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FAST SIMULATION OF TURING MACHINES BY
RANDOM ACCESS MACHINES*
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Abstract. We prove that a T(n) time-bounded, 5(n) space-bounded and {/(n) output-length-bounded
Turing machine can be simulated in O(T(n)+ (n+ U{n)) log log S(r)}) time by a random access machine
{with no multiplication or division instructions) under the logarithmic cost criterion.
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1. Introduction. In the theory of computation one uses both the Turing Machine
{(TM) and the Random Access Machine (RAM) as standard models of effective
computing (see e.g., [1]). Whereas the models are vastly different in detail, it is well
known that the machines are “equivalent” in computational strength. More precisely,
one can show that the machines are polynomially related in the sense of computational
complexity theory (see [1, § 1.7] or [2]}: a TM can simulate a RAM in O(T{#)?) time
and a RAM can simulate a TM in O(T(n) log T(n)}) time, where T{n) is the time
complexity of the simulated machine and RAMs are assumed to use the so-called
logarithmic cost criterion. In the result, RAMs are assumed without explicit “single”
multiplication or division instructions in their instruction set. Slot and van Emde Boas
[15] have shown that TMs and RAMSs can simulate one another within only a constant
factor of extra space.

When we speak of the simulation of one machine by another, we require that on
the same input the latter machine produce the same output as the former one. In
general, the simulating machine passes through an analogous computation, but it may
also contain some auxiliary computations intermixed. These auxiliary steps are, of
course, included in the complexity of the simulating machine.

Several studies have attempted to refine or lower the simulation costs between the
two models, especially for the case of simulating RAMs by TMs (see e.g.. Wiedermann
[16] for some recent results). In this paper we consider the efficient simulation of TMs
by RAMs. Let T(n) denote the time complexity, S$(n} the space complexity and U(n)
an upperbound on the length of the longest output on inputs of length n. The following
results are known.

THeorem A (Folklore, see e.g..[1, §1.7]). A TM can be simulated in
O(T(n)log S(n)) time by a RAM (with no multiplication or division instructions) under
the logarithmic cost criterion.

THeoreM B (Paul [11, §3.3]). A TM can be simulated in O(T(n)+nlogn+
U(n) log T(n)) time by a RAM (with no multiplication or division instructions) under
the logarithmic cost criterion,

Theorem B shows that TMs can be simulated by RAMs with no essential time-loss
provided T(n)=n-logn and U(n}=T(n)/log T(n). Note, however, that [11, § 3.3]
assumes stronger RAMs with shift instructions, that is (multiplication and) division
by 2. Related results are also found in literature: Dymond and Tompa [4] proved that
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a TM can be simulated in time v T(n) by a parallel RAM. Hopcroft, Paul and Valiant
[7] simulate a TM in time T{n)/log T(n) by a unit-cost RAM. Robson [13] speeds
up a TM computation by a probabilistic RAM.

In this paper we improve Theorem A to Theorem C as follows.

TueoreMm C. A TM can be simulated in O{T{(n) loglog S{n)} time by a RAM
{with no mulriplication or division instructions) under the logarithmic cost criterion.

We also can improve Theorem B to Theorem D as follows.

THeEOREM D. A TM can be simulated in O{T{n)+{(n+ U(n)) loglog S(n)) time
by a RAM (with no multiplication, division or shift instructions) under the logarithmic
cost criterion.

This is, indeed, an improvement of Theorem B because in the case logn<
log log §(n), T(n) is the dominating term. This theorem improves also Theorem C,
because T(n)=n and T(n)= U{n). None of the results assume that T{n), §(n) or
LV (n) are constructible.

As an example of the use of Theorem C we mention the following corollary.

CoroLLARY E. Any linear time TM can be simulated in O(n log log n) logarithmic
time by a RAM {with no multiplication or division instructions).

It follows that e.g. the reversal of a string of » inputs can be output by a RAM
in Of{n log log n) units of logarithmic time. We can apply the above corollary also to
the string-matching problem, where the task is to find all occurrences of a given pattern
of length m from the text of length n, m = n. The string-matching can be done in O(n)
time on a TM as shown by Fischer and Paterson [5] (see also [6]), and therefore in
O(n log log n) units of logarithmic time on a RAM.

