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Abst rac t .  The efficiency of mergesort programs is analysed under a simple 
unit-cost model. In our analysis the time performance of the sorting programs 
includes the costs of key comparisons, element moves and address calcula- 
tions. The goal is to establish the best possible time-bound relative to the 
model when sorting n integers. By the well-known information-theoretic ar- 
gument n log 2 n - O(n) is a lower bound for the integer-sorting problem in 
our framework. New implementations for two-way and four-way bottom-up 
mergesort are given, the worst-case complexities of which are shown to be 
bounded by 5.5nlog 2 n + O(n) and 3.25nlog 2 n + O(n), respectively. The 
theoretical findings are backed up with a series of experiments which show 
the practical relevance of our analysis when implementing library routines 
for internal-memory computations. 

1 I n t r o d u c t i o n  

Given a sequence of n elements, each consisting of a key drawn from a totally ordered 
universe U and some associated information, the sorting problem is to output  the 
elements in ascending order according to their keys. We examine methods for solving 
this problem in the internal memory of a computer under the following assumptions: 

1. The input is given in an array and the output  should also be produced in an 
array, which may be the original array if the space is tight. 

2. The key universe/ , / is  the set of integers. 
3. There is no information associated with the elements. Hence, we do not make 

any distinction between the elements and their keys. 
4. Comparisons and moves are the only operations allowed for the elements. 
5. Comparisons, moves, and basic arithmetic and logical operations on integers take 

constant time. 
6. An integer can be stored in one memory location and there are O(n) locations 

available in total. 

From assumption 4 it follows that  any sorting method must  use at least ~2(n log 2 n) 
t ime (see, e.g., [11, Section 5.3]). However, without this assumption n integers can 
be sorted in O(n log 2 log 2 n) time [1], or even in O(n) time if integers are small (see, 
e.g., [11, pp. 99-102]). 

* Supported partially by the Danish Natural Science Research Council under contract 
No. 9400952 (project "Computational Algorithmics'). 
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Mergesort is as important in the history of sorting as sorting in the history of 
computing. A detailed description of bottom-up mergesort, together with a timing 
analysis, appeared in a report by Goldstine and yon Neumann [6] as early as 1948. 
Today numerous variants of the basic method are known, for instance, top-down 
mergesort (see, e.g., [17, pp. 165-166]), queue mergesort [7], in-place mergesort (see, 
e.g., [8]), natural mergesort (see, e.g., [11, pp. 159-163]), as well as other adaptive 
versions of mergesort (see [5, 14] and the references in these surveys). The develop- 
ment in this paper is based on bottom-up mergesort, or straight mergesort as it was 
called by Knuth [11, pp. 163-165]. 

As much as this paper is about sorting, it is about the timing analysis of pro- 
grams. In contrast to asymptotical analysis (or big-oh analysis), the goal in metic- 
ulous analysis (or little-oh analysis) is to analyse also the constant factors in the 
running time, especially the constant in the leading term of the function expressing 
the running time. 

To facilitate the meticulous analysis of programs, a model has to be defined that. 
assigns a cost for all primitive operations of the underlying computer. The running 
time of a program is then simply the sum of the costs of the primitive operations 
executed on a particular input. Various cost models have been proposed for this 
purpose. In his early books [10, 11] Knuth used the MIX model where the cost 
of a MIX assembly language instruction equals the number of memory references 
that will be made by that instruction, including the reference to the instruction 
itself. That  is, the cost is one or two for most instructions, except that the cost. of a 
multiplication was defined to be ten and that of a division twelve. In his later books 
[12, 13] Knuth has used a simpler memory-reference model in which the cost of 
a memory reference is one, whereas the cost of the operations that do not refer to 
memory is zero. 

Knuth analysed many sorting programs in his classic book on sorting and search- 
ing [11]. His conclusions were that quicksort is the fastest method for internal sorting 
but, if a good worst-case behaviour is important, one should use heapsort since it 
does not require any extra space for its operation. 

In this paper we complement Knuth's results by analysing also multiway m.erge- 
sort, which was earlier considered to be good only for external sorting. In the full 
paper we furthermore aualyse a new implementation of the in-place mergesort algo- 
rithm developed by Katajainen et al. [8] and the adaptive mergesort variant proposed 
by van Gelder (as cited in [5]). Our conclusions are different from those of Knuth. In 
our cost model multiway mergesort is the fastest method for integer sorting, in-place 
mergesort is the fastest in-place sorting method, and adaptive mergesort is compet- 
itive with bottom-up mergesort together with the advantage of being adaptive. An 
explanation of these results is that the inner loop of mergesort is only slightly more 
costly than that of quicksort but the outer loop of multiway mergesort is executed 
less frequently. 

