled versions might be dispensed with, thus increasing the total
space saving.

A problem for possible future work is to determine the minimal size of the parse tree
for a given program and a corresponding grammar. Above we used one compaction
technique: the internal nodes with only one child were discarded. However, we feel that
the resulting tree is by no means minimal. The form of the grammar has a considerable
impact on the size of the parse tree. Another problem is thus, what 1s the optimal form of
a given grammar, with respect to minimizing the parse trees, and how an arbitrary
context-free grammar can be automatically transformed into the optimal form.

Note added in proof. Some further improvement in compression can be achieved by
the following observation. T'wo productions need different labels only if they have the
same left-hand-side non-terminals. During decompression the leftmost non-terminal 1s
known at every moment. Hence, it is sufficient to know which production for that
non-terminal will be used. We will investigate this idea in a future work.

REFERENCES

. F. Rubin, ‘Experiments in text file compression’, Comm. ACM, 19, (11), 617-623 (1976).

. A. Salomaa, Formal Languages, Academic Press, 1973.

. M. Penttonen, ‘Szilard languages are log n tape recognizable’, Elektr. Inf. und Kyb., 13, (11), 595-602

(1977).

4. A. V. Aho and J. D. Uliman, Principles of Compiler Design, Addison-Wesley, 1977.

5. D. H. D. Warren, ‘Logic programming and compiler writing’, Software—~Practice and Experience, 10,
97-125 (1980).

6. W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer-Verlag, 1981.

7. M. van Emden, ‘AVL-tree insertion: a benchmark program biased towards Prolog’, Logic Programming
Newsletter, 2 (1981).

8. P. Vasey, ‘AVL-tree insertion revisited’, Logic Programming Newsletter, 3 (1982).

9. F. G. Pagan, Formal Specification of Programming Languages: A Panoramic Primer, Prentice-Hall,
1981.

10. K. Jensen and N. Wirth, Pascal User Manual and Report (second edition), Springer-Verlag, 1975.

11. T. Sato and H. Tamaki, ‘Enumeration of success patterns in logic programs’, 10th Colloquium on

Automata, Languages and Programming, Lecture Notes in Computer Science 154, Springer-Verlag,
1983, 640-652.

12. M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, 1978.
13. R. A. Kowalski, ‘Algorithm = logic + control’, Comm. ACM, 22, (7), 424-436 (1979).

LN —

