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Abstract

The increasing computation power in modern computers in the form of sev-
eral cores per processor and more processors, makes it necessary to rethink or
to redesign sequential algorithms and data structures. An obvious approach
would be to use parallelism. Since there are several different programming
models to implement parallelism, which one should be used?

In this thesis various parallel programming models are studied from a prac-
tical approach and evaluated with emphasis on efficiency on multi-core com-
puters. A multi-threaded framework, based on a shared-memory model, is
designed and implemented. The framework offers a pure and simple C++
API, a limit on usage of threads, load-balance between work performed by
threads, atomicity when a shared data structure state is changed and low
memory usage.

A helping technique is introduced. This technique can distribute work be-
tween inactive processors in logarithmic time. Also two types of barriers are
introduced: a global thread barrier, which reduce the use of synchronization
barriers; and a job barrier, which can execute the work binded to a barrier if
no other thread is performing the task instead of just waiting.

Satisfactory results are presented when comparing the presented framework
to other available frameworks and libraries. The comparison shows that sim-
ilar practical efficiency on the parallel implementation of sorting algorithms
is obtained, sometimes even better, with use of less memory.
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Chapter 1

Introduction

1.1 Motivation

The increasing computation power in modern computers in form of several
cores per processor and more processors, makes it necessary to rethink or to
redesign sequential algorithms and data structures.

Consider a sequential algorithm that is executed in T (n) time. If the task is

fully parallelizable, the execution time of the algorithm would be T (n)
k

time
when having k cores running in parallel.

Jordan Hubbard, Director of Engineering of Unix Technologies at Apple and
co-founder of the FreeBSD project, announced at Open Source Days 2008 1

that Intel, according to their plan, has the intention to ship computers in
2015 with ONE MILLION cores. With that amount of cores, sequential
algorithms and sequential data structures will not be able to utilize optimally
the available hardware resources.

With all that computational power is it possible to design efficient algorithms
and data structures on multi-core computers, and if so which framework
should be used? An obvious approach would be to use parallelism. Look-
ing at [24] an increased performance is obtained if parallelized algorithms
from the Multi-Core Standard Template Library (MCSTL) are executed on
a computer with a greater amount of cores. On the other hand we have

1http://www.usenix.org/event/lisa08/tech/hubbard talk.pdf
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[11, 9], both implementation of a Software Transactional Memory library for
C++ (ESTM and DikuSTM), where the performance decreases after adding
seven or eight threads. There are several different programming models to
implement parallelism, including:

Parallelizing algorithms: Take well known efficient sequential algorithms
and redesign them so that the execution of non-overlapping operations
can be done concurrently on several processors, reducing the execution
time of the algorithm.

Software Transactional Memory: By introducing a transactional model
similar to databases transactions, concurrent read and write can be
done on a shared data structures ensuring the following properties:
atomicity, consistency and isolation (ACI).

Skeletons [7]: Useful patterns of parallel computation and interaction can
be packaged up as frameworks or template constructs.

Communicating sequential processes (CSP) [13]: Formal language for
describing patterns of interaction with messages between processes in
concurrent systems.

It is necessary to make an experimental study on the proposed models and
evaluate them in combination with the release of an open source parallel
framework that can be used by researchers in future experimental studies.

1.2 Multi-core computers

A multi-core computer is defined as a computer having at least one cen-
tral processing unit (CPU) with several cores. The core is the part of the
processor that performs the execution of the instructions. On a single-core
processor only one instruction can be processed at a given time while multi-
core processors can execute several instructions. This is interesting because it
allows computers with only one CPU to be able to run parallel applications.

The naming convention for describing how many cores a multi-core processor
has, is done by prefixing with a word for the number of cores: dual-core,
quad-core, octa-core, etc.
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Take two processors from Intel, Intel Core 2 Duo Processor E8200 (6M
Cache, 2.66 GHz, 1333 MHz FSB)2 and Intel Core 2 Quad Processor Q9400S
(6M Cache, 2.66 GHz, 1333 MHz FSB)3, with the same cache, CPU clock
speed, FSB Speed and where the second processor has twice the amount of
cores. Assuming that we have the fully parallelizable application from Section
1.1, the computation can be done in half the time.

