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ABSTRACT. Recently Rex Dwyer [D87] presented an algorithm which constructs a
Delaunay triangulation for a planar set of N sites in O(N loglog N) expected time and
O(NlogN) worst-case time. We show that a slight modification of his algorithm
preserves the worst-case running time, but has only O(N) average running time. The
method is a hybrid which combines the cell technique with the divide-and-conquer
algorithm of Guibas & Stolfi [GS85]. First a square grid of size about VN by YN is
placed on the set of sites. The grid forms about N cells (buckets), each of which is
implemented as a list of the sites which fall into the corresponding square of the grid.

A Delaunay triangulation of the generally rather few sites within each cell is constructed
with the Guibas & Stolfi algorithm. Then the triangulations are merged, four by four, in
a quadtree-like order.

AMS SUBJECT CLASSIFICATIONS: 51M15, 68P05, 68Q25, 68U05.

ADDITIONAL KEY WORDS AND PHRASES: Voronoi diagrams, Delaunay triangulations,
bucket methods, quadtrees.

1. INTRODUCTION
Let S be a set of N points s1,52,...,5N;, called sites, in the Euclidean plane. The proximal

polygon V(s;) of site sj consists of all points of the plane having s; as a nearest site in the set S. The
union of the boundaries of the polygons V(sy), i=1,2,...,N, is a graph that is called the Voronoi
diagram of S. The dual graph, with the sites as the vertices and straight line segments as edges, is
the Delaunay diagram of S. By adding, if necessary, some new edges, this diagram can be made
into a triangulation, called a Delaunay triangulation of S and denoted DT(S). If S does not contain
any four cocircular sites the Delaunay diagram and triangulation coincide.

Voronoi diagrams and Delaunay triangulations are among the most fundamental geometrical
structures, having numerous applications in various disciplines. For these the reader is referred to
[LS80], [AB83], and [PS85], as well as the references therein. The aim of this paper is to present
and analyse a fast method for constructing a Delaunay triangulation.

Many algorithms for making the construction in O(N log N) worst-case time are known (see for -
example [S78], [LS80], [GS85], [PS85], [F87]). All of these are optimal at least in those models of
computation where sorting requires Q(Nlog N) time. Also various algorithms running in optimal
O(N) expected time have been presented (see for example [BWY80], [M84], [OIM84]). Now it is
natural to ask whether these objectives could be combined, that is, whether there exists an algorithm
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which is optimal in both the worst and also in the average case. One such algorithm is easily
achieved by running parallel two algorithms, one from each class, or by executing the instructions
of the algorithms alternately. A more practical way of combining two algorithms will be found in
[BWYS80] (see below).

Most expected-time efficient geometrical algorithms are based on the cell technique (also called
the bucketing technique), although some other algorithm paradigms might also be useful for this
purpose (see [D85]). In the cell technique the smallest closed square that covers the data is
partitioned into about N equal-sized squares (cells), and within each cell the data are kept in a chain.
To determine all the cell memberships takes O(N) time if, as is assumed in the sequel, the model of
computation is real-RAM (see [PS85]), where real numbers can be multiplied, divided, added,
subtracted, and truncated in constant time. The cell structure is usually needed to achieve fast access
to the near neighbours of a site.

Bentley, Weide & Yao [BWY80] utilize the cell structure by performing a spiral search around
each site, in order to find the Delaunay edges emanating from it. If the search happens to take "too
long" for some site, then one switches to an optimal worst-case algorithm for the whole set of sites.
The average-case running time is O(N). The worst case is not analysed in [BWY80], but an easy
modification of the algorithm guarantees an upper bound O(NlogN).

The cell technique is applied in very different ways in the algorithms of Ohya, Iri & Murota
[OIM84] and that of Maus [M84]. In both cases, O(N) expected-time and O(N2) worst-case running
time are achieved.

