-

Patrern Recegnition, Vol 19, No. 3, pp. 221-228, 1986,
Printed in Great Britain.

0031-3203/86 S3.00+ .00
Pergamen Journals Led.
€ 1986 Pattern Recogniticn Society

COMPUTING RELATIVE NEIGHBOURHOOD GRAPHS
IN THE PLANE

Jyrx1 KATAJAINEN and OLLl NEVALAINEN
Department of Computer Science, University of Turku, SF-20500 Turku, Finland

{Received 2 October 1984; in revised form 15 August 1985)

Abstract—The relative neighbourhood graph (RNG} of a set of N points connects the relative neighbours, i.e.
a pair of points is connected by an edge if those points are at least as close to each other as to any other point.
The paper presents two new algorithms for constructing RNG in two-dimensional Euclidean space. The
method is to determine a supergraph for RNG which can then be thinned efficiently from the extra edges. The
first algorithm is simple, and worksin (N ?) time. The worst case running time of the second algorithm is also
O{N?), but its average case running time is O(N) for points from a homogeneous planar Poisson point process.
Experimental tests have shown the usefulness of the approach.

Graph algorithms
Cell methods

Pattern recognition

1. INTRODUCTEON

Consideraset V = {py, Ps. ... pn} of N distinct points
in the plane given by their Cartesian coordinates. Let p
and g be two points in V and define the lune of p and ¢
as the set

lune(p, g) = {ve R*|d(p,v) < d(p, q)
and d{g, v) < d(p, @)}

where d is the Euclidean distance. Thus lune (p, g)
stands for the interior of the intersection of two circles
with radius equal to d(p, g) centered at p and g (see Fig.
1)

Define the Relative Neighbourhood Graph of V
(denoted RNG(V) or simply RNG) as an undirected
graph, with vertices ¥ and edges E such that

pq e E if, and only if, lune (p, g) n V = &

When the above condition holds, p and g are called
relative neighbours. Figure 2 shows a point set and the
corresponding RNG. The problem studied in this
paper is: given a point set V in two-dimensional
Euclidean space, determine the RNG(Y).

[

Fig. 1. Lune for the points pand g. Point v, belongs and points
v, and v, do not belong to the lune (p, g).

Relative neighbourhood graph

221

Nearest neighbour search

Toussaint!*® discusses the use of RNG in pattern
recognition. In clustering and also in computing
approaches to perception, it is necessary to find a set of
edges which connect some of the given sample points
in such a way that the structure of the point set is
revealed. In clustering the intention is to join the points
of a subset that form a cluster. In computational
perception we need to discover the “skeleton” of the
underlying structure (see Fig. 2). Toussaint gives many
instances where RNG seems to yield a reasonable edge
pattern, though it is also easy to find counterexamples.

Another feature which makes RNG an interesting
structure is the fact that it is closely related to certain
other graphs:'3- 19

{1) the edges of RNG(V) include all the edges of the
Minimum Spanning Tree of V (denoted MST(V);

{2) the edges of RNG(V) are contained in the edges
of the Gabriel Graph of V (denoted GG(Y)); these
edges, on the other hand, are contained in the edges of
the Delaunay Triangulation of V (denoted DT(V)).

MST(V) is defined as a tree containing all the
vertices of V¥ and having the mintmum total sum of the
Fuclidean edge lengths. GG{V) (see also''®) is an
undirected graph with vertices V and edges E such that

pgeE if, and only if, disk (p, q) n V = (&,

P \ v
@ {b)

Fig. 2.(a) A point set and (b) its relative neighbourhood graph.

222

where the disk of p and g, denoted disk {p, g), is defined
as

disk (p, ¢) = {ve R*|d* (p, v)
+d*(q.v) <d*(p, 9}

Further, DT(V) can be defined (see also'™) as an
undirected graph with vertices ¥ and edges E, such
that the edge pq is in E if there exists a circle, passing
through p and ¢, which does not contain in its interior
any other point of V.

RNG can be computed by brute force in O{N?) time,
by checking, for each pair of points, whether one of the
remaining points is in the lune."® Urquhart®? gives
an improved technique for the lune tests, but the worst
case complexity is still O{N?).