The rest of the paper is organized as follows. In Section 2 we introduce a subset 
of the C programming language, called pure C, and an associated cost model. In 
Section 3 the worst-case performance of multiway bottom-up mergesort is analysed 
under this cost model. The theoretical analysis is backed up by a series of experiments 
in Section 4. The results are summarized in Section 5 (see Table 2). 



219 

2 A C c o s t  m o d e l  

The model of computation used throughout this paper is a Random Access Machine 
(RAM) which consists of a program, memory and a collection of registers. A register 
and a memory location can store an integer. The actual computations are carried out 
in the registers. In the beginning of the computation the input is stored in memory, 
and the output should also be produced there. 

The machine executes programs written in pure C which is a subset of the C 
language [9]. All the primitive operations of pure C have their counterparts in an 
assembly language for a present-day RISC processor [15, Appendix A. 10]. The exe- 
cution of each primitive operation is assumed to take one unit of time. The reader 
is encouraged to compare this assumption with the actual costs of C operations 
measured by Bentley et al. [3] on a variety of computers. 

The data manipulated by pure C programs are integers ( in t ) ,  col, stants, and 
pointers ( in t*) .  If a variable is defined to be of type in t ,  we assume that the value 
of this variable is stored in one of the registers, that is, the actual type is r e g i s t e r  
in t .  Also pointer variables, whose content indicates a location in memory, are kept 
in registers, i.e., their type is r e g i s t e r  in'c*. 

A pure C program is a sequence of possibly labelled statements. Let x, y, z be not 
necessarily distinct integer variables, c and d constants, p and q pointer variables, 
and ~ a label of some statement in the program under execution. The primitive 
statements of pure C are listed below. 

1. Load statement "x = *p;" loads the integer stored at the memory location 
pointed to by p into register x. 

2. Store statement "*p = y;"  stores the integer from register y at the memory 
location pointed to by p .  

3. Move statement "x = y;"  copies the integer from register y to register x. Also 
the form "x = c ;" is possible. 

4. Ari thmetic statement "x = y �9 z ;"  stores the sun], difference, product or quo- 
tient of the integers in registers y and z into register x depending on e E 
{ + , - , * , / } .  Also the forms "x = c ~ z ;"  and "x = y @ d;"  are possible. 

5. Branch statement " i f  (x <1 y) goto l ; "  branches to the statement with label 
~, where <] E {< ,> ,= ,~ ,~ ,#} .  Also the forms " i f  (c ,3 y) goto  ~;" and " i f  
(x <3 d) goto  ~;" are possible. 

6. Jump statement "goto /~;~' branches unconditionally to the statement with label 

7. Empty  statement ";" does nothing. 

Thus pure C statements are simply normal C statements involving at most three 
addresses. It is easy to translate the C control structures into pure C. 

In the basic model the cost of all pure C primitives is assumed to be the same. In 
reality, computers are more complicated since the actual running time of a program 
depends on pipelining of the instructions and caching of the data. Therefore, the cost 
given by the model can only be treated as an approximation of the exact running 
time. It might be possible to get a more accurate estimate of the running time by 
assigning a weight to every primitive operation, although this still ignores the context 
in which an operation is being executed. 
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Knuth has used a simple 'variant of the weighted pure C model in his recent 
books [12, 13] when comparing the practical efficiency of different programs. In his 
7nernory.reference model the cost of every load and store statement is one, whereas 
the cost of all other primitives involving only registers is zero. The classical goodness 
measures used in the sorting literature are the number of key comparisons and the 
number of element ~oves. In the following we study only the pure C cost of various 
mergesort programs, but. from these programs the number of memory references, key 
comparisons and element moves carried out can be readily calculated (cf. Table 2). 