Dwyer [D87] presented yet another efficient expected-time algorithm, which uses O(NloglogN)
time in the average case and O(NlogN) time in the worst case. The square enclosing the sites is
partitioned into N/log N cells, the triangulation of the sites within each cell is constructed, and then
the triangulations are merged to form the triangulation of the entire set of sites. The triangulation of
the cells and their merging is performed by the algorithm of Guibas & Stolfi [GS85]. The merging
order is as follows: first the triangulations within each row of cells are merged in pairs and then the
row triangulations are merged in pairs. In particular, merging of very narrow rows is avoided; such
rows cause the ordinary divide-and-conquer algorithm to take Q(Nlog N) time on the average, as
was shown by Ohya, Iri & Murota [OIM84].

We show that a rather similar algorithm runs in O(N) expected time and O(NlogN) worst-case
time. Our method differs from Dwyer's in two respects: (1) the square is partitioned into about N
cells and (2) the merging of the subtriangulations is done in a quadtree-like order.

More precisely, the merging order is the following. Assume that the enclosing square U is
divided into 4k cells. Imagine a complete quaternary tree of depth k, in which a node is represented
by some subsquare Uy of U and its children are obtained by splitting Uy into four smaller squares.
The root is the whole square U and the leaves are the cells. The merging proceeds from the leaves to
the root by constructing the triangulation of each internal node from those of its four children. In an
actual implementation, the merging order can, for example, follow the logic of the pyramid data
structure or the Morton matrix (see [S84]). Then only a part of the whole quadtree is to be kept
simultaneously in the memory. The idea of merging the subtriangulations in quadtree order was
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inspired by the work of Ohya, Iri & Murota [OIM84], where the quadtree was, however, used for a
different purpose.

Our algorithm is introduced more formally in Section 2. The worst-case and average-case
running times of the algorithm are analysed in Section 3; in particular, Section 3.2 contains some
apparently new facts about triangulations that could be of independent interest. The results obtained
by experiments in which our algorithm was compared to previous ones are reported in Section 4.
Finally, some concluding remarks are presented in Section 5.

2. THE ALGORITHM

Let S be a set of N points in the Euclidean plane. Fix an integer o and let
K=max 4 logsNJ-0 1},

Our algorithm for triangulating S consists of three major steps. First, the set S is enclosed in a
square, which is then divided into K squares (called cells) of equal size, and the sites are inserted
into the cells. Second, Delaunay triangulations of the cells are constructed with a suitable algorithm.
Third, these are merged in quadtree (or pyramid) order.

The significance of the parameter o is that N/K, the average number of sites in a cell, belongs to
[49,40+1), unless o> [logsN ], in which case K=1. Usually o is chosen to be a small non-
negative integer, such as 0,1, or 2; the optimal value depends on the implementation.

The algorithm is shown below in greater detail. There the cells are indexed Cij, ,j=0,.. WK-1,
in the natural way. They are triangulated with the divide-and-conquer algorithm of Guibas & Stolfi
[GS85]; this guarantees O(NlogN) running time even when almost all sites belong to a single cell.
In practice, the sets within the cells are normally small, and thus their triangulations could perhaps
be constructed faster with some simpler algorithm; one could even choose the algorithm separately
for each cell according to the number of sites in it.

procedure Pyramid_DT(S: siteset) returns(triangulation)
{Assume that S={s1,s2,...,sN} and K=max{4 Llog4NJ "1}, where o is a constant.}

{Step 0: Distribute the sites into cells}
Determine the smallest square that contains the sites of S.
Partition the square into K cells Cj;. Initially each cell is empty.
for each seS do
Insert s into the cell Cjj where it falls.