In language acceptance the size of the output is constant. Hence, by Theorem D
we also have

CoroLLARY F. Any language accepted by a T(n) time-bounded, S(n) space-
bounded TM can be accepted in O(T(n)+ nloglog S(n)) time on a RAM.

The paper is organized as follows. In § 2 we recapitulate some basic definitions.
In § 3 we prove Theorem C and Theorem D. Finally, in §4 we discuss how these
improvements were achieved and how the results could probably be improved further.

2. Machine models. We define TMs and RAMs such that they appear as instances
of the same abstract model, following the guidelines of [14]. The machines have very
similar input, output and control structures, but differ in the structure and the use of
the memory. The definition of TMs and RAMs is included to fix the particular
instruction sets.

2.1. Turing machines. We describe the “parts” of a Turing machine without much
formal notation. We assume that the input, output and work-tape alphabet is {0, 1}
and refer to the individual symbols as bits. A {multitape} TM consists of the following
parts (compare [1, § 1.6]):

(i) a one-way read-only input tape, containing a bit string followed by an
endmarker #.
{(ii) a one-way write-only output tape, where a bit string will be written.

{iii} k two-way read-write work-tapes (*‘memory”), containing bits in successive
memory cells. The tapes are two-way infinite. On each tape there is a separate read-write
head that can be activated for reading, writing or moving one tape-cell to the left or
to the right. '

(iv) a TM program, which is a finite sequence of labelled or unlabelled instructions
from a fixed instruction set (see below). No two instructions should carry the same label.

The instruction set of a TM contains eight instruction types:
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{1) input Ay, A;, A, causes a “‘next” input symbol « to be read, and the input
head moves one cell to the right (except on #). Depending on whether o is 0, 1 or
4, control is transferred to the instruction with label Ay, A, A,.

(2) output 8: causes a bit 8 to be output, and the output head moves one cell to
the right.

(3) jump A: transfers control to the instruction with label A.

(4) halt: halts the program.

(5) head i: activates the read-write head on the ith work-tape (1=i=k}. Only
one read-write head will be active at a time.

{6) write B: causes a bit 8 to be written in the tape-cell designated by the active
read-write head.

(7) branch Ay, A,: causes the bit B to be read from the tape-cell designated by
the active head. Depending on whether 8 is 0 or 1 control is transferred to the instruction
with label A, or A;.

(8) move & (with & € {L, R}): moves the active read-write head one cell to the left
or to the right depending on whether & is L or R.

We assume that initially all work-tapes contain 0 in every cell, and that head 1 is
active. The computation starts from the first instruction and thereafter the instructions
of a program are executed in their successive order unless a jump instruction orders
otherwise.

The time complexity T(n) of a TM is the largest number of instructions executed
in halting computations on inputs of length n. The space complexity S(n) is the largest
number of cells occupied on any work-tape in halting computations on inputs of length
n. The output complexity U(n) is the length of the longest output produced in halting
computations on inputs of length n.

Because a TM with a two-way infinite tape can be simulated by a TM with a
one-way infinite tape in real time (see e.g..]8§, § 7.5]), we shall assume that the work-tapes
of a TM are one-way infinite, say infinite to the right. Initially all read-write heads are
positioned on the leftmost cell of their work-tape. By the standard construction used
in the above simulation [8, § 7.5], we can further assume that a read-write head is
never moved off the left end of the work-tape. (Thus the computation is stopped by
a halt instruction, not by the fall of a read-write head.) Although in the construction
the tape alphabet is enlarged, it is straightforward to return into the binary alphabet
{see also (8, § 7.8]).

2.2. Random access machines. In describing the random access machine, we only
emphasize the parts that are different from those of a TM. Parts (i} and (ii} are very
similar for a RAM but instead of (iii} one has the following set-up (compare [1, § 1.2]):

(iii’) a special register called the accumularor (AC) and a countable sequence of
ordinary registers (‘memory’’) indexed by the nonnegative integers (used as addresses).
Each register can hold an arbitrary nonnegative integer in binary notation. Only data
stored in the AC can be operated upon.

