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ABSTRACT

An algorithm for construction of a minimal spanning tree
of a point set in k-dimensional Euclidean space is considered.
Multiple subtrees, called péint fragments, are formed in it.
The minimal spanning tree is found by repeating a step in which
the fragment of the minimal size is merged with the fragment
which contains the point nearest to the first named fragment.
Like in the algorithm of .J.L.Bentley and J.H.Friedman (IEEE
Trans. on Comp., p: 97, 1978) k-d tree structure and a number
of priority queues are used for selecting the fragments to be
connected by a new edge. At least for low dimensionalities +the
algorithm of this paper was fast when solving minimal spanning
tpee problems of normally distributed random points.



7. INTRODUCTION

Given a connected, undirected graph G=(V,E), where V is the

set of nodes and E (gVxV) is the set of edges, and a function ¢ th:

provides each edge e (€E) with a cost c(e). A spanning tree of

€ is a subtree of E such that there is a unique path between each

two nodes of V. Our problem is to find a spanning tree T for which

Zegqjc(e) is minimal, Such T is called a minimal spanning tree

(MST) of G.
In the present paper we consider a special MST-problem,

where the nodes of G are points in a k-dimensional space, edges

are the straight line segments between the points and cost functio
c is defined as the Euclidean distance between the endpoints

of an edge. Further we assume that each point is connected with
an edge to each other point of V. Our graph is thus complete

s n.

The foregoing MST-problem can be solved by general MST-

algorithms making no advantage of the nature of +the grach, Such

.?'J'

containing n(n-1)/2 edges when the number of points

algorithms are given e.g. by R.C.Prim /Pri/, J.B.Kruskal /Kru/,
A.C.Yao /Yao/ and P.Cheriton&R.E.Tarjan /CTa/. Upper limits of

the time complexity of these algorithms are correspondingly

(

-

) ‘ O(n2), 0(m logm), O0(m loglogn), 0(mlog Logn)

oD

where n is the number of nodes and m the number of edges.
Cheriton and Tarjan /CTa/ have also derived a lower limit

Q(m log logm) for the time complexity of a general MST-algorithn.
Here (f(m)) denotes a function that for a positive value d
exceeds d f{m) for infinite many values of m. Because

problem m is n(n-1)/2, the computation time is due (
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if we use the genoral technlques without any modifications.

If the points are in the plane (k=2) one can apply
Voronoi-diagrams, as shown by M.I,Shamos and D.Hoey /SHc/.
An 0(n logn)-algorithm can then be written. It is also shown
that O0(n logn) is the lower limit for the time complexity
of MST-problem in 2- and k-dimensiocnal (k>?) space /BSh/.
(Algorithms using Voronoi-diagrams are outlined by Dewdney
/Dew/.) F.K.Hwang /Hwa/ shows that Vorcnci-diagrams can 21iso
efficiently be used for the rectilinear distance, giving the

.

sum of absolute ccordinate differences.

v



The progress in cdnstructing efficient algorithms for
finding the nearest neighbours /MOl/ renders possible the
-development of efficient methods for solving the MST-problem
in k-dimensional coordinate space. For a general k the nearest
neighbour problem (like many other problems in field of computatiocn.
geometry ) can efficiently be solved by a data structure called
E:gmiggg. This structure was introduced by J.L.Bentley /Bel/.

The nearest neighbour of an arbitrary new point can be determined

in expected O0(logn) time /FBF/ with this structure. The technique
however requires an O(knlogn) time for preprocessing and does

not support dynamic changes in the set of points to be éonsidered.