{Step 1: Triangulate the cells}
for i:=0 to VK -1 do
for j:=0 to VK -1 do
DTjj := Guibas&Stolfi_DT(C;j)
{Step 2: Merge the triangulations }
for h:=1ogsK downto 1 do
for i:=0 step 2 to 2i-1 do
for j:=0 step 2 to 20-1 do
Ti:= Merge(DTjj, DTiy j);
To:= Merge(DTi j+1, DTi+1,4+1)
DTip, = Merge(T1,Tp)
return(DTp)
end Pyramid_DT.
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The Merge procedure is basically the usual one, which runs as follows (for details, see [GS85]):
Let DT(L) and DT(R) be the triangulations to be merged, lying to the left and to the right of a
separating line. To compute DT(LUR), we first search for the lower common tangent of L and R.
The search begins with a rightmost site of L and a leftmost site of R, and advances downwards
along the convex hulls of L and R until the tangent is encountered. This is an edge of DT(LUR).
Then, with a scan upwards, the other new edges crossing the line are determined. During the scan,
some of the old edges in DT(L) or DT(R) are removed.

For the algorithm Pyramid_DT, the Merge procedure must be modified to handle also the special
cases where a triangulation to be merged is empty or singleton.

Furthermore, since the merges are performed in two directions, it is good to maintain for each
square, in addition to the leftmost and rightmost sites, also the uppermost and lowermost sites. This
will make the search for common tangents more efficient. On the other hand, it is quite sufficient to
maintain only one boundary site for each square, and, as the subsequent analysis shows, the time
complexity of the algorithm is still asymptotically the same.

In the following section we prove that the algorithm has O(Nlog N) overall time, and O(N)
expected running time for a quasi-uniform distribution. Let us, however, first give a quick intuitive
explanation of the O(N) expected time when the sites are drawn from a uniform distribution.
Insertion of the sites into the cells (Step 0) takes linear time, and since the number of sites in a cell is
obviously approximately constant, the triangulation of the cells (Step 1) also takes linear time. As
for the merging step (Step 2), consider the "highest level" partition of the square into four smaller
squares, each of which contains about N/4 sites. When these squares are merged, only sites in the
border regions are likely to be affected. Hence the running time seems to follow the recurrence
relation T(N) = 4 T(N/4) + O(WN), and the solution to this is O(N).

The storage requirements of our algorithm are the same as those for the algorithm of Guibas &
Stolfi, except that some extra storage is needed for the cell structure. An entry in the cell directory
contains either a pointer to a list of sites or a pointer to a boundary site of a subtriangulation. It is
possible to implement the site lists inside an array of size N, because they are mutually disjoint.
Hence a total of K+N extra memory slots are required (plus K bits to indicate whether a cell
contains a site list or a triangulation). When the cells have been merged, there are only K/4
subtriangulations left. Thereafter one can start maintaining pointers to four boundary sites for each
square, as suggested above, and this does not lead to any further memory requirements.

There are at least two ways of reducing the extra storage needed. The array for the site lists can
be removed if reordering of the input sites is allowed. Then the site lists for the cells can be
implemented sequentially in the input arrays, as has been pointed out by Maus [M84]. Let us
rename the cells Cy,...,Ck. If index(C;) denotes the position for the first site of the cell C;, the sites
in C; are those between index(C;) and index(Ci+1), where index(Cx)=N+1. Free storage is of
course needed for the reordering of the sites, but this is of little concern because one can use the
storage required later for the edges of the Delaunay triangulation. Hence, if the input is reordered,
the cell structure requires only K memory slots.

Observe that K < N/4%. This means that by choosing a large value for the constant o , further
storage space can be saved. This will, however, make the algorithm slower (cf. Section 4).
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Finally, it should be observed that there exists another efficient merging order, the so-called
Morton order (see [S84, Section, 2.3]), which could be used as well. A recursive top-down
implementation for the merge is shown below. The Morton_merge procedure allows us to choose
the parameter K more freely; it need not be a power of 4, and yet the procedure runs correctly. After
creating the cell structure, the procedure is called with parameters (a,b,c,d)=(0,VK,0,VK).

