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Abstract. An application of the bucket sort in Kruskal’s minimal spanning tree algorithm is
proposed. The modified algorithm is very fast if the edge costs are from a distribution which is
close to uniform. This is due to the fact that the sorting phase then takes for an m edge graph
an O(m) average time. The O(m log m) worst case occurs when there is a strong peak in the
distribution of the edge costs.

1. Introduction

Let G = (N, E) be an undirected connected graph, N being the set of vertices
and E the set of edges. Further let E' < E. Then the subgraph T = (N, E’) of G is
a spanning tree of G if and only if T is a tree. Let us suppose that a cost or weight
c(e) is associated with each edge e € E. The minimal spanning tree problem is then
to find a spanning tree 7, for which the sum of the costs

C(T)= Y cle)
esT
is minimal. In the following we denote n = |N| (the number of vertices in the graph)
and m =|E| (the number of the edges).

The implementation of the well-known minimal spanning tree algorithm of
Kruskal [7] is discussed in this paper. The impulse to this study arose from the
work of Haymond, Jarvis and Shier [6] who gave an efficient implementation of
Prim’s algorithm. The so-called address calculation sort [9] is used in their algorithm
to aid the selection of new candidate edges to be included in the spanning tree.
The experimental tests are promising for the algorithm but it contains the limitation
that the edge costs are (or must be mapped to) natural numbers from a limited range.

In the present paper we show how a distribution dependent sort method can be
used also in Kruskal’s algorithm. Instead of the address calculation sort we shall
use the hybrid sorting technique discussed by Meijer and Akl [11]. The technique
is more general than the former one and strong theoretical resuits on the average
time complexity are available [1].
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The overall plan of the paper is to give a description of the new algorithm in
Section 2; to consider the time complexity of the average and worst cases in Section
3; and to give some experimental results in Section 4. Finally in Section 5 we
shortly describe the application of hybrid sorting techniques in other graph
problems.

2. A modified Kruskal’s algorithm

Kruskal’s minimal spanning tree algorithm uses the greedy method where the
edges are considered in increasing order of the costs and included in the set T of
the selected edges if the edges in T do not form a cycle also after the possible
inclusion. The step of selecting an edge is repeated until n —1 edges are included
in T. Then T forms the wanted minimal spanning tree of G. The basic fcrm of the
above algorithm is the following [7]:

procedure Kruskal:
{This program constructs the minimal spanning tree T for a connected
n-vertex graph G(N, E)}
begin
T:=0;'
while | T|<n —1 do begin
Select an edge e’ of lowest cost from E;
Delete e’ from E;
if T U {e'} does not contain a cycle then T:=T u{e'};
end;
end.

The choosing of an edge of lowest cost is usually accomplished by forming a
min-heap of the edge costs. Thus the sorting of all edges can possibly be avoided.
Determining whether the inclusion of a candidate edge would create a cycle in T’
can be seen as a UNION-FIND problem and it can be solved for example by using
one of the possible tree structures as the data structure in the algorithm. One such
is the algorithm which makes Quick Merge with Weighting rule in UNION and
Collapsing rule in FIND (abbreviated hereafter QMWC) [71.2

' 9 denotes an empty data structure and also an empty set.

2 The data structure used to represent a subset of vertices, forming a connected component of T, is
a rooted tree, the root being a special vertex of the subset. Let T(i) denote the tree that currently
contains the vertex i. Let i and j be two vertices of N. The QMWC-algorithm performs UNION- and
FIND-operations as follows:

FIND(i) (Determine the connected component containing the vertex /): Move along the father links
to root(T (i)). After this apply the collapsing rule: if j is a node on the path from i to root(T(i)) then
set father(j):=root(T (i)).