The fact that DT(V) is a supergraph of RNG{V) can
be utilized in construction of RNG.!' 16:18.21) The
Delaunay triangulation can be found in O(N log N)
time.+1® By means of the ingenious technigue de-
vised by Supowit'® one can remove from DT the
edges that violate the lune condition in O(N log N)
time. The total running time of the RNG-algorithm is
thus O(N logN), and this can be proved to be
optimal.'® Efforts have been made to speed up the
reduction of DT to RNG by considering only the
neighbouring points of DT in the lune tests,*? but this
technique will only give an approximation of RNG.2%
Toussaint and Menard®" apply the cell (or bin)
technique!’ when constructing DT and testing the
inclusion of the individual edges of DT. If the floor
function can be computed in O(1) time these inves-
tigators have conjectured that for random points,
drawn uniformly from the unit square, the expected
running time of their algorithm is O(N) and the worst
case time is O(N?2).

In the present paper we give two new RNG-
algorithms. The computation is still made in two
stages: first a supergraph of RNG({V) is constructed
and then the extra edges are pruned. We can bypass the
explicit computation of the supergraph and proceed
point by point when finding the edges of the RNG. The
supergraph defined here is called the geographic
neighbourhood graph and we show that it contains a
maximum of O(N} edges. Straightforward implemen-
tation leads to an algorithm whose worst case running
time is O(N?). By using the cell technique we get

Fig. 3. Nearest neighbours in the six sectors.

JvrK1 KATATAINEN and QL1 NEVALAINEN

another implementation for the same aigorithm. The
average running time of the latter is dependent on the
topology of the point set, and for points from a
homogeneous planar Poisson point process the aver-
age running time is O(N).

The paper is organized as follows. In Section 2 we
give the O(N?) RNG-algerithm. In Section 3 we
present and analyse the optimal expected-time RNG-
algorithm. Section 4 summarizes experimental results
and in Section 5 we make some concluding remarks
and indicate open questions.

2, QUADRATIC ALGORITHM

We first define the geographic neighbourhoed
graph and show that it is a supergraph of RNG. We
then show how, by means of this construct, we can
write a simple algorithm which finds RNG for a set ¥
= {Pi. P2 ..., py} of N = 3 points, where each p; is a
point in a two-dimensional space with the L, metric.

Let » be any point in the plane and draw from v six
rays, such that the rays form the angles 0°, 607, .. ., 300°,
respectively, with the positive x-axis (see Fig. 3). The
rays form six regions, numbered counter-clockwise
from one to six. We denote by R,(u) the set of points in
the regioni,i = 1,2, ..., 6.

Further, let p be a point of V and denote by N(p)
those points of V, excluding p itself, that are in the ith
region relative to p. We thus have

Nilp) =V nRdpi{p}, i=12...6

A point g in N{p) is said®* to be the geographic
neighbour to p in the ith region if

d{p, g) = min {d(p, v)|v& N{p)}.

We define the geographic neighbourhood graph of V in
the ith region as an undirected graph GNG(V) = (V,
E;), in which

E; = {pglpe V,d(p, q) = min {d(p, v)jve N{(p)}}.

Thus, each edge in GNG, connects a point and its
nearest neighbour in the /th region. We call the union
of the above graphs the geographic neighbourhood
graph of ¥ and denote it

6
GNG(¥) = { | GNG,V).
i=1

We now proceed to show how GNG can be used to
solve the RNG-problem.

Theorem 1. The relative neighbourhood graph is a
subgraph of the geographic neighbourhood graph.

Proof. Let us suppose that pg is an arbitrary edge of
RNG(V). We claim that pg belongs also to GNG(V).
Now let I be the region containing g when p is taken as
the reference point, i.e. g€ R{p).

But let us suppose that pg does not belong to
GNG(V). Because g € Ry p), this would mean that R,(p)
contains a point » for which d{p, v} < d{p, q). We next
need to show that v € lune {p, g); if we succeed in this we
end up with a contradiction, because we supposed that

Computing relative neighbourhood graphs in the plane 223

L+

L

Fig. 4. A lune and a region.

pg was an edge of RNG(V) and thus by definition lune
{p, q) is empty.