procedure Morton_merge(C: cell_structure; a,b,c,d: integer) returns(triangulation)
{This procedure triangulates the union of the cells Cjjwitha<i<band c<j<d.}
if a=b-1 and c=d-1 then return(Guibas&Stolfi DT(Cyc))

elseif d-c > b-a then
T1:= Morton_merge(C,a,b,c, L(c+d)/2])
To:= Morton_merge(C,a,b, L(c+d)/2] ,d)
return(Merge(T1,T2))

elseif d-c < b-a then
Ty1:= Morton_merge(C,a, L(a+b)/2] c,d)
To:= Morton_merge(C, L(a+b)/2] ,b,c,d)
return(Merge(T1,T7))

end Morton_merge.

3. ANALYSIS OF TIME COMPLEXITY

In this section we prove the following two theorems, the first of which implies that the running
time of Pyramid_DT is 6(NlogN).

THEOREM 3.1. a) The algorithm Pyramid_DT takes O(Nlog N) time. b) Both the triangulation
step (Step 1) and the merging step (Step 2) demand Q(NlogN) time, and these two lower bounds
can be proved by using the same critical site sets.

In the second theorem we assume that the sites are drawn independently from a fixed
distribution in the unit square U with density function f. Following Dwyer [D87] we only consider
cases where f is quasi-uniform in U with bounds c1,co, by which we mean that f=0 outside U and
that inside U we have ¢ < f(x,y) < ¢, where cy,c7 are positive constants.

THEOREM 3.2. Assume that the density function f is quasi-uniform with bounds c;,c,. Then the
expected running time of the algorithm Pyramid_DT is at most k(c1,c2)N, where the coefficient
depends on ¢; and ¢, but not on N.

These results are valid even if the merges are perfomed in the Morton order. This is so because
the Morton_merge procedure involves exactly the same Merge operations as the algorithm
Pyramid_DT, only in a different order."

3.1. WORST-CASE COMPLEXITY

Proof of Theorem 3.1a. We follow here the lines of the proof of [D87, Theorem 3.1]. Step 0 of
the algorithm obviously takes O(N) time, because the floor function is assumed to be a constant time
operation.

Suppose that the cells are triangulated in Step 1 with an algorithm that takes at most time Ti(@)
for a set of q sites, where F(q)=T1(q)/q is a non-decreasing function. If the cells contain nj,...,nK
sites, their triangulation time is bounded by
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K K K
2 Ti(@) = 3 niF(n) € 3 0FN) = Ti(N),

i.e. O(NlogN), when we use an optimal divide-and-conquer algorithm.

The Merge operations of Step 2 are performed at log4K =O(log N) levels. At each level a site is
involved in at most two merges, one vertical and one horizontal. A planar graph on N vertices
always contains less than 3N edges. Hence the total number of edges created or deleted at one level
is less than 2 x2 x3N. Also the total number of sites visited during the searches for common tangents
at one level is bounded by 2 xN. To sum up, Step 2 takes O(NlogN) time. []

Proof of Theorem 3.1b. Step 1 obviously requires time Q(NlogN) in the worst case, i.e. in
the case when almost all the sites fall into a single cell. It is perhaps more surprising that a similar
result holds for Step 2. The theorem follows when we construct, for each N2Ny, a set of N sites,
such that the total number of edges created in the course of the merging is at least ANlogN, and
such that at least N-BlogN sites are in a single cell. Here Np, A, and B are constants.

Draw a spiral arc in the unit square U so that it passes through the origo and runs approximately
as shown in Figure 1. The spiral could, for example, be logarithmic.
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FIGURE 1

A worst-case site set.

We choose the sites py,...,pN from the arc so that the x-coordinate of p; is 3/2i+1, When K=4kK
is the number of cells, the sites py,...,pk belong to different cells, whereas pk+1,...,pN are all in the
bottom left corner cell.