UNION(, j) (Join the connected components containing the vertices i and j): Find root(T(i)) and
root(T(j)). Then apply the weighting rule: if the number of nodes in T'(j) is less than the number in
T (i), make root(T (i)) the father of root(T(j)). Otherwise make root(T(j)) the father of root(T(i)).
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Let us take another look at the search for the minimal edges. Denote by min
and max the minimal and maximal edge costs and suppose that both are finite. We
divide the range [min, max] into b intervals of equal length and give the intervals
the indexes 1,2, ..., b. The edge e, the cost of which is c(e), is associated with the
bucket j(e), where

fle)=| ST |1,

max —min

The edges belonging to the same interval j form a bucket denoted by E(j). In the
minimal spanning tree algorithm we first group the edges of E into buckets by the
above formula. Thus instead of one large set E of the edges we now have a
partitioning E = E(1) UE(2)u- - - U E(b) of it. If the distribution of the edge costs
is sufficiently close to uniform, the number of empty buckets is not large.

When choosing the minimal cost edges, the first non-empty bucket E(j) among
the buckets E(1), E(2), ..., E(b) is considered; a min-heap H (j) of the edge costs
is constructed for E(j); minimal elements are removed from the heap and added
to the spanning forest until the heap becomes empty or the minimal spanning tree
T is ready. In the first case the next non-empty bucket is searched for and the
same selection process is repeated.

The above gives a new form for Kruskal’s algorithm:

procedure Our-Kruskal:

begin
Determine the minimal and maximal costs of the edges in E;
Group the edges of E into buckets E(1), E(2),...,E(b);

T:=9;
Put each vertex of N into a singular set;
j=0; H(j)=0;

while |T|<n —1 do begin

if H(j) =( then begin
Select the next j for which the bucket E () is non-empty;
Form a heap H () for E(j);

end;

Select the minimal cost edge ¢’ = (i, v) from E(j);

Delete ¢’ from H (j);

if FIND(u) # FIND(v) then begin

T=Tule'};
UNION(FIND(u), FIND(v));
end;
end;
end.

A clearcut method to form the buckets is to link the elements, describing the
edges, in the same bucket to form a linear list and to use an array of list heads
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which point to the front of the lists. Note that this is not the only possible storage
organization. One could for example count the edges in each bucket and then
reorganize them according to the counts, cf. the method of Math Sort [5]. It is also
possible to arrange the edges by making a chain of exchange operations, see [12].

There is more than one way of processing with the min-heaps. Firstly, when
constructing a min-heap of a new bucket it is unnecessary to include into the bucket
an edge which will cause a cycle in a connected component constructed so far. The
appearance of a cycle can again be recognized by performing the FIND-operations
for the two end points of the edge. In the following we suppose that the edges
forming cycles are excluded at the moment of constructing the heaps.

Secondly, let us consider the operation of removing the smallest edge from the
current heap. Here the edge appearing as the last element of the heap is moved
to the place of the element just removed and then moved down to its right position
in the heap. Kershenbaum and Van Slyke [8] considered a single heap-organization
and proposed an improvement for this operation: when removing the last edge it
is checked whether it would form a cycle in the current forest. In that case they
delete the edge and consider the next last element. In our algorithm the use of
buckets aims at the creation of several small heaps. Although the technique of
Kershenbaum and Van Slyke is theoretically appealing our tests indicated that it
increases the total overhead at least for uniformly distributed costs. Thus we have
not implemented it in our algorithm. However, the algorithm is only ca. 4 percent
faster than if the technique were in use. So, the technique of Kershenbaum and
Van Slyke would be advantageous in the case where the distribution of the edge
costs is very irregular.

3. Analysis

. Let us first consider the running time of min-heap operations while constructing
the heaps and removing the candidate edges. It may happen that almost all edges
hit a single bucket and the last edge which will be added to T is the very largest
one in E. Then there exists a very big heap from which all elements are to be
removed. Thus in the worst case the time used for selecting the edges is O(m log m)
which is the same as when sorting by heapsort. This is true also for the original
Kruskal’s algorithm.

