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Abstract

The parallel complexity of the problem of constructing the convex hull of a sorted
planar point set is studied. For any point p in the plane, let x(p) and y(p) denote
the x- and y-coordinate of p. A planar point set S = {p1, p2, . . . , pN} is said to be
x-sorted if the points of S are given by increasing x-coordinate, i.e., x(pi) ≤ x(pi+1)
for all i ∈ {1, 2, . . . , N − 1}. The following two results are proved:

(1) Given an x-sorted set S ofN points, the convex hull of S can be found inO(logN)
time and O(N) space with ⌈N/ logN⌉ processors on an EREW PRAM.

(2) Given an x-sorted set S of N points, a padded representation of the convex hull
of S can be computed in O(log logN) time and O(N) space with ⌈N/ log logN⌉
processors on a WEAK CRCW PRAM. (If the number of points in the convex
hull is h, then the full representation of the convex hull is output in an array of
size O(min{h1+ε, N}), for any fixed ε > 0.)

It is also shown that these algorithms are asymptotically fastest possible in their
respective machine model if we insist on cost-optimality, i.e., that the product of the
time complexity and the number of processors used is linear.

1 Introduction

Given a set S of N points in the plane. The convex hull of S is the smallest convex region
containing all points of S. We use CH(S) to denote the boundary of the convex hull of
S. The set E of extreme points of S is the smallest subset of S having the property that
CH(E) = CH(S). We recognize two versions of the problem of constructing the convex
hull of a planar point set.

EXTREME POINTS: Given a set S of N points in the plane, report for each point
p ∈ S whether it is an extreme point or not.

CONVEX HULL: Given a set S of N points in the plane, produce a complete
description of CH(S), e.g., as a circular doubly-linked list.

Kirkpatrick and Seidel [21] showed that the CONVEX HULL problem can be solved
in O(N log h) sequential time, where h denotes the number of extreme points. Moreover,
they proved that, in the algebraic-computation-tree model of computation, any algorithm
solving the EXTREME POINTS problem requires Ω(N log h) time.

∗After the first writing of this paper, the author was informed that the first result has been proved
earlier by Atallah, Chen, and Wagener [5]; and the second result by Berkman, Schieber, and Vishkin [8].



Let x(p) and y(p) denote the x-coordinate and y-coordinate of the point p, respectively.
The set S = {p1, p2, . . . , pN} is said to be x-sorted if x(p1) ≤ x(p2) ≤ · · · ≤ x(pN ). For
x-sorted sets, both of the EXTREME POINTS and CONVEX HULL problems can be
solved in O(N) time (see, e.g., [4, 17, 22]).

In this paper we study the parallel compexity of the problem of constructing the convex
hull of an x-sorted planar point set. To be more specific, we consider algorithms running
in the real PRAM model (for the definition of the model, see, for example, the book by
JáJá [19]). This special case of the CONVEX HULL problem has previously been studied
by various researchers [5, 8, 15, 16].

On a CREW PRAM (and hence also on an EREW PRAM), any algorithm that solves
the EXTREME POINTS or CONVEX HULL problem for a set of size N requires Ω(logN)
time, even if we had arbitrarily many processors with arbitrary power (cf. Section 2).
Goodrich [16] gave a CREW-algorithm that constructs the convex hull of an x-sorted set
of size N in O(logN) time and O(N) space with ⌈N/ logN⌉ processors. So his algorithm
is asymptotically optimal with respect to time, space, and cost (the product of the time
complexity and the number of processors used) in the CREW PRAM model.

In this paper we present a new algorithm for finding the convex hull of an x-sorted
set that has the same resource requirements as Goodrich’s algorithm, but it runs on an
EREW PRAM.1 A combination of the fourth-root divide-and-conquer and binary divide-
and-conquer techniques is used in the algorithm. Yet another naive — but powerful —
technique used is that of copying. By creating copies of the data that would have been
otherwise accessed concurrently, concurrent reads can be avoided. The forth-root divide-
and-conquer helps us in keeping the number of needed copies few.

Observe that Goodrich’s algorithm as well as those presented in [2] and [6] are based on
the square-root divide-and-conquer strategy. Also the binary divide-and-conquer [7] and
cascading divide-and-conquer [11] techniques have been used to solve the CONVEX HULL
problem. The potential power of the ith-root divide-and-conquer strategy, for i > 2, seems
to be neclected in the computing literature, even though it has been used in some earlier
works (see, for example, [5, 15]). The fact that the technique is useful when developing
EREW-algorithms is, however, a bit surprising.