The idea in using the spiral is in that fora <b < c < d the site p, is just inside the circle through
Pbs Pc, and pg. Consequently, the Delaunay triangulation of a set {pj,...,pN} consists of the edges
(pj»pj+1), 1 £j <N "along" the arc, and of the edges (pi-pj)» i+2 < j < N that connect pj to the other
sites. Therefore, insertion of p;_ into the triangulation means deletion of the latter set of edges and
creation of new edges connecting pj-1 to Pj,...,PN.

The merging step starts with the corner cell triangulated, and at each merging level a new site p;
is inserted into the triangulation. The total number of edges created during the merges is
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(N-k)+...+(N-1) = k(N-(k+1)/2). Here k=logsK= LlogsN] —ct. Since o is a constant, the theorem
follows. []

Observe, incidentally, that the site set in the proof, with the same insertion order of sites, is also
very difficult for an incremental Delaunay triangulation algorithm (see for example [GS77], [L77],
[GS85]), proving the lower bound Q(N2).

It is interesting to see why the above argument does not contradict Theorem 3.2. Suppose that
the site set was obtained from a distribution. To carry the argument through, the set must be
concentrated close enough to the spiral and the corner cell must contain a sufficient number of sites.
In particular, the density function must have a peak near the origo, and since the cell becomes
smaller when N grows, the peak must become ever higher and narrower. Thus the distribution must
vary with N, whereas in Theorem 3.2 it is assumed to be fixed.

3.2. GENERAL TRIANGULATIONS AND FINISHED SITES

We discuss in this section some general features of triangulations that will be used later in
connection with Delaunay triangulations. Recall that a triangulation of a set S of sites in the
Euclidean plane is a straight-line planar graph on S, with a maximal set of edges. That is, the sites
of S are joined by non-intersecting straight-line segments so that every face internal to the convex
hull of S is a triangle. Observe also that the trivial cases 0,1, or 2 sites, or more sites on the same
line, are regarded as triangulations.

DEFINITION 3.3. Let T(S1), T(S2) be triangulations of the sets S1,S2. We use the notation
T(S1)< T(S2) if S1 < S2 and if T(S1) contains each edge of T(S2) whose endpoints belong to Sj.

This gives a partial order for the set of triangulations. Note that T(S;) <T(S2) does not imply
that the edges of T(S;) belong to T(S2). Note also that DT(S1) < DT(S») is equivalent to S; < S if
S1 has a unique Delaunay triangulation.

DEFINITION 3.4. Let T(S1) < T(S2) be two triangulations and s€S1. We say that s is finished in
T(S1) relative to T(S7) if the sets of edges emanating from s in T(S1) and T(S2) coincide, otherwise
it is unfinished.

PROPOSITION 3.5. Let T(S1) < T(S2) be two triangulations. A site s€S1 is finished in T(S7)
relative to T(S) if and only if S; contains the endpoints of all the edges emanating from s in T(S>).

Proof. Let (s,p1),...,(s,pm) be the edges emanating from s in T(S7). If s is finished, then the
pi's belong to S1 by definition.

Conversely, assume that the pj's belong to S1 but that s is nevertheless unfinished. Then
(8:P1);...,(s,pm) belong to T(S1) because T(S1) < T(S2), but T(S1) contains yet another edge (s,r).
Since the region covered by T(S3) is convex, it contains the entire edge (s,r). Hence (s,r)\{s} either
intersects one of the edges (s,p;) or one of the open triangles of T(S7) with s as a vertex. The first
alternative is clearly impossible. The particular triangle contains no sites of Sp, and especially notr.
Therefore (s,r) intersects the opposite side (Pi-pj)- But even this is impossible, because (pi-py)
belongs also to T(S1), which is a triangulation. []

COROLLARY 3.6. Let T(S1) < T(S2) < T(S3) be three triangulations. A site s€S 1 is finished in
T(S1) relative to T(S3) if and only if it is finished both in T(S1) relative to T(S2) and in T(S3)
relative to T(S3).