The expected running time used for the heap operations depends on the distribu-
tion of the edge costs. It was shown in [11] that the bucket sorting technique works
in O(m) time for uniformly distributed random numbers and for a wide class of
smooth distributions. (It is demanded that the distribution function f(x) of the edge
costs fulfils the conditions: f(x) =0 for xZ[ p, q] where q and p are is fixed and f(x) is
finite. A still wider class of distributions is given in [3].) In the selection of the
edges we essentially sort a subset of the edges by bucket sort and thus for these
distributions the expected selection time is O(m).
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Let us next take a look at the FIND- and UNION-operations. We supposed that
these are done by the QMWC-algorithm. It has been shown [13] that if ¢(m’', n)
denotes the worst case time required to process an intermixed sequence of m'=n
FINDs and n —1 UNIONSs then

ki-m'-am' n)y<tim' n)<k, -m'-a(m', n)

for some positive constants k; and k,. Here a(m’, n) is a very slowly increasing
function for which i <a(m’, n)<3 for all practical values of m’ and n. Now we
have m'<4m because the initialization of the heaps is preceeded by at most 2m
FIND:s and possibly we have to remove all m edges from the heaps. Thus the worst
case running time of the QMWC-algorithm in Kruskal’s method is still almost
linear on m.

The question on the average running time of the QMWC-algorithm in a minimal
spanning tree algorithm seems to be difficult. The sequence of operations when
introducing new edges to the spanning forest determines the growth of the subsets
and if we want to determine the average running time we must fix the set of graphs
for which we are solving the problem.

Yao analyzed in [16] several UNION-FIND algorithms in the case of the so-called
random spanning tree model. He estimates the running time of a sequence of the
equivalence operations ‘i =;”’, which means an operation of the form

“if FIND(i) # FIND(;) then UNION(, j)”.

He defines the distribution of the input sequence by defining an ensemble I" of
instruction sequences and assuming that every sequence in I” is equally likely to
occur:

Fz{(il":'jh iZE].21 ceey in«lsjn<1)lthe edges (il; jl)v (i27 j2)1 ey (in—la jn*l)

form a spanning tree on the vertices {1,2, ..., n}}.

Then the QMW (the Quick Merge with Weighting rule) and thus also QMWC
runs in an expected O(n) time. But now if m, the number of edges in the graph,
is n — 1 the spanning tree found in this way is also minimal. In the special case that
additionally the edge costs are from a smooth distribution with short tails, the
modified Kruskal’s algorithm runs in an expected O(m) time.’

3 Yao has also studied another model, called the random graph model, to make the equivalence
operations. Here a sequence of distinct random edges are introduced into the graph consisting initially
of n vertices and none edges. Knuth and Schénhage [10] have shown that for the QFW-algorithm
(Quick Find with Weighting rule, where the sets are linearly linked lists) the average running time to
do the UNION-operations until the graph is connected is O(n). Thus the result can be interpreted as
a spanning tree of a complete graph if the edges which form a cycle are rejected. On the other hand
Yao has shown that the average running time of QFW and QMW is the same for this model when
m =n — 1 but the case of a complete graph is not explicitly treated. Thus the average running time of
the QMW C-algorithm remains undetermined for a general m.
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A straightforward implementation of Kruskal’s algorithm needs a storage space
for the edges, costs and for the minimal spanning tree. For the QMWC-algorithm
we need the size of each equivalence tree and the father links. The size can be
stored as negative in the father link of the root. The total storage space is thus
2m+m+2n+n =3m+3n.

In our implementation of Kruskal’s algorithm we have additionally to form the
buckets. The running time depends on 4, the number of buckets. The experiments
(see Section 4) indicate that b =m/10 is a reasonable selection. Then we need
m/10 list heads, an array of m links, and an auxiliary array of the length m for
the heaps. The total storage space needed by the algorithm is thus about 5.1m +3n
storage locations.

4. Profiling the running time

To determine the actual running time of the new algorithm we used the model
for generation of random graphs described by Haymond, Jarvis and Shier [6]. Here
we first fix n and m and randomly connect the n vertices by n — 1 edges. This is
done incrementally by considering a set §(j) ={1, 2, ..., j} of vertices and connect-
ing the vertex j+1 to a vertex k selected randomly from S(j). Secondly, we add
the remaining m —(n — 1) edges to the connected graph with n — 1 edges randomly
without repetitions. Finally, we associate costs drawn from a given distribution to
the existing edges.

