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Abstract

In this work a realistic machine model, the CMP-model, is investigated. This
model captures the cache hierarchies on mainstream CMPs as well as the ways
that these caches interacts.

A parallel programming library for benchmarking is presented. The presented
library introduces policy based scheduling allowing fair evaluation of schedul-
ing algorithms. The parallel-depth-first scheduler theoretically perform better
than the widely used work-stealing scheduler, in the CMP-cache model. Both
schedulers are implemented in the benchmarking library.

Efficient parallelizations of the well-known sequential sorting algorithms quick-
sort and multi-way mergesort are analysed based on the CMP-cache model.
The parallel quicksort algorithm is based on a parallelization of the in-place
sequential partitioning algorithm. The parallel multi-way mergesort is based on
a f -way partitioning algorithm.

The presented library is used to evaluate the two analysed parallel sorting al-
gorithms using both the implemented schedulers. We find that efficient parallel
sorting algorithms are limited by memory access. We also find that the algo-
rithmic techniques know from the external-memory model can be used to gain
some performance on a CMP.

Resumé

Den mere realistiske model, CMP-cache modellen bliver analyseret. CMP-cache
modellen modellerer b̊ade det cache-heraki, som moderne CMP’er har, og de
interaktioner dette medfører.

Et bibliotek til evaluering af parallelle algoritmer og skeduleringsalgoritmer
præsenteres. Politikbaseret skedulering introduceres. Politikbaseret skedulering
gør det muligt at evaluere skeduleringsalgoritmer refærdigt. Skeduleringsalgorit-
men, parallel-dybde-først, er teoretisk bedre i CMP-cache modellen end den ud-
bredte work-stealing algoritme. Begge algoritmer er implementeret i det præsen-
terede evalueringsbibliotek.

Effektive paralleliseringer af de to velkendte sorteringsalgoritmer, quicksort og
flervejs-mergesort, analyseres i forhold til CMP-cache modellen. Den parallelle
quicksort algoritme er baseret p̊a en parallel version af den sekventielle in-place
partitioneringsalgoritme. Flervejs-mergesort algoritmen er baseret p̊a en f -vejs
partitioneringsalgoritme.

Det præsenterede bibliotek bruges til at evaluere de to analyserede sorteringsal-
goritmer for begge af de implementerede skeduleringsalgoritmer. Vi finder, at de
effektive parallelle sorteringsalgoritmer er begrænsede af hukommelsens hastighed-
ed. Vi finder ydermere, at teknikkerne, fra den eksterne hukommelses-model, kan
bruges i forbindelse med CMP programmering.
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1 Introduction

The current developments in hardware is towards processors with more cores,
commonly know as multi-core processors. A multi-core processor is a single chip
with several physical processors, they are for this reason also know as chip multi
processors (CMP). These processors require special programming techniques to
obtain the full performance potential of the processor. Parallelism is an old
algorithmic problem that have become even more relevant. Parallelism have
previously been associated with cluster computing, and many of the techniques
have therefore been developed for this setting. As the number of core contained
in a ordinary CPU increases, a new setting of parallel programing emerges.
While the techniques for cluster computing can be used successfully on a CMP
the question of whether other programing techniques would result in better
performance arises.

As multi-core processors have become the common have clusters now become
based on CMPs. This makes it more relevant to investigate techniques for
efficient programming of multi-core processors, as any possible increases in per-
formance for a single CMP might also result in increases of performance for
CMP based clusters.

The use of cache hierarchies have become a necessary due to the latencies on
memory accesses. Computational models have been developed to identify how
these cache hierarchies are best utilized. This thesis is an investigation in how
the current multi-core processors are best programmed.

1.1 Contributions

This thesis present a library for benchmarking of scheduling algorithms. This
library use a parametrisation of scheduling algorithms that allow the scheduler
to be chosen as a policy. This enables fair comparisons of scheduling algorithms
as exact same program can be executed with different schedulers.

Two efficient parallelizations of well-known sequential sorting algorithms are
analysed in a multi-core processor setting. The sorting algorithms are bench-
marked using two different scheduling algorithms.



2 Models of Computation

This Chapter introduce two memory models and the programming techniques
they lead to are discussed. These introduce the notation and concepts used in
the rest of the thesis. The Chip-Multi-Processor-Cache model is then introduce
and compared with the reality of actual hardware.

The external-memory model Section is written from [1], [19], [11], [24] and [12].
The Ideal-cache model Section is written from [13] [15] and [13]. The CMP-
cache model Section is written from [2], [9] and [13]. The reality Section id
written from [2], [9], [13], [8] and [18].

2.1 External-Memory Model

The benefits of the widely used RAM model is its simplicity. One of the reasons
for simplicity is the assumption of unlimited memory. In reality this is not true;
computers have a limited main memory and a large secondary storage, usually
in the form of disks. When data is too large to fit in memory, the RAM model
can no longer be used for efficient programming.

A disk stores data on a number of rotating platters. Data is written to and read
from the platters by read/write heads located on a movable arm. Data on the
platters is stored in circles called tracks. Tracks are located on each platter such
that when the arm is stationary the whole track will pass under the read/write
head. Disks are cheaper and have a higher capacity than main memory, but they
have a slower access time. The access time is limited by the rotation speed of
the platters and the speed of the arm. In order to amortize the large access time,
data is transferred to and from the disk in blocks of contiguous memory segment,
called pages. Transferring pages instead of smaller data segments amortizes the
access time if the data exhibits good locality. The assumption is that the data
used by a program is placed on the disk near to previously used data.

Transferring a page to memory from disk or to disk from memory is called an I/O
operation, or just an I/O. Because I/O operations are a performance bottleneck,
we are interested in a way to argue about the number of page transfers that are
performed by a program. We therefore modify the RAM model to include the
limited size of main memory and the need for I/O operations. The new model
is called the external-memory model and includes the following parameters, all
of which are measured in units of data items [1]:
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Figure 2.1: Diagram of the external-memory model.

N the problem size.

M the size of main memory.

B the size of a page.

Besides the three parameters above, m and n are also used in the literature, as
meaning the number of pages that can fit in memory, M/B, and the number of
pages that the problem size fills, N/B, respectively. It is assumed that M < N ,
M > B and that the size of external memory is infinite. When a program
accesses data not stored in main memory, the page containing the is data read
from disk and loaded into main memory. The access to page not stored in
memory is called a page fault. Page faults are closely related to I/Os. The page
fault is the access to a memory address not stored in main memory. Whereas
an I/O is the act of transferring the requested page from disk to memory. Each
page fault thus causes an I/O.

A common algorithm template in the external-memory model is a scan. In a
scan each data item is processed once. Data items are processed in an order,
such that each data item in a page is processed before a new page is accessed.
We can treat the page as a buffer for a single data item. The program accesses
the data item one at a time, when the buffer is empty a new page is loaded into
memory. This pattern performs a linear number of I/Os which is optimal while
still being simple.

2.1.1 B-Tree

A B-tree is a balanced tree with all leaves on the same height in the tree. The
fanout of the tree is designed such that a node can fit in a single page, i.e.
O(B). A node consists of an ordered set c of pointers to the children nodes
and an ordered set r of records. The records are used to separate the children
nodes. Every record in the subtree rooted by the ith child is smaller than the
corresponding record entry. When searching the tree this allows the child the
search should proceed in, to be found by binary search on the set of records. A
node is mapped to one continues memory section located in a single page.
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Searching a B-tree takes O (logB(N)) I/O operations. The height of the tree is
O (logB(N)) as the fanout is O (B) and each node access requires at most one
I/O operation. In practice B-trees are very fast and thus widely used in both
databases and file systems. The height of a B-tree is usually very limited.

2.1.2 Multi-Way Mergesort

Mergesort is a well-known sorting algorithm based on the divide-and-conquer
paradigm. The algorithm works by dividing the input into sections that are
trivial to sort, and then merge sorted sections into a single sorted section re-
mains. This algorithm is time optimal in the RAM model where binary merge is
normally used repeatedly. In the external-memory model binary merging leads
to a non-optimal number I/O operations. The problem with the binary merge
is that each data section is used in a merge many times and is therefore moved
to and from disk many times. To obtain better I/O performance each page of
data should be use as few times as possible. This can be achieved by using a
multi-way merge instead of a binary merge procedure.

The multi-way merge procedure works by scanning over all the sorted sections.
The merging procedure keeps a buffer page for each section and a buffer page
for the merged output. This makes merging possible while only needing one
page of data from each section being merged. When all data values in a buffer
page have been merged a new page of data, from the same section, is loaded into
memory. The output buffer page is managed likewise, when it is full the page is
written to disk and a empty page becomes the new buffer. Because each section
can be scanned using only one page, it is possible to merge as many sections as
the number of pages that can fit into memory.

The actual merging is done using a priority queue. The smallest element from
each sorted section is inserted into the queue. The minimum is then removed
from the queue and inserted into the output buffer. The next element in the
section, from which the previously removed element belonged, is then inserted
into the queue.

We can now make a mergesort algorithm for the external-memory model, using
m-way merging. This is done in a bottom-up fashion. First we divide the input
into sections of O (M) elements that are sorted with a normal sorting algorithm.
We then recursively merge the sorted sections with m-way merging until only
one section remains. Each merging phase reads and writes all elements and thus
each merge phase uses O

(
2N
B

)
I/O operations. The number of merging phases

is O
(
logm

(
N
M

))
and thus the algorithm uses O

(
2N
B logm

(
N
M

))
I/O operations

and O (n log n) comparisons. Notice that very few merge phases are needed in
practice, if N ≤M2/B then only one merging phase is needed.

2.2 Ideal-Cache Model

Algorithms in the external-memory model directly use the parameters M and
B. For this reason these algorithms are called cache aware, as the algorithms
are aware of the parameters of the cache they use. The implementation of an
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algorithm must therefore determine these parameters, before the algorithm can
run optimally. These parameters must be redetermined each time the hardware
or underlying systems are changed. We would like to be able to construct
algorithms that are cache optimal without determining the cache parameters.
This kind of algorithms are called cache oblivious, as they do not directly use
the cache parameters.

Today’s computers contain several caches used to conceal latency. As described
in Section 2.1, disk-based memory is slow, but main memory is also too slow
to be used directly for computations. To hide latency a hierarchy of caches is
used. Each level of cache closer to the processor has lower capacity and lower
access time. Because cache-oblivious algorithms are cache optimal for all cache
parameters, they are optimal on all levels in the cache hierarchy. This holds
under the assumption that all cache levels have the inclusion property. which
requires that the smaller cache closer to the processor contains a subset of the
data in the larger cache.

Figure 2.2: Diagram of the ideal-cache model.

In the ideal-cache model we are still interested in the number of I/Os as a
performance metric. In order to be able to analyse the I/O performance of cache-
oblivious algorithms, the same model parameters as in the external-memory
model are used. The meaning of the model parameters has changed slightly to
be more natural [12].

M the size of the cache

B the size of the cache lines

N problem size

We still assume that data is moved to and from the cache in blocks; these blocks,
are called cache lines. To simplify the model the cache is assumed to be ideal.
An ideal cache obeys following two properties:

Optimal replacement: When the cache is full and a cache line needs to be
loaded, another cache line must be evicted. The strategy for selecting
which cache line to evicted is called the replacement strategy. An ideal
cache is assumed to use optimal replacement strategy. It is assumed that
the replacement algorithm can see the future and selects the cache line
used furthest in the future for eviction. This is not possible in practice,
where an online algorithm must be used instead. Among the practical
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algorithms are the least recently used which selects the block that has
been used the furthest in the past, and first in first out.

Fully associativity: It is assumed that all cache lines can be placed anywhere
in the cache. This assumption is not true in practice where the cache has
a limited associativity to improve performance.

Even though the ideal-cache assumptions are not true in practice, they allow us
to construct algorithms that are good in practice. It can be shown that they
only decrease the performance by a constant factor, assuming that the number of
cache misses have a polynomial dependency on the cache size [15]. One further
assumption is often used in the analysis of cache oblivious algorithms the tall
cache assumption. This assumption says that the cache can contain more pages
than the size of a page, M > Ω(B2). In practice this assumption is usually true.

2.2.1 van-Emde-Boas Layout

In the external-memory model B-trees made it possible to search usingO (logB N)
I/O operations. Searching with the same I/O bound is possible in the ideal-cache
model. B-trees used the page size to maximise the branching factor, as we do
not know the page size, this is not possible in the ideal-cache model. We are
therefore forced to go back to a binary search tree. To achieve better I/O per-
formance for searching, we optimise the memory layout of the search tree. We
map the tree to a single one dimensional memory section, like an array. The
better I/O performance can then be achieved by packing the memory sections
optimally. This mapping from a tree to a memory section is known as the van-
Emde-Boas layout, shown on Fig 2.3. The van-Emde-Boas layout uses the same
idea as van-Emde-Boas trees, which are divided horizontally in the middle into
an upper and a lower part. The upper section is put first in the memory section
then all the lower parts. Each part is then recursively mapped in the same
way. The upper part contains

√
N elements and the lower part consists of

√
N

subtrees each containing
√
N elements.