By allowing concurrent writes, faster solutions to the CONVEX HULL problem are
possible. Akl [3] observed that all extreme points can be identified in constant time with
N4 processors.2 Fjällström et al. [15] developed an algorithm that solves the CONVEX
HULL problem for x-sorted sets in O(logN/ log logN) time with optimal O(N) cost. The
problem left open in [15] was whether one can solve the EXTREME POINTS problem
by a faster cost-optimal algorithm. In this paper an affirmative answer to this question is
given: The extreme points of an x-sorted set of size N can be identidied in O(log logN)
time and O(N) space with ⌈N/ log logN⌉ processors on a WEAK CRCW PRAM. 3 (That
is, we use the weakest COMMON CRCW PRAM model, in which only concurrent writes
of the value one are allowed.) We prove also that under certain conditions the above
algorithm is asymptotically fastest possible even if N processors would be available.

Observe that, with a polynomial number of processors, Ω(logN/ log logN) is a lower
bound for the problem of counting h, the number of extreme points, or for the problem
of reporting the extreme points in an array of size h. We show, however, that a padded

1The same result has been proved earlier by Atallah, Chen, and Wagener [5], but the implementation
details of their algorithm differs from those of the algorithm to be presented in this paper.

2In [3] the model of computation was not a PRAM, but the algorithm given there is readily implemented
in constant time in any CRCW PRAM variant (e.g., on a WEAK CRCW PRAM) that is able to compute
the AND function of N bits in O(1) time with N processors.

3A similar result has been proved earlier by Berkman, Schieber, and Vishkin [8].
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representation of the convex hull can be computed as efficiently as the extreme points. As
an output we get the convex hull in an array of size O(min{h1+ε, N}), for any fixed ε > 0.

The lower bounds for the parallel complexity of the EXTREME POINTS and CON-
VEX HULL problems are presented in Section 2. The EREW-algorithm is described and
analysed in Section 3. The CRCW-algorithms are given in Section 4.

2 Lower bounds

It is clear that the CONVEX HULL problem cannot be easier than the EXTREME
POINTS problem. Therefore, a lower bound for the parallel time complexity of the latter
problem is only given.

Theorem 2.1. Let S be an x-sorted set of N points in the plane. Any algorithm that
identifies the extreme points of S requires

(1) Ω(logN) time on an CREW PRAM, even if arbitrarily many processors with arbi-
trary computing power are available;

(2) Ω(log logN) time on a PRIORITY CRCW PRAM, if at most N processors are
available.

Proof. The problem of computing the maximum of n bits/integers can be reduced to the
problem of identifying the extreme points of a set of size O(n). The exact reductions
are omitted here. The basic observation is that even if the points are given in x-sorted
order, the order in y-direction can be arbitrary. The claimed lower bounds follow from the
corresponding lower bounds known for the maximum problem on a CREW PRAM [12]
and a PRIORITY CRCW PRAM [14].

The proof of the above theorem leaves open following questions:

(1) We assumed that only the x-sorted order of the points is given as input. On a
CRCW PRAM, a faster solution might be possible for the special case where the
input sequence is monotonic both in the x- and y-directions.

(2) The lower bound of Fich et al. [14] for computing the maximum is based on a
Ramsay theoretic argument, and therefore to be valid the input numbers must be
of huge size (double exponential). It might be possible to devise a faster CRCW-
algorithm for the special case, in which the coordinates of the input points are small
integers.

3 A cost-, time-, and space-optimal EREW-algorithm

In this section our purpose is to give an algorithm for finding the convex hull of an x-sorted
set which is asymptotically optimal with respect to time, space, and processor utilization.
More precisely, we prove the following

Theorem 3.1. Given an x-sorted set S of N points in the plane, the convex hull of S can
be constructed in O(logN) time and O(N) space with ⌈N/ logN⌉ processors on an EREW
PRAM.

As an immediate consequence we get

Corollary 3.2. Given a set S of N points in the plane, the convex hull of S can be
computed in O(logN) time and O(N) space with N processors on an EREW PRAM.
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Proof. The points of S can be sorted with respect to their x-coordinates in O(logN)
time and O(N) space with N processors by using the parallel mergesort routine [10].
These resource requirements dominate the costs since, by Theorem 3.1, after x-sorting
only ⌈N/ logN⌉ processors are needed for constructing the convex hull of S in logarithmic
time.