The two versions of Kruskal’s algorithm were written in Pascal and all tests were
performed in a DECSYSTEM-20 with a KL10 processor during a low period of
the computer usage. The original Kruskal’s algorithm was implemented in the form
presented by Kershenbaum and Van Slyke [8].

As a first step, we wanted to test the effect of the parameter b, the number of
buckets, on the running time of the modified Kruskal’s algorithm. Table 1 shows
for uniformly distributed edge costs the dependence of the observed average running
time on the selection of b. It is observed that the running times do not change very

Table 1
The running times of our algorithm in milliseconds as a function of the number of buckets (b). The
values are means of ten graphs (n = 200) with uniformly distributed edge costs

b

m 100 200 400 600 800 1000 1200 1600 2000 2400 4800 9600 14400

1990 146 137 136 134 135 133 136 139
9950 368 358 357 360 359 364 369 367 373 385 401
17910 627 576 563 563 566 569 571 585 587 595 616 627
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radically when changing 5. A selection b =m/10 seems to be reasonable and we
use this in what follows. When sorting uniformly, normally or negative exponentially
distributed random numbers the best selection of » was ca. 5 [12]. This result is
in sound with the results of Table 1: in Kruskal’s algorithm some of the edges are
deleted already at the time when constructing a heap. Thus the heaps are in many
cases smaller than the buckets from which they originate.

Table 2 shows the results of some test runs with uniformly distributed random
costs. The values in Table 2 are means from ten repetitions. The results clearly
indicate the power of bucket sort. In comparison to the straightforward version of
Kruskal’s algorithm the observed running time is reduced when using the new
implementation and the reduction is the better the more edges we have in the
graph. For the original Kruskal’s algorithm the FIND-operations with QFW gave
somewhat better running times than with QMWC. Note that the same observation
was reported also by Haymond, Jarvis and Shier [6]. For our-Kruskal QFW and
QMWC seem to give quite similar running times, see Table 2. (A statistical analysis
of the differences was not performed.) The running times seem to be linear on m
when our-Kruskal with QMWC is in use.

For the purpose of comparison we have also solved the same problems by the
Whitney’s publication of Prim’s algorithm [15], see Table 2. This algorithm is
written in FORTRAN and it should be noted that in the case of our compilers the
FORTRAN versions of the same program tend to be somewhat faster than Pascal
versions. Of the three spanning tree algorithms the Prim’s algorithm was fastest
for large m. Note that the two algorithms apply different organizations of the
storage. In Kruskal’s algorithm the graph is given in sequential list form whereas
in Prim’s algorithm the adjacency matrix is used for. The running time of Prim’s
algorithm is for a fixed n independent on m.

We made also some test tuns with normally distributed edge costs. The graphs
were exactly the same as before but costs were generated independently from a
normal distribution with mean 0 and standard deviation 500. In the first set of test
runs negative costs were allowed. Then the performance of our algorithm was
almost as good as with uniformly distributed costs. In the second set of runs only
positive costs were allowed i.e. we generated real numbers from the normal
distribution mentioned above and take the absolute values of these numbers. Now
the buckets with low indexes become much larger than the others. The perfor-
mance of our algorithm was now somewhat weaker than in the uniform case, see
Table 3.

Finally, we generated sparse connected graphs of grid type. The vertices of a
_ graph are placed at random on the rectangular grid {(x, y)|x,y =0, 1,2, ..., 999}.
Edges are generated randomly as before but the cost of an edge is now the Euclidean
distance between the end points. The results of test runs are shown in Table 4.
The bucket version is also here much faster than a single heap version of Kruskal’s
algorithm.
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Table 3

Thve observed average running time of Kruskal’s algorithm with bucket sort in milliseconds for
uniformly distributed and for normally distributed edge costs

m
n =200 199 1990 5970 9950 13930 17910
Uniform OUR 56 131 234 339 449 588
Normal OUR 59 149 250 367 498 593