√
N

√
N

√
N

. . .

upper part

lower part

(a) Tree division.

upper part lower parts
(b) Memory mapping to contiguous mem-
ory.

Figure 2.3: The recursive division of a tree and the corresponding mapping to
memory in the van-Emde-Boas layout.

Searching in a tree with van-Emde-Boas layout takesO (logB N) I/O operations.
We argue this using subtrees containing at mostB elements with heightO (lgB).
A subtree is laid out in memory in a continuous section. Because the size of the
subtree is B elements, it can fit into a single cache line. A subtree can reside in
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at most O (1) cache lines, the alignment of the subtree might lead this to be two
instead of single cache line. The search path from the root to a leaf contains
O (lgN) nodes and will thus pass through O (logB N) subtrees. Accessing each
subtree results in the transfers of at most two cache lines.

2.3 Chip-Multi-Processor-Cache Model

Most computers have more than one processor today, usually in the form of a
chip multiprocessor (CMP). A CMP is a single chip that contains more than
one processor, also called a core. A CMP is thus able to execute a number of
instructions concurrently while avoiding having more than one processor chip.

We would like to expand the previously discussed memory models to include
the possible concurrency that CMPs offer. Much work has gone into this goal
resulting in several different models. These models differ on some key points
and thus obtain different results in some key areas. One of the key differences
of the models are whether the memory is shared or private. A shared cache lets
all processors access and modify it. A private cache gives each processor its own
cache that only that processor can use.

The CMP-cache model is a combination of both cache types, which leads to a
more realistic model. Figure 2.4 show a diagram of the CMP-cache model. The
CMP-cache model has P processors and a three-level memory hierarchy, unlike
the ideal-cache model, the cache line sizes are assumed to be the same for all
cache levels and smaller than the page size. The cache closest to the processors
is private to each processor and is referred to as the L1 cache. All P L1 caches
have the same size of C1 cache lines. The next cache in the hierarchy is called
the L2 cache. It is shared between all P processors. The size of the L2 cache,
C2, is assumed to be larger then the combined size of the L1 caches C2 ≥ P ·C1.
It is also assumed that the problem is too large to fit in L2 cache, so N > C2.

...

Processors

Pp

P1

L1 cache
L2 cache

Main memory

Figure 2.4: Diagram showing the CMP-cache model. The block size is shown
by the square in the bottom of each cache.

Before any data is used by a processor the cache line, in which the data value
resides, is placed in the L1 cache. A cache line can be present in more than one
L1 cache as long as it only is read from. If a processor wants to write to a cache
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line, the cache line must first be evicted from all other L1 caches , this process
is descried in more detail in Section 2.4.

The CMP-cache model defines two cache complexity metrics; the L1 cache com-
plexity and the L2 cache complexity. These are defined in terms of L1 and L2
cache misses respectively. When a processor requests read or write access to a
cache line, the cache line can either be in L1 cache or not. If the cache line is
not cached, it must first be loaded into cache; this is called a cache miss. If
the cache line is in a cache, a cache hit is said to happen. An L2-cache miss
occurs when a requested cache line is neither in any L1 cache or in the L2 cache.
Note that an L2-cache miss does not occur if the cache line is present in a L1
cache belonging to another processor. The definition of L2-cache misses reflects
the fact that most CMPs allow a processor to fetch cache lines from the private
cache of another processor faster than fetching it from main memory. The two
cache complexity metrics reflect the limited bandwidth to off-chip memory.

2.3.1 Types of Cache Sharing

There are two principal way processors on a CMP can share a shared cache [9]:

Cooperative sharing is when the processors use the same data.

Competitive sharing is when the shared cache contain on shared data. In
competitive sharing each processor treats the shared cache as a private
cache. The processors thus competes for space in the shared cache.

Competitive sharing can lead to increased contention on the off-chip bandwidth
as all processors tries to fetch new data into cache but the off-chip bandwidth
is limited and can only be accessed by a limited number of concurrent accesses.
Because the cache is shared can competitive sharing lead to cachelines being
evicted prematurely because another processor have fetched a more data into
cache. competitive share thus leads to a poorer performance than cooperative
sharing.

Cooperative sharing decrease the contention on the off-chip bandwidth as the
memory is accessed in a sequential scan. Cooperative sharing make it possible
for P processors to effectively a smaller cache than is possible with competitive
sharing.

Cooperative sharing is preferable over competitive sharing, but to be able to
solve a problem in parallel the problem must be divided into independent parts
that can b e preformed concurrently. This division of a problem means that it
can be hard to actually solve the problem in a way that both allow parallelism
and cooperative cache sharing.

2.4 Reality

CMPs include a cache hierarchy to hide the latency of memory access. The
caches in the hierarchy on a CMP are named after their proximity to a processor.
The closest cache is the L1 cache, the second closest cache is called L2 and so
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on. This naming scheme is used independently on whether a cache is shared
or private, as the cache hierarchy is usually equivalent for all processors on a
chip. The actual cache layout and sizes vary greatly. To give an idea the Intel
Nethalem micro-architecture is used as an example. Generally the L1 caches are
small. Nethalem has a L1 cache of 32KB for data and 32KB for instructions.
The L2 cache is larger and can either be private to each core or shared between a
subset or all cores. Nethalem has a 256KB private L2 cache for both instructions
and data. When a L3 cache is used, it is larger than the L2 cache. Nethalem
uses a 8MB shared L3 cache.

Data is stored in a cache in blocks called cache lines. Unlike main memory,
cache is not fully associative but is set associative. Set-associative cache maps
a memory address to a set of cache lines where the data is stored. This cache
design increases the performance of the cache [13, 15], but can lead to premature
eviction of a cacheline because the two cachelines map to the same position in
cache and thus cannot be in cache simultaneous.

In order to make cache usage transparent for the programmer, synchronization
between caches is needed. This effect is known as cache coherence and is es-
pecially important for CMPs. The MESI cache-coherence protocol has been
developed to manage the cache coherence process. It is named after the four
states a cache line can be in: modified, exclusive, shared, and invalid. A cache
line is modified if a processor has written to it, a modified cache line is also
exclusive. A cache line is exclusive when it is only in the private cache of one
processor. A cache line is shared when it is in more than one processors private
cache. To modify a shared cache line the processor must first take ownership
of the cache line by changing the state of the cache line to exclusive. To take
ownership of a cache line the processor sends a request for ownership (ROF)
message to the other processors that then mark their own copy of the cache line
as invalid. An invalid cache line is known to be wrong and the processor must
therefore fetch the new version of the cache line before accessing it.

Writing to a shared or invalid cache line is thus more expensive and as syn-
chronisation is necessary restricts the possible concurrency. If two processors
attempt to write to the same cache line, one processor will take ownership of
it, making the other processor mark its own copy as invalid. The first processor
can then modify the cache line. The second processor can now take ownership of
the cache line and then modify it. This process can remove otherwise available
concurrency and can even occur if two unrelated variables share a cache line.

Because a processor must take ownership over a cacheline before any modifi-
cation can take place, can cooperative cache sharing result in a performance
degradation if all processors attempts to modify the same cacheline. This can
take place even if all processors tries to modify different elements that resides
in the same cacheline.

At hardware level main memory access is controlled by a memory controller. Ac-
cess to the memory controller is traditionally done through the front-side bus.
On computers that use one or more CMPs, this design leads to contention on the
memory access. To mitigate the contention most modern architectures utilize
two techniques. The first is dual or triple channel memory. Dual-channel mem-
ory was originally introduced to increase the bandwidth for sequential access to
the main memory, but today it is mostly used to allow for concurrent accesses.
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Dual- and triple-channel memory partition the main memory into two or three
sections respectively. Each section has its own memory controller, allowing con-
current access to the different memory sections and thus lowering contention.
The second technique for lowering the contention of main memory access is
non-unified memory architecture (NUMA). In NUMA each processor chip has
its own main memory and memory controllers. This leads to less contention
on the memory access, but higher latency when a process accesses a memory
address that is stored in the memory of another processor. NUMA makes it
more important that processes that share memory sections are scheduled on the
same chip.



3 Load Balancing

It is not always possible to construct a parallel algorithm such that all processors
have n equal amount of work, and the work load need to be balanced to avoid
ideal processors. Load balancing is performed by algorithms that define what
each processor should do. The act of assigning work to each processor is called
scheduling. In this Chapter we introduce scheduling. The scheduling theory is
base on a model of parallel programs. This model is used through out the thesis,
and is introduced here as it is very related to the understanding of scheduling.

The widely used scheduler, work-stealing, is introduced in this chapter. Work-
stealing is a efficient scheduler that minimizes the amount of communication
between processors. Work-stealing is also used when only a single CMP is
available, but this is not necessarily the best choice. The parallel-depth-first
scheduler achieves better cache bounds than work-stealing under the CMP-cache
model.

The Directed-Acyclic Graph Model and scheduling theory sections are based on
[5], [4], [2] and [3]. The work-stealing Section is based on [5] and the parallel-
depth-first scheduler Section is based on the [4], [2] and [3].

3.1 Directed-Acyclic Graph Model

Concurrent programs are often modelled as a directed-acyclic graph (DAG), de-
fined as a set of vertices V and a set of directed edges E. Each vertex represents
a unit-time action and each directed edge a dependency. For the two vertices
u and v, where (u, v) ∈ E, the action u must be completed before v can be
started. The DAG model gives a natural and intuitive understanding of parallel
programs.

From the DAG model two useful properties for a parallel program can be defined:

Work is the total number of vertices in the graph or the number of unit time
actions that the program contains as a whole and is, for a DAG G, denoted
work(G). The work(G) of a DAG is thus the time a program will use when
only a single processor is available.

Depth is the longest path in the graph and is, for DAG G, denoted depth(G).
The depth of a program is thus the time the program will use if an infinite
amount of processors would be available.
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An action with more than one child, is said to Spawn the Children actions.
Spawning models possible parallelism, as all children of an action can be started
concurrently if no other dependencies prevent this.

The DAG model does not limit the number of parents an action can have or in
other way limit the structure of the graph. The requirement that the graph is
acyclic is necessary as a cycle would make scheduling the graph impossible. The
edges represent all types dependencies but can be classified by the dependency
type the edge represents. There are three types of data dependencies:

Data dependency: An action requires that some data is made by another
action. If data dependencies are not restricted, they can make the graph
impossible to schedule efficiently.

Sequential dependency: Models the sequential structure of actions in a pro-
gram, ie. the ordering of actions expressed by a sequential function. An
action can logically only have one outgoing and on ingoing sequential de-
pendency.

Spawn dependency: An action that spawns another action, must be com-
pleted before the spawned child can be started. Spawn dependencies are
similar to Sequential dependencies, in that an action cannot be started be-
fore it have been spawned. Unlike sequential dependencies are an action
allowed to have multiple outgoing spawn dependencies.

When all dependencies for an action is fulfilled and the action can be started,
the action is said to be ready.

The DAG model is not restricted to offline scheduling, where the whole DAG is
known before computation starts. But it also works well in the online setting,
where the DAG is revealed as computation progresses.

When working with concurrent programs it is more natural to divide the pro-
gram into parts that are bigger than unit time actions. This is done by logically
dividing the DAG into segments of actions that is ordered by sequential depen-
dencies. This segments are small sequential program segments or functions, that
can be though of as super actions. Working with this larger segments makes
writing programs more natural, as the program can be expressed in sequential
functions and their dependencies. There are two ways to structure these super
actions:

Threads: The DAG is thought of as consisting of sequential program threads.
When a thread spawns, the threads splits into two the child thread and
the continuation of the parent thread. A thread is completed when the
last action in the thread is completed. A parent thread can only complete
when all its children have completed. Figure 3.1 show the threads in a
DAG.

Task: The DAG is thought of as consisting of small sequential tasks. When a
task spawns a set of children tasks the children task are thought as part
of the parent task. The spawn action pauses execution of the parent task,
when all children tasks have completed the execution of the parent task is
continued. Figure 3.2 show the division of a DAG into tasks.
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Spawn

Spawn

Sync

Sync

Figure 3.1: Visualisation of the spawning and synchronising of threads that the
work stealing scheduler use. Each thread is encircled. Notice that the parent
thread continues when a child thread is spawned. The completion of a child
thread is marked with ’Sync’, as described in Section 3.2.1

Spawn

Sync

Figure 3.2: Visualisation of the spawning and synchronising of tasks. Each
circle is an action and each grey box marks the tasks. The different tasks are
all coloured in different shades. Notice that execution of the parent task is
suspended after spawning the child tasks and is resumed after all child tasks
have died.