A RAM program is defined as in (iv), but the instruction set of a RAM differs
from the instruction set of a TM. In instructions, the contents of register j are denoted
by {j}. The instruction set of a RAM contains twelve instruction types:

{17-(4’): similar to the instructions (1)-(4) of a TM.

{5') jzero A: transfers control to the instruction with label A if (AC)=0, and
continues to next instruction otherwise.

(6') load =j: loads the integer j into AC.

(7) load j: loads {j} into AC.
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(8") load *j: loads ({j}) into AC (“indirect addressing”).
(9) store j: stores {(AC) into register j.

{10") store *j: stores {AC) into register {j).

(11"} add j: adds {j) to the current value in AC.

(12"} sub j: subtracts {j) from the current value in AC. In order to keep the

contents of the AC nonnegative, we assume that subtraction is proper, i.e.,
the result is 0 whenever (AC) = {j).

We assume that all registers, including the AC, initially contain 0. Memory need
not be used contiguously.

We do not simply count the number of instructions executed in a RAM program
but use the so-called logarithmic cost criterion: the “time” charged for an instruction
is equal to the sum of the sizes (in bits) of the integers (addresses and data) involved
in its execution. Note that the size of a positive integer m is [log (m +1)]~ log m, and
the size of zero is 1. The time complexity T{n) of a RAM is the largest amount of time,
measured according to the logarithmic cost criterion, used in halting computations on
inputs of length n. See Slot and van Emde Boas [15] for notions of space complexity
for RAMs.

It will be convenient to use various extensions to the basic RAM instruction set,
provided that the execution time is adequately measured by the logarithmic cost
criterion. By using subtractions and a trick introduced in {13, pp. 495-496], one can
easily show that this is the case for comparison instructions, It should be noted,
however, that the properness of the subtraction operation is not needed anywhere in
the subsequent proofs because we always know which of the two operands is greater.
Also in some algorithms it is convenient to have a RAM with k separate memories (or
arrays as called by Cook and Reckhow [2]), k> 1, each consisting of a countable
sequence of registers indexed 0,1, 2, - - - . We call this a “multimemory” RAM.

LemMa 2.2.1. Every T(n) time-bounded multimemory RAM can be simulated in
O(T(n)) time by an ordinary RAM.

Proof. The technique was essentially given in [2]. The idea is simply to interleave
the RAM memories into one, using addresses i + kf — 1 for register j of the ith memory
(1=i=k, j=0). Those addresses can be computed in O{k log j) time, which multiplies
the time bound by a constant factor. [

It is important Lo stale explicitly the basic instruction set of the RAM. However,
for the sake of the readability, we extend it with some Pascal-like control structures
that have obvious translations to the basic RAM instructions.

3. The simulation of a TM by a RAM. Consider a T(n) time-bounded, S(n)
space-bounded TM. The simple idea underlying Theorem A is to represent the cells
of the work-tapes in consecutive registers of a RAM, with additional registers containing
current read-write head positions. Every step of the TM is easily simulated in
O(log S(n)) time on a RAM, assuming the logarithmic cost criterion. In the simulation
underlying Theorem B, a saving in the cost per step is achieved by precomputing in
a table the action of the TM on all blocks of a suitable size. A subcomputation
corresponding to the size of the block reduces Lo a table look-up.

We will also use blocking to balance the costs of the address and the contents of
a memory location. At first we keep the idea of step-wise simulation. We use blocking
merely to localize the active region of the work-tape during a time-interval. For step-wise
simulation, the active block is swapped to a low-indexed region of the memory in
order to save in the access time under logarithmic cost criterion. (It is interesting to
compare this technique to the swapping of pages to and from disk in paged virtual
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memory operating systems, see e.g., Deitel [3]. Another analogy is a hardware cache.
The cache idea was also used by Loui in [9].)