In order to make our programs more readable, we will later on use the array 
syntax "a f i ] "  instead of the pointer syntax "* ( a + i ) ' .  According to our cost model, 
the cost of the load statement "x = a [ i ] "  as well as the store statement "aEi] = 
y" is two. However, if the array is accessed sequentially, it is possible to do a more 
efficient translation into pure C. The programs to be presented contain very few 
statements that could be executed in parallel. In our program descriptions indepen- 
dent statements are written on the same line, in order to show where the execution 
might benefit from parallelism in the hardware (pipelining, instruction parallelism). 

3 T h e  w o r s t - c a s e  p e r f o r m a n c e  o f  m e r g e s o r t  p r o g r a m s  

Let a be an array of n elements to be sorted. Further, assume that b is another array 
of the same size. We say that the first element of a subarray of a or b is its head and 
the last element its tail. Multiwag bottom-up mergesort sorts the elements in passes. 
Initially, each element of a is thought to form a sorted subarray of size one. In each 
pass the subarrays are grouped together such that each group consists of, say, m 
consecutive subarrays (except the last one which might be smaller), after which the 
subarras, s in every group are ~?~-way merged from a to b. This way the number of 
sorted subarr~,s is reduced from n to In~m]. Then the rSle of a and b is switched 
and the same process is repeated until only one subarray remains, containing all the 
elements in sorted order. The heart of the construction is the merge function, which 
repeatedly moves the smallest of the heads of (at most) m shrinking subarrays to 
the output zone in b. In the following we present some improvements over textbook 
implementations, and analyse the performance of these improved implementations. 

3.1 Two-way  b o t t o m - u p  m e r g e s o r t  

In two-way bottom-up mergesort, or briefly two-wag mergesort, two subarrays are 
merged at a time. Sedgewick [17, pp. 173-174] pointed out that it is advantageous 
to reverse the order of elements in every second subarr~,. This way the maximum of 
the tails of the subarrays will function as a sentinel element saving one pointer test. 
However, this method will not necessarily retain the order of equal elements, i.e., 
the resulting sorting method is no longer stable. We present a different optimization 
which preserves stability and is even more efficient than the reversal method. 

In a normal textbook program (see, e.g., [2, p. 63]) a merge of two subarrays is 
accomplished in a loop where the smallest of the two heads is moved into the output 
zone, the involved indices are updated accordingly, and at the end of each iteration it 
is tested whether either of the subarrays is exhausted. However, during one iteration 
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void MERGE(a[], h~, t l ,  h2, t~, b [ ] ,  h~, t3) { 
i = hi;  j = h2; m = h3; 
u = a [ i ] ;  v = a [ j ] ;  
if (a[t,] > a[t2]) goto testl; 

goto test2; 

first: b[m] = u; 

i = i + I; m = m + 1; 

u = a[i] ; 

test1: if (u ~ v) goto first; 

b[m] = v; 

j = j + I; m = m + I; 

v = a [ j ]  ; 
if (j ~ t2) goto testl; 

for (; i ~tl; i++, m++) b[m] = a[i]; 

return; 

second:b[m] = v; 

j =j + I; m=m.+ I; 

v = a [ j ]  ; 
t e s t2 :  i f  (u > v) goto second; 

b[m] = u; 
i = i + 1; m -- m + 1; 
u = a[i] ; 

if (i ~ tt) goto test2; 

for (; j ~ t2; j++, m++) b[m] = a[j]; 

return; } 

Fig.  1. An efficient two-way merge. 

only the posi t ion of one of the heads, not both,  is updated.  Therefore, one of these 
tests is superfluous, and can be avoided by more careful programming.  Another  way 
of speeding up the program is to check prior to the loop which of the tails  is smMler 
and then write a separate code for the two possible cases. After this it is no longer 
necessary to test  whether the end of the subarray with the larger tai l  is reached. 
Moreover, we apply  Sedgewick's rule [16, p. 853] tha t  no inner loop should ever end 
with a j u m p  s ta tement .  These ideas are implemented in Fig. 1 as function MERGE. 

In MERGE the value of a [ j ]  ( a [ i ] )  is read before the test whether j ( i )  is out  
of the range or not. However, an element is never used if it  is from neither of the 
subarrays.  If required, the reference outside array a can be avoided by sorting the 
first n . -  1 elements and thereafter inserting the last element into its proper  location. 
By binary search this requires only O(log2 n) comparisons,  after which at  most  72 
element moves are to be done. 