A thing to have in mind when speaking about multi-core processors is that an
instance of an executed application, a process, can create several independent
streams of instructions that can be scheduled to run concurrently by the
operating system, called threads. The ideal mapping between the threads and
cores is usually 1-to-1 but it is not determined for all architectures. Sun’s
UltraSPARC T1 octa-core4 processor can execute 32 threads concurrently, 4
on each core. Intel’s multi-core processor with Hyper-Threading Technology5,
can execute two virtual threads on each core, assuming that not all of the
instructions on a core are used in each clock cycle. The performance in the
Hyper-Threading Technology depends on if the threads can be executed in
the same clock cycle.

In literature [14, 8] the running time of an algorithm on a computer with p
processors is defined as Tp(n) or Tp respectively. Where [14] defines p as a
processor, the terminology of multi-core was not defined when the book was
written and [8] defines p as both processors and cores.

In this thesis a new terminology is introduced taking into consideration that
a core can execute several threads concurrently:

Tk(n): The running time of an algorithm on a computer with k processors,
where k is defined as a bijection of the k processors to the optimal
amount of threads that can be executed concurrently on a given hard-
ware processor.

The new terminology will ensure that no unexpected results, such as a sig-
nificant lower execution time, will occur when performing practical efficiency
measures on algorithms.

2http://ark.intel.com/Product.aspx?id=33909
3http://ark.intel.com/Product.aspx?id=40814
4http://www.oracle.com/us/products/servers-storage/microelectronics/030990.htm
5http://www.intel.com/info/hyperthreading/
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1.3 Parallel algorithms and data structures

The study will be based on less-know parallel algorithms as well as the paral-
lelization of well-known sequential algorithms in literature [14, 27, 8] and im-
plemented on different C++ parallel frameworks. The chosen parallel model
is the shared-memory model, where k processors have access to a shared mem-
ory unit concurrently in order to exchange information. Other models such
as the network model or distributed model, where several computers exchang-
ing information concurrently over a network or specific models as CUDA for
NVIDIA graphic cards will be excluded. Because of this limitation, tech-
niques as skeletons which only have one C++ parallel library, The Münster
Skeleton Library (Muesli) [6], will be excluded because it built on the Mes-
sage Passing Interface (MPI), a framework that serializes and sends data
structures in messages in order to exchange information. It is most suited
for sending serialized data over a network between computers. It is possible
to use on a single machine, but the serialization overhead of the data trans-
formation to communicate between core/processors would be excessive and
unnecessary.

The multi-threaded frameworks based on the shared-memory model that will
be reviewed are: POSIX Threads, OpenMP, MCSTL, Cilk++, C++CSP2
and can be seen in Chapter 3.

1.4 An efficient library for C++

The library presented in this thesis offers efficient sorting and minimum-
spanning-tree algorithms that have a lower execution time and at least the
same worst-case asymptotic time complexity as the best sequential algorithm.

The two types of the algorithms were chosen based on that some sorting
algorithms are suited for parallelization and do not depend on complex data
structures. While minimum-spanning-tree algorithms are not trivially paral-
lelizable and depend on complex data structures such as sets and heaps. The
source code to the implemented algorithms can be seen in Appendix A.

The algorithms are implemented with the Multi-Core Standard Template Li-
brary (MCSTL), Cilk++ and the Efficient Algorithm and Data Structures
framework for C++ (EAD++), developed under this Master’s thesis. The
EAD++ is a multi-threaded framework based on a shared-memory model and
offers a pure and simple C++ API, a limit on usage of threads, load-balance
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between work performed by threads, atomicity when a shared data structure
state is changed and low memory usage. A complete description can be seen
in Chapter 4.

Pure C++ is defined by Bjarne Stroustrup in [25] as “the language inde-
pendently of any particular software development environment or foundation
library (except the standard library, of course)”. By offering a pure and sim-
ple C++ API, researches can implement and add algorithms to the library
ensuring that the minimal requirements for asymptotic performance mea-
sures and practical efficiency measures are met. The criteria to measure the
asymptotic performance and practical efficiency besides the methodology to
design, analyze, implement and test algorithms can be seen in Chapter 2.