3.1.1 Performance Metrics for Parallel Programs

The point of parallel computing is to obtain faster execution of a program. The
increase in execution speed due to an increase in the number of used processors
is called speedup. The running time of an algorithm on a number of processors
is written as Tp (n), where p is the number of processors used and n is the input
size of the problem instance. The running time for the best known sequential
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algorithm, that solves the same problem, is denoted T∗ (n). The speedup of an
algorithm is defined as:

Speedupp (n) =
T∗ (n)

Tp (n)
=

work(n)

depthn

As the parallel and the sequential algorithms must solve the same problem
they must perform the same computation. The theoretical optimal speedup
is therefore linear in the number of processors used and is often referred to as
linear speedup. It is possible to obtain super linear speedup in practice either due
to caching effects or when the solution to a problem can be found with out all
computations needed to be done e.g. searching where each processor can search
a subsection of the input, it is the possible for one of the processors to find the
solution, before a sequential algorithm would, and notify the other processors
resulting a much faster run-time in some cases.

Because an optimal sequential algorithm define the minimum needed compu-
tational work needed to bee done to solve a problem, the parallel algorithm is
said to be work optimal if it preform the same amount of work as the sequential
algorithm.

An algorithm or part of an algorithm that cannot be parallelized is known as
inherently sequential. Ahmdal made an important observation in 1967 about
the effect of an inherently sequential part of an algorithm on the speedup of the
algorithm as an whole. This observation is known as Amdahl’s law and states
that if a fraction f of a program can be parallelized with a speedup of Speedupf

the speedup of the program as a whole will increase by:

Speedup∞ (n) =
1

(1− f) + f
Speedupf

This function decreases very fast when decreasing f . Amdahl’s law and the
ideal speedup defines a maximal speedup for a program using P processors.

Speedupp(n) =
1

(1− f) + f
P

When P goes to infinity the speedup goes to 1− f , the fraction of the program
that is inherently sequential. Amdahl’s law shows that it is important to paral-
lelize as much of a program as possible. Any sequential part of a program will
severely limit both the obtainable speedup and the practically usable number
of processors. An example of how limiting a sequential fraction of an algorithm
is given in Section 4.1.

The speedup of a parallel algorithm does not increase beyond a certain number
of processors, using more processors after this limit do not improve performance
and can in some cases degrade performance. The parallel algorithm is said to
scale to this limit. It is number of processors an algorithm scales to express how
much available parallelism the algorithm have. Scaling limit is important for
the performance of an algorithm, if the number of usable processors is very low
then it does not matter if the algorithm achieves good speedup.
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3.2 Scheduling Algorithms

Often the amount of available parallelism is much greater than the number
of processors. A way of balancing the work is then needed to insure that all
processors are running for as long as possible. An example where work balancing
is needed can be seen in the parallel quicksort algorithm described in Section
4.2.2. This work balancing is achieved by scheduling which task of the program
DAG should run on which processors. The topic is thus known as scheduling and
the algorithms for making the schedules are known as scheduling algorithms.

A schedule of a DAG consists of a sequence of steps 1 . . . τ . Each step defines a
set of vertices, Vi, i = 1 . . . τ , that are scheduled at that step. A schedule must
obey the following two properties:

1. Any vertex is scheduled exactly once, i.e. an action is a member of exactly
one set of actions scheduled by in a step. The sets Vi thus partition the
DAG into disjoint pieces

2. An action can only be scheduled in a step, if all the ancestors of that
action are scheduled at an earlier step, i.e. if, for a DAG with a set E of
edges, (u, v) ∈ E and u is scheduled at step Vi then v ∈ Vj , j < i

The completed set Ci = V1 ∪ V2 ∪ . . . ∪ Vi for a schedule S on a DAG G is the
set of actions completed at step i. The schedule S thus induces a partial order
of the actions in G and a sequential schedule induces a complete order of the
actions in G. An action u precedes an action v if u ∈ Vi and v ∈ Ci−1.

Scheduling introduces overheads on the computation. To mitigate these over-
heads larger tasks or threads may be scheduled instead of the unit-time actions.

3.2.1 Work-stealing

The work-stealing scheduling algorithm schedules threads, instead of actions. A
thread is said to be alive while a processor is executing the thread. A thread
stalls if the next action in the thread have an unresolved dependency and the
next action in the thread is not ready, preventing the execution of the thread
to continue. When the dependency is resolved the thread becomes ready.

The work-stealing scheduler makes some simplifying assumptions on the struc-
ture of the DAG that is scheduled. These assumptions must be fulfilled by the
DAG of the program that is scheduled.

• A thread is only allowed to spawn one thread at a time. Spawning multiple
threads can be accomplished by repeatedly spawning.

• When a thread is spawned both child thread and the parent thread must
be ready. The parent thus cannot sync with the spawned child thread
immediately after the child is spawned.

• An action can only have a constant number of synchronisation edges inci-
dent to it.
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• A synchronisation edge between two threads is only allowed from a thread
to the thread parent.

The work-stealing scheduler uses a distributed approach for scheduling; each
processor has a schedule of its own. Whenever the schedule of a processor
become empty, the processor attempts to steal work from a victim processor.

Each processor uses a deque to store the ready threads. The front of the deque
is used by other processors and the back of the deque is used by the owning
processor. Whenever a thread spawns a child thread, the parent thread is pushed
onto the back of the deque and the processor start execution of the child thread.
When a thread dies or stalls, a thread is popped from the back of the deque and
execution of the popped thread is resumed. If a stalled thread becomes ready
after an action the ready thread is pushed onto the back of the deque.

If a processor tries to pop a thread from its deque and the deque is empty,
the processor tries to steal a thread from another processor. This is done by
randomly selecting a processor to steal from and then steal a thread by popping
a thread from the front of the victim’s deque.

3.2.2 Prioritized Scheduling

The order in which actions are scheduled impacts the cache complexity. For
P processors, a prioritized schedule is a schedule where at most P actions are
scheduled at each step. A schedule is said to be parallel if P > 1 and sequential
if P = 1. A P -schedule is greedy if at each step either P actions are scheduled
or all ready actions are scheduled. Any greedy P -schedule of a DAG with work
T1 and depth T∞ uses TP ≤ T1/P + T∞ steps.

A P -schedule based on a sequential schedule, that determines the priority of the
actions, attempts to deviate as little as possible from the sequential schedule.
The goal of basing a P -schedule on a sequential schedule is to make as much
progress on the sequential schedule as possible at each step, to obtain bounds
as close to the bounds of the sequential schedule as possible.

A greedy P -schedule schedules the P ready actions with highest priority at
each step. This makes the P -schedule work efficient[3]. Because the actions
that are scheduled at a step only can be chosen from the ready actions and the
schedule is greedy, the priority cannot always be followed strictly (see Figure
3.3). This means that some actions will be completed before they would be in
the sequential schedule (see Figure 3.3). An premature action is an action the
is completed before an action with lower priority [4].

The DF-schedule is a sequential schedule that schedules the actions in depth-first
order. The PDF-schedule is the prioritized p-schedule based on the DF-schedule.
A PDF-schedule and a DF-schedule is shown in Figure 3.3.

For a DAGG(V,E), can the number of premature nodes in a P -schedule sP , that
is based on a 1-schedule S1, be no more than (P − 1)ḋepth(G). Any P-schedule
SP , based on an 1-schedule S1 having M1 cache misses on an ideal cache of size
C1 incurs M1 cache misses on a shared ideal cache of size C1 + P · depth(G).

The shared ideal cache is an expansion of the ideal cache model, where the cache
is shared by a set of processors. that require that any cache line accessed by a
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1 8

2 4 5 9 10

6 7 113

(a) sequential-depth-first schedule.

1 1

2 2 2 4 1

3 3 53

(b) Parallel-depth-first schedule with three
processors.

Figure 3.3: Example of a parallel-depth-first schedule base on the shown
sequential-depth-first schedule. The circles represent tasks and are numbered
according to the step they are scheduled in. The arrows represent data and
spawn dependencies. Notice that some actions are complete prematurely in the
Parallel-depth-first schedule, e.g. action with priority 8 in the 1DF-schedule.

premature node is never evicted from the cache.

We call an action that incurs a cache miss in SP but not in S1 bad and an
action the incurs a cache miss in S1 but not in SP good. There is a one-to-one
correspondence between good and bad actions [4]. For a Bad action v, it must
be the case that v, by definition, incurs case hit in S1 and a cache miss in SP .
Because v incurs a cache hit in S1 there must exist an action v′ that incurs a
cache hit in S1 and brings the cache line used by v into cache. v′ must have
lower priority the v as v′ brings the data used by v into cache. v can only incur
a cache miss in SP if v is scheduled before v′ in Sp. v is thus a premature
action in SP . If v is scheduled before v′ in SP then the data, must by definition
of shared ideal cache, be in cache when v′ is executed. v′ must therefore be a
good action. This proves that a prioritized schedule achieves the same cache
bounds as the sequential schedule the parallel schedule is based on, under the
assumption of the ideal cache model.

The DF-schedule achieves good cache bounds, as the PDF-schedule is based on
the DF-schedule. Hence the PDF-schedule has near the same cache bound as
the DF-schedule.

3.2.3 Parallel-Depth-First Scheduling

The Parallel Depth First (PDF) scheduler is a P -scheduler based on a sequen-
tial depth-first schedule. The PDF-scheduler schedules tasks instead of actions
(defined in Section 3.1). The PDF-scheduler makes a simplifying assumption on
the DAG that is scheduled. That any spawned children tasks are independent.

The PDF scheduler uses a central queue to store the ready tasks. All processors
use this central queue to select which tasks to execute. The schedule is a priori-
tized schedule and the lowest priority tasks are scheduled before higher priority
tasks. The task queue stores the tasks is sorted order by their priority. The
priority is maintained in the queue by keeping the live tasks in the task queue.
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When a task spawns a set of child tasks, the child tasks are ordered in some
priority. The parent task is then replaced by the ordered set of children tasks
in the task queue. When a child task is completed it is removed from the task
queue and the last child task is replaced with the parent task.

The synchronization of tasks, used to detect when the execution of the parent
task can be resumed, is done by associating synchronization counter with each
task. When a child task dies the child task atomically add one to the synchro-
nization counter of the parent task. If the counter is equal to the number of
spawned child tasks, the child task is replaced with the parent task in the task
queue.

3.2.4 Discussion

Work-stealing has the benefit that the ready deque is distributed to all proces-
sors. This lowers the contention that a central ready queue would introduce.
Another benefit is that the cost of work balancing is only payed when work bal-
ancing is actually needed. The assumption of work stealing is that a child thread
uses the same memory resources used by the parent thread. It is therefore ben-
eficial to execute child threads on the same processor as the parent thread. This
assumption it usually true and the benefit from keeping related threads on the
same processor is highest when the processors do not share memory. The DAG
is divided as early as possible, i.e. in a breath-first manner. Each processor then
schedules its part of the DAG in a depth-first manner. The breath-first division
of the work leads to bad cache complexity, as the amount of cooperative sharing
is minimized.

p1 p2 p3 p4

(a) Start of algorithm with work-stealing.

p1 p2 p3 p4

(b) Later in the algorithm with work-
stealing.

Figure 3.4: Example of a Work-Stealing scheduler execution of a parallel divide-
and-conquer algorithm, on a CMP with a L2 cache that can contain half the
input data. Each block represents a task, the length of a block coresponds to
the amount of data accessed. Larger tasks consists of smaller subtasks (not
shown) and can be done using more processors. A black task indicates that the
data used in the task are not in cache and the task incur cache misses. The
grey tasks indicate that the data used by the task is not in cache. A white task
indicates that the data is already in cache.

The most used online scheduling algorithm is work stealing. Work stealing is
simple and efficient but work stealing is not always the best choice. The cache
complexity of work stealing in the CMP-cache model is not optimal [3]. Chen
et al. [9] shows that PDF-scheduling achieve better cache performance than
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WS-scheduling on a system with one CMP.

PDF-scheduling requires a central ready queue this can lead to a bottleneck on
systems with many processors. The bottleneck from the central ready queue is
not visible in the results from Chen et al. [9], as they only use a single CMP
with a limited number of processors. When only a single CMP is used, the ready
queue can then be optimized for the cache in the CMP model. The decrease in
performance would be larger if the central queue is maintained by two or more
processor chips.
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p1 p2 p3 p4

(a) Start of the algorithm with parallel-depth-first scheduling.

p1 p2 p3 p4

(b) half way through the algorithm with parallel-depth-first
scheduling.

p1 p2 p3 p4

(c) End of the algorithm with parallel-depth-first scheduling.