Proof. The latter condition implies the former by Definition 3.4.
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Conversely, assume that s is finished in T(S1) relative to T(S3). If (s,q) is an edge in T(S3) then
q€S1; then also q€Sy, and using 3.5 we obtain that s is finished in T(S») relative to T(S3). Finally,
by 3.4, s is also finished in T(S1) relative to T(S2). []

3.3. AVERAGE-CASE COMPLEXITY

Our next aim is to prove that the expected running time of the algorithm Pyramid_DT is linear.
For this purpose, we need two lemmas. In first we treat the complexity of Step 1 in which the cells
are triangulated.

LEMMA 3.7. Assume that the density function f is quasi-uniform, with bounds c1,c2. The
expected running time of Step 1 is at most k(c2)N, even if an exponential algorithm is used for the
triangulation of the cells. Here k(cp) does not depend on N.

Proof. Let T1(g) be the running time of the algorithm for a set of q sites. Enumerate the cells
C1,...,Ck. The expected value of the total running time T of Step 1 is

K N
E(T) = Y., Y, P(ISNCil=q)-T;(q).
i=1q=0
Write

mj= [f< C[cz =cy/K.
i

1
Then, because the sites are independently drawn from the distribution,
dea) = { N 11 (1 )N-
PSCit=g) = () ma (1-m)N4.
Inserting further T1(q) < c ed we obtain from the binomial formula

K
E(T) =c Y, (1+e-Dm)N < cK(1+(e-1)ey/K)N.
i=1

Here N/40+1 < K < N/4%, so

E(T) <4-%cN(1+49+ (e-1)cyN)N
<4-®cNexp(4%1(e-1)cp). []

REMARK. The more realistic assumption T1(q) < cq? would have yielded
E(T) < ccy(49+Icy+1)N.

We shall estimate the work done in Step 2 by calculating the number of unfinished sites at the
various merging levels. There we shall use the corollary to the following lemma.

LEMMA 3.8. Assume that the density function f is quasi-uniform with bounds c;,c,. Let
U1 < U be arectangle and DT(SNUj) < DT(S). If seSUj is a site whose minimum distance from
the boundary of Uy is t, then the probability that s is unfinished in DT(SAUj) relative to DT(S) is at
most 16(1-cqmt2/32)N-1,

Proof. Denote by C the condition that s is unfinished in DT(SNU) relative to DT(S). Then,
by 3.5 C1=Cy, where C; is the condition that DT(S) contains an edge (s,q) whose length is greater
than t. Consider a circle with centre s and radius t//2. Divide it into 16 open sectors Aj,...,A16 with
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angles n1/8. Let C3 be the condition that at least one of the open sectors is site-free. Assuming for a
moment that Co=>C3 we obtain

16
P(C1) < P(C3) £ Y P(SNA=D)

i=1

—
(=)}

=) (1-[HN1 < 16(1-¢;mt2/32)N-1,
Aj

I
—

1
where we used the fact that f(x,y) = c;.

It remains to be shown that Co=>C3. Assume Cp, and consider the square with a diagonal along
(s,9), s as one vertex, and side length t/v2 (see Figure 2). The diagonal divides the square into two
triangles. Since (s,q) is in DT(S), there is a site-free circle passing through s and q. By [D87,
Lemma 5.3] the circle contains at least one of the two triangles, and hence also one of the sectors
Aj. So this Aj is site-free. []

FIGURE 2
Illustration to the proof of Lemma 3.8.

COROLLARY 3.9. If the situation is as in the above lemma and if U7 has sides a and b, then the
expected number E(a,b) of unfinished sites in DT(SNUj) relative to DT(S) is at most
103(co/Veq)(a+b)VN.