Satisfactory results are presented when comparing EAD++ to other avail-
able frameworks and libraries. The comparison shows that similar practical
efficiency is obtained, sometimes even better, with the use of less memory.
In order to ensure that the presented results are correct a set of test are
produced. Both the results and the test can be reproduced by the reader,
for more information on results and correctness test look at Chapters 8 and
7 respectively.
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Chapter 2

Methodology

In this chapter a definition of the different types of parallel random access
machine models of computation used for the studied algorithm will be spec-
ified. Afterwards, the model used to design, analyse, implement and test
parallel algorithms with emphasis on that they will be executed on different
computer architectures, will be presented. Finally the criteria for accepting
or rejecting the studied algorithms based on asymptotic time and space com-
plexities, asymptotic performance measures and practical efficiency measures
will be described.

2.1 Parallel random access machine

The parallel random access machine (PRAM) is an abstract theoretical com-
puter model used to deal with the constraint where k processors are allowed
to access the same memory address concurrently when designing algorithms
for a shared memory system. A visual representation can be seen in Figure
2.1.

For each of the studied algorithms in this thesis, the type of parallel random
access machine model of computation will be specified. The three models
are:

Exclusive Read Exclusive Write (EREW): Different locations in the shared
memory can be read by or written to exclusively by only one processor
in the same clock cycle.
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Shared memory

Clock cycle

Processors

Figure 2.1: Representation of a parallel random access machine (PRAM) where
k processors access a single shared memory cell in a clock cycle.

Concurrent Read Exclusive Write (CREW): Same locations in the mem-
ory can be read by several processors but only written to exclusively
by one processor in the same clock cycle.

Concurrent Read Concurrent Write (CRCW): Same locations in the
memory can be read by or written to by several processor in the same
clock cycle. To this particular model, there are three submodels, based
on the write constraint:

Priority: processors are assigned distinct priorities, where the one
with the highest priority is allowed to perform the write to mem-
ory.

Arbitrary: A random processor is allowed to write.

Common: All processors are allowed to write to memory iff the val-
ues are equal. It is the algorithm’s responsibility to ensure this
condition holds.

An example could be to calculate the logical OR from n boolean values with
k processors, where k = n. The calculation can be performed in logarithmic
time, O(lg n), if the chosen model is either EREW or CREW. A binary
recursive tree needs to be done and at each level where all the operations
can be performed concurrently. If the chosen model is common CRCW, the
calculation can be performed in constant time, O(1). The initial value in the
result slot is 0 and a processor will write the local value iff it equals 1. It is
important that algorithm do not write another number than 1 to the shared
memory. If this is not the case and several processes write different values
at the same time to the result slot corrupting the final result, then a race
condition will arise.
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Two things to have in mind when designing an algorithm based on these
models is that EREW and CREW algorithms can be executed on a CRCW
model but not the other way around. And the other is to prioritize correctness
before efficiency.

2.2 Algorithmics as Algorithm Engineering

The chosen model to design, analyse, implement, test and measure the asymp-
totic performance and practical efficiency of the studied algorithm is Algo-
rithmics as Algorithm Engineering1. The approach is based on an eight step
model that is a combination of both a theoretical and practical model. As can
be seen in the Figure 2.2 the first step is to define a realistic model. In this
study the two underlying models, application and machine, to the realistic
model will be defined as:

Application: several C++ frameworks that implement parallelism.

Machine: several real computers with different type and amount of proces-
sors and RAM. It is obvious to see here how the simple computer model,
with one processor and infinite amount of RAM, from the theoretical
model does not fit.

The next four steps: design, analysis, implementation and experiments are
the core steps of the model. By using an iterative developments model [3],
an algorithm is designed, analyzed and a hypothesis is presented. Afterwards
the algorithm will be implemented, in this case in C++, and then initial
experiments will be made. If the initial experiments show that the hypothesis
does not hold, a new iteration can be made. If every time the fifth step is
reached and the hypothesis is still not fulfilled, then the algorithm must be
rejected. In case that the hypothesis holds, a new iteration to the seventh
step will be made. In this step, experiments are made on real data. If the
results are not satisfied a new iteration in the previous four steps can be done
and if they are satisfied then the algorithm can be added to a library or to
an application, in the sixth and eighth steps respectively.