By applying the k-d-structure in R.C.Prim's /Pri/ general
MST-algorithm, J.L.Bentley and J.H.Friedman /BFr/ have developed
two efficient MST-algorithms and an approximative algorithm with
an observed average run time proportional to nlogn. Here the

spanning tree is stepwise constructed by joining subtrees,

called pointffagments, so that minimality and the tree property
are preéerved for each joined bigger subtree. This is achieved
by adding to a fragment that edge which has the minimal cost
and has the other end point outside the current fragment. Bent
and Friedman report particular promising results for the so-ca
multifragment algorithm. In it several fragments are created by
starting each time with a fragment containing only a single
point in low density area of the point set. The fragments
found in this manner are finally connected by minimal edges.
The MST-algorithwms of Bentley and Friedman use also an
other advanced data-structure:a priority queue /AHU/ is used
for finding the node which will have the nearest neighbour of
The whole fragment. The nearest neighbour of the fragment will

in

o,

next be added to the current fragment and the correspor

0q

edge will be added to the subtree. Priority queue stores for
each node of a fragment the distance to the nearest neighbour.
Because nodes are added to the fragment, some of the distances
(priorities) become unreal in the course of the process, i.e.
the nearest neighbour of a point is not ocutside the fragment.
When such a priority is met it should be discarded, a new-

real distance should be determined by k-d tree and inserted into
The priority queue. Thus when searching the nearest neighbour

1

ot

cf a fragment one nust possibly delete a number of unre

priorities at the front of the priority queue and insert new:

=
o

cal priorities. In the multifragment-algorithm of



Bentley and Iriedman a new fragment is introduced if more than
me (a given constant) unrecal priorities have been removed From
the front of the current fragment queue when searching for a
new fragment node to be added. In the worst cdse one must
remove all the priorities in a fragment queue before finding
the first real priority. The idea of starting each fragment at
low density point is supposed to reduce the meén number m of
removal operatidns.

The MST-algorithm given in the present paper is a variation
of the multifragment algorithm described above. The difference
lies in the construction of the fragments; here the minimal size
selection rule introduced by Cheriton and Tarjan /CTa/ is used.
Now each fragment initially consists of a single node. After
this at each step a new edge is added to the fragment of minimal
size, This process continues until there is only one fragment
left, which is in fact the wanted MST.

The proposed MST-algorithm is given in more details in
Section 2. Theoretical and experimental estimates of the

execution time are discussed in Sections 3 and Y4, respectively,
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2. MULTIFRAGMENT ALGORITHM

The following algorithm determines an MST for a point set V
of k-dimensional space. The number of the points in V is n. A

priority queue (called shortly the fragment queue) of minimal

distances to nonfragment nodes is maintained for each fragment.
Each fragment node has a notation which tells the real minimal

distance, called real priority, or a lower limit of the real minimal

distance, called unreal priority. The number of the fragment node

and the number of the node with minimal distance are also given.

Finally a priority queue of the fragment sizes is maintained to

aid the selection of a fragment of minimal size.

Main steps of the algorithm are:

1. Build a k-d tree for the point set.

r

. Form n single point fragments and the corresponding fragment
queues. (Initially each fragment consists of a SLngle node with no
edges and each fragment queue consists of a single notation
giving the distance between the point and its nearest neighbour
raLong with the numbers of the both nodes. To avoid unnecessaryj“
distance calculation we let initially the nearest neighbour of e=z:
node be the node itself and thus give the unreal zero pricritiesz.

3. Form & priority queue of the fragment sizes. (Initially n

notations with priority 1. The fragment number is also stored

in the queue.) » o

pe

4. Loop until the number of fragments is one (then the MST is ready)
sizes)

do select (by using the priority queue of the fragment
a fragment with minimal size;

loop until the highest priority in the priority queue of the

current minimal fragment is real do

X < top node in the queue;

Y <« nearest nonfragment neighbour of X;

Link X to Y;

Delete the unreal priority of X and reinsert its real pricrity
intoc the fragment queus;

Repeat;

LV

A ¢ Top node of the fragment gueue;
Y « noce linked to X;

Merge the fregment queue of ¥ with the fragment queue of Yj




Insert edge (X,Y) in the fragment of Y;

Update the fragment size priority queue by removing
old size notations of X and Y and by reinserting a
notation to reflex the new size of Y's fragment;