Figure 3.5: Example of a parallel-depth-first schedule of a divide-and-conquer
algorithm, on a CMP with a L2 cache that can only hold half of the input data.
Each block represents a task, the length of a block corresponds to the amount
of data accessed. Larger tasks consist of smaller subtasks (not shown) and can
be done using more processors. A black task indicate that the data used in the
task are not in cache and the task incurs cache misses. The grey tasks indicates
that the data used by the task is not in cache. A white task indicates that the
data is already in cache.



4 Parallel Algorithms

In this Chapter some of the techniques and pitfalls in the construction of parallel
algorithms are discussed. As a basis for the discussion and as examples, two
different parallel algorithms for sorting are presented. Sorting was chosen as
the example algorithmic problem, because it is non-trivial and has been studied
intensively. The algorithms are analysed with respect to the CMP-cache model.

Two of the classical sequential-sorting algorithms, mergesort and quicksort, can,
with care, be parallelized into efficient parallel sorting algorithms. The paral-
lelizations of mergesort and quicksort presented here are simple and have good
speedup while scaling to many processors. Neither of the two algorithms are
work efficient, but work well in practice [21]. The mergesort algorithm de-
scribed here is the parallel sorting algorithm implemented in the open-source
library libstdc++ [20].

The mergesort algorithm described in this Chapter is based on a parallel algo-
rithm for partitioning of multiple sorted sequences, that is presented by Varman
et al. [23]. The quicksort algorithm described is based on a parallel pivot parti-
tioning algorithm presented by Tsigas et al. [22].

4.1 Mergesort

Mergesort is commonly used for parallel sorting. The benefit of mergesort is
the balanced division of the input data, which results in less work balancing.
The disadvantage of mergesort is that the parallel merging is usually not done
in-place, increasing the space bound of the sorting algorithm considerately.

4.1.1 A Näıve Parallelization

A näıve parallelization of mergesort would be to divide the input data into two
runs and to recurse on the runs in parallel, and to merge the runs by using the
ordinary sequential merge routine. The work of the näıve merge sort (work(n))
can be described by the recurrence [11, Section 27.3]:

work(n) = 2work(n/2) +O (n)

= O (n lg n)

In the näıve parallel mergesort, the two recursions are run in parallel. The depth
can thus be described by the following recurrence [11, Section 27.3]
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depth(n) = depth(n/2) +O (n)

= O (n)

The maximal possible speedup of the näıve parallelization of mergesort is thus
[11, section 27.3]:

Speedup∞ =
work(n)

depth(n)
= lg n

This näıve parallelization has very limited speedup, due to the use of the se-
quential merging routine. As the runs are merged fewer and fewer merges can
be performed in parallel, at the end a single processor must merge the whole
input. This is an example of Amdahl’s law (see Section 3.1.1) and illustrates
why it is important that as much as possible of the algorithm is parallelized.

4.1.2 An Efficient Parallelization

To effectively parallelize mergesort a parallel merge procedure is needed. We
would specifically like to have a parallel multi-way merge, as multi-way merge
preform less scans over the data (see Section 2.1). The actual merging in multi-
way merge is trivial to parallelize, each processor just merge 1/P (recall that P
is then number of processors). The algorithmic interesting part of parallel multi-
way merging is finding the index in each of the sequences to be merged where
processor p should start merging from. The case for the first processor is trivial,
it merges form the beginning of each sequence. The other processors partitions
the sequences into two parts, the elements sorted by the previous processors and
the not yet merged part. The size of the two partitions are known before the
partitions is found, as the number of elements that are each processor is fixed.
This type partitioning is called an f -way partition, where f is the fraction of
elements in the first partition set.

Definition 4.1.1. Let S be a set of elements, divided into m sequences, with
length n and each sorted in increasing order. Let f be a fraction, 0 < f ≤ 1.
An f -way partition of S is a partition of S into two parts, L and H, such that
the following two properties are fulfilled:

Domination criterion: H dominates L, that is all elements in L is smaller
than all elements in H.

Size criterion: L contains |L| = df |S|e elements.

We can obtain an efficient parallel multiway merge algorithm. Given P pro-
cessors (numbered from 0 to P − 1) and the set of sequences S, assumed to
have the same length m, we construct a parallel multiway merge algorithm as
follows. Processor Pp first finds the p/P -way partition of S. Once the p/P -way
partition has been found, each processor starts merging using the sequential
multi-way merging algorithm until it has merged |s|m/P elements. The P
merged sequences can the be concatenated, in the numerical order by index



4.1 Mergesort 23.

of the processor that merged the sequences, to obtain the merged sequence.
This concatenation can be done by during the merging by letting each proces-
sor merge directly into the correct position in the output array. Because the
f -way partitioning can be run in parallel by P processors, the actual f -way
partitioning algorithm can be sequential without any performance degradation.

4.1.3 f-Way Partitioning

The f -way partitioning algorithm described here uses an iterative approach to
obtain a partition of the m sorted sequences. At each iteration a subsection of
the elements in S is called the sample. The sample considered at iteration k is
denoted S(k) and the f -way partition of S(k) is the two sets L(k) and H(k).
The algorithm starts with a small sample and at each iteration, the number of
elements in the sample is doubled, while maintaining the f -way partition.

We make some simplifying assumptions to ease the description of the algorithm.
These assumptions are discussed later in Section 4.1.4.

• The sequences are all of equal length n

• The length of the sequences is 2r − 1 for a constant integer r

Let Si = a(i, 1), a(i, 2), . . . , a(i, n), 0 ≤ i ≤ m denote the ith sequence. Let
wk = 2r−k−1, 0 ≤ k ≤ r− 1. The sample considered at iteration k is then every
wkth element of each sequence. Note that wk is halved at each iteration and the
size of the sample is thus doubled. We denote the sample from the ith sequence
considered at iteration k as Si(k).

The partition of S(k) into L(k) and H(k) is defined by a boundary B(k) and
the largest element in L(k), denoted lmax. The algorithm thus maintains the
boundary and lmax during the iterations.

Definition 4.1.2. The boundary B is the ordered set of the indices of the largest
elements from each sequence Si that is a member of L . The boundary for a
sequence Si(k) is thus defined as:

bi(k) =

{
0 if L(k) ∩ Si(k) = ∅,
max{j : a(i, j) ∈ L(k) ∩ Si(k)} otherwise.

The boundary bi(k) for sequence i is the index of the largest element in the
partition set L(k). The boundary thus define the index where the partition set
L(k) and H(k) begin. All elements in Si(k) with index less than bi(k) is in
L(k) and all elements with index larger than bi(k) are in H(k). After the last
iteration the boundary define the f -way partition of S.

Each iteration consist of three steps;

1. Double the size of the sample

2. Reestablish the boundary based on lmax

3. Reestablish the size criterion
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At the beginning of an iteration k, the size of the sample is doubled. The
boundary from the previous iteration will have assigned some of the elements,
that were included in the sample in this iteration. All elements in Si(k) included
in iteration k with an index that is less than bi(k − 1) are in L(k) and thus
decided. The element included in Si(k), in iteration k, that has the index just
after bi(k) are undecided. All elements included in Si(k) in iteration k that have
an index larger than bi(k) are in H(k) and thus decided.

Each undecided element ui is compared to lmax and is assigned to a partition
set. If ui is smaller than lmax, ui is assigned to L(k) by updating the boundary
bi(k) to the element index of ui. If ui is larger than lmax then ui is assigned to
H(k) and the boundary is not changed.

When the boundary has been reestablished, the size criterion may be violated.
To reestablish the size criterion a number of elements must be moved from
one partition set to the other. If L(k) is too large, then the largest elements
are moved from L(k) to H(k). If L(k) is too small, then smallest elements in
H(k) are moved from H(k) to L(k). This reestablishes the size criterion. The
partition of S(k) is now found and the next iteration can be started.

4.1.4 Example

Figure 4.0 show an example of the f -way partition algorithm. The algorithm is
run with four sequences each with 7 elements r is thus 3 (recall the assumption
that each sequence has length 2r− 1. Figure 4.1b show the basis partition. The
boundary is b1(0) = 3, b(0) = 3. b0(0) and b3(0) are undefined. lmax is 15.

Figure 4.1c show the first step in iteration one; the sample size have been dou-
bled. Exactly four elements are undecided. The other elements are decided by
the boundary from the basis. Each undecided element are compared to lmax
and assigned to a partition set. The resulting partition is shown in Figure 4.1d.
The size criterion is fulfilled and iteration is complete.

Figure 4.1e show the first step in iteration two, where the sample size have been
doubled. Exactly four elements are undecided. Figure 4.0f show the boundary
after it have been reestablished. The size criterion is not fulfilled as |L(2)| = 15
and |H(2)| = 13; L(2) contain one element too many. The largest element in
L(2) is found (15) and the boundary is adjusted to transfer this element to H(2),
b1(2) is set to 2. The resulting boundary is shown in Figure 4.0g.
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S0: 2 4 8 19 24 28 30
S1: 3 6 14 15 17 23 27
S2: 2 9 11 12 13 25 29
S3: 1 5 13 16 21 22 23

(a) Four sequences that will be used for an ex-
ample run of the partitioning algorithm.

S0(0): 19
S1(0): 15
S2(0): 12
S3(0): 16

(b) The basis partition

S0(1): 4 19 28
S1(1): 5 15 23
S2(1): 9 12 25
S3(1): 5 16 22

(c) Beginning of iteration one.

S0(1): 4 19 28
S1(1): 5 15 23
S2(1): 9 12 25
S3(1): 5 16 22

(d) Reestablishing the boundary in iteration
one.

S0(2): 2 4 8 19 24 28 30
S1(2): 3 5 14 15 17 23 27
S2(2): 2 9 11 12 13 25 29
S3(2): 1 5 13 16 21 22 23

(e) Beginning of iteration two, the size of the sample is
doubled.
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S0(2): 2 4 8 19 24 28 30
S1(2): 3 5 14 15 17 23 27
S2(2): 2 9 11 12 13 25 29
S3(2): 1 5 13 16 21 22 23

(f) Iteration two: The undecided elements have been as-
signed to a partition set according to lmax.

S0(2): 2 4 8 19 24 28 30
S1(2): 3 5 14 15 17 23 27
S2(1): 2 9 11 12 13 25 29
S3(2): 1 5 13 16 21 22 23

(g) Iteration two: The resulting boundary after the size
criterion have been reestablished.

Figure 4.0: An example run of the partitioning algorithm on four sequences with
f = 1

2 . (b) show the four sorted sequences that are partitioned. (b) show the
basis partition. The dark grey blocks are the elements in the partition set H(k)
and the light grey blocks are the elements in L(k). The elements with white
background are undecided.

Assumptions and Basis

The assumptions made in the description of the partitioning algorithm were
that all the sequences are of equal length and that the length of the sequences
is n = 2r − 1 for a positive integer r.

The general solution for sequences of unequal length is not discussed here. As it,
due to the large increase in the length of the sequences, is more theoretical than
practical [23]. When the partitioning algorithm is used for merging in merge-
sort the sequences are of equal length, except possibly a single sequence that
will contain fewer elements. This smaller sequence is only present if the input
elements cannot divided evenly into runs. The smaller sequence can conceptu-
ally be padded with +∞ elements so that it has the same length as the rest of
the sequence. The algorithm can thus be used even if this smaller sequence is
present.

We can remove the assumption that the sequences have length of n = 2r − 1
for a positive integer r, by constructing the basis as follows. We first define β
as a positive integer for which 2β−1 < fn ≤ 2β . The basis for the induction is
constructed by selecting every 2βth element of each sequence. The number of
elements in the basis, per sequence, is thus α =

⌊
n
2β

⌋
. The basis is then the

f -partition of the αm sample elements. Because of the way β is chosen the basis
will contain m elements and the basis can be found with a simple tournament
tree in O (m logm) comparisons.

Theorem 4.1.1. The number of elements in the basis sample is m. This comes
directly from the definition of β.

Proof.

f |S| ≤ 2β
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Using that the sequences are of equal length and thus |S| = nm, we get:

1

2β
≤ m

f |S|

By the definition of α and |S| = nm, we get:

α ≤
⌊
nm

fnm

⌋
fα ≤

⌊nm
nm

⌋
= 1

The size of the basis sample is thus:

fαm ≤ m

Complexity Analysis

With a basis constructed as described above, the partitioning algorithm uses r =
O (lg fn) iterations. Each iteration uses O (m) comparisons for reestablishing
the boundary. The size criterion can be violated by at most m elements and
reestablishing can done, with a tournament tree, using at most m lgm element
comparisons. The algorithm thus uses O (m lgm · lg fn) element comparisons
[23].

At each iteration one new element per sequence is used. This use of a new ele-
ment causes one I/O and incurs one cache miss. The algorithm thus has an I/O
and cache complexity of O (m log fn). Note that the simultaneous execution of
the algorithm on a CMP does not increase the cache complexity as the elements
accessed at each iteration will be the same for all processors and an element will
therefore only incur a single cache-miss for all processors.