Hypothesis will be presented on basis of asymptotic time and space com-
plexities and asymptotic performance measures and practical efficiency mea-
sures. A minimal requirement for the asymptotic time complexity is that

1http://algo2.iti.kit.edu/sanders/courses/bergen/bergen2.pdf
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Figure 2.2: Representation of Algorithmics as Algorithm Engineering.

if the execution of the best sequential algorithm is T (n), then the execu-
tion of the parallel algorithm with k > 1 processors must at least be as fast
Tk(n) ≤ T (n). If this minimal requirement is not fulfilled the hypothesis will
not hold, and the algorithm will be rejected. No asymptotic performance and
practical efficiency will be measured.

2.3 Asymptotic performance measures

The studied algorithms will be described in pseudocode and represented vi-
sually as directed acyclic graph (DAG) as in [14, 8]. In order to understand
which parts of the algorithms are parallelizable in a DAG the following terms
must be defined:

DAG: A directed acyclic graph, G = (V, E), in this thesis representing the
computations of an algorithm. The vertices, V , represent the instruc-
tions to be computed and the edges, E, represent the dependencies
between the instructions. If there is a edge, (u, v) ∈ E, the instructions
in the vertex v cannot be executed before the instructions in the vertex
u.
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Work: The total time of computing all instructions of the algorithm exe-
cuted on a computer with a single processor. Work can be mapped to
the DAG as all the vertices, V , in the graph. The work law states that
if k work can be done in Tk(n) time on a computer with k processors
and the amount of work is only T (n), where k · Tk(n) ≥ T (n), then:

k · Tk(n) ≥ T (n) =⇒ (2.1)

k · Tk(n)

k
≥ T (n)

k
=⇒ (2.2)

Tk(n) ≥ T (n)

k
(2.3)

The execution time of the algorithm with k processors, is limited to the
amount of work divided by the amount of processors.

Span: The execution time of the longest path in a DAG, also know as critical
path. The asymptotic time complexity of the algorithm is dominated
by the critical path. The span law is defined as follows: no parallel
computer with a limited amount of k processors can execute a parallel
algorithm faster than a computer with an unlimited amount of cores.
The computer with unlimited amount of processors can always just
execute the parallel algorithm with k processors :

Tk(n) ≥ T∞(n) (2.4)

Algorithm 2.3.1: Foo(A, p, r)

Data: Let A be an array.
Data: Let p and r be indexes in the array A such that p ≤ r.

1 if p < r then
2 q ← r−p

2
;

3 Foo(p, q);
4 Foo(q, r);

An example of pseudocode and a visual representation of a parallel algorithm
executed with one processor and k processors represented as DAGs can be
seen in Listing 2.3.1 and Figure 2.3. By looking at the pseudocode, the only
operation that the algorithm does is to split up in half recursively. The split
operation can be done in constant time, O(1). The amount of operations that
will performed at each stage of the recursion tree is O(1) + ... + O(n

2
) + O(n)

respectively where O(n) dominates. So the work for the algorithm is O(n).
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The span in the first DAG, which is executed sequentially, is of length n
because no vertices can be visited at the same time. In the second DAG,
because all non overlapping operations can be executed in the same time
unit at each level of the recursion tree, the span will only be of length lg n.
Executing the algorithm sequentially will be in T (n) = O(n) and executing
the algorithm in parallel with k processors will be in Tk(n) = O(lg n) when
k ≥ n. We have now set a lower bound on the running time for the algorithm
on a parallel computer with k processors.

span = O(n)

work = O(n) work = O(n)

span = O(lg n)

Figure 2.3: Representation of Foo sequential and parallel computation as DAGs.

2.4 Practical efficiency measures

The performance measures that will be used to show that a designated par-
allel algorithm is efficient are:

Speedup: A Comparison with the best sequential implementation.

speedup(k) =
T (n)

Tk(n)
(2.5)

where k is the number of processors, and T (n) is the time used to
execute the best know sequential algorithm. This algorithm does not
have to be the same as the parallel version, and Tk(n) is the time used
to execute the parallel algorithm with k processors.
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Efficiency: Useful work performed on the available resources.

efficiency(k) =
Pi(k)

Pm(k)
=

T (n)
k

Tk(n)
=

T (n)

k · Tk(n)
=

speedup(k)

k
(2.6)

where k is the number of processors, Pi(k) is the ideal performance and
is defined as the best sequential time, T (n), divided by the k proces-
sors and Pm(k) is the actual performance and equals the time used to
execute the parallel algorithm with k processors, Tk(n).