Repeat;

Ind;

Operation of the above MST-algorithm is based on the following

Theorem /Chr, p. 135/. Let n be the number of nodes. Start

with trees T1’T2”"’Tn’ where each Ti consists of a single
node i. Select an arbitrary tree T and link it to the tree T'
for which

d= min{d(X,Y)|XeT, YeT'}

is minimal and T#T'. Repeat the above with the resulting trees

until there is only one free left. This tree is an MST of the
whole graph. ‘

Cheriton and Tarjan /CTa/ give a simple technique for the
management of the priority queue') cf fragment sizes; a (two-way
linked) linear list is formed of the fragments containing i nodes.
To facilitate the priority queue operations a vector A is used

as an index of the size lists by letting the component A(i) point

to the front of the list of the fragments of the size 1. This

allows the selection of the next fragment and the updating of the

fragment sizes in 0(1) time. Thus 0(n) time suffices in the whole
algorithm for management of fragment sizes.

Several techniques are available to implement the fragment
. N . o . —- +

queues /AHU/. We use in the following the so-called 2-3 trees
priority

which support the selection of the node with the greatest

1)

Essentially the data structure needed is more general than
a common priority gqueue. One must alsc be able to delete nodes

from the middle of the gqueue. On the other hand, the values of

the nodes in the queue are known to be integers from the range

[1,n].
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(i.e. that with minimal distance to the nearest neighbour) and the
updating of an unreal priority in 0(logn)-~time. The MST-algorithm
contains also a step where two priority queues are merged. In

the case of two 2- 3 trees this ié a simple operation and can

bo done in an O(logrw tlme.

3. COMPUTATION TIME

Four main operations can be separated in the MST-
algorithm of the previous section:
1. Construction of the optimized k-d tree. This demands a
computation time proportional to kn logn /FBE/. A linear time
median search algorithm /AHU/ is applied in this part of the
program.
2. Selection of a fragment of minimal size and updating of the
priority queue of fragment sizes. As noted above, thisg can be
done in total in a time proportional to n.
3. Determining the n-1 edges by which the fragments will be
cennected. Let n. be the size of fhe smallest fragment and
m. the number of nearest neighbour calculations when (at the
ith iteration) selecting the ith edge. Thus we need mi+1 times
in the fragment queue to search for the node with the smallest
priority and m. times to delete a queue element with unreal
priority and reinsert it with a new real priority. With
2-3 trees this can be done in a time pPOportlonal to (m.+1)logn..
Further, let Tn(ni) be the time of a nearest neighbour seurch
for a node of an ni~node fragment. In the case of optimized
k-d trees the expected value of T, (1) is fer large values of n
proportional to logn /FBF/. dowever for n, ;271 Tn(ni) clearly
depends on the configuration of the pOlﬂtS in the fragment and

cn the powni for which we are searching the nearest neighbour.

NS

2l g . 2
A mathematical analysis of In(ni) 1s not known to the authors”™ .

Z)The above problem greatly resembles the problem of

. . th . N .
finding the s closest point, analyzed in /FBF/. In the worst
case we have to search for the s:ni+1 closest point. Accordin

. . - t
to Bentley /Be2/ the expected time to find the s b 1osest

2

point is proportional to logn+s in any fixed dimension. In a
random case s is however most probably smaller than ni+1 and
we face a general intersection query /MOt/ which is hard to

analyse



‘hen altogether the n-1 edges can be chosen in a time
n-1 n-1
H= ¢ (n.+1)logn. + & m.T (n.).
. i i, i'n i
1= 1=

~
N
~r

4. Merging of the fragments. Each time a new edge is found, two
fragments are merged. I'irst we have to merge the fragment queues.
Because n-1 fragments are merged the upper bound of the total
computation time of this operation is for 2-3 trees proportional to
(n-1)logn. Second we have to update the fragment numbers of the

. . .th
nodes in the smaller fragment: there are n; numbers at 1

iteratio
Fragment numbers are needed when determining whether a nearest
neighbour is a fragment node or not. A list of nodes is maintained
for ecach fragment to facilitate the updating of fragment numbers.
Joining of two lists can be done in constant time. In addition,
updating of fragment numbers demands in the algorithm by
Theorem 2 at most a time proportional to n/2 logn. Third the
edges of the fragments are given by father links. Their management
demands in total at most a time proportional to n log n.