A serious problem is determining the optimal block size together with efficient
algorithms for unpacking and packing blocks. A further problem is that T(n) and
S{n) need not be constructible. For simplicity, we denote these values by T and S. In
§ 3.1 we assume that n and S(n) are known at the beginning of the computation, and
determine the optimal block size in this case. Tn § 3.2 we remove this assumption and
notice that the same time bound holds even though the block size is determined
dynamically during the computation. Ultimately, in § 3.3 we improve the table look-up
method of [11]. Interestingly, the packing and unpacking techniques developed in
§§ 3.1 and 3.2 will now be useful in reading input blocks and writing output blocks.

3.1. The static step-wise simulation using blecked memory. We assume now that n
and S(»n) are known in advance. We will begin the basic simulation algorithm together
with the necessary blocking and deblocking algorithms. By the time analysis of this
algorithm we determine the optimal block size. For simplicity, we speak of one TM
tape only, if there are many work-tapes, they are treated analogously, independently.

The basic idea of the simulation is to divide the tape into S/# blocks of b cells.
Hence, b successive cells of the TM are represented by a number (in the range
0,---,2"—1) in a register of the RAM. By Lemma 2.2.1 we can assume that the RAM
keeps the “blocked” representation of the work-tape in a separate memory. The position
of the tape head of the TM is indicated by an address to the active block (a number
in the range 1, - - - | §/b) together with an address within a block (0, - - -, b—1), both
stored in fixed RAM registers. One simulation cycle, corresponding to b steps of the
TM, consists of accessing the active block with two neighbours, unpacking them to
low-indexed registers, directly simulating the next b steps of the TM, and packing the
updated bits back to the same registers. The neighbouring blocks are taken along in
order to guarantee that in all cases b simulation steps can be taken staying in the
unpacked zone. This unpacked 3b bit zone, kept in a separate memory, is called the
window.

The simulation of the single TM instructions is quite obvious; it is done as in the
proof of Theorem A. It is easy to construct a procedure simulating an instruction of
the TM, updating the contents of the window, the head address and the current
instruction label. Now we can represent the simulation in the form of a RAM program
as follows:

procedure simulate
{Suppose that the block size b is given.}
activeblock =1
{the first block is active, with empty left neighbour}
head = the first address of the middle block of the window
loop {until a halt instruction in the simulation}
loadwindow(activeblock, b)
for b times do simulate an instruction
storewindow(activeblock, b)
if head moved to neighbour then
update head and activeblock addresses

The procedure loadwindow fetches the contents of the active block and its neighbours
into low-indexed registers, and unpacks the b-bit integers. The procedure storewindow
packs the window blocks, and stores them by overwriting their older copies.




82 J. KATAJAINEN, J. VAN LEEUWEN AND M. PENTTONEN

We shall now attack the problem of packing and unpacking the blocks efficiently.
As our RAM model does not include division or shift instructions, we have to invent
another method for finding the bit representation of a number and vice versa. We will
see that unpacking and packing can be done efficiently with precomputed tables.

As a first attempt one could decode numbers to bit-strings by building a table that
gives the decoding directly. For example the table could contain the b bits of a number
n (<2%) in the registers nb, nb+1, - -, nb+b—1. A disadvantage of this method is
that, while bits are obtained directly, the access of them may cost O(iog n). For this
reason loading a window takes O(b?) time. By a similar analysis as what follows, one
can see that this would give O{T+log §} simulation algorithm. However, we can do
unpacking and packing in O(b log b) time.

The efficient decoding of a number to its bit representation and vice versa is based
on a divide-and-conquer strategy with precomputed shift tables. We will first build the
necessary tables and then give the unpacking and packing algorithms.

We assume that each table is stored in its own memory. We will need tables Ishift,
rshift, origin and power. By Ishift(i), rshift(i), - -, we denote the contents of the
register i reserved for Ishift, rshift, - - -.