Scalability: How increased resources provide a better performance.

scalability(k) =
T1(n)

Tk(n)
(2.7)

where k is the number of processors, and T1(n) is the time used to
execute the parallel algorithm with 1 processor and Tk(n) is the time
used to execute the parallel algorithm with k processors.

From these parameters a hypothesis will be presented for measuring perfor-
mance on the given architectures. A special consideration for the calculation
of speedup is to have in mind:

Amdahl’s law [1, 12]: The maximum speedup of a parallel application is
bounded to speedup(k) = 1

Ts(n)
, where k is the amount of processors.

Note that k does not affect the calculation of the maximum possible
speedup. Ts(n) is the time spent computing the sequential part of
the program and Tp(n) is the time spent computing the parallelizable
part of the program. Assuming that both the sequential time and the
parallelizable time executed on a sequential processor is:

T (n) = Ts(n) + Tp(n) = 1 (2.8)

where the parallel time can be defined as:

Tp(n) = 1− Ts(n) (2.9)

T (n) = Ts(n) + 1− Ts(n) (2.10)

running the parallel part from (2.8) with k processors:

Tk(n) = Ts(n) +
Tp(n)

k
(2.11)

= Ts(n) +
1− Ts(n)

k
(2.12)
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looking at (2.5), the calculation of speedup for k processors with (2.8)
and (2.12) would be:

speedup(k) =
T (n)

Tk(n)
=

1

Ts(n) + 1−Ts(n)
k

(2.13)

by setting k to infinity:

lim
k→∞

(
1− Ts(n)

k

)
= 0 (2.14)

by combining (2.13) and (2.14):

speedup(k) =
1

Ts(n) + 0
=

1

Ts(n)
(2.15)

An example, given an algorithm A where 30% of the algorithm runs
in sequential time cannot be parallelized and 70% can be parallelized.
Taking into consideration Amdahl’s law a maximum speedup bound
would be set to:

speedup(k) =
1

Ts(n)
=

1
30
100

=
1
3
10

=
10

3
≈ 3.33 (2.16)

Amdahl’s law is overruled when superlinear speedup is achieved, an
example is when a problem can be split up so it fits in the L1 cache of
each of the available processors bypassing the ideal performance Pi(k) =
T (n)

k
.

Framework overhead: On the other hand, some of the studied C++ frame-
works have some initial, Tio(n), and/or final, Tfo(n), overhead that can
affect the total completion time [19], Ttct(k)(n), of the algorithm:

Ttct(k)(n) = Tk(n) = Tio(n) + Ts(n) +
Tp(n)

k
+ Tfo(n) (2.17)

performing (2.14) on (2.17)

speedup(k) =
T (n)

Tk(n)
=

T (n)

Ttct(k)(n)
(2.18)

= · · · = 1

Tio(n) + Ts(n) + Tfo(n)
(2.19)

this will also affect on the maximum speedup bound.



Chapter 3

Existing frameworks and libraries

In this chapter several C++ parallel frameworks and libraries will be de-
scribed with emphasis on how they allow parallelism, handling of shared
data structures and the programming language syntax. As in [21], a few
words describing the libraries and an example on of how to parallelize a se-
quential algorithm, in this case based on the recursion example from the
previous chapter, will be presented for each library. The implementation in
C++ of the sequential version of the algorithm, in Listing 2.3.1, can be seen
in Listing 3.1.

3.1 POSIX threads (pthreads)

The Portable Operating System Interface for UNIX Threads is a C/C++
library that offers parallelism through threads. As mentioned in Section 1.2,

1 template<typename RandomAccessIterator>
2 void f oo ( RandomAccessIterator f i r s t , RandomAccessIterator l a s t ) {
3 i f ( f i r s t == l a s t ) { return ; }
4 RandomAccessIterator middle ( f i r s t +(( l a s t − f i r s t ) >> 1) ) ;
5 f oo ( f i r s t , middle ) ;
6 f oo ( middle , l a s t ) ;
7 }

Listing 3.1: Simple recursion in a sequential algorithm
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a process, can create threads to execute instructions concurrently. The API
offers two types of threads:

System thread: Whenever a process creates a system thread, the operating
system will considered it as a peer to the creating process and the thread
will compete for resources with all the other processes running on the
system. System threads within a process or another system thread
can execute concurrently on several processors, taking advantage of
multiple processors architectures. PTHREAD SCOPE SYSTEM must
be given as a parameter in order to create a thread as a system thread
when calling pthread create.