Let us then suppose that ve R{p) is an arbitrary
point for which

d(p, v} < d(p, q), (1)
(see Fig. 4). Now we have in the triangle pvg

d*(v, q) = (d(p, @) — dip, V)
+ 4-d(p, g)- d(p, v) - sin* (2/2),
where o = angle (vpg).

Because the angle between the rays {and /{mod 6) + 1
is 60° we have 0 < o < 60° and thus

dz(l}: Q) < (d(.ps q] - d(Ps UJ)Z
+ d(p, g)-d(p, v) < d*(p,q). (2)

But now by the definition of the lune from (1) and (2) it
follows that v e lune (p, g).

1t should be noted that for the proof of the theorem
60° is the maximum possible angle. If the angle is
greater there is no certainty that all the edges will be
included. A smaller angle will, however, function
correctly, and to facilitate the implementation of the
algerithm we shall use an angle of 45” in our programs.

One matter which must still be determined is the
number of edges in GNG. It may be that a certain
point p has O(N) geographic neighbours. If this is the
case, there are O(N) points on the circumference of a
circle whose centre is p. On the other hand, the number
of edges in GNG is N — 1 for a point set on a straight
ling, To give an upper bound (less than quadratic) for
the total number of edges in GNG we need the
following lemma.

Lemma 1. GNG; (V) is a planar graph.

Proof. Without loss of generality we can consider
only the graph GNG; (V). Let p be an arbitrary point

2 2
Fig. 5. Case 1.

) /A
Y

Fig. 6. Case 2.

of V. We have to show that the edges starting at p and
the edges starting at another arbitrary point g do not
cross. All these edges belong to GNG,, ie. they are
drawn between a point and its nearest neighbour in
region 1. Now we have to consider two cases.

Case 1. Suppose that ge R,(p). Now the edges
clearly do not cross, see Fig, 5.

Case 2. Suppose that g¢ R, (p). Let the nearest
neighbours of p in region 1 be g,, 44, . . ., 4, (see Fig. 6).

(a) If g is in the shaded area of the figure, no
intersection of the edges is possible.

(b) Otherwise the only points that could be geo-
graphic neighbours to 4 in region 1 are g, (if g is in the
area {A), g,, (B) and p (C). In all these cases it will be
observed that the edges of g cannot cross the edges of p.

Theorem 2. For GNG(V) = (V, E),in which | V| = 3,
we have |E| < 18 |V| — 36.

Proof. GNG; is by Lemma 1 a planar graph and thus
it contains a maximum of 3| V| — 6 edges.

procedure RNG, (points V) returns{edges)

E:=3
regions:={1, 2,....8}
for each p; € Vdo
for each k € regions do
nearest_so_farfk]:= =
neighbours[k]: =9
for each g €V \ {p;} do
k:= the region in which q lies relative to p;
if d(p;, q) < nearest_so_far(k] then
nearest so_far(k]:= d(p;, Q)
neighbours(k]:= {q}
elseif d(p;, q) = nearest_so_far[k] then
neighbours[k}: = neighbours(k] U {q}

8
for each p; € U neighbours[k] such that i < j do
k=1

lune_empty:= true
for each g € V\ {p;, p;} do
if q € lune(p;, p;) then
lune_empty:= false

break
if lune_empty then
E:=E U {p, p;}
return(E)
end RNG,

Fig. 7. A quadratic RNG-algorithm.

224

Note that although each GNG,(V){i = 1,2,...,6)is
a planar graph, the same need not be true for GNG(V).

We are now in a position to present our first RNG-
algorithm. The method is simply to find for each point
pof Vits geographic neighbours q,,j = 1,2,.., n,, and
then to check for each edge pg;, whether there is at least
one point g € ¥, such that g € lune (p, ;). The easiest
way to delete the extra edges is to scan all the points of
¥ and check whether one of them is within a lune. The
algorithm is given in Fig. 7.