The tables Ishift and rshift in Fig. 1 contain as subtables shift tables for 1-bit
numbers, 2-bit numbers, 4-bit numbers etc. The divide-and-conquer strategy implies
that b-bit numbers are shifted b/2 bits to the right or b bits to the left. The entries of
the tables are numbers rather than bit strings. Thus, for example, the number 75=
01001011, has the right shift 4 =0100, and 4 = 0100, has the left shift 64 = 31000000,.
The origin table expresses where subtables begin: The shift tables for 2'-bit numbers
begin at origin(i).

origin:
register 0 1 2 3 4 - i
contents 0 2 6 2 218 2427427
rshift:
register 0o 1|12 3 4 5|6 7 8 - 21 [|---}| orgin(d)+j
block size 1 bit | 2 bits 4 bits 2’ bits
block value 0 1 ¢ 1 2 3140 1 2 15 i
contents 0 6 0 1 1|86 0 0 3 jdiv2®
Ishift: )
register 0 1 2 3 4 51 6 7 g .- 21 | -+ | origin{i}+j
block size 1 bit 2 bits 4 bits 2 bits
block value 0 1 g 1 2 3] 0 1 2 15 i
contents o 2]{0 4 8 1210 16 R 240 jr 22

Fic. 1. The origin, rshift and Ishift tables.

We have to first analyze how much the building of the tables costs.

LeMMA 3.1.1. The tables origin, rshift and Ishift up to block size b (=2%) can be
built in logarithmic time O(b2").

Proof. Assuming that the values origin(i —2) and origin{i —1) are already com-
puted, the following program will compute the ith origin value, i= 2.

procedure buildorigin(i) _

t:= origin(i — 1) —origin(i —2) {t=2"}

origin(f} = origin{i—1)

for ¢ times do origin(i) = origin(i)+1

Clearly, its time complexity is O(2% - 2'7"),
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When constructing the ith rshift and Ishift subtables we can use the origin values
fori—1,iand i+ 1.

procedure buildrshift(i) _

j=origin(i); x:=0; 1= origin(i) —origin(i 1) {r=2"""1

for ¢ times do

for t times do rshift(j)=x; j=j+1
=x+1

procedure build/shift()

ji=origin(i); x:=0; t:=origin(i+1)—origin(i) {r=2%}

for ¢ times do Ishift(j):=x; ji==j+1; x:==x+1
The execution of both procedures requires O(2” - 2') time. Thus the tables up to & can
be constructed in time O(X+_, 2%-2)=0(2"- 22"y =0(b2"). D

We also need powers of 2 for unpacking numbers to bit strings, and for packing
bit strings to numbers. It is useful to precompute them, too, in the table power.

LeMMA 3.1.2. The table power(i) = 2" up to kth power can be built in O(k°} logarith-
mic time.

Proof. A new power can be computed by doubling the previous one by addition.
This method gives the time bound O({k*). O

Now we are ready to present the unpacking and packing algorithms.

LemMMA 3.1.3. Assuming that the tables Ishift, rshift, origin and power up to the block
size b are available, it is possible 1o compute the b-bit representation of an integer n <2°,
and the numeric value of a b-bit string, both in O(b - log b) time. _

Proof. The procedure unpack(n, j, a) unpacks a number n< 2% to its 2-bit rep-
resentation beginning at the ath register of the window. The procedure is as follows:

procedure unpack(n, j, a)

if 7 =0 then window(a)=n

else n, = rshifi(origin{j}+ r); ny:= n — Ishift{origin(j —1)+n,)

unpack{n,,j—1, a); unpack(n,, j—1, a+power(j—1))

For clarity, we have written the algorithm in recursive form. The recursion can be
eliminated by using one memory as a stack where the second recursive call is stored
while the first is executed. While unpacking a number n <2/ there are never more than
log j calls in the stack. In order to balance access cost it is economical to initiate the
stack at the address log b and let it grow downwards. If we denote by ¢(x) the logarithmic
time of unpacking an x-bit number, by analyzing the program we get

t{(1} =k, log b,
H(x)=2t({x/2)+kx+k;logh

which gives t(b)=O(b - log b).
The procedure pack(a,j, n) computes the numeric value of the bit string win-
dow(a), window{a+1), - -+, window(a+2' —1). Also it is written recursively:

procedure pack(a, j, n)

if j=0 then n:=window(a)

else pack(a, j—1, m,); pack(a+power(j—1),j—1, n,)

n = Ishift{origin(j — 1)+ n;)+n,

The recursion is controlled as in unpacking. Also the time analysis is analogous. 0O