4.1.5 Parallel Multiway Mergesort

We can now construct a parallel multiway merge algorithm as described in
Section 4.1.2. This parallel multiway merge algorithm can then be used to
construct a parallel multiway mergesort algorithm. First we divide the input
into runs that can ’fit’ in main memory. The runs are then sorted and the results
merged using the above parallel algorithm.

Varman et. al. [23] and Singler et. al. [21] both describe a mergesort algorithm,
where runs of size N/P are sorted in parallel by an I/O optimal sequential al-
gorithm. The runs are then merged as described above. This is neither cache
nor I/O effective. The sorting of all runs in parallel causes extra cache misses
(in the CMP-cache model). The I/O performance is not optimal either as the
sorting the runs in parallel. In the CMP-cache 4model this will cause the pro-
cessors to uses the same main memory and the sorting of a run can thus not
be done in memory, incurring degradation in the I/O performance as well as
further increasing the number of cache misses.
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The sorting of the runs must be done in a way that optimizes the cache and
I/O performance while still being scalable. The run size must optimize I/O,
cache performance, and scalability. A simple way would be to use a run size of
O (M/P ) and then sort P runs in parallel followed by a parallel multiway merge
of the sorted runs. This improves the I/O performance while still having high
scalability, but caching would be purely competitive (see sec. 2.3). To improve
the cache performance, we must perform the sorting of a single run at a time,
in parallel on all P processors. This means that the run size can be chosen as
O (M) but only one run can be sorted at a time. This means that the multiway
mergesort algorithm depends on another parallel sorting algorithm to sort the
runs, just as the sequential multiway mergesort uses another sequential sorting
algorithm to sort the runs. Sorting one run at a time limits the scalability and
the algorithm cannot utilize as many processors as would be possible if all the
runs were sorted in parallel with a parallel sorting algorithm.

4.2 Quicksort

Quicksort is a well-known sequential sorting algorithm. The worst-case running
time is non-optimal (O

(
n2
)
), due to the randomization used, but the average

running time is optimal. Quicksort is a marriage-before-conquest algorithm,
which is part of the divide-and-conquer paradigm. The input is first divided,
then the marriage of the solutions to the two subproblems is found and then the
two subproblems are solved. This corresponds to a mergesort where the input
is merged and the runs then sorted. Quicksort works by picking a pivot element
and partitioning the input sequence into two parts L and H. The partitioning
is done in such that any element in L is smaller than or equal to the pivot
element and any element in H is larger than the pivot element. The input is
recursively partitioned, until each partition is of a certain size, the partition is
then sorted directly. To obtain a reasonable speedup it is necessary to find a
way to partition the input array in parallel, as it was the case with mergesort.

4.2.1 Parallel Pivot Partitioning

The parallel partitioning algorithm below is based on the work of [22] and is
a parallelization of a sequential partition algorithm. The sequential partition
algorithm first picks a pivot value and then scans the array from both ends.
The forward scan from the beginning of the sequence proceed until an element
that is higher than the pivot value is found. The backwards scan from the end
of the sequence proceed until an element that is smaller than or equal to the
pivot is found. The two elements found by the scans are then swapped. When
the scans meet the sequence is partitioned. The parallel partitioning algorithm
consists of two phases, a parallel partition phase and the sequential partition
phase. The parallel phase does most of the work and the sequential phase does
the remaining work that could not be done in parallel.
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Parallel Partition Phase

The sequence is divided into N blocks of b consecutive elements. We assume that
the input divides into blocks, this assumption is trivially handled in practice.
The goal of the parallel partitioning phase is then to neutralize as many blocks
as possible. A block is said to be L-neutralized if it contains no elements larger
than the pivot element. A block is likewise said to be H-neutralized if it contains
no elements smaller that or equal to the pivot element. Each processor p picks
one block l from the L side and one block h from the H side of the input array.
The picked blocks are marked in an atomic way to prevent any blocks from
being picked more than once.

The processor then neutralizes the blocks by swapping elements between the
blocks, as in the sequential algorithm. Elements in l that are larger than the
pivot are swapped with elements in h that are smaller than or equal to the pivot.
When either l or h has been neutralized, a new block from the corresponding side
of the input is picked and the neutralization continues until all blocks have been
picked by a processor. Each processor can then have at most one unneutralized
block remaining. These unneutralized blocks are put into an array of remaining
blocks. The remaining blocks are neutralized in the sequential phase.

Each processor counts how many blocks it has L-neutralized and how many it
have H-neutralized. The number of neutralized blocks for each processor are
added to get the total number of L-neutralized blocks NL, and the total number
ofH-neutralized blocks, NH . The numbers of neutralized blocks divide the array
into three parts; a low part [0, NL], a middle part [NL + 1, N −NH − 1], and
a high part [N −NH , N ]. Any neutralized block in the left or the right part
will be positioned correctly in relation to the pivot, but both sides can contain
unneutralized blocks. The blocks in the middle part can be neutralized to any
side or can be unneutralized.

Sequential Partition Phase

The sequential partitioning phase starts when parallel partition phase is com-
plete. The sequential partition phase finishes the partitioning that was begun
in the parallel partitioning phase; neutralizing the remaining blocks and moving
neutralized blocks to the correct position with respect to the pivot. An unneu-
tralized block can reside in any of the three partitions. The neutralized blocks in
the low part and the high part are correctly positioned. Any neutralized blocks
in the middle part must be moved to the correct position.

The remaining blocks, that was not neutralized in the parallel phase, is first
swapped into the middle part of the sequence. The middle part can then be
partitioned sequentially.

An Example

Figure 4.1 shows an example of the parallel partitioning algorithm.
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1 2 3 4 5 6 7 8 9 10
39 63 47 0208 29 13 9882 30 74 85 54 3275 4591 57 83 04

(a) The example input sequence. The sequence has been divided into blocks of two elements. The
blocks are numbered, shown below each block. The pivot value has been chosen as 60

39 02 47 63
P1 P1

08 29 13 98
P2 P2

1 2 9 10
(b) Processor one picks block one as l and block ten as h. Processor two picks block two as l and
block nine as h. Processor one swaps 02 and 63

39 02 82 63
LN P1

08 29 74 98
LN P2

47 30 13 85
P1 P2

1 2 3 4 9 10
(c) Blocks one and two have been L-neutralized. Processor one picks block three as l and processor
two picks block four as l. Processor one swaps 82 and 47 and processor two swaps 74 and 13.

39 02 82 63
LN HN

08 29 74 98
LN HN

47 30 13 45 54 91
LN P1P2

75 85
P2

32 57
P1

1 2 3 4 5 7 8 9 10
(d) Blocks nine and ten have been H-neutralized and block three has been l-neutralized. Processor
one picks block eight as h and block five as l. Processor two picks block seven as h. Processor one
swaps 91 and 32. Processor two swaps 85 and 45

39 02 82 63
LN HN

08 29 74 98
LN HN

47 30 13 45 54 91
LN P1LN

75 85
HN

32 57
LN

83 04
P2

1 2 3 4 5 6 7 8 9 10
(e) Blocks four and five have been L-neutralized and block seven has4 been H-neutralized. Processor
two picks block six as l. Both processors only have one block and no elements can be swapped.

39 02 82 63
LN HN

08 29 74 98
LN HN

47 30 13 45 54 91
LN UNLN

75 85
HN

32 57
LN

83 04
UN

1 2 3 4 5 6 7 8 9 10

Low part Middle part High part

(f) Result of parallel partitioning phase. Blocks six and eight are unneutralized. The low, middle,
and high part is shown, separated by vertical lines

39 02 82 63
LN HN

08 29 74 98
LN HN

47 30 13 45 54 91
LN UNLN

75 85
HN

32 57
LN

83 04
UN

1 2 3 4 5 6 78 9 10

Low part Middle part High part

(g) The sequential partitioning phase first swap block eight seven. The middle part are then parti-
tioned by swapping Elements 83 and 54 are swapped.

Figure 4.1: An example of the parallel partitioning algorithm run by two pro-
cessors.
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Analysis

The parallel partitioning phase does O (n) work using O
(
n
P

)
time, where n is

the number of elements. The sequential partitioning phase takes O (P · (b)) time
neutralizing the P blocks (recall that b is the block size). The total time used
by the partition algorithm is thus O

(
n
P + Pb

)
. If b << N and P << n

2b then
the algorithm will have linear speed up. This breaks down when the number
of processors grows as the sequential phases will use more and more time. The
maximal number of processors that the algorithm can use is P = O

(
n
2b

)
, then

all blocks are picked by a processor at once and half of the blocks must, in
worst-case, be neutralized in the sequential phase.

The parallel partitioning phase is a parallel scan, if 2P blocks can fit in main
memory. The number of I/Os is then O (N/B). The cache behaviour of the
parallel partition phase is a scan over both the left and the right block. The
number of cache misses is therefore O (b/l1) where l1 is the cache line size of L1
cache. The L2 cache complexity is similarly O (b/l2), where l2 is the L2 cache
line size. Tsigas et al. [22] limit the block size, so that two array blocks can fit
in L1 cache at once, that is b ≤ c1/2. Theoretically this is not necessary as the
access is a scan, and the number of cache misses is optimal for any block size. It
is possible that choosing the block size such that two block can fit in L1 cache is
faster as it will allow more of the blocks to be prefetched by the processor and
it might allow better branch prediction. It is necessary to experiment with this
to reach a conclusion.

The sequential partitioning phase performs no I/Os if the P middle blocks can
fit in main memory. The P unneutralized array blocks are the last used by the
parallel partition phases and will thus be in main memory. The cache complexity
of the sequential partitioning phase is similar to the I/O. If P blocks can fit in
L2 cache then only the left out elements incur cache misses. The P array blocks
needed by the sequential phase will already be in L2 cache and the sequential
partition phase will incur no L2 cache misses.

Singler et al. [21] propose to recursively use the parallel partitioning phase.
Each time with half the number of processors. This could result in an increase
of speedup if many processors are used. But the recursion should probably be
stopped at some constant number of processors to limit the depth.

The partitioning algorithm has four things against it. Firstly the scalability and
speedup limit each other; if many processors are used the speedup degrades.
Secondly, the array is only divided into two parts, which will result in an I/O
inefficient quicksort algorithm. Thirdly, the algorithm contains a sequential part
and as we know from Amdahl’s law this should be avoided. Lastly, there is not
an efficient way of selecting a pivot that guaranties a balanced partitioning of
the input. This requires the use of a work balancing techniques.

4.2.2 Parallel Quicksort

Tsigas et al. [22] described a parallel quicksort using the above parallel parti-
tioning algorithm. First a pivot value is selected. This is done with the median
of three strategy, where the median of the first, the last and the middle element
is selected as pivot. The input array is then partitioned using the above parallel
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partition algorithm. When the input has been partitioned, the processors are
partitioned and assigned to a partition. The processors are partitioned so that
the number of processors in a partition is proportional to the size of the array
partition they are assigned to. This is done recursively, until each array parti-
tion has a single processor assigned. When only a single processor is assigned to
a partition, the processor begin a sequential sorting phase. The processor keeps
partitioning the with a sequential partitioning algorithm. When a partition is
small enough to fit in cache, the partition is sorted with a sequential sorting
algorithm e.g. insertion sort.

The partitioning is not guarantied to be balanced and some work balancing is
required to insure that processors that were given a small partition can help
processors that were given a large partition. To allow another processor to
help sort an input partition, each partition is spawned as a task that can be
run in parallel. Tsigas et al. [22] use the work-stealing algorithm to achieve the
work balancing. The scheduled tasks thus correspond to an partition that either
should be partition into smaller parts, spawning more tasks, or a small partition
that can be sorted directly.

The parallel quicksort cannot reach an optimal I/O performance as the parti-
tioning algorithm only divides the input into two parts. The number of scans
over the input is thus O (log n) which is non-optimal. The cache performance
of the algorithm described by Tsigas et al. [22] can be improved by letting all
processors work on one of the input partitions instead of dividing them across
both. When a partition is small enough to fit in L1 cache, it can be sorted
directly. This corresponds to using the PDF scheduling algorithm instead of
work stealing.4

4.3 Discussion of Parallel Algorithms

The two described parallel sorting algorithms have different trade-offs. The
parallel mergesort algorithm use double the needed space, because the merge
algorithm is not in-place. The extra space used could be limited to a single
extra array, by alternating between one array used for input and the other used
for output. The parallel quicksort algorithm is not stable as the partitioning
algorithm is not stable. The mergesort algorithm has good I/O bounds but the
cache performance and the speedup limit each other. The quicksort algorithm
has good cache performance, if the PDF scheduler is used, but the I/O perfor-
mance is not optimal. It seems natural to try to combine the two by using the
quicksort algorithm to sort the mergesort runs. This combination will however
result in a sorting algorithm that is neither stable nor in-place.