Because the edges are undirected and we require
each edge to occur only once in RNG, we prevent the
recurrence of the edges, by the “i < f™-test, in the last
but one for-loop.

That the above algorithm works correctly follows
from Theorem 1. The search for the geographic
neighbours demands O{N?) time. From Theorem 2 we
know that the number of edges in GNG is O(N), and
the lune condition test, which takes O(N) time, is
performed for all these edges. Thus the worst case
running time of RNG, is OfN?). The search for the
geographic neighbours can be implemented in N
+ O(1) storage locations. Thus the storage space
needed is 2N for input, 6N for output (RNG is a planar
graph), and N + O(1) for working storage, which
makes a total of 9N + O(1).

3. A FAST EXPECTED-TIME ALGORITHM

The cell technique gives fast expected-time al-
gorithms for many closest point problems.- " As we
shall see, it is also useful when searching for geographic
neighbours. The same technique can be applied,
moreover, when deleting the extra edges from GNG.
What we in fact get is an RNG-algorithm, running in
linear expected time.

Let us suppose that a set of N points is given. To
begin the computation we ascertain the smallest
rectangle which contains the points. The rectangle is
divided by a grid into NV cells (see Fig. 8). Each cell is
implemented as a linear list of the points which
coincide with the corresponding square of the grid. For
the sake of simplicity, we shall hereafter assume that
the points are in the unit square. Then the side length of
acellis ljﬁ . All those cells which are not more than
C, log N cells from the boundary of the unit square are
called outer cells. All the rest are called inner cells. The

= Outer cells
Inner cells:

middle
innermost

(o mmul

]
| o
o

i 2¢, log N
|
j

3 €, log ¥

Fig. 8. Cell organization and spiral search.

J¥RKI KATAJAINEN and OLLI NEVALAINEN

inner cells are divided into two types; middle cells,
which are within 2C, log N layers of the outer cells,
and innermost cells, which are those inner cells that are
not middle cells. The points are also called outer, inner,
middle, and innermost, respectively.

In the case of the inner points, the relative neigh-
bours are searched for by spiral search (see Fig. §). We
visit all cells in the neighbourhood of p in a spiral
manner either until the geographic neighbours are
found in each of the six regions, or until C, log N layers
have been searched through. Let ¢, denote the
distance to the farthest geographic neighbour. During
the search we make a list, G, of all the geographic
neighbours, and a list, L, of the points which may
coincide with a lune of p. The list L then includes all the
points in those cells either contained in or intersecting
the square, with the side length 2-¢_,, and p at the
centre, (see Fig. 9). To delete the extra edges from
GNG, we check for each edge in the list G whether the
points in the list L are within the lune.

The motivation for the above method is that, when
the points are smoothly distributed, the nearest neigh-
bour search demands only O(1) time with the cell
technique.!- °-2* However, when searching for geo-
graphic neighbours in all six regions, the spiral search
will work poorly in the border areas of the square.
(This is not the case with the nearest neighbour search.)
For instance, O(N) work will be needed for the
uppermost point in the square because each cell in the
home-cell row must be visited before the first and third
regions are seen to be empty. For this reason, the inner
and outer points must be handled separately. The
Voroinoi diagram algorithm of Bentley ez al.'!} uses the
same basic idea.

The number of outer points is usually smali, and this
makes it possible to compute their relative neighbours
by an O(N log N) worst case algorithm, called RNG,,
in the program. Supowit’s algorithm’® may, for
example, be used for this purpose,

In our algorithm there is one case where the cell
technique may fail. It can happen that for a particular
inner point C,log N layers are searched through
before the nearest neighbours are found in all six
regions. The point is then said to be open. Otherwise it
is said to be closed. Whether or not there exists an open
inner point can be ascertained very rapidly, and to get
the correct RNG the simple quadratic RNG-
algorithm is used. However, the probability that the

__/

/A

Fig. 9. Square of influerice when testing the lune condition.