Remark 3.3. An interesting open problem is whether one can develop an adaptive algo-
rithm for constructing convex hulls such that the logarithmic running time is guaranteed
by using at most ⌈(N log h)/ logN⌉ processors, where h denotes the number of extreme
points. Observe that h is not known beforehand, so a dynamic processor allocation should
be possible.

The rest of this section is devoted to the proof of Theorem 3.1.
We start with some preliminary definitions. Let S = {p1, p2, . . . , pN} be an arbitrary

x-sorted set of N points in the plane. We assume that the points of S are given in an
array. For the sake of simplicity, we do not make any distinction between the set S and
the array storing the points of S. As done in many previous convex-hull algorithms, we
divide the computation of CH(S) into two parts. First, we compute the upper hull of
S, denoted UH(S), which consists of those points of CH(S) that lie above the line going
through the points pa and pb, where pa is the point with the maximum y-coordinate among
the points whose x-coordinate equals to x(p1), and pb is the point with the maximum y-
coordinate among the points whose x-coordinate equals to x(pN ). Second, we compute
the lower hull of S, LH(S), which is defined analogously with the upper hull. CH(S) is
easily constructed in O(1) by a single processor from the monotone subchains UH(S) and
LH(S). For the sake of symmetry, we may restrict our presentation to the computation
of UH(S).

We can make the simplifying assumption that no two points of S have the same x-
coordinate. If this is not the case, the points having the same x-coordinate lie in consec-
utive positions in the input array, and it is a simple matter to select the point with the
largest y-coordinate within each segment of points with equal x-coordinate. When many
points agree in their x-coordinates, only the point with the largest y-coordinate can be
part of UH(S). The standard tool (see, e.g., [19, Exercise 2.5]) that we need here is an
algorithm for computing the segmented prefix sums (with the assosiative operation max).

Fix d = ⌈logN⌉. For two subsets S1 and S2 of S, we denote S1 < S2 if the x-coordinates
of all points in S1 are smaller than the x-coordinate of any point in S2. To represent an
upper hull of a subset S′ ⊆ S, we use the simple pointer-based data structure introduced
by Fjällström et al. [15]. We call the data structure here a compact collection of d-hulls, or
simply a d-collection. Assume that a subset S′ of S is divided into subsets S1, S2, . . . , Sm,
such that the size of each subset is at most d, S1 < S2 < . . . < Sm, and

⋃m
i=1 Si = S′.

Further, let S′
1, S

′
2, . . . , S

′
m′ denote those of the subsets S1, S2, . . . , Sm that have points on

UH(S′). A d-collection of S′ has two levels:

(1) At the bottom level, for each i ∈ {1, 2, . . . ,m′} we store the points of UH(S′
i) ∩

UH(S′) in x-sorted order in a subarray of size at most d.

(2) At the top level, we have an array of size m, where only the first m′ entries are in use.
The jth entry, j ∈ {1, 2, . . . ,m′}, contains two pointers to the corresponding subset
S′
j in the bottom level specifying the portion of UH(S′

j) that belong to UH(S′).
If Si does not have any points on UH(S′), there is no entry corresponding to this
subset.

As a preprocessing step, the input set S is divided into pieces of size d (except perhaps
the last one) and the convex hulls of these pieces are determined (in parallel) by applying
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any linear-time sequential algorithm [4, 17, 22]. Hence, we need here at most ⌈N/ logN⌉
processors and use O(d) ⊆ O(logN) time. The input to our upper hull algorithm is the
above collection of d-hulls (an array of pointers to d-hulls) and the algorithm will then
compute the upper hull (represented as a d-collection) for the points in the d-hulls.

When combining the upper hulls of the sets S1 and S2 that are disjoint, e.g., S1 < S2,
the main task is to compute the upper common tangent to the convex chains UH(S1) and
UH(S2). For this purpose, the following results are useful for us.