Depending on the relat ive order of the tails, there are two symmetr ic  cases. Let 
us consider the case where the tai l  of the first subarray is larger than tha t  of the 
second subarray.  In the first inner loop of MERGE, a comparison is performed to decide 
from which subarray an element should be moved to the ou tput  zone and, if this  
element comes from the second subarray, a test is performed at  the end to see if t ha t  
subarray is exhausted or not. Thus, the cost of one i terat ion is five or six, provided 
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that  pointers are used instead of array cursors. In the second for- loop the cost of 
copying the elements to the output zone is five per element. 

In each of the [log~ n] merging passes there is a.t most one merge where the 
second subarray is shorter than the first subarray or where the second subarray is 
missing altogether. The overall cost caused by these special merges is proportional to 

d=O 2 d, which is O(n). In a normal case the subarrays being merged are of the 
same size. When considering these normal merges only, the extra test is necessary 
for at most half the elements in each merging pass. Furthermore, the number of 
normal merges is clearly never more than n - 1. Therefore, the overall cost caused 
by the normal merges is bounded by 5.5n log 2 n + O(n). To sum up, the worst-case 
performance of bottom-up mergesort is 5.5n log 2 n + O(n). 

3.2 Fou r -way  b o t t o m - u p  m e r g e s o r t  

Four-way bottom-up mergesort, or simply four-way mergesort, merges four, instead 
of two, subarrays in each merge. This reduces the number of passes from [log 2 n] 
to [log 4 7~], where n denotes the size of the input as earlier. In the implementation 
of four-way merge it is important to find the minimum of the four heads fast. For 
example, the heads could be kept in a priority queue from which the smallest el- 
ement is always removed, and after each removal a new element (if any) from the 
same subarray is inserted into the priority queue. Practical experiments, e.g., those 
carried out by Katajainen et M. [8], indicate that the best data structure for this 
purpose is an unordered list., even though with this structure the nmnber of element 
comparisons will increase from about n log 2 n to 1.5n log~ n. In the present paper we 
show that  a faster implementation is obtained if a program state is used to remember 
the relative order of the four heads, instead of using a data. structure. The state is 
changed accordingly when a head is updated. 

As in two-way mergesort, in each merging pass there is a.t most one specia.1 merge 
where the number of merged subarrays is less than four or, if four, the last subarray 
is shorter than the others. The cost of these special merges is clearly proportional to 
~[log~ ~1 4 a, which is O(n). Therefore, we concentrate on the normal merges where d=0 
the subarrays are of the same size. 

A normal merge goes through four phases: in Phase i, i E {0, 1, 2, 3}, the end 
of i subarrays has been reached, that  is 4 - i of the subarrays being merged still 
have elements left. Phase 3 reduces to copying in which the cost of the inner loop is 
five per element. Phase 2 is a two-way merge, the inner loop of which costs at most 
six per element. Let us now consider how a three-way merge, i.e., Phase 1 can be 
accomplished efficiently. 

In a three-way merge there are three cases depending on which of the tails of 
the subarrays being merged is smallest. All these cases can be handled in a similar 
fashion. Therefore, we describe here only the case where the tail of the third subarray 
is smaller than the other two tails. The program fragment taking care of this case is 
given in Fig. 2 as a block diagram. The blocks with consecutive numbers should be 
placed physically after each other in the final program. 

Let u, v, and x denote the hems of the first, second, and third subarray, respec- 
tively. In the program two invariants are maintained: 
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Bo 

i = hi; j = h:; k = h3; 
u : a [ i ] ;  v = a [ j ] ;  x = a[k];  
i f  (u ~ v) goto tes tu . ;  
goto test,,; 

OUtu: b[m]=  u; 
i = i + I; m = m + I; 

u : a[i] ; 
if (u > v) goto test,x; 

testux: if (u % x) goto out.; 

b[m] : x; 
k = k + 1; m : m + 1; 
x : a[k] ;  
if (k ~ t3) goto test~; 

BI 

outv: b [m]  : v ;  

j = j + I ;  m = m  + I ;  

v --= a [ j ]  ; 

if (u ~ v) goto tes t ,x;  

B2 

B~ 
I teStvx: if (v x) goto out , ;  

bern] = x; 
k = k + I; m = m + l; 

x = a[k];  
if (k ~ t3) goto test,x; 

B5 

B~ 

I 
B7 

B4 B8 

goto exit; exit: ; 

Fig. 2. An efficient three-way merge when the last subarray has the smallest tail. 