We can now obtain a preliminary version of Theorem C:

THEOREM 3.1.4. Assuming that n and S(n) are known, a T(n) time-bounded, S(n)
space-bounded TM can be simulated in O{ T{n) log log S(n)) logarithmic time by a RAM.
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Proof. The total time of the static simulation is bounded by
Team=b2"+T/b(log §+b-logh+b-logb+b-logb+log S)

where b2° is ineeded for the construction of the tables, T/b is the number of cycles
in the simulation loop, log § is the cost of loading and storing the blocks, b-log b is
the cost of unpacking and packing the blocks of the window, and another b - log b is
needed for the elementary simulation steps. By choosing b=c¢-log 5, ¢<<1, we get
Team=O(T-loglog §). O

3.2. The dynamization. Until now we have assumed that the space requirement $
of the TM on an input is known in advance, which is not the case. Now we shall
remove this assumption by using the well-known technique (see, e.g., [10]) which
consists of using one space bound while sufficient and increasing it when necessary.
As long as the space bound

So, 81,00, 5=22
is sufficient, the block size by, by, -+, b;=2" - -+, is used respectively. Every time a
space bound is exceeded, the simulating memory must be reorganized by combining
the blocks pairwise. As the size of the blocks grows also the tables must be grown
accordingly. It is worth noting that, unlike in [11], input head need not be reset and
the computation be restarted from the beginning when the block’s size is increased.
The dynamic simulating algorithm gets the following form.

procedure simulate
activeblock =1
head := the first address of the middle block of the window
b=1; §=4
Initialize tables Ishift, rshift, origin and power;
loop {until a halt instruction in the simulation}
while [log (S+1)]=4b do
loadwindow(activeblock, b)
for b times do
Simulate an instruction
if head on a previously unvisited cell then 5= 8+1
storewindow{activeblock, b}
if head moved to neighbour then
update head and activeblock addresses
b=b+b
Combine successive blocks pairwise
Update head and activeblock corresponding to the reorganization
Update /shift, rshift, origin and power to the new block size

The analysis of the dynamic simulation is basically the same as in the previous section,
but now there is the extra work of reorganizing the memory. In spite of using wrong
block sizes at the beginning, the program still behaves asymptotically fast. Before going
to the time analysis of the program, we prove a small counting lemma, also used in
(2], (12].

LEmma 3.2.1. A binary counter of any evenf occurring t times during the computation
can be maintained in O(t) time. As a by-product we get easily the length of the binary
representation of the count, which is [log (r+1)].
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Proof. A memory is reserved for the binary representation of the count. For each
bit of the count (without leading zeros), two bits are used. The ith least significant bit
0 or 1 is represented by 00, or 01, in the register i If the actual value of the count is
t, 27'=1=2' then 11, in the register j marks the end of the representation.

Each counting step is simulated by a sweep over the representation in the memory,
beginning at the register 0. 01’s are replaced by 00’s, until 00 is met which becomes
01. However, if 11 is met instead of 00, it is replaced by 01 and 11 is stored in the
next register. At any moment, the address of 11 corresponds to the logarithm of the
count, and the registers below it correspond to the bit representation of the count.

The linear time bound is seen as follows. During a count up to ¢ =2/, the length
of the sweep is /2 times 1, t/4 times 2, (/8 times 3 and so forth. Hence the total
logarithmic time is proportional to

27N 1-logl+-- 42 i-logit -+ 1 f-logj=0O(1)

as can be seen by the quotient test applied to the infinite series 27'-1-log 1+
~e-2 % f-logi+---. O

The complexity analysis of the dynamic simulation is basically the same as in the
previous subsection, but we have to take into account the following differences. A
counter must be maintained in order to determine when block size must be increased.
Whenever the block size is increased, the simulating memory must be reorganized by
combining blocks pairwise. This is extra work, following from the fact that nonoptimal
block size was used. Fortunately, the amount of extra work caused by reblockings and
nonoptimal block size proves to be insignificant.