Computing relative neighbourhood graphs in the plane 225

procedure R (points V) returns (edges)

E=9

Create the cell structure
all_closed: = true

for each p; e inner_points do

Use spiral search to find one point in each of the eight regions, but give up after C; log N layers if
a point is not found in one or more of the regions

if p; is open then
all_closed: = false
break

if not all_closed then
E:= RNG,(V)

else
for each p; € inner_points do

Use spiral search to find the geographic neighbours of p;
Put the geographic neighbours into list G
Put the points in the square of influence into list L

for each p; € G such thati < j do
lune_empty:= true
for each q € L\{p, p;} do
if q € lune(p;, p;) then
lune_empty:= false

break
if lune_empty then
E:=E U {p, Pj}

E" = RNG,, (outer_points U middle_points)

for each p;p; € E’ such that i<jdo

if p; € outer_points or p; € outer_points then

E:=E U {pip;}
return(E)
end R

guadratic algorithm need to be used is very low, as we
will see. Our second RNG-algorithm is sketched in
Fig. 10.

That the above algorithm works correctly follows
from Theorem 1. It is important to observe that if all
the innermost points are closed, none of the outer
points can have an innermost point as a relative
neighbour. This is because the relative neighbourhood
relation is symmetric. The worst case running time of R
is O(N?). The worst case occurs when all points of V
coincide with a single cell and the points thus form a
linear list, giving O(N) time for the nearest neighbour
searches, cf. Section 2.

Next we show that for uniformly distributed random
points, the expected running time is only Q(N). To be
more precise we suppose that the N points in the unit
square derive from a homogeneous planar Poisson point
process of intensity N.') Chang and Lee®? have
recently published some average case results based on
the same assumption.

Let H(S) denote the number of points in the region S,
and |S] the Lebesque measure (area) of §. It is
characteristic of the homogeneous Poisson process P
of intensity 4 that the distribution of H(S) in every
region S is Poisson with expectation 4-|S[; H(S,), ...,
H(S,,), for disjoint regions S, . . ., §,, are independent; a
set of N random points in a bounded region § is,
moreover, well approximated by the restriction of P to
S for A = N/S|, provided that N is large. These
properties of the homogeneous Poisson process are
formalized in the following lemmas given by Miles.

Lemma 2 (Extreme Poisson Independence Pro-
perty). If §,, ..., S, are arbitrary disjoint Lebesque-

Fig. 10. Algorithm R.

measurable subsets of R?, then H(S)), ..., H(S,) are
mutually independent Poisson random variables, with
expectations 1 |5,], ..., 4|34, respectively.

Lemma 3% Given H(S) = n,and 0 < |S]| < o0,
these n points are independently and uniformly dis-
tributed in §.

The Extreme Independence Property is important
for two reasons. First, it guarantees that the searches
for geographic neighbours are mutually independent
for all points. Second, it shows that nearest neighbour
searches for a point p in the regions i, i = 1,2,...,6,are
independent of each other, and on the basis of this
Leipiild has proved the following lemma in which the
expected length of ¢, is estimated.

Lemma 4% Let p be a point in the plane and A the
intensity of a homogeneous Poisson process. The
expected maximum distance of p and the nearest
neighbours g; to pin the regions £,i = 1, 2,..., 6, isthen
Dﬂ'ﬂ, where D, is constant.

It should be observed that the constant D, in the
above lemma is approximately 2.11, whereas the
expected distance from a point to its nearest neighbour
is 1/{2\/1} and in the region | the expected distance
from a point to its geographic neighbour is \/E/(zﬂ)_

The main findings of this section are summed up in
the theorem below. The idea for the proof has been
taken from'*’ in which a Voronoi diagram algorithm
for uniformly distributed points was considered.

Theorem 3. The average running time for the
Algorithm R is O(N) if the N points in the unit square
are generated by a homogeneous Poisson process of
intensity N.