Neither of the algorithms are cache oblivious and the question arises whether
a stable, in-place, I/O optimal, cache oblivious, work optimal, parallel sort-
ing algorithm exists. Cole and Ramachandran [10] presented a work optimal
and cache oblivious algorithm, but it is more complicated than the presented
algorithms and whether it has practically usable is yet to be determined.

The above algorithms are meant as examples of parallel algorithms. One of
the most basic operations in parallel algorithms is the division of data in order
to allow computation to run in parallel on the smaller parts. We can also see
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that it results in better I/O performance if the input can be divided directly
instead of recursively. The parallel computation should be done on small parts
in order to maximize the number of processors the algorithms can scale to. We
also observe that processors should work as long as possible on the same data
parts, to maximize the cache performance.

Nested parallelism allows programmers to ignore the implementation of a par-
allel algorithm and to use it just as one would in a sequential setting, without
any degradation of scalability or speedup. This technique allows a problem to
be broken into subproblems that can be solved with an off-the-shelf algorithm.
It is then the programmers job to identify the subproblems that can be run in
parallel and communicate this to the programming library.
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Concurrent execution of a program requires that the program can be decom-
posed into parts that can be run concurrently. There are two general ways of
decomposing a program into these parts. If the program consists of indepen-
dent tasks, these can be run in parallel. This is called task decomposition as
the focus is on the tasks. The other way to decompose a program is by focusing
on the data used by the program. Often the data used by a program can be
divided into smaller problems, each represented by subsets of the data. These
subproblems can then be solved in parallel and the solution combined to obtain
the solution to the original problem. This technique is similar to the divide-
and-conquer paradigm. A library should support both types of decompositions
to make as much parallelism as possible available to the programmer. Data
decomposition can be modelled as a task decomposition by spawning the same
task several times with different input data.

5.1 Granularity

Granularity is an important factor in the performance of parallel code execution.
Libraries for parallel programming introduce two new performance factors.

Available parallelism: if the amount of parallelism expressed by the user is
too low, then processors will idle leading to poor performance.

Scheduler overhead: If too much parallelism is expressed by the user, the
overhead introduced by the scheduler becomes too large and the perfor-
mance drops.

To obtain optimal performance from a parallel library, the user has to balance
the above two factors. This requires that the user writes tasks that are neither
too larger nor too small. The optimal task size depends on many factors such
as the number of processors, cache layout, cache sizes, and the scheduler used.
The granularity must therefore be found experimentally for a specific program
and system.

The granularity available due to scheduler overhead limits the scalability to
less than it would be with very fine granularity. This limits the number of
practically usable processors, usually to less than the theoretical usable number
of processors.
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5.2 Other Libraries

This Section describes how other libraries for parallel programming have been
designed. The next Section discusses differences and similarities of the libraries.
Describing all the available libraries is beyond the scope of this thesis. The
libraries described here are only a small part of the existing libraries, but the
libraries have been chosen to highlight some of the trends in the design of such
libraries.

5.2.1 Cilk

Cilk is an extension to C by Frigo et al. [16], made for symmetric multiprocessing,
where a collection of identical processors are used. The idea of Cilk is to have
the programmer expose the available parallelism in the program and then let
Cilk handle the actual execution of the program.

Cilk introduces the keywords spawn and sync. The spawn keyword creates a
new thread of execution that may run in parallel with the spawning thread.
The spawn statement can spawn special Cilk-procedures or unnamed functions
in the form of a code block. The Cilk-procedures allow nested parallelism[16].

To synchronize two threads the keyword sync is used. The sync keyword blocks
the parent thread until the child thread has finished. The child thread then
dies and the parent thread continues after the sync. A spawn may return a
value. The grammar of a spawn statement takes the form [lhs op ] spawn
foo(arg1, arg2, . . . argn), where foo is a Cilk procedure. The so called Inlet
functions allow more complex actions on spawn returns. An inlet function is
invoked when a spawn returns. To avoid race conditions inlet functions are
atomic[16].

Cilk contains hyperobjects that help the user avoid race conditions[14]. Hyper-
objects are an encapsulation of data that removes the synchronisation respon-
sibility from the user by doing it automatically. A hyperobject present a view
local to a thread of a global object. The views from parent and child thread are
combined when the two threads sync. In [14] three hyperobjects are presented:

Reducer: reduces two views with a specified function. An example could be
an integer sum reducer, where each thread has a local integer as the view
and the reduction function is integer addition.

Holder: generalizes thread local storage. If a thread uses a global variable and
creates two separate threads of execution by spawning, a holder hyperob-
ject allows each thread to treat the global variable as thread local without
risk of race conditions occurring.

Splitter: is a special case of a holder hyper object where, when the thread
dies, the value of the date in the hyper object must be restored to its
value before the spawn.

Hyperobjects in Cilk simplifies the use of thread local data by allowing global
data to be viewed as local.
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5.2.2 Standard Template Adaptive Parallel Library

The Standard Template Adaptive Parallel Library (STAPL), presented by Buss
et al. [7], is a parallelization of the STL, made for distributed systems. STAPL
consists of three major components: pContainers, pViews, and pAlgorithms.
pContainers are data structures that allow concurrent operation on the struc-
ture, e.g. simultaneous inserts and deletes. The individual operations on the
data structure itself may be parallelized by the pContainer. pAlgorithms are
parallelizations of the STL algorithms. The pAlgorithms both provide the STL
interface and a STAPL interface that uses pViews. pAlgorithms are expressed
as task graphs. The vertices in a task graph are the individual tasks and the
edges are data dependencies. STAPL runtime system uses an executor to find
and execute the ready tasks.

pViews, presented by Buss et al. [6], are used to abstract the underlying data
structure, just as iterators are in the STL. pViews make data decomposition
easier and more general, by allowing algorithms to work with pViews instead of
the underlying data structures. A pView consists of a base pContainer and a
function mapping elements in the pContainer to elements in the pView. This
mapping function allows pViews to express more complex part of a pContainer
than simple sequences. A pView can represent every second element or a trans-
lation of a array of integers to an array of floats. Where as STL iterators provide
functions for transversing a data structure, pViews provide functions with more
focus on parallelism. A pView can be used to provide a balanced division of a
container into a number of subparts, without actually dividing the pContainer.
A pView could also be used to provide a lazy transformation of the elements
in a pContainer without necessarily changing the pContainer. pViews are also
used to manipulate sets of elements in pContainers, providing a clean interface
for bulk operations.

Using pViews to perform data decomposition is beneficial. This moves the act
of decomposing a range into subranges from the algorithm to the data structure.
The STAPL uses this to provide a way to provide distributed data structures
without forcing the user to distinguish between local and remote parts of the
data structure. The same technique can be used in a shared memory library to
let the data structure decide the best way to perform the decomposition based
on the cache layout of the data structure[6].

5.2.3 Threading building blocks

Threading building blocks (TBB) is a large library made by Intel [17] . TBB is
a pure c++ framework optimized for use on a single CMP and uses the work-
stealing scheduler. TBB use a task functor class to allow nested parallelism.
Any number of tasks can be spawned and TBB allows the user to spawn a list
of tasks to support spawning of a dynamic number of tasks. Spawning a list
of tasks result in all the tasks in the list being inserted into the ready pool, if
the list is large this can cause a bottleneck as the tasks are stolen individually
by work stealing scheduler, it therefore recommended that recursive spawning
is used instead. The task class in TBB defines the task’s execution function
to return the next task the thread should execute, returning NULL causes the
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scheduler to automatically select the next task to execute. The task execution
function is chosen as execute() instead of the traditionally used operator().

To make data decomposition easier a range concept is included in TBB. A range
can be split into two parts and a function is_divisible is used to decide if
a range is large enough to be split. This is used in the library to recursively
split ranges into parts that can be used as input to a task. The is_divisible

function is used to control the task granularity.

TBB defines a set of generic algorithm skeletons that can be used to work with
tasks, including parallel_for, parallel_reduce and parallel_scan1. These
algorithms can be used with the range concept to control the task granularity.
The body of the algorithms must be defined as a functor. The algorithm divides
the input range recursively until the subranges cannot be divide more, opera-
tor() is then called with the range as input. Because the task class uses the
execute() function to execute a task, tasks can be used in combination with
the algorithms, but the user must handle all argument passing and no value can
be returned directly.

TBB also has a library of containers that can be used concurrently. The con-
tainers can be used as a range allowing the generic algorithms in the library to
work on an abstract range. This makes it possible to use the library algorithms
with the data structures in the library.

5.2.4 Multi-Core Standard Template Library

The Multi-Core Standard Template Library (MCSTL) is a parallelization of
the STL algorithms presented by Singler et al. [21]. The Goal of MCSTL is
to allow easy parallelization by replacing STL algorithms with their parallel
counter parts in MCSTL. One problem is that the parallel algorithm does not
has exactly the same behaviour the STL version have. As an example merge
is mentioned in, the STL merge allows the two sequences to overlap, but the
parallel version fails if this is the case.

The MCSTL demonstrates that it is possible to implement algorithms that are
both efficient and general enough that the reuseability known from sequential
code is possible. It is also possible to nest the algorithms, this is used inter-
nally in the library but is also available to the user. The algorithms that are
used in the implementation of the MCSTL also use the results from the exter-
nal memory model. This mixture of models are very successful. The authors
of the MCSTL notes that the external memory library STXXL is limited by
computation bounds and not I/O [21].

The MCSTL does not make it possible for the user to implement additional
parallel algorithms. From Amdahl’s law we know that as little as possible of
the code should be limited to sequential execution. A library should therefore
allow the user to implement parallel algorithms that can be used just as the
algorithms supplied by the library, as it is the case in STAPL.

1The parallel_scan algorithm skeleton in TBB use the parallel prefix meaning of scan
and not the scan concept used in external memory model(see Section 2.1).
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5.3 Interface Design

Simplicity of algorithms is important in both sequential and parallel computing.
In parallel computing algorithms can easily get complicated and the special
cases can take up more programming time than the base algorithm. Nested
parallelism (see Section 3.1) allows any task to spawn more tasks that can be
run in parallel. Nested parallelism allows parallel algorithms to be used just
as we would a sequential algorithm. An algorithm can thus be divided into
sub-problems and a parallel algorithm can be used to solve each sub-problem.
Nesting of parallel algorithms must be provided in a transparent manner that
allows a parallel algorithm to be used just as if it were a sequential algorithm.

In the libraries presented above are the interfaces differences of Cilk and TBB
interesting. Cilk has a very simple interface, partly because of the use of a
precompilier, but the interface of Cilk is limited to only a few functions. This
makes Cilk very simple to learn, but the user is forced to use recursive spawning
to spawn a dynamic number of tasks. TBB has a very large interface and the
generic algorithms are used more than direct calls to spawn. The task class in
TBB are quite complex and allocating and deallocating a task object must be
done with special library function. This design discourages users from using
nested parallelism. The interface should optimally be as simple and intuitive as
Cilk’s but still letting the user avoid manually granularity control and manual
argument and return value management.

Even though TBB offers a wide selection of generic algorithm skeletons more
concrete generic algorithms, which are available in the MCSTL, are missing.
TBB only includes a sorting algorithm. The user is required to either self im-
plement these algorithms them self or find third party implementation. Having
more generic algorithms and fewer algorithm skeletons would be desirable, es-
pecially if combined with a simpler interface.

5.4 Views

TBB uses the range concept and STAPL uses views, to make data decomposition
easier for the user. The STAPL view goes further than TBB’s range concept
and allows a view to change the way data is presented. The TBB range concept
makes it easy for the user to recursively divide data into parts of a certain size.
The STAPL balanced view allows the user to divide a data structure into blocks
of similar size. The strength of both the range and the view concept is that
it allows construction of generic algorithms, by using a range or a view in the
same way the standard template library use iterators to abstract way the actual
data structure. The concepts can thus be thought of as a parallel iterator.

Views have been proposed for sequential programming [25] as a combination
of algorithms and iterators. In parallel programming they are practical as it is
easier to divide a view than a range of two iterators. The interface of a view
is more like the interface of a range or an iterator and views traditionally offer
random access to elements in the view. The random access is practical in a
parallel setting where the division of a range without random access can be
complex.
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This Chapter describes my library and the design choices that have were taken.
Some implementation specific problems and solutions are also discussed here.

6.1 Design Goals

The goal of my library is to allow benchmarking of the parts of parallel library
as well as parallel algorithms. This is not possible with any of the libraries
discussed in Chapter 5 as it not possible to change the scheduler.

forcing the user to use a certain scheduler is not good library design. We have
seen that a scheduler can improve the cache performance of for certain archi-
tectures. The choice of scheduler depends on the architecture on which the
system runs. Furthermore scheduling is still a topic of active research and new
schedulers need to be compared to existing schedulers. This requires a library
where the performance effects of schedulers can be compared in a fair manner.
Making it possible for the library to work with user defined schedulers support
both the research in more effective schedulers and allows the library to be used
effectively on many different architectures.