Lemma 3.4. Let S = {p1, p2, . . . , pm} be a set of m points in the plane, ordered by x-
coordinate. Given the upper hull of S1 = {p1, . . . , pi} and S2 = {pi+1, . . . , pm}, for some i,
i ∈ {1, 2, . . . ,m}, the upper hull of S can be computed in O(logm) sequential time, provided
that both UH(S1) and UH(S2) are represented, e.g., as an augmented 2-3 tree, in which
each node has pointers to its leaves with smallest and largest x-coordinate, respectively.
(For the definition of 2-3 trees, see, e.g., [1].)

Lemma 3.5. Let S = {p1, p2, . . . , pm} be a set of m points in the plane, ordered by x-
coordinate. Given the upper hull of S1 = {p1, . . . , pi} and S2 = {pi+1, . . . , pm}, for some
i, i ∈ {1, 2, . . . ,m}, the upper common tangent of UH(S1) and UH(S2) can be found in
O(c2) time with ⌈m1/c⌉ processors on a CREW PRAM, provided that UH(S1) and UH(S2)
are given compactly in arrays.

The latter lemma has an immediate corollary stated below.

Corollary 3.6. Let S = {p1, p2, . . . , pm} be a set of m points in the plane, ordered by
x-coordinate. Given the upper hulls of S1 = {pi0+1, . . . , pi1}, S2 = {pi1+1, . . . , pi2}, · · ·,
Sk = {pik−1+1, . . . , pik}, where i0 = 0, ik = m, and ij ≤ ij+1 for all j ∈ {1, 2, . . . , k − 1}.
For all a, b ∈ {1, 2, . . . , k}, a 6= b, the upper common tangents of UH(Sa) and UH(Sb)
can be found in O(c2) time with k2 · ⌈m1/c⌉ processors on a CREW PRAM, provided that
every UH(Sj) is given compactly in an array.

We cannot apply the results mentioned above directly due to two reasons:

(1) The upper hulls are not represented as d-collections used by us, and

(2) Lemma 3.5 and Corollary 3.6 require the CREW PRAM model.

It is a simple matter to transform a d-collection representation of a convex chain to an
augmented 2-3 tree. In our algorithm, we need only a linear-time sequential subroutine for
doing this, but a fast parallel routine could also be developed (cf. [19, Exercise 2.32]). The
transformation of a 2-3 tree to a d-collection is a bit more complicated. Katajainen [20]
showed how the representation of a sorted set of n elements can be efficiently converted
from a 2-3 tree to a sorted array of size n. Since, a d-collection is easily constructed from
a sorted array, we have the following

Lemma 3.7. Let C be a convex chain of m vertices. Given the 2-3 tree representation of
C, a compact d-collection corresponding to C can be created in O(logm) time and O(m)
space with ⌈m/ logm⌉ processors on an EREW PRAM.

It is not difficult to see that the results of Lemma 3.5 and Corollary 3.6 are also valid if
d-collections are used for representing the convex chains instead of arrays. The verification
of this fact is left to the reader.

Let us now concentrate on the question, how the algorithms of Lemma 3.5 and Corollary
3.6 are made to run on an EREW PRAM. Here we use the well-known simulation result
saying that a p-processor CREW-algorithm can be no more than O(log p) times faster
than the best p-processor EREW-algorithm for the same problem. For the proof of the
next lemma, see, for example, [13, Theorem 30.1].

5



Lemma 3.8. A p-processor EREW PRAM can simulate a step of a p-processor CREW
PRAM in O(log p) time by using O(p) extra space.

By Corollary 3.6 and Lemma 3.8, we have

Lemma 3.9. Let S = {p1, p2, . . . , pm} be a set of m points in the plane, ordered by x-
coordinate. Given the d-collections corresponding to the upper hulls of S1 = {pi0+1, . . . , pi1},
S2 = {pi1+1, . . . , pi2}, · · ·, Sk = {pik−1+1, . . . , pik}, where i0 = 0, ik = m, and ij ≤ ij+1 for
all j ∈ {1, 2, . . . , k − 1}. For all a, b ∈ {1, 2, . . . , k}, a 6= b, the upper common tangents of
UH(Sa) and UH(Sb) can be found in O(c2 log k+ c logm) time with k2 · ⌈m1/c⌉ processors
on an EREW PRAM.

Now we are ready to present the algorithm for computing the upper hull for a collec-
tion of d-hulls. The main part of the algorithm uses the fourth-root divide-and-conquer
technique. The problems of size less than d4 are handled by using the binary divide-and-
conquer technique.