By Lemma 3.2.1, no more than O(S)} time is used in the computation of S. The
time needed for the comparison [log (S+1)=4b is O(log b} which is covered by the
Q(b-log b) used in the simulation. Whenever the test fails, b is doubled and tables
are updated. Note that by Lemmas 3.1.1 and 3.1.2 the total time needed in the
construction of the tables is Q(b2°) = O(S), because 2b =log S < 4b. Fach doubling
of b is followed by reblocking. This is most easily done by the [shift table in
O{(S;/ b)) - b;) time. The superexponential growth of the series {8} implies that all
reblockings can be done in time O(S5).

For the final analysis of the simulation, assume that T, steps of the TM are
simulated using block size b,. Hence the total time of the simulation is bounded by
loglog § loglag §

Y (T/b)log(S:)+b;logh)= E T:log b;

i=0
loglog §
Zlogbh Y T,=T-logb=T-loglogs5.
=0

Hence, the time bound O(T: loglog §) holds also for the dynamic simulation. We
have proved

Tueorem 3.2.1. A T(n)} time-bounded and S(n) space-bounded TM can be simu-
lated in O(T{n)}loglog S(n)) time on ¢ RAM without multiplication and division
instrictions.

3.3. Simulation with precomputed transition tables. A further improvement in the
simulation is achieved by combining the fast packing and unpacking ailgorithms of
§ 3.1 with the use of precomputed transition tables as in [7], [11].

As in § 3.1, we shall first assume that the optimal block size is known at the
beginning of the simulation. The computation is speeded up by precomputing in a
table all subcomputations of length b. For this purpose, the work-tape is divided into
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biocks of size b, as in previous constructions. Now, input and output must also be
handled blockwise, because a subcomputation of length b may read b bits and write
b bits.

In the new construction, the simulation itself is simply table look-up and takes,
as we will see, only O(T{n)) logarithmic time. Paul [11] organizes the table as a heap
{like in heapsort) and uses shift operations in the calculation of the pointers. We store
the table as a multidimensional array and calculate the addresses by precomputed shift
tables, avoiding the use of shift operations. For input and output blocking, the packing
and unpacking techniques of § 3.1 are used. We shall see that, if U(#) is the maximum
output length for inputs of length n, O({n+ U(n}) loglog S(n)) is sufficient for input
and output, when it is done to and from low addresses, not higher than O(log §(n)).
Hence, the total time of the simulation is O{T(n)+(n+ U(n)) log log S(n}).

In order to guarantee that large enough input blocks are always available, and
there is not too frequent need for filling the blocks, we will use an input bufier of
length 2b. It is filled every time when more than half of the bits have been consumed.
The same idea is useful for outputting.

We shall precompute the transition table

tranSit (is X, l: £, Uo, vl’js V) = (ir: }’: P’, U’—la v{}: Ull: dsjr: ,Vr)

where all entries are integers: I, j, p, p’ < b; i, j'<<2b; x, y, y' < 2°%; I, I are program line
numbers: 1, v} <2°; and d =—1, 0, 1. The intuitive meaning of the table is the follow-
ing: If i bits of the contents x of the input buffer have been consumed before, the TM
is at its instruction I, the work-tape head is at the position p of the block z, whose
neighbours are v_, and v,, and there are already j bits of y in the output buffer, then
after b elementary steps of the TM, i'(<<2b) bits of x have been consumed, TM is at
line ', the work-tape blocks have changed to v} and the head is at the position p’ of
oY, and there are j' bits of ¥’ in the output buffer. With this notation, we can write the
static simulating algorithm as follows:

procedure simulate

i=2b—1; j:=0 {input and output buffers are empty}

l:=1; activeblock:=1; p:=0,

loop {until the simulation of a halt causes an exit}
if i = b then fill input buffer to a new x with i=0;
for k=—1, 0, 1 do v, = work-tape(activeblock + k)
(i, L, p, vy, vo, vy, d, j, y) =transit(i, x, £, p, v, 0o, U1, J, »)
for k=—1, 0, 1 do work-tape(activeblock + k) = v,
activeblock = activeblock +d .
if j= b then output the j bits of y and make j:=0;

Some points of the program need closer examination.

First, as b successive steps of the TM are composed, the main loop is iterated
T/ b times.