1. prior to the execution of block B~, u ~ v, and 
2. prior to the execution of block B6, u > v. 

So the outcome of the tests in blocks B2 and B6 determines which of the elements 
u, v or x is to be moved to the output  zone. After the test control switches to block 
B1, B3, Bs, or BT. In each of these blocks five statements are executed before a new 
test in B2 or B6. Therefore, the cost of the inner loop is six per element moved to 
the output  zone. 

Let us finally consider Phase 0 where four subarrays are being merged. Now 
there are four cases depending on which of the subarrays has the smallest tail. Due 
to symmetry,  we study only the case where the last subarray is exhausted first. 
A block diagram for this particular four-way merge is given in Fig. 3. The block 
number ing  indicates again the order of the blocks in the final program. 

Let u, v, x, and y denote the heads of the four subarrays. In the program fragment 
of Fig. 3 the following invariants are maintained: 

1. prior to B2, u Kv and x ~ y, 
2. prior to B4 and B6, u ~ v and x > y, 
3. prior to Bg, u > v and x ~ y, and 

4. prior to B n  and B13, u > v and x > y. 
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Bo 

i = h i ;  j = h2; k = h3;  [ = h4;  
u = a[i]; v = aEj]; x = a[k]; y = a[~]; 
if (u g v ~& x ~ y) goto testux; 
if (u ~ v ~ x > y) goto test.y; 
if (u > v aa x ~ y) goto test~.; 
goto test.y; 

outu,x: b[m] = u; 

i = i + I; m = m + I; 

u = a[i] ; 
i f  (u  > v) g o t o  t e s t , ~ ;  

B1 

B2 

I test"x: if (u ~ x) g~176 ~ I 

B3 

b[m] = x; 
k = k + I; m = m + I; 

x = a [k] ; 
if (x ~ y) goto testux; 

B4 

1 if (u > y) goto outy,u; 

B5 

out~,y: b[m] = u; 

i = i + I; m = m + I; 

u = a[i] ; 
if (u > v) goto test.y; 

B~ 

I t e s t u y :  i f  (u  ~ y )  g ~ 1 7 6  ~ l 

BT 

outy,u: b[m] = y; 

~ = s + I; m = m + i; 

if (~ > t4) goto exit; 
y = a [ ~ ] ;  

i f  (x > y)  g o t o  t e s t u y ;  
g o t o  t e s t u x ;  

B8 

outv,~: b[m] = v ;  
j = j + 1; m = m + 1; 

v = a [ j ]  ; 
if (u ~ v) goto testux; 

B9 

testvx: if (v ~ x) goto OUtv,x; I 
] 

B10 

b[m] = x; 
k = k + I; m = m + i; 

x = a[k]; 

if (x ~ y) goto testv~; 

B11 

I if (v > y) goto OUty,.; ] 

B12 

out..y: b[m] = v; 

j = j + 1; m =  m +  1; 
v = a [ j ]  ; 

if (u ~ v) goto test~y; 

B13 

[test.y: if (v ~ y) goto outv~,; 1 

B]4 

outy,v: b[m] = y ;  

~ = ~ + 1; m = m + 1; 
i f  ({ > t 4 )  g o t o  e x i t ;  
y = a[~]; 

if (x > y) goto testvy; 

goto test~x; 

Sis 

h!t:  f 
F i g .  3. A n  efficient four -way  merge  when  the  last. s u b a r r a y  h a s  t h e  s m a l l e s t  tail. 
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After a test in B2, B4, B6, Bg, Bll ,  or Bla control switches to B1, B3, Bs, B7, 
Bs, B10, BI.~, or B14, where an element is moved to the output zone and another 
test is carried out so that  the above invariants hold before the next iteration starts. 
Each time an element is taken from the last subarray, i.e., when the control is in 
B7 or B14 , six or seven statements must be executed in addition to the test. If an 
element is taken from any of the other subarrays, only five additional statements are 
necessary before starting the next iteration. 

To sum up the above calculations, the cost of a normal four-way merge is bounded 
by 3- 6.4 ~ + 8- 4 d + O (1) if the size of the merged subarrays is 4 d. In the dth merging 
pass, d E {0, 1 , . . . ,  [log 4 n]}, at most n/4 d+l normal merges are carried out so their 
total cost is 6.5n + O(n/4d). Therefore, the cost caused by the normal merges over 
all passes is 3.25nlog 2 n + O(n). Since the cost of special merges is only O(n), the 
worst-case performance of four-way mergesort is 3.25n log 2 n + O(n). 