Proof. Assume a < b. Let 0<t<a/2. Those points of U, for which the minimum distance from
the boundary of the rectangle Uy is in the infinitesimal interval (t,t+dt), form a certain region A; of
area 2(a+b-4t)dt. The probability that a given site belongs to A is

Jf Scy 2(a+b-41)dt < 2¢4 (a+b)dt.
Ay

Using Lemma 3.8 we can now estimate
a/2
E(a,b) < N-J16(1-cl1tt2/32)N'1-2c2(a+b)dt

ame, /128
= 32c)(a+b)NY 32/(ncy) 6[ (1-x2)N-14x,
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where x =t '\ mc1/32. Denote the integral by I Sincea<1and ¢; < 1,

2:4-6--(2N-2) _ 1

1
I 1-x2N-1gx = <—.
<0‘[( 9 1-3-5---(2N-1) ~ VN

Hence
E(a,b) < 103(cy/Nc)(@+b)VN. []

Proof of Theorem 3.2. Clearly Step 0 of the algorithm Pyramid_DT, which creates the cells and
their site lists, can be performed in linear time. Step 1, triangulating the cells, has been concluded in
Lemma 3.7.

Step 2, merging the triangulations, consists of log4K levels, and each level is started with the
square U partitioned into smaller squares for which the triangulations are already constructed. A
level can be thought to consist of two phases: first each small square is merged with one of its
neighbours in the direction of the x-axis, and this results in rectangles with the ratio of sides 1:2,
then each rectangle is merged with one of its neighbours in the direction of the y-axis, which leaves
us again with a partition of U into squares.

Consider one such phase. Let U1 be one small rectangle with triangulation DT(SNU}) to be
merged with its neighbour, and let U3 be the resulting larger rectangle with triangulation
DT(SNU2). Then DT(SNU1) <DT(SNU), since the Merge procedure does not create any new
edges with both endpoints in Uy (for details, see the algorithm in [GS85]). Similarly
DT(SNU2)<DT(S), where DT(S) is the final triangulation. The sites of Uj that are affected (i.e.
receive or lose edges) are precisely those that are unfinished in DT(SNUj) relative to DT(SAUy),
and by Corollary 3.6 these are all among those sites that are unfinished in DT(SUj) relative to
DT(S).

We conclude that, at each phase, an upper bound of the total number in U of affected sites is
obtained by estimating the total number in U of unfinished sites relative to DT(S). The crucial point
here is that a site which once becomes finished relative to DT(S) is never again touched upon in the
subsequent merges (see Corollary 3.6).

Corollary 3.9 gives us the estimation for one rectangle. Next we put all the levels together. Let
K=4K and enumerate the levels 1,...,k. When we begin merging at level p, the small squares have
sides a=b=2P%"1 and after the first phase the rectangles have sides a=2P-¥"1, b=2P%. Now we get
an upper bound for the expected value of the total number of unfinished sites during the various
merging levels:

k
D (@ p+LE@pk1 opkely 4 9 gk-p.E(opk-1 op-ky)
p=1

< 7-2kK:103(cy/NeVN < 721(cy/Cy) 27 N,

where we used the fact that 2k=yK < VN/2. Finally, multiplying this by 6 we obtain an upper
bound for the expected value of the total number of edges created or deteted during Step 2 (see
[D87, Corollary 2.2]). Hence the expected work here is O(N).

We still have to estimate the work done in the searches for common tangents. Consider the
merging of a small rectangle Uy with one of its neighbours. The sites in SNUj that are visited
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during the search for a common tangent are all on the convex hull of SNU]. Consider the situation
in the proof of 3.8. If the site s therein is on the convex hull of SAU7, then one of the 16 sectors
around it must be site-free. Hence all such sites are among those that were counted as unfinished in
the estimation of 3.9. Therefore the same argument as above shows that the expected work done in
the searches is O(N). []

REMARK. If, for example, cj=cp=1, we have 2163-2-% N as an upper bound for the number of
edges created during Step 2. The large coefficient is due to our generous estimations at several
points but our experiments suggest that its value is 3.5 if «=0 and 5 if 0.>0.