Algorithm U-HULL

INPUT: A collection C of d-hulls of the sets S1, S2, . . . , S⌈m/d⌉, S1 < S2 < · · · < S⌈m/d⌉.
Processors P1, P2, . . . , P⌈m/d⌉ are allocated for this task.
OUTPUT: An upper hull of the points in the d-hulls of C.
If m < d4 then

Step 1.1 Construct an augmented 2-3 tree corresponding to each d-hull in C. Allocate
one processor to each of these tasks.
Step 1.2 Combine the hulls paiwise level-by-level until only one tree T is left (cf. Lemma
3.4). Each combining is done by a single processor, but at every level the combinings are
done in parallel.

Step 1.3 Transform T corresponding to UH(
⋃⌈m/d⌉

i=1
Si) to a d-collection (cf. Lemma 3.7).

Allocate all the available ⌈m/d⌉ processors to this task.
elseif m ≥ d4 then

Step 2 Calculate ⌈m1/4⌉ and copy the answer to all processors.
Step 3 Divide the collection C into ⌈m1/4⌉ subcollections Ci and compute the upper hulls
of the subcollections in parallel by calling the algorithm U-HULL recursively. Allocate
m3/4/d processors to each subtask, i.e., one processor per a d-hull in Ci. Let UH(Ci)
denote the outcomes of these computations.
Step 4 Compute the upper common tangents for each pair UH(Ci), UH(Cj), i, j ∈
{1, 2, . . . , ⌈m1/4⌉}, i 6= j (cf. Lemma 3.9). Fix k = ⌈m1/4⌉ and c = 4, so that only
the first m3/4 of the ⌈m/d⌉ processors are used here. (Recall that m ≥ d4.)
Step 5 Let ti,j denote the upper common tangent between UH(Ci) and UH(Cj). For each
i, i ∈ {1, 2, . . . , ⌈m1/4⌉}, compute the tangent ℓi with the smallest slope in {ti,1, . . . , ti,i−1}
and the tangent ri with the largest slope in {ti,i+1, . . . , ti,⌈m1/4⌉}.

Step 6 Take m3/4/d copies of every ℓi and ri. Use these copies to update the top level
pointers (if necessary) for every d-hull of UH(Ci), i ∈ {1, 2, . . . , ⌈m1/4⌉}.
Step 7 Remove those top level entries in the d-collection UH(Ci) that point to an empty

set. Create a new d-collection containing all non-empty d-hulls in
⋃⌈m1/4⌉

i=1
UH(Ci), e.g.,

by using a parallel prefix subroutine.
end if

end Algorithm U-HULL

As a post-processing step, the points in the obtained d-collection are moved to an array.
Here a prefix sum routine is again needed. This step requires O(logN) time and O(N)
space with ⌈N/ logN⌉ processors.
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The overall structure of the algorithm U-HULL is similar to that of the algorithm by
Atallah and Goodrich [6]. They used square-root divide-and-conquer instead of fourth-
root divide-and-conquer. Therefore, the correctness of our algorithm follows immediately
from the correctness of this earlier algorithm.

We used fourth-root divide-and-conquer to avoid concurrent reads. The critical point
is Step 4 but Lemma 3.9 already showed how concurrent reads can be avoided there. In
all other steps standard tools (prefix sums computation, copying, minimum/maximum
finding) are used and these are known to run in the EREW PRAM model.

Let us now analyse the running time of the algorithm U-HULL. In Steps 1.1–3 we have
⌈m/d⌉ d-hulls and ⌈m/d⌉ processors. In Step 1.1, an augmented 2-3 tree corresponding to
a d-hull is constructed in O(d) time, and with ⌈m/d⌉ processors all d-hulls can be handled
in parallel. According to Lemma 3.4, Step 1.2 requires O(log d) time and this is done
O(log d) times, which totals O(log2 d). By Lemma 3.7 and the self-simulating property
of EREW PRAMs, Step 1.3 is executed in O(d) time with ⌈m/d⌉ processors. Hence, the
total time required by Steps 1.1–3 is O(d) with ⌈m/d⌉ processors.

Step 2 takes O(logm) time with ⌈m/d⌉ processors. Observe that ⌈m1/4⌉ can be com-
puted without the square-root operation if, after distributing m to all processors, each
processor Pi computes i4 and then the processor Pj who observes of being the first, for
which j4 ≥ m, reports its number to other processors. Here copying is again needed but
it will take O(logm) time as required.