Fig. 2 and 3 describe the four-way mergesort program only in part. Our actual 
C implementation is about 450 lines of pure C code, corresponding to four variants 
of Fig. 3, three variants of Fig. 2, and the two-way merge of Fig. 1. One could go 
a step further and write a program for eight-way mergesort. Back-on-the-envelope 
calculations show that the worst-case complexity of eight-way mergesort is below 
3n log 2 n + O(n). Hence, the performance of eight-way mergesort is - -  at least in 
theory - -  superior to that of four-way mergesort, but the size of the resulting pro- 
gram may invalidate the simple cost model (if the program no longer fits in the 
program cache). This issue is discussed in the full paper. 

4 E x p e r i m e n t a l  r e s u l t s  

To test the theoretical predictions we have implemented the mergesort programs 
developed in the previous sections. For the sake of comparison we have also imple- 
mented versions of quicksort and heapsort whose meticulous analyses are given in 
the full paper. The sorting programs implemented include 

1. textbook two-way bottom-up mergesort which avoids unnecessary copying (for 
the merge routine, see, e.g., [2, p. 63]); 

2. efficient two-way mergesort based on the merge function given in Fig. 1; This 
implementation uses arrays, and according to the simple cost model performs 
seven or eight instructions in its inner loop. 

3. two-way mergesort optimized as above, but using pointers; According to our cost 
model this version performs five or six instructions in its inner loop. 

4. efficient four-way mergesort as developed in Section 3.2, but using pointers; 
5. iterative implementation of quicksort taken from the book of Sedgewick [17, 

pp. 118 and 122]; 
6. bottom-up heapsort as described by Carlsson [4], but realizing multiplications 

and divisions by 2 with shifts. 

All mergesort programs have the same functionality: they are called with an input 
array and a work array, and return a pointer to the sorted output, which is either 
of the two arrays of the call. The running time is measured as the time to execute 
the entire call to the sorting function. Hence, the time spent in the allocation of 
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size 

100 000 
time (ms) 

mems 
comps 
moves 

200 000 
t ime (ms) 

mems 
comps 
moves 

500 000 
time (ms) 

mems 
comps 
moves 

1000 000 

time (ms) 
mems 

comps 
moves 

2 000 000 

mergesort two-way two-waY four-way quicksort heapsort 
(textbook) (improved) (pointers) (pointers) (iterative) 

360 280 240 150 250 440 
6 533 608 3 799 996 3 799 996 2 366 613 3 449 301 3 720 253 
1 566 804 1 666 803 1 666 803 1817 456 2 051 474 1 699 474 
1 700 000 1 700 000 1 700 000 900 000 1078 344 1 910 113 

760 580 510 310 530 1 010 
13 866 344 7 999 996 7 999 996 4 733 339 7 268 981 7 839 933 
3333172 3533171 3533171 3829517 4381170 3598572 
3 600 000 3 600 000 3 600 000 1800 000 2 250 168 4 019 950 

1980 1 510 1 340 849 1480 3 030 
36716236 20999996 20999996 12833 142 20536818 20900453 

8858118 9358117 9358117 10102406 13082640 9646895 
9 500 000 9 500 000 9 500 000 5 000 000 5 857 320 10 700 208 

4 150 3 190 2 830 1680 3 020 6 850 
77435094 43999996 43999996 25666483 41918488 43803693 
18717547 19717546 19717546 21212307 26534802 20294732 
20000000 20000000 20000000 10000000 12190528 22401825 

itime (ms)] 8520 6510 5690 
mems: 162 865 458 91 999 996 91999 996 

I comps 39432729 41432728 41432728 
moves] 42 000 000 42 000 000 42 000 000 

: 5 000  000] 
t ime  (ms) 23 440 18 120 16 100 
] mems 444 005 872 249 999 996 249 999 996 

comps1107 002 936 112002935 112002935 
~ 1 5  000 000 115 000 000 115 OOO 000 

3 550 6 550 15 440 
55 333 870 88 233 067 91605 995 
44 471 255 56484052 42 589 483 
22000000 25 363 742 46 802 976 

9 810 16 780 43 460 
148 332 746 234 561 702 242 367 609 
119 544 746 152 193 888 113 150 419 
60000000 66405096 123683773 

T a b l e  1. Results for integer sorting. "mems" denotes the number of memory references, 
"comps" the number of key comparisons, and "moves" the number of element moves. 

work space is excluded.  Quicksor t  and heapsor t  are imp lemen ted  s imilar ly,  in order  

to  m a k e  the  compar i sons  as fair as possible. 