If i = b, the input buffer is filled as follows. First the 2b bits of x are unpacked
by Lemma 3.1.3 in time O(b - log b). Then the unused 2b —i bits are moved to positions
0,1, - -, followed by i new bits read from the input tape. This is easily done in
O(b- log b) time. Qutput is treated analogously.

Loading and storing work-tape blocks obviously takes O(log §) time. The transi-
tion table can easily be linearized to 2*° registers, where k is a constant. By the shift
tables similar to those in § 3.1, additions and subtractions, the address of a table entry
can be computed, and the value can be decoded in O(b) time.
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We observe that input and output take O(log b) time for each bit, and hence
O{{n+ U(n)) log b) time in total. The cost of the simulation is of order (T/b)(log S+
b). Hence, by choosing b= O(log $), we see that O((n+ U(n)}loglog S(n)+ T(n))
time is sufficient for simulation.

Finally, we shall show that the table can be built in O(S) time. It can be done in
the obvious way: For each table entry, simulate b steps of the TM and store the result
in a register. The generation of the entries is controlted by nine nested loops, one for
each argument of the table. To compute the value of each table entry, it is first unpacked
to low-indexed registers in time O(b- log b}, then b steps of the TM are simulated in
time O(b-log b}, and finally the result is packed in time O(b log b) and stored in
time Q(b). Hence, the construction of the table takes Q(2*°- b- log b) time, which is
O(8), if b=c-log S with a constant ¢ <<1/k is chosen.

Thus, we have proved Theorem D in the static case. As in § 3.2, the efficiency of
the static construction can be achieved even though the optimal block size is not known
in advance. We let the block size grow in the series by, by, -, b,=2',- - -, when the
space requirement reaches the bounds

si+a

So,Sl,"',szz s T,
respectively. In §;, the constant a is chosen such that k< 2% The dynamic simulating
program is as follows.

procedure simulate

i=2b—1;j=0

I:=1; activeblock'=1, p=0;

b:=1; §:=2" {a is a small constant}

Initialize Ishift, rshift, origin, power and transit tables;

loop {until a halt in the simulation}

while [log (S+1}]1=2°""h do
if i= b then fill input buffer;
for k=-1,0,1 do v, = work-tape(activeblock + k)
(L p ooy, vy, 00, d, J,y)=transit(i, x, [, p, v_,, vy, U, J, ¥)
Increase § when necessary;
for k=—1,0,1 do work-tape(activeblock+ k) = v,
activeblock = activeblock + d
if j= b then flush the output buffer,;
=b+b;
Combine successive memory blocks pairwise;
Update p and activeblock corresponding to the reorganization;
Update Ishift, rshift, origin and power;
Construct transit for the block size b;
There is very little new in the analysis of the program. During the whole simulation,
O(8) time is used in the construction of the tables Ishift, rshift, origin and power.
Every time when a new transit table is constructed, O(S;) time is spent, hence
Y 8 =0O(S) in total.

As the block size never exceeds O(log §), input and output packing, as well as
unpacking, can be done in Q(tog log §) time per bit, O{{n+ U(n}) log log §(n)) time
in total. As the simulation for each block size is linear, the total simulation is linear, too.

Hence, we have proved

THEOREM 3.3.1. Any T(n) time-bounded, S{n) space-bounded and U(n} output
length-bounded TM can be simulated in Q(T{(n}+ (n+ U(n)) loglog S(n)) logarithmic
time by a RAM.
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4. Discussion. We have improved the simulations of TMs by RAMs that can be
found in [1] and [11]. We first improved the strategy of [1] by introducing blocking,
a well-known technique used for speed-ups. Essential in our constructions was how
to pack and unpack blocks efficiently. We did it with a precomputed table. The same
tabulation technique was also used to improve the method of [11]. First, it allowed a
natural look-up method, and second, with it input and output could be done more

efficiently.

It is interesting to observe that in the simulation of Theorem D, faster input and
output would improve the time bound. With a better input/output pattern the simulation
could perhaps be sped up further. Whether such an improvement is possible remains

as an open probiem.

Acknowiedgments. We are grateful to the referee for remarks and references that
have improved the representation.
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