4. EXPERIMENTAL RESULTS

We made experimental comparisons of our algorithm with three other Delaunay triangulation
algorithms: Dwyer's algorithm (the variation in [D87, Section 6]), the divide-and-conquer algorithm
and the simple incremental algorithm described in [GS85]. The implementations of the first two
algorithms, as well as those of the underlying quad-edge data structure of [GS85], were made by
Dwyer & Webb (cf. [D87]). ’

We implemented our algorithm Pyramid_DT essentially in the form described in Section 2,
except that we used the incremental algorithm to triangulate the cells. In [GS85] the code for the
incremental algorithm was given by assuming that a new site to be inserted is always inside the
convex hull of the previous sites. Special cases, where a new site happens to be outside the convex
hull, were handled in the manner proposed by Shapiro [S81].

Since we used the quad-edge data structure in every algorithm, we decided that the number of
Splice operations (see [GS85]) would serve as a good measure for the work done in the programs:
itis the splices that make up the bulk of the work in the graph manipulating operations, such as
adding, deleting, or swapping an edge. Addition of an edge requires two Splice operations, deletion
also two, and a swap four.

Our results are summarized in Figure 3. The input sites were drawn from the uniform
distribution in the unit square. Five inputs of size 2k or 4k-1 were generated for 24 <N <215, and
the average number of splices per N performed by the different algorithms was calculated. The
pyramid algorithm was run for a=0,1,2. The sawtooth structure of the curves results from the fact
that when N reaches a power of 4, one merging level is added, i.e. the cells are split into four; the
shapes of the teeth are mainly caused by the incremental algorithm that was used to triangulate the
cells.

We also measured the actual running times of the programs. As one might expect, the curves
obtained are very similar to those in Figure 3, with two main exceptions. First, the curves of
Dwyer's algorithm and those of the pyramid algorithm for o=0 are closer to each other. Second, the
curve of the incremental algorithm is convex rather than concave. This is due to the fact that the
simple Locate operation (see [GS85]) becomes slow for large N, and this is not apparent from the
number of splices.
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FIGURE 3
Mean number of splices performed by the different algorithms
for uniformly distributed sites in the unit square.

5. CONCLUDING REMARKS

We have presented and analysed a Delaunay triangulation algorithm that runs in linear expected
time and ©(Nlog N) worst-case time. It uses buckets of fixed sizes, and can be regarded as a two-
dimensional counterpart of the distributive sorting algorithms for real numbers (see for example
[MAZB0], [DK81], [D86]). However, the merge operation forms a fundamental part of our
algorithm, whereas simple concatenation of lists suffices in sorting. The pyramid and the Morton
merging orders seem to be very efficient, which is due to the fact that during the merges they limit
the amount of re-modification of the diagram.

We close this paper by drawing attention to some open problems.
1) We have considered in this work the expected time only for quasi-uniformly distributed sites. It
is natural to ask how efficient our algorithm is when the distribution of the sites is non-uniform.
2) The experiments indicate that, at least for uniformly distributed sites, the average-case behaviour
of our algorithm and Dwyer's algorithm [D87, Section 6] is almost equal. Can one prove the linear
average-case running time for the two-directional divide-and-conquer algorithm which was Dwyer's
actual implementation? Observe here also the close analogy between the two-directional divide-and-
conquer and the Morton merge algorithms.
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3) Can one prove linearity for the algorithm which performs the merging of the cells in row and
column order as proposed by Dwyer? A straightforward application of Corollary 3.9 yields an
O(N+1logN) upper bound which is worse than that obtained by Dwyer!

4) It is obvious that the algorithm and its analysis can be extended to Lp-metrics, 1 <p< oo, without
any significant changes. The L1 and L., metrics and more general metrics are more difficult. We
hope to return to this subject in another paper.

5) It would also be interesting to know whether quadtree merging could be used to solve other
geometrical-computational problems in linear expected time.
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