In Tab le  1 we give the  C P U  t ime  spent  by the  various p rog rams  as measu red  
by the  sys tem call c l o c k ( ) .  T i m e s  are in mil l iseconds.  We also give the  m e m o r y  
reference counts ,  measured  as proposed  by K n u t h  in [13, p. 464-465], the  n u m b e r  of  
key compar i sons  per formed,  and the number  of e lement  moves.  E x p e r i m e n t s  were 
carr ied ou t  on a Sun4 SPARCsta : t ion  4 wi th  85 MHz clock frequency and 64 M B y t e s  
of  in terna l  memory .  We used the G N U  C-compi le r  gcc  with  o p t i m i z a t i o n  level 04. 
T h e  runn ing  t imes  are averages of  several runs  wi th  integers d rawn r a n d o m l y  f rom 

the  in terva l  {0, 1 , . . . ,  n - 1} by using the C l ibrary  funct ion  r a n d o m ( ) .  The  sor t ing  

p r o g r a m s  have all been run wi th  the same input .  
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The running times follow the analysis according to the simple cost model quite 
well, whereas counting only memory references is definitely too simple. For instance, 
the two-way mergesort program based on Fig. 1 makes the same number of memory 
references as the version doing sequential access with pointers. The simple cost model 
predicts respective costs 7.5n log 2 n and 5.5n log 2 n, which corresponds reasonably 
well to the measured running times. Quicksort is marginally worse than the pointer 
version of two-way mergesort, despite its better best-case behaviour. Also in this 
case, simply counting memory references does not give an accurate prediction of 
the relative behaviour of the two programs; quicksort is seen to make slightly fewer 
memory references than mergesort. Four-way mergesort is clearly the best of the 
sorting programs tested. Compared to two-way mergesort it is about a factor of 
1.54 faster, which is not too far from the predicted 5.5/3.25 (the lower-order term is 
slightly bigger for four-way mergesort compared to that for two-way mergesort). 

Compiler optimization gave surprising improvements to all sorting programs, 
about a factor of 2 to 3. However, the relative quality of the programs was invariant 
to these optimizations. It is also worth noting that  compiler optimizations could 
not improve the textbook lnergesort program to perform better than the improved 
two-way mergesort program based on Fig. 1, even for the latter compiled without 
optimization. 

5 S u m m a r y  

The theoretical findings of this paper (and the full version) are summarized in Table 
2. We plan to carry out a more thorough experimental evaluation of all the sorting 
algorithms listed there (including the interplay with the compiler). 
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C p r o g r a m  

t w o - w a y  mergesor t  
wors t  case 

t o u r - w a y  mergesor t  
wors t  case 

in -p lace  mergeso r t  s 
worst case 

!adaptive mergeso r t  5 
w o r s t  c&se 

r andomized  quicksort  5 
b e s t  case 4 

s t a n d a r d  heapso r t  5 
b e s t  case 4 

b o t t o m - u p  heapso r t  5 

key e lement  pure  C m e m o r y  
comparisons  moves t pr imi t ives  2 re ferences  s 

~7 l o g  2 n 

n log 2 n 

n log~ n 

n log 2 n 

n log 2 n 

n tog 2 n 

n log 2 n 

0.5n log~ n 

n log2 n 

1.5n log 2 n 

O(n)  

0.hn log 2 n 

5.5n log 2 n 

3.25n log 2 n 

3.75n log 2 n 

8n log 2 n 

3n log 2 n 

6n log 2 n 

2gn log 2 n 

gn log 2 n 

2gn tog 2 n 

3~n log 2 n 

kn log 2 n 

(0.hk + g)n log2 n 

(k + 2g)n log 2 n bes t  case n tog 2 n n log 2 n l l n  log 2 n 

1 A move of an element from one location to another in memory. 
When sorting integers. 

s When the size of a key is k words and that of an element s words. 
4 Assuming that all keys are distinct. 
s Analysed in the full paper. 
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