We have observed that nested parallelism makes both writing and reading par-
allel programs easier (see Section 4). The library should therefore support use of
nested parallelism and make it easy for the user to program using the supplied
methods of nesting parallelism.

Granularity is very important in practice (see e.g. [9]) and the performance of a
parallel algorithm depends on the granularity. Granularity control is important,
as optimal task granularity is depended on many parameters (see Section 5.1).
Library support for granularity control makes experimentation easy and allow
the user to easily change the granularity if changes are made to either software
or hardware.

As seen in Section 4 division of data is a highly occurring operation in parallel
algorithms. It should thus be made easy by the library. Working with Sections
of data sequences are not trivial and can require a certain amount of boiler
code. The library should try to minimize the amount of boiler code the user is
required to write.

The library should avoid the use of a precompiler, to make bug finding easier.
The library must thus be implemented in pure C++.
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6.2 The Multi-core Library

Two main issues in the design is: the design of how tasks are spawned and
the how a task is represented. These choice are interdependent and the design
choices of one limits the available choices for the other. The design of the task
representation and the spawn functionality is discussed first. The design rest
the rest of the library is then described.

My library consists of three major components: a thread pool, a task class, and
a scheduler. The final design of each component is shown on Figure 6.1.

Worker_thread

-pthread: pthread_t

-id: size_t

-Scheduler::Handle

+Start(): void

+Join(): void

+GetID(): size_t

-StartThread(): void*

+DoWork(): void

Task

-sh: scheduler_handle

+operator()(): void

+Spawn(tasks:class...): void

+Spawn(taskView:View): void

+SetSchedulerHandle(sh:Scheduler::Handle*): void

Scheduler

+GetHandle(): Handle

+addTask(Task): void

+IsDone(): bool

Scheduler::Handle

+Spawn(tasks:class...): void

+Spawn(TaskView:view): void

+TryGetTask(): task*

+IsDone(): bool

thread_pool

+scheduler: Scheduler*

+worker_threads: vector<worker_thread*>

+NumWorkerThreads: size_t

+

+AddTask(task*): void

+Start(): void

1

1

1

1...

1

11 1...

1

1

Figure 6.1: UML diagram of the core classes in the framework.

6.2.1 Tasks and Spawning

Because we want a pure C++system, the spawn functionality must be imple-
mented as a C++function and the code to be run in parallel must thus be passed
as arguments. This could be done with function pointers, but C++is a strongly
typed language and the signature of a function depends on the types and num-
ber of arguments the function takes. The solution to this problem is to use
function objects, called functors. A functor is an object that can also act as a
function. This is achieved by declaring a method that is used to execute the
functor (by convention operator() is used). To make the functor class declared
by the user available to the system an abstract class Task is provided that the
user-declared functors must inherit from.

Letting the spawn statement return a value is practical, but cannot be imple-
mented for the same reasons as above, and the function that executes a Task

functor must be declared as void. Returning can be achieved by explicitly writ-



6.2 The Multi-core Library 41.

ing the value to be returned at a given memory address. The Task functor
thus take the addresses, to where the returned values should be written, as an
argument. This allows spawn to return values indirectly as well as removing the
requirement that only a single value be returned.

Because the spawn statement only takes a functor as argument and does not
return anything there is no reason to limit spawn to only one task. The spawn
statement is thus expanded to allow any number of tasks to be spawned. Tradi-
tionally the spawn statement is used like fork, splitting a task into two threads
of execution. This results in a binary tree structure of spawn statements. The
spawn tree allows the spawning to be done in logarithmic depth using the paral-
lelism of the spawns. But, as discussed in Section 5.1, each task has an overhead
from the scheduler and a task that is only used to spawn two new tasks, would
have a very low granularity. The syntax of spawning several tasks as defined
here allows each scheduler to implement the spawn in the most efficient way.

Because moving running code from one thread to another is both non-trivial
and time expensive, a task must be executed from start to finish on the thread
that starts executing that task. To make synchronization (like the Cilk sync

statement) available each thread has a stack of running tasks. When a parent
task ’syncs’, the thread puts the parent task on the stack and runs other tasks
until all children of the parent are completed. The execution of the parent
is then resumed. This stack based synchronisation has two possible interfaces.
The first interface has an explicit sync statement, as in Cilk. A sync is implicitly
called when the task completes. The second interface makes the sync an implicit
part of spawn. The spawn then becomes blocking and the parent task continues
when all child tasks have completed. The two interfaces are equivalent in the
functionality they can express, but differ in the natural way of thinking about
the spawn statement. The first interface makes it natural to think in terms
of threads of execution, each spawn splits the tread into several threads. The
second interface makes it more natural to think in discrete tasks, where tasks can
be made of more subtasks. It should be noted that the second interface results in
one more task being spawned and thus a higher overhead. The second interface
has a clearer separation of data between the spawned tasks. Any shared data is
thus easier to find, making race-conditions and deadlocks easier to find.

The strategy for spawning described above, with blocking spawn using functors,
has an additional benefit. It makes the functionality of Cilk hyperobjects easily
available, by using data members in the functor a task can store a state. A
spawn starts with the parent task constructing the tasks to be spawned. The
tasks are then spawned and executed by the library. The execution of the
parent task then continues, where the local values from the children tasks are
combined in some way. The task functors are constructed by the parent task
and it should be the responsibility of the parent task to deallocate any memory
it has allocated. The child task functors and their fields are thus available to
the parent task after the completion of the child tasks.

6.2.2 Thread Pool and Worker Threads

The thread pool is a standard way of overcoming the limit on the number of
operating-system threads. The thread pool creates a number of worker threads.
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Each worker thread runs the tasks specified by the scheduler.

The WorkerThread class is a wrapper around a platform dependent thread li-
brary, or a C++thread object. The ThreadPool creates the required number
of WorkerThreads and initializes each with a scheduler handle. Each Work-

erThread waits until it is started by the ThreadPool, before the platform thread
is created and started. A worker thread loops until all tasks have been com-
pleted. At each iteration the worker thread requests a Task and then executes
it. When all Tasks in the scheduler have completed the worker threads join with
the main thread and the system exits.

6.2.3 Scheduling Design

The library should be able to allow use of user defined schedulers. The scheduler
thus needs to be parameterized. To achieve this the basic interface of a scheduler
needs to be identified. The interface should allow for as many different schedulers
as possible. We use the two schedulers discussed in Section 3 as a basis for
identifying this interface. The most prominent difference between the work-
stealing scheduler and the parallel-depth-first scheduler is where the task queue
is stored. The work-stealing scheduler stores a task deque for each thread. The
parallel depth first scheduler stores a central task queue that all threads use
concurrently. The scheduler interface should allow for both.

To support both kind of schedulers we need a central Scheduler object, for
any shared data, and a per-thread object that can store any per-thread data.
Thus we have a central Scheduler object that is hidden from the threads and a
Scheduler::Handle class. Each WorkerThread holds an Scheduler::Handle

that serves as the communication link between WorkerThreads and the central
Scheduler object.

The Scheduler::Handle is used by the work stealing scheduler to allow the cen-
tral scheduler to store a list of handles, that is used when a thread steals from
a victim thread. To maintain the Scheduler and the WorkerThread decoupling
the WorkerThread is given a Scheduler::Handle at creation by the Thread-

Pool. The thread pool creates the worker threads and requests a scheduler
handle for each created WorkerThread.

The central Scheduler has is responsible for two operations. Adding a root
Task to the schedule, i.e. the main Task of the program and a way to request a
Scheduler::Handle object. A WorkerThread needs: a way to test if all Tasks
have completed, a way to Spawn new Tasks, and a way to get the next Task

that should be execute. These three operations are thus the responsibility of
the Scheduler::Handle. This basic interface allows for implementation of both
the work-stealing and the parallel-depth-first scheduler.

6.3 Implementational Details

Using a public task interface in the form of a minimal abstract task that the
user-written functors can inherit from This would have been the preferable way
to implement the task interface. It, however, proved to be too be too inflexible
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and impractical. The task is therefor implemented as part of the scheduler. User
defined tasks can then be templated on the Task type that the scheduler use
as a policy. The benefit of this policy based design is that the function can be
specialized for a certain scheduler making it possible to optimize for a scheduler.

The Spawn function in the Scheduler::Handle first initialize any needed data
members and then add the Task to the ready-pool data structure. After the
Tasks have been added to the ready-pool, the Spawn function saves the currently
executing task on the stack and enters a loop. At each iteration a Task is fetched
from the ready-pool and then executed. When all children of the parent task
have completed the loop is stopped and execution of the parent task continues.

Inserting all spawned Tasks into the ready-pool directly works fine for any num-
ber tasks known at compile-time. To allow a dynamic number of tasks to be
spawned the schedulers implement a spawn function that given a View of tasks
spawns all tasks in the view. Spawning a dynamic number of Tasks need extra
care. If a very large number of Tasks are spawned performance could degrade,
e.g. if the ready-pool cannot fit in L2 cache or if the ready pool and the input
data cannot fit in main memory together. The two implemented schedulers
handle the issue differently but they both use lazy spawning where the Task is
only inserted in the ready-pool when it is needed.

The work stealing scheduler perform lazy spawning by recursive splitting of the
view. the scheduler uses an internal SplittingTask class to represent a view
Section. The SplittingTask is inserted into the ready pool as a normal Task.
When a SplittingTask is executed it either splits the view into two subsections
and spawn a SplittingTask for each Section or if the view contain less than a
constant number of Tasks they are inserted into the ready pool directly.

The parallel-depth-first-scheduler perform lazy spawning [4] by inserting a ViewN-
ode into the task queue that represent the ready pool. A ViewNode contain a
view of Tasks and a iterator on the view of Tasks. When a Scheduler::Handle

asks the task queue for the next Task, the queue find the next node in the
queue, if the node i a ViewNode the view node inserts the Task pointed to by
the iterator into the queue, in front of the ViewNode, and moves the iterator
forward by one. Then task in the newly inserted node is then returned to the
Scheduler::Handle. When the iterator of a ViewNode reaches the end of the
view of Tasks the ViewNode is removed from the Task queue.



7 Evaluation

In this Chapter we evaluate the performance of the work stealing and the par-
allel depth first schedulers. This comparison is done by executing the sorting
algorithms described in Chapter 4. The performance evaluation is done by using
the parallel programming library described in Chapter 6. This allows the same
code to be executed using both the work stealing and the parallel depth first
scheduler allowing a fair comparison of the two schedulers. In the rest of this
Chapter each result is presented and discussed.

During the benchmarking it was necessary to make the algorithms more compu-
tationally heavy, this is accomplished by changing the comparison function used
in the sorting algorithms from a direct comparison of values to a comparison
of the natural logarithm of the values. The results from this change is very
interesting and the benchmarks for both are presented here. The same compar-
ison function is used for both algorithms and the sequential sorting algorithm.
The sequential algorithm should make fewer comparisons than the parallel algo-
rithms as neither of the parallel algorithms are work efficient and perform extra
comparisons. Changing the comparison function can thus be used to make the
algorithms more computationally heavy without changing the speedup of the
parallel algorithms.

All the benchmarks programs were compiled using g++ 4.5.2 with level three
optimizations and were run on a Intel core 2 Quad Q9300 CMP, with four cores
each of which runs at 2.5GHz. The CPU is made of two dual core CMPs each of
which have a L2 cache of 3MB and each processor have a L1 cache of 32 KB. The
effect of not having a cache that is shared by all processors is discussed. The
benchmark computer has 4GB of DDR3 1333 RAM running in dual channel
mode at 666MHz. The computer was running Ubuntu 11.04 with the kernel
version 2.6.38-11 during the benchmarking.

7.1 Performance of Multi-Way Mergesort

The mergesort algorithm was run on data with 8 byte elements. The input data
was generated by initialising each position in the input array to its index and
then shuffling the data. The input data is then divided into 16 runs and all runs
were sorted in parallel using the sorting algorithm supplied by gcc. The runs
were then merged using the parallel multi-way merging algorithm described in
Section 4.1. The wall-clock time is measured for both the sorting of runs and the
merging of runs individually. The timings are averaged over three executions.
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7.1.1 Speedup of Multi-Way Mergesort

0.5 GB input data has been sorted using 16 runs, for both the direct value
comparison and logarithmic comparison. The speedup is calculated using the
sequential sorting algorithm from gcc and the total time used by the parallel
multi-way mergesort algorithm. Figure 7.1 shows the speedup as a function
of the number of threads used, with direct value comparison and logarithmic
comparison. The speedup obtained when logarithmic comparison is used is more
than double the speedup obtain with direct value comparison.