Table 4
The running times of Kruskal’s algorithm (KRU) and Kruskal's algorithm with bucket sort (OUR) in
milliseconds for sparse connected graphs (m = 3n) of grid type

n

100 200 300 400 500 600 700 800 900 1000
KRU 80 201 348 540 724 976 1224 1536 1870 2219
OUR 50 97 147 194 253 309 363 411 465 525

5. Shortest route problems

The minimal spanning tree problem is not the only problem in graph theory
gaining advantage of the bucket search methods. One such problem is that of
determining the shortest routes from a given start point (point 1) to each other
point of a directed network [2,4]. One of the methods to solve this problem
(Dijkstra’s method) reaches new points thru the point which is on the minimal
temporary distance from the point 1. This so-called label setting method sets the
distance (label) of each point exactly once and needs some means to choose the
point for which the path to point 1 is shortest. Also here a min-heap can be used
for the selection. For a graph with edge costs attaining integers as their values Dial
et al. [4] have applied the address calculation sort in the place of a heap, cf. [6].
The practical tests have revealed that the method is fast when the edge costs are
from a reasonable range but it may waste space. For large random graphs with
edge costs from a limited range the observed running times have been very promising
but for graphs with a low number of edges the time is weaker than that of so-called
label correcting techniques [4].

When the edge costs attain real numbers as their values Denardo and Fox [2]
have used a bucked scheme resembling that of our paper. As noted above the node
which is closest to the point 1 is selected for the point of the continuation in the
label setting method. The labels can therefore be divided in a number of buckets



An implementation of Kruskal’s minimal spanning tree algorithm 215

according to their values. This is much alike our approach but because the minimal
and maximal values of the labels in the buckets (or in the heap) are gradually
growing the buckets move ‘to right’. This is achieved by making the bucket heads
to form a circular list. This makes the management of the data structure more
complicated than in the present paper where the top of the bucket area is static.
On the other hand no cumbersome set operations are needed in the shortest route
algorithm. Denardo and Fox have also generalized the same idea to a k-level bucket
scheme for which they have given nice theoretical results of the worst case running
time.

In practical tests [2] with a class of random grid networks with Euclidean distances
the 1- and 2-level systems showed to be slower than a method based on label
correcting. The opposite is true when the distances are taken from a truncated
normal distribution. Because the selection of the nodes with the minimal distances
greatly resembles the basic step in the bucket sort [12] one might expect that the
1-level organization is mainly of its simplicity the fastest in practice. Therefore it
might be interesting to make a further study of the 1-level bucket system of Denardo
and Fox and try to answer to questions like; what is the expected running time of
the algorithm for a certain class of random networks; how to manage with a small
amount of storage space; and how to update the buckets economically.

6. Concluding remarks

The use of bucket sort in Kruskal’s minimal spanning tree algorithm was discussed.
The motivation of the new method was to decrease the size of heaps by which the
selection of the minimal cost edges is done. For graphs with uniformly distributed
edge costs the new method is capable of reducing the running time of Kruskal’s
algorithm. On the other hand it is easy to construct a graph for which all except
one of the edges fall into the same bucket and the method degenerates to the
original one (with O(m) extra work).

It was shown that in a very special case the expected running time is O(m). The
question is open for a general m. At least the experimental results give a reason
to try to prove the linearity.

Weide [14] has proposed in a bucket sort use of an empirical cumulative distribu-
tive function to smoothen the distribution. We performed also some test runs with
a bucket management algorithm of this kind but the observed running times suffered
from the more complicated program code.

One can also apply the bucket sort technique in Prim’s algorithm. The overall
organization of the program is then the same as described by Haymond, Jarvis and
Shier [6]. In the place of the synonym lists and the fixed mapping function we
have a data structure similar to that in Section 2. Now the difficulty lies in the
dynamic nature of the buckets. New edges may occur also in buckets which have
already been bypassed. In addition because the number of edges in the bucket area
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varies it is difficult to determine an appropriate value for the parameter b. We
implemented also this variation and used in the tests the parameter value 6 =n/2.
For very sparse graphs the bucket version of Prim’s algorithm was the fastest of
the algorithms studied in this paper whereas for dense graphs it gave very weak
results.
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