We see from the above considerations that for large values
of n the only components of the processing time increasing
possibly more rapidly than n logn are the first two components
of (2). It is risky to draw any further general conclusions
on the time complexity of the algorithm. The following notes,
however, clarify the significance of the parameters. |
a) Because m;<n., we have Im. logn; < n/2(logrﬂ2. Let m = Zmi/(n—T)
Then Zmilogra>é (n-1)m log n. Thus if m is small the fi?st
term of (2) does perhaps not dominate in the processing time
of the whole algorithm.
b) If Tn(1) is a good approximation for Tg(ni), thevexpected
value of the second term of (2) is proportional to (n-1)m logn.
Then for a small m-value we can expect a good computation
time also when n is large.

Next we give a theorem that states the upper limit
for the number of nodes to be merged when joining the fragments.

This theorem was already applied above.

Theorem 2. In the multifragment algorithm the number of

nodes tc be merged into the bigger fragments is bounded by

1) n-1 < N(n) < (n/2)1og n.
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Proof. The Former part of (1) is obvious. Let psrconsider
the following statement which is analogous to the latter part
of the statement of the theorem: A set of n points is divided
into two parts and the number of points in the smaller part
i1s counted. Thereafter both parts are handled by the same
technique (by dividing again into two parts and counting
the numbers of the points in the smaller parts ) etc.

Finally when there are left only sets with a single nocde,
the total number N(n) of the counted points in the smaller
parts is summed up. Then this sum is less than or equal to
(n/2)logn. ' '

The modified statement can be proved inductively. First,
the statement is true for n=1 (then (n/2)log2n = 0). Let us
suppqsé that the statement is true for n<ng, nOQQ, and prove
the statement for ng - For this we divide the set of ng
points into two parts, the smaller of which is supposed to
contain m points. Now it holds that m<n/2. Let us consider

a functicn
flng,m) = m+(m/2)log2m+§1/2)(no—m)logQ(nG"m).

For a fixed ng and mE[O,nO/Z], f(no,m) has its minimum at
point m:nO/S. Thus the maximum is attained at +the other end
of the interval., Because f(O)gf(nO/Q) we have by induction

N(n) < n/2+(n/4)log0(n/2)+(n/u}logz(n/2).

1"

(n/2)log,n.

This completes the proof of the theoren.
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", EXPERIMUNTS

A sét of experiments with the MST-algorithm of Section 2
was performed. As a function of the size n of the graph we
determined
1) Yq, the total number of nodes in the k-d tree visited during

the construction of the MST (Y1 tells the number of distance
calculations and branch node visits) and
2) Y?, the total number of times the nearest neigbour was determined
The number of points in each leaf of the k-d tree was one. This
"number is in the following called the bucket factor of the k-d
tree.

Experimental values of Y1/n are shown in Fig. 1.for sphericall:
symmetric, normally distributed points in a k-dimensional coordinate
space with the Euclidean distance measure. All results plotted here
and in the next figures are obtained as means of 15 repetitions.

- At each repetition a different set of n points was drawn. In Fig. 1
we have also plotted two graphs of the form c-logzn passing
through the observed Y1/n values for n=64. In the range ne[64;1024%]
Y1/n values are clearly below the c.log2n curve for k=2. For

k=5 the increase of Y1/n is still faster.

Fig. 2 shows that Y2 depends linearly on n. For a
fixed number of nodes the increase of the dimensionality causes
the reduction of the nearest neighbour calculations. For k=2 and
k=5 we have to determine the nearest neighbour in total about
2.0 and 1.5 times the number of nodes in the graph.