Figure 7.2 shows the scaling over the single-thread execution of the parallel
mergesort algorithm with direct value comparison and the logarithm compari-
son. These figures do not show the formally defined speedup as it is defined is
terms of best sequential algorithm, but they show how the parts of the algorithm
scale. Because the overheads introduced by parallelization of the algorithm are
present in the single-thread execution, the algorithm is expected to exhibit lin-
ear speedup. The multi-way merging algorithm scales to a bit less than the
expected 4, with direct value comparison. The sorting of runs scales to 3, with
the direct value comparison, which is less than expected. Both the merging and
the sorting of runs scales as expected when the logarithm comparison is used.

The limited scaling for the run sorting is not expected as no synchronization
is performed. That the run sorting scales just as expected when logarithmic
comparison is used, leads us to conclude the off-chip bandwidth is the limiting
factor. The four processors can sort the data faster than it can be fetched from
main memory.
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Figure 7.1: The speedup of the parallel multiway mergesort from the sequential
sorting algorithm that comes with gcc. (a) shows the speedup with direct value
comparison. (b) shows speedup with logarithmic comparison. Both were run
with 0.5 GB input data using 16 runs.
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Figure 7.2: The scaling of the parallel multiway mergesort shown is terms of
speedup over the sequential execution of the parallel algorithm. (a) shows the
scaling then direct value comparison is used. (b) shows the scaling when loga-
rithmic comparison is use. Both were run with 0.5 GB of input data using 16
runs.



48. Evaluation

7.1.2 Granularity Benchmark of Multi-Way Mergesort

The granularity of the parallel multi-way mergesort is defined by the number
of runs used. The effect of the granularity is measured by running the al-
gorithm with an increasing number of runs while holding the total input size
constant.The amount of input data varies between the direct value compari-
son and the logarithmic comparison benchmarks, which is 0.5 GB and 0.25 GB
respectively. Due to very large change in execution time, the same amount of
data was not used. The input data size was instead chosen to keep the execution
time high enough, to make uncertainty of time measurements non-significant,
and low enough that the benchmarks could be done in no more than a few
hours. The results for the benchmarks can, despite the different input size, still
be compared and the difference only results in an extra measure point in the
direct value comparison plots. All four granularity benchmarks were performed
using four threads.

Figure 7.3 shows the speedup of the multi-way mergesort algorithm over the
sequential sorting algorithm form gcc as a function of the number of runs used.
The speedup of the direct value comparison is much lower than the logarithmic
comparison is, as explained in Section 7.1.1, due to off-chip bandwidth. Both
benchmarks show a drop in speedup between 64 and 256 runs.

Figure 7.4 shows the execution time of the multiway-merge sort algorithm over
single-thread execution as a function of the number of runs, for direct value
comparison and logarithmic comparison. The run sorting time is expected to
decrease slightly as the number of runs increase, due to the log-linear complexity
of sorting. The time spent on multi-way merging is expected to increase with
increasing number of runs. Both run sorting and merging behaves as expected
when logarithmic comparison is used. The high run sorting time for the first
measure point is due to only two runs being used and only two processors
can be used for sorting. The multi-way merging can used all four processors
independent of the number of runs. The time spend on multi-way merging with
direct value comparison show a steep increase between 64 and 256 runs.

The dramatic increased time used for merging and the corresponding decrease
in speedup between 64 and 256 runs is probably due to the heap used for multi-
way merging being too large to fit in L2 cache. This causes the contention on
off-chip bandwidth to increase dramatically resulting in the observed drop in
performance. This also fits with the logarithmic comparison benchmarks that
drops slightly at the same point, seen on Figure 7.3b.
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Figure 7.3: The effects on speedup of changing the number of runs is shown. (a)
shows the speedup when direct value comparison is used. (b) shows the speedup
when logarithmic comparison is used. 0.5 GB input data was used for direct
value comparison ((a)) and 0.25 GB data was used for logarithmic comparison
((b)), both used 16 runs.
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Figure 7.4: The effects of the number of runs used on the scaling of the run
sorting and the merging, in terms of speedup over single-thread execution. (a)
shows the scaling with direct value comparison. (b) shows the scaling with
logarithmic comparison. 0.5 GB input data was used for direct value comparison
((a)) and 0.25 GB data was used for logarithmic comparison ((b)), both used
16 runs.
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7.2 Performance of Parallel Quicksort

The quicksort algorithm was run with input data with 8 byte elements. For
the direct value comparison benchmarks an input size of 0.5 GB was used and
for the logarithmic comparison an input size of 0.25 GB was used. As in the
mergesort benchmarking the input was generated by initialising each position
in the array to its index and then shuffling the data.

7.2.1 Speedup of Parallel Quicksort

The speedup of the quicksort was measured by sorting either 0.5 GB or 0.25 GB
of input data and measuring the wall-clock time used. The algorithm was run
using 524288 elements as the direct sort size and a block size of 65536 elements,
the number of tasks used for partitioning was limited to 16. Figure 7.5 shows
the speedup of the quicksort algorithm over the sequential sorting algorithm
from gcc, using direct value comparison and logarithmic comparison. Figure 7.6
shows the scaling of the quicksort algorithm, as the speedup over single-thread
execution, using direct value comparison and logarithmic comparison.

The speedup and scaling of the quicksort algorithm are unsurprisingly very
similar. We can see that the algorithm cannot use all four processors with direct
value comparison. The algorithm scales to the expected four when logarithm
comparison is used. This indicates that off-chip bandwidth is the limiting factor.
The quicksort algorithm does not achieve as good speedup as the mergesort
algorithm, even with logarithmic comparison.

Interestingly, a difference in the performance of the two schedulers, can been
seen. The work-stealing scheduler scales to nearly 4 with four threads, using
logarithmic comparison, whereas the parallel-depth-first scheduler only scales to
3 with four threads, also using logarithmic comparison. This likely indicate that
work-stealing better use the limited bandwidth for this specific algorithm, but
this should be investigated further before any conclusions can be made. Another
difference in the performance of the two schedulers is their behaviour when more
threads are used, than there are processors available. The performance of the
quicksort algorithm degrades when more than four threads are used, under the
work-stealing scheduler. This is most likely caused by increasing number of
context switches. The work-stealing scheduler is unable to use the additional
threads and adding additional threads forces the processor to use time slicing
resulting in an increasing number of context switches. The quicksort algorithm
performs better when more than four threads are used with the parallel-depth-
first scheduler. The algorithm does not scale to a speedup of four over the single-
thread execution, for four thread using the PDF-scheduler. This means that the
processors are not used optimally and adding more threads per processor allows
the processor to have a bit more available work resulting in faster execution.
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Figure 7.5: The speedup of the parallel quicksort algorithm compared to the
sequential sorting algorithm from gcc. (a) shows the speedup with direct value
comparison. (b) shows the speedup with logarithmic comparison. The direct
value comparison benchmark ((a)) was run with 0.5 GB of data. The direct value
comparison benchmark ((b)) was run with 0.25 GB of data. Both benchmarks
were run with direct sorting of 219 elements and a block size of 216.
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Figure 7.6: Scaling of the parallel quicksort algorithm, in terms of speedup over
single-thread execution. (a) shows the scaling with direct value comparison. (b)
shows the scaling with logarithmic comparison. The direct value comparison
benchmark ((a)) was run with 0.5 GB of data. The direct value comparison
benchmark ((b)) was run with 0.25 GB of data. Both benchmarks were run
with direct sorting of 219 elements and a block size of 216.
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7.2.2 Granularity of Parallel Quicksort

The task granularity effects on performance was measured. The task granularity
was controlled by changing the number of elements that were sorted directly.
The block size used during partitioning was set to one fourth of the number
of elements sorted directly. The number of tasks was limited to four and four
threads were used. Figure 7.7 shows the speedup of the quicksort algorithm
using direct value comparison and logarithmic comparison. Figure 7.8 shows
the execution time as a function of the task number of elements sorted directly,
for both direct value comparison and logarithm comparison.

The quicksort algorithm behaves as expected when logarithmic comparison is
used. The performance with very low granularity is dominated by the scheduler
overhead. With very high task granularity the available parallelism is limited,
decreasing the performance. The performance does not decrease by much for
large task granularity, when direct value comparison is used. This is because the
data is partitioned at least once, and the performance gained by four threads
instead of two marginal (see Figure 7.6a).

The quicksort algorithm is generally faster with work-stealing scheduler. At low
task granularity this is likely due to the contention on the central task queue
used by the PDF scheduler. At larger task granularity this corresponds to our
the observations on the speedup discussed in Section 7.2.1
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Figure 7.7: The effect of task granularity on speedup. (a) shows the speedup
when direct value comparison is used. (b) shows the speedup when logarithm
comparison is used. The direct value comparison benchmark ((a)) was run with
0.5 GB of data. The direct value comparison benchmark ((b)) was run with
0.25 GB of data. Both use a block size of a fourth of the number of elements
sorted directly and a limit of four tasks for partitioning.
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Figure 7.8: The effect of task granularity on the execution time of the quicksort
algorithm. (a) shows the execution time with direct value comparison. (b) shows
the execution time with logarithmic comparison. The direct value comparison
benchmark ((a)) was run with 0.5 GB of data. The direct value comparison
benchmark ((b)) was run with 0.25 GB of data. Both use a block size of a
fourth of the number of elements sorted directly and a limit of four tasks for
partitioning.
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Chen et al. [9] compared the performance of the parallel-depth-first scheduler
to work-stealing. They used mergesort, hash join and the LU benchmark for
the comparison. Their mergesort algorithm used a parallel binary merging pro-
cedure. They used simulated execution of the algorithms to obtain results for
CMPs with many more cores than are available today. Their results show a dif-
ference that becomes noticeable at eight processors for mergesort and four for
hash join. The LU benchmarks showed no difference in scheduler performance.
They furthermore discovered that the parallel-depth-first scheduler is more sen-
sitive to the task granularity, but when the granularity is tuned mergesort ran
1.17 times faster with parallel depth first scheduling than with work stealing
when 32 core was used.

The mergesort used by Chen et al. [9] and the quicksort used in this work are
of similar structure, as both algorithms use a parallel binary partition or merge
procedure and a sequential algorithm as the basis for solving sufficiently small
tasks. The results for the two should thus yield comparable results. This is
however not the case; the results for the quick sort obtained here have much
lower scalability than the results shown in [9]. The scalability and speed up
for both algorithms and both schedulers are not as high as expected. Only the
merging procedure show a scalability as expected.

The simulation results Chen et al. present do not show the same bandwidth
bottleneck that we observe. Chen et al. do not discuss the off-chip bandwidth
at all and it is not mentioned if this is part of the simulation.

Our benchmarking were performed on a CMP without a cache shared by all
processors. The CMP used thus does not fit with the CMP-cache model. This
do not make the benchmarking of the PDF scheduler invalid. The PDF scheduler
should still make better use of the cache that the processor pairs share. We use
a single CMP and even though the fully shared cache is not present is both L2
caches on the same chip and fetching a cache line from the other L2 cache is still
much faster than fetching it from main memory. Adding a shard cache will not
increase the memory bandwidth, which is the current bottleneck. Only when
the algorithm is made more computationally heavy is it possible to use the full
CMP.

It is unlikely that even if the algorithms were not limited by off-chip bandwidth
that we would be able to observe any large differences in the performance of the
two schedulers, unless many more processors were available. We can however
observe that the choice of algorithm is important and the parallel multi-way
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mergesort algorithm generally out preform the parallel quicksort algorithm due
to the better memory bandwidth utilization.

The benchmarks of the parallel algorithms show us a important problem with
CMPs; the limited off-chip bandwidth. It is a big problem that the processor
is so fast and the main memory so slow that nearly no speedup is possible for
sorting. Future CMPs are expected to have even more processors but if the
off-chip bandwidth is not increased significantly using the added processors will
not be possible.

The main memory that is used with modern CMPs have not changed much from
the memory used in previous single processor computers, the most significant
change is a slow increase in access speed. This makes the multiple processors in
a CMP hard to utilize as the memory access is mostly sequential.

The difference in the performance of the parallel multi-way mergesort and the
parallel quicksort algorithms demonstrate that algorithm design can help limit
the off-chip bandwidth bottleneck. This a topic that requires more research, as
it is not possible to use the results from the external-memory model and the
ideal-cache model because of the added parallelism.

The cache models in processors today are very complex and subtle effect are
present. This have not been a problem when only a single processor is used,
where the cache could be modelled in general allowing effective cache utilization
on most processors. This general model is not available for current CMPs as
they are too different. Hardware manufactures are increasing the cache sizes
in attempt to increase performance, while experimenting with the architecture.
This make effective programming for general CMPs hard.
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