The processor allocation in Step 3 can be done statically since each processor knows m.
Hence, Step 3 takes T (⌈m3/4⌉) + O(1) time with ⌈m/d⌉ processors, where T (m) denotes
the time needed for the whole algorithm.

According to Lemma 3.9, Step 4 uses O(logm) time with ⌈m3/4⌉ processors. The
minimum and maximum finding in Step 5, copying in Step 6, and compaction in Step 7
can be solved by standard routines that all require O(logm) time with ⌈m/d⌉ processors.
Since the total number of items involved in these computations is only ⌈m/d⌉, a fewer
number of processors would be enough to execute these steps.

To sum up, we have the recurrence

T (m) =

{

T (⌈m3/4⌉) +O(logm) if m ≥ d4

O(d) if m < d4

for the execution time of the algorithm U-HULL. Therefore, the computation of the upper
hull for ⌈N/d⌉ d-hulls (d = ⌈logN⌉) takes time

T (N) ≤ O(
∞
∑

i=0

(
3

4
)i logN) +O(logN) ⊆ O(logN).

Hence, the upper hull for a set of size N can be computed in O(logN) time, since all
pre-processing, the algorithm U-HULL, and all post-processing can be executed in that
time. No more than ⌈N/ logN⌉ processors are employed in any step. We will not give a
detailed analysis of the space requirements, but it is not difficult to see that O(N) space
is used. This completes the proof of Theorem 3.1.

4 A faster cost- and space-optimal CRCW-algorithm

The algorithm of Section 3 can be made faster on a WEAK CRCW PRAM. However, the
compaction will be a hidden bottleneck in the algorithm. To avoid this, we show first how
the extreme points of an x-sorted planar point set are identified fast. When all extreme
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points are available in x-sorted order, a padded representation of the convex hull can be
computed efficiently.

We utilize in our algorithm more or less standard CRCW-subroutines, whose efficiency
is summarized in the next two lemmas. In both lemmas the model of computation is a
WEAK CRCW PRAM.

Lemma 4.1. [24] The maximum (minimum) of m elements can be computed in

(1) O(1) time and O(m2) space with m2 processors;

(2) O(log logm) time and O(m) space with ⌈m/ log logm⌉ processors.

Lemma 4.2. [9] Given a bit-array B of size m, for each position of B the index to the
nearest previous 1-bit can be computed in

(1) O(1) time and O(m log logm) space with ⌈m log logm⌉ processors;

(2) O(log logm) time and O(m) space with ⌈m/ log logm⌉ processors.

Remark that all results stated in the above lemmas are not the best possible, but we
gave these in the form we shall use them.

Let S be any x-sorted set of N points given as input. Fix e = ⌈log logN⌉2. To be
able to utilize the algorithm of Lemma 3.5, when computing extreme points, we use a
variant of the d-collection data structure, called a chained collection of e-hulls, or simply
an e-collection. As in compact d-collections, this new data structure has two levels. The
bottom level is as before but now the size of the subsets is bounded by e. If some of the
subsets does not contain any extreme point, at the top level we simply mark the subset
non-active and add a new pointer to the nearest previous subset that is still active. To
update these pointers we use Lemma 4.2.

It is not difficult to show that the results similar to those given in Lemma 3.5 and
Corollary 3.6 are also valid for e-collections. The verification of this fact is left to the
interested reader.

Now the basic algorithm for identifying the extreme points of S is similar to the algo-
rithm U-HULL. Again the computation is divided into two parts. First, we identify the
extreme points on the upper hull of S and then those on the lower hull of S. For the sake
of symmetry, only the algorithm for identifying upper hull points is given here.

We can further assume that the x-coordinates of the input points are distinct. If this
is not the case, the point with the maximum y-coordinate, within every segment of points
having equal x-coordinates, is identified and those points that are dominated by some
other point with a larger y-coordinate are simply discarded from consideration (but the
input array is not compacted). The segment maximums are found by using the part (2) of
Lemma 4.1. The processors are allocated to each subtask by using the part (2) of Lemma
4.2.

In the preprocessing step, the input points are divided into disjoint pieces of size e
(except perhaps the last one) and the convex hull of every piece is computed. We allocate
⌈log logN⌉ processors for each piece and use the parallel algorithm developed in Section
3 to construct its convex hull. Since a WEAK CRCW PRAM is self-simulating, the
computation can be slowed down such that this preprocessing uses O(log logN) time (and
O(N) space) with ⌈N/ log logN⌉ processors.