226

Proof. The creation of the cell structure with

\/N X \/N cells can be performed in (N} time, on
the presupposition that the floor function is an O(1)
operation,

First suppose that all the inner points are closed.
When searching for the geographic neighbours for an
inner point, Lemma 4 shows that the expected length

of ¢, 15 bounded above by DI/\/N. The area of the
square of influence is then (2D,)?/N and the expected
number of cells as well as the expected number of
points are both bounded above by (2D,)*. The search
for the geographic neighbours is restricted to the
square of influence and thus the work (consisting of the
scanning of the empty cells and traversal of the linked
point lists in the non-empty cells), in the average case,
is O{1). Theorem 2 proves that the total number of
geographic neighbours of the N points is O(N), and
each lune test is again restricted to the square of
influgnce which contains a constant number of points
and cells. The lune tests can thus be carried out in an
average time of O{V} and the total running time for the
inner points remains linear to N.

The total area of the outer and middle cells is
12C, log N/ /N — 4(C, log N}}/N and thus the
expected number of points within them is O(/N
log N). Determination of the relative neighbours for
the union of the outer and middle points thus takes
O(\/N log® N} expected time if an optimal worst case
RNG-algorithm is used.

If one of the inner points is open it is necessary to use
an O(N?) algorithm to find the RNG of the whole point
set. Let F{p) be the intersection of the region R;(p) and
the first C, log N layers for a point p, The probability
that p is open with respect to the region i is

e—NIF{n
Because |Fi{p)| = C, log? N/Nforalli = 1,2, ..., 6,
where C, is constant, the probability that some inner

point is open with respect to any of its regions is
bounded above by

6Ne—C: log? N

Now the expected cost caused by the quadratic
algorithm is the probability of its occurrence multi-
plied by its cost, which is bounded by

O(NS -g—Ca log? NJ
= O(N3 . N—C:logﬂ,’an)
= O{NB—Cz ngN/'ln2)’

which is O(1) when N is large.

4, EXPERIMENTAL TESTS

The Algorithm R is somewhat complicated to
implement. If, for example, Supowit’s optimal worst
case algorithm is used, an optimal worst case al-
gorithm for the Delaunay triangulation is also needed.

Jyrkir KatajaiNen and OLLl NEVALAINEN

We therefore propose two simpler implementations
which are theoretically weaker than R, but of practical
significance.

Variant 1: We can handle all the points in the same
manner as the inner points in Algorithm R. However,
in the spiral search we cannot give up searching uantil
either the geographic neighbours are found in each
region, or all the cells are searched through. This will
give us an O(N32 log N) expected-time algorithm. This
estimate is only approximate, because here we suppose
that O(N) work is needed for all the outer points.

Variant 2: Another way of obtaining a practical
algorithm is substitute the quadratic RNG-algorithm
for an optimal worst case algorithm in Algorithm R.
Because the expected number of points in the union of

the outer points and the middle pointsis O(ﬁ log N),
the expected running time of the algorithm will then be
O{N log® N}. The worst case of course remains unchan-
ged in both variants.

We implemented the RNG, algorithm and Variant
1 in Pascal. (The programs are reported in Ref. (6) and
are available from the authors) The results of test runs
performed in a DEC-SYSTEM 20 are summarized in
Fig. 11. The point sets were generated by a pseudo
random number generator, and the running times
shown in the figure are means of ten repetitions. Figure
11 shows that the running time of the modified R is
almost linear. Moreover, RNG; turns out to faster
than the modified R when the number of input points is
less than about 60.

Toussaint and Menard‘?" have reported for their
RNG-algorithm, using the cell method to determine
DT, an observed running time curve very similar to
that of our modified R. Helmid'> gives an implement-
ation of the algorithm of Toussaint and Menard
{(RNGy). In his program DT is computed by the fast
expected-time algorithm of Maus" which is also
based on the cell technique. The running times of
RNG,™ are for the above random point sets some-

RNG,

10 RNG,
modified R

C

-]

E

p

(=1

=

5

x©

ol

| ! I
[¢]o] 200 500

Number of points

Fig. 1 1. The observed running times in s, when test points are
drawn independently, from a uniform distribution in the unit
square for ([]) our quadratic algorithm RNG,, which uses a
distance matrix. (A) the modification of algorithm R, in which
all points arc handled identically. () Helmids implement-
ation of the algorithm of Toussaint and Menard, RNG .