The observed running time as a function of the number of nodes
is given in Fig. 3. For the purpose of the comparison we have
also plotted the observed running time when solving the same
problem with Dijkstra's general MST-algorithm /Whi/. The bucket
factor of the k-d tree was now 8. In our experiments this bucket

factor gave the best running time for a DEC-10 computer with a

u
KA10-processor when using FORTRAN-IV without optimizing option.
T

A more detailed comparison of some MST-algori is made
in Table 1. Here we list fcr the dimensionalities k=2

a result of simulation experiments those n-values, fo
graphs of the running time cross the correspohding graphs of
Dijkstra's algorithm. For n-values creater tha o
points. Dijkstra's algorithm takes a longer running time than
that of the algorithms using a k-d tree. Th

e a
our algorithm are only approximative in nature and they greatly



depend on the details of the implementation. (Like in Fig. 3 the
running time was determined only for n= 26;2],...,210. Between
tnese points an estimate of the form cin? was used for determining
the running time of Dijkstra's algorithm and a linear approximation
was used for determining the running time of our MST-algorithm.)
The Table also shows the corresponding crossover points for the
multifragment algorithm of Bentley and Friedman as taken from
Table T of /BFr/. For small dimension numbers our algorithm

seems to give favourable crossover points. It is however not safe
to draw very strong conclusions about the efficiency of -

the algorithms: we do not know how good code Bentley and Friedman
have used in their experiments and the behaviour of our algorithm
was not tested for larger n-values.

Fig. 4 compares the observed running time T(n) of our
algorithm to nlogzn. The ratio T(n)/(nloan) is shown for dimensic
numbers k= 2,3,...,7. For k<h the graphs decrease slowly with
increasing values of n indiéating that T(n) increases more slowly
than nlogzn. For values k = 5 to 7 the situation is no more clear.
Also now.:.the slope of the graphs becomes smaller when n grows.

One possible explanation to this is, that for large k the examined
n-values were not large enough to give the asymptotic running time.
For instance, when n=64, there are only 4 levels in tne k-d tree
if we nave a bucket factor 8. The lack of extra memory prevented

us To analycse the situation.
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Table 1. Crossover points of the observed running time curves for
different k-values. Multifragment algorithms are
compared with the MST-algorithm of Dijkstra /Whi/.
Table gives the n-value above which the corresponding
multifragment algorithm gives a shorter running time than
Dijkstras algorithm.
I: the algorithm of this paper,

I1: the algorithm of Bentley and Friedman (from Table I

of /BFr/).
k (dimensionality) I II
2 85 250
3 160 260
b 260 340
5 400 Lus
3 700 ‘ Bu5S
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5. CONCLUSTIONS

A MST-algorithm for a point set in k-dimensional space
was given. The algorithm is a simplified version of the
multifragment algorithm given by Bentley and Friedman /BFr/.

In the original algorithm a density estimate was used for
determining the starting point of a new fragment. A new
fragment is introduced if more than my (a predetermined fixed
parameter) nearest neighbours are to be searched in order
to add a new edge to the current fragment. In our simplified
version of the algorithm we exclude the above two features and
use as tne only criterion in fragment gréwing the cize of
fragments: a new edge is always added to the fragment of minimal
size. Now as before the time needed by the algorithm is mainly
determined by the mean number of nearest neighbours that must
be determined when searching a new edge and Dj the -
complexity of (s*™) nearest neighbour calculations.
Experiments with normally distributed random points
indicate that cur algorithm omits great deal of distance
calculations and has a low running time.

-

ur discussion leaves open the mathematical analysis

O

of the k-d tree structure in this particular case. Further,

the metric used was Euclidean. MST-structure has also potential
application in data-file compression /ENe/. Here cne will
rather need the Hamming-metric. With this metric one would
~perhaps use the search techniques described by Burkhard and

Keller /BKe/ for finding the nearest neighbour.
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