Since concurrent reads are allowed on a CRCW PRAM, the description of the algo-
rithm can be simplified considerably. Now all copying is no more necessary. In the
CRCW-algorithm given below, we describe only those steps that are different from the
corresponding steps of the algorithm U-HULL.
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Algorithm U-POINTS

INPUT: A collection C of e-hulls of the sets S1, S2, . . . , S⌈m/e⌉, S1 < S2 < · · · < S⌈m/e⌉.
Processors P1, P2, . . . , P⌈m/e1/2⌉ are allocated for this task.
OUTPUT: An upper hull of the points in the e-hulls of C.
If m < e4 then

Steps 1.1–3 Otherwise as in the algorithm U-HULL, but the outcome is an e-collection.
elseif m ≥ e4 then

Step 2 Calculate ⌈m1/4⌉.
Step 3 Divide the collection C into ⌈m1/4⌉ subcollections Ci and compute the extreme
points of the subcollections in parallel by calling the algorithm U-POINTS recursively.
Allocate m3/4/e1/2 processors to each task. Let EP (Ci) denote the outcomes of these
computations.
Step 4 Compute the upper common tangents for each pair EP (Ci), EP (Cj), i, j ∈
{1, 2, . . . , ⌈m1/4⌉}, i 6= j (cf. Corollary 3.6). Fix k = ⌈m1/4⌉ and c = 4, so that only
the first m3/4 of the ⌈m/e1/2⌉ processors are used here. (Recall that m ≥ e4.)
Step 5 As in the algorithm U-HULL.
Step 6 Update the top level pointers (if necessary) for each e-hull of EP (Ci), i ∈
{1, 2, . . . , ⌈m1/4⌉}.

Step 7 Create a new e-collection containing all e-hulls in
⋃⌈m1/4⌉

i=1
EP (Ci). For each non-

active e-hull, compute its nearest previous active e-hull.
end if

end Algorithm U-POINTS

As a post-processing step, each input point is marked to be an extreme point if is active
in its e-hull in the computed e-collection. This is easily checked in O(1) time per point,
or if the computation is slowed down in O(log logN) time with ⌈N/ log logN⌉ processors.

Finally, let us analyse the performance of the algorithm U-POINTS. As in the algorithm
U-HULL, Steps 1.1–3 require O(e) time in total. Since concurrent reads are allowed, Step
2 uses only O(1) time. As earlier Step 3 needs T (⌈m3/4⌉) + O(1) time. According to
Corollary 3.6, Step 4 takes now O(1) time with m3/4 processors. In Step 5 we can allocate
m1/2 processors for each minimum/maximum finding task. By the part (1) of Lemma 4.1,
Step 5 uses O(1) time with m3/4 processors. Step 6 takes O(1) time with m/e processors.
In Step 7 the new e-collection can be created in O(1) time with m/e processors. The
most critical part of the algorithm is the point where the nearest previous active e-hulls
are computed. Here we really need all the processors available. The new e-collection
contain ⌈m/e⌉ entries. By the part (2) of Lemma 4.2, with (m/e) log log(m/e) ≤ m/e1/2

processors the computation of the previous nearest active e-hulls can be carried out in
O(1) time. Hence, we obtain the recurrence

T (m) =

{

T (⌈m3/4⌉) +O(1) if m ≥ e4

O(e) if m < e4

for the running time of the algorithm U-POINTS. It is easy to see that T (N) ∈O(log logN).
The discussion above is now summarized in the following

Theorem 4.3. Given an x-sorted set of N points, the extreme points of S can be identified
in O(log logN) time and O(N) space with ⌈N/ log logN⌉ processors on a WEAK CRCW
PRAM.

By using the part (2) of Lemma 4.2, the extreme points can be chained together. Now by
applying Ragde’s compaction theorem (see [18, 23]) the extreme points can be compacted
in O(1) time with N processors to an array of size O(min{h1+ε, N}), where h denotes the
number of extreme points and ε is a fixed positive constant. Thus, we have

9



Theorem 4.4. Given an x-sorted set of N points, a padded representation of the con-
vex hull of S can be computed in O(log logN) time and O(N) space with ⌈N/ log logN⌉
processors on a WEAK CRCW PRAM.
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