Computing relative neighbourhood graphs in the plane

what longer than those of the modified R, see Fig. 11.
This may be caused by the fact that in our medified R
the RNG is determined more straightforwardly
{avoiding the computation of the Voronoi diagram
or/and the Delaunay triangulation).

The storage space required by our algorithms is
given below.

227

Because RNG is a supergraph of MST, we possess a
technique for solving MST in linear expected time. In
this manner it seems to be possible to write a practical
MST-algorithm. We need not, however, compute the
GNG,; the Eight Neighbours Graph (ENG) suffices.
Yao proved that ENG is a supergraph of MST.?# It is
possible to delete from ENG the edges which do not

algorithm input output working storage total
RNG, N 6N N+ N+ O(l) N H+ON+ O
modified R 2N 6N 4N + O(1) 12N + O(1)

The quadratic working storage of RNG, is because we
keep & matrix of distances between the points. The
algorithm can also be implemented in a linear space
but then the recalculation of the distances slows down
the running times of RNG,: the quadratic variant ran
in a time about 60% that of the linear variant.

5. CONCLUSIONS AND OPEN PROBLEMS

Two new algorithms for computing relative neigh-
bourhood graphs have been suggested. The first is
simple, and has a running time of O(N?). The expected
running time of the second algorithm, for a point set
from a homogeneous Poisson process, is Q(N) and the
worst case time is O(N?). The second algorithm is
therefore unstable. When constructing a supergraph of
RNG, we applied the cell technique and ensured that it
would contain only O{N)edges. The cell technique was
again useful when deleting the extra edges from the
supergraph.

Bentley et al!'' concluded that their *Voronoi
diagram algorithm works in ({N) time also for a very
general class of point distributions. The only precon-
dition is that the distribution should have no strong
peaks. It is the efficiency of the cell organization in the
search for nearest neighbours that effects the rapid
operation of the algorithm, and it seems possible the
same may hold good for our RNG-algotithm.

To achieve O(N) time it was necessary to handle the
outer and inner points differently. This makes the
algorithm unnecessarily complicated, and it would be
interesting to find a simpler algorithm with the same
expected running time.

The worst case of our GNG-algorithm is O(N2).
Would it be possible to find an O(N log N} GNG-
algorithm and by means of this write an O{N log N)
algorithm for RNG? A further open question is
whether it may be possible to discover an O(N log N)
RNG-algorithm whose average running time is O(N).

Generalization of the geographic neighbour techni-
que for higher dimensions is also a possibility. As a
matter of fact, Supowit!!® presented a d-dimensional
RNG-algorithm which uses basically the same techni-
que as RNG,, but he could only guarantee O(N?)
performance on the assumption that no three points
form an isosceles triangle. We found that if isosceles
triangles are permitted, O(N?) performance is attain-
able in the plane, but the question is still open ifd > 2.

FR 19:3-C

belong to RNG. In this way we achieve the intersection
of ENG and RNG, which is a planar graph whose
MST can be computed in linear worst case time."¥
Bentley er al'"! have proposed a fast expected-time
MST-algorithm, which first determines the Voronoi
diagram and then prunes the extra edges. It is our
intention to compare these two approaches in a later
study.

Acknowledgemeni—The authors wish to thank Timo Leipild
for his valuable advice concerning the subject of this paper.

REFERENCES

1. J. L. Bentley, B. W. Weide and A. C. Yao, Optimal
expected-time algorithms for closest point problems,
ACM Trans. math. Software 6, 563580 (1980).

2. R.C.Chang and R. C. T. Lee, The average performance
analysis of a closest-pair algorithm, Int. J. Comput. Math.
16, 125-130 (1984).

3. R. C. Chang and R. C. T. Lee, On the average length of
Delaunay triangulations, BIT 24, 269-273 {1954).

4. D. Cheriton and R. E. Tarjan, Finding minimum spann-
ing trees, SIAM J. Comput. 5, 724-742 (1976).

5. A. Helmid, Delaunayn kolmiointi ja siitd johdettu suh-
teellisen vierekkéisyyden graafi, M.Sc. thesis, Depart-
ment of Computer Science, University of Turku, Finland
{1985).

6. J. Katajainen and Q. Nevalainen, Three programs for
computing the relative neighbourhoed graphs in the
plane, Report D29, Department of Computer Science,
University of Turku, Finland (1985).

7. D. T. Lee and B. J. Schachter, Two algorithms for
constructing a Delaunay triangulation, fnt. J. Comput.
Inf. Sc¢i. 9, 219-242 (1980).

8. T. Leipild, Private communication, 4 March 1985,

9. T. Leipild and O. Nevalainen, On the dynamic nearest
neighbour problem, RAIRO Informatigue/Comput. Sci.
13, 3-15(1979).

10. D. W. Matula and R. R. Sckal, Properties of Gabriel
graphs relevant to geographical variation research and
clustering of points in the plane, Geogr. Anal. 12, 205-222
(1980).

11. A. Maus, Delaunay triangulation and the convex hullof
points in expected linear time, BIT 24, 151-163 (1984).

12. R. E. Miles, On the homogeneous planar Poisson point
process, Math. Biosci. 6, 85-127 (1970).

13. J. O'Rourke, Computing the relative neighbourhood
graph in the L; and L metrics, Pattern Recognition 15,
189-192 (1982),

14. L. A. Santalo, Integral Geometry and Geometric Proba-
bilizy. Addison—Wesley, Reading, MA (1976).

15. M. I. Shamos, Computational geometry, Ph.D. thesis,
Yale University, New Haven (1978).

228

16.

17.

18.

19.

20.

JYRKI KATATAINEN and OLLI NEVALAINEN

K. I. Supowit, The relative neighborhoed graph, with an
application to minimum spanning trees, J. ACM 30,
428--448 (1983).

M. Tamminen, Metric data structures—an overview,
Report HTKK-TKO-A2S5, Laboratory of Information
Processing Science, Helsinki University of Technology,
Finland (1984).

G. T. Toussaint, The relative neighbourhood graph of a
finite planar set, Pattern Recognition ¥2, 261-268 (1980).
G. T. Toussaint, Pattern recognition and geometrical

complexity, Proc. 5th Int. Conf on Pattern Recognition,

Miami Beach, pp. 1324—1347 (1980).

G. T. Toussaint, Comment on “Algorithms for comput-
ing relative neighbourhood graph™, Electronics Lett. 18,
860-861 (1980).

24

22.

23.

24,

G. T. Toussaint and R. Menard, Fast algorithms for
computing the planar relative neighborhood graph, Proc.
Sth Symp. on Operations Research, Kéln, pp. 425-428
{1980).

R. B. Urquhart, Algorithms for computation of relative
neighbourhood graph, Electronics Lett. 16, 556-557
(1980).

B. W. Weide, Statistical methods in algorithm design and
analysis, Ph.D. thesis, Carnegie-Mellon University,
Fittsburgh (1978).

A.C. Yao, On constructing minimum spanning trees in k-
dimensional spaces and related problems, SIAM J.
Comput. 11, 721-736 (1982).

About the Author—JvrK1 KATAJAINEN was born on 30 December 1957 in Turky, Finland. He was awarded
an M.Sc. (Mathematics) by the University of Turku in 1980, completed his Licentiate in Philosophy
(Computer Science) in 1983 and is currently preparing a Doctorate in Computer Science. He has worked
since 1979 at the University of Turku. His current research interests include computational complexity,
network algorithms and computational geometry. He is a member of the European Association for
Theoretical Computer Science and the Finnish Society of Information Processing Science.

About the Author—OLLI NEVALAINEN was born on 30 April 1945 at Kankaanpid, Finland. He took his M.Sc.
{Applied Mathematics) at the University of Turku in 1969, was awarded his Licentiate in Philosophy
(Applied Mathematics) in 1973 and a Doctorate in Computer Science in 1976. He has worked since 1968 at
the University of Turku. His current research interests include analysis of algorithms, data structures and
data compression techniques, He is a member of the Finnish Society of Information Processing Science.