User thread: In difference to system threads, user threads within the same
process or system thread can never be executed concurrently on other
processors. This makes user threads unsuitable for parallelism. In order
to create a user thread, PTHREAD SCOPE PROCESS must be given
as a parameter when calling pthread create.

The sequential code, in Listing 3.1, can be parallelized by doing a few modifi-
cations. The function and data types must be transformed to (void *) types
because the function that creates a thread, pthread create, only allows this
type to be sent as a parameter. Data must be casted back to the class in
order to use it. The programming syntax used to write the parallel version
of the code is pure C++.

The problem in the code, in Listing 3.2, is that if there only is a limited
number of threads available. Optimal usage of a system thread is usually 1-
to-1 with a core, as mentioned in Section 1.2, but the recursive function will
create one thread for each iteration reaching very fast the operating systems
limit. The minimal value for POSIX THREAD THREADS MAX is 64 and
it is defined in basedefs/limits.h. A way to avoid this is by using a thread
pool. A thread pool will create a limited number of threads and instead of
destroying the threads when tasks are done, the thread pool will reuse them
to execute other tasks. This is mentioned in [23].

The mechanism presented for handling shared data structures are mutex,
abbreviation for mutual exclusion and condition variables. By using a mutex
when writing to data structure, no other thread will be able to read or write
until the mutex is released. This gives atomicity when changing the state
of a data structure and ensures no race condition will arise. A condition
variable allows a thread to wait until a mutex for a shared data structure is
released by the thread holding the lock. This will result in less computational
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1 #include <pthread . h>
2 template<typename RandomAccessIterator>
3 class Range{
4 RandomAccessIterator f i r s t ;
5 RandomAccessIterator l a s t ;
6 Range ( RandomAccessIterator f i r s t , RandomAccessIterator l a s t )
7 : f i r s t ( f i r s t ) , l a s t ( l a s t ) {}
8 } ;
9

10 template<typename RandomAccessIterator>
11 void * f oo (void * data ) {
12 Data<RandomAccessIterator> *

13 d( static cast<Data<RandomAccessIterator> * >(data ) ) ;
14 i f (d−> f i r s t == d−>l a s t ) { return ; }
15 pthread t thread ;
16 RandomAccessIterator middle (d−> f i r s t +((d−>l a s t − d−> f i r s t ) >> 1) ) ;
17 pthr ead c r ea t e (&thread , 0 , &foo<RandomAccessIterator >,
18 (void *) new Range<RandomAccessIterator >(d−>f i r s t , d−>

middle ) ) ;
19 f oo (d−>middle , d−>l a s t ) ;
20 pth r ead j o i n ( thread , 0) ;
21 }

Listing 3.2: Parallel implementation of the sequential code with POSIX

overhead. A side effect of using mutex is that deadlocks can arise when a
thread t1 is holding a lock on a data structure A and waiting for the data
structure B while a thread t2 is holding a lock on the data structure B and
waiting for the data structure A. In this library there is no mechanism to
detect deadlocks, it is the responsibility of the developer to avoid them.

Synchronization between threads can be achieved by using barriers, where a
thread is not allowed to pass the barrier until the condition of the barrier is
fulfilled. The main problem with POSIX barriers is that the implementation
is optional, this means that a code relying on this form of synchronization
might not be able to compile on different systems. Another way to implement
synchronization is with the use of pthread join. This function ensures that no
code will be executed until the created thread is terminated with pthread exit.
It will only work if the thread is created in a joinable state.

3.2 OpenMP

The Open Multi-Processing, is a C, C++ and Fortran API for shared memory
programming. OpenMP is implemented in all major compilers1 and achieves

1GNU Compiler Collection (GCC), Low Level Virtual Machine (LLVM), Intel C++
Compiler (ICC) and Visual C++
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28-03-2006 Alexandre David, MVP'06 36Figure 3.1: Transformation from OpenMP compiler directives to C++ code.

parallelism through a set of compiler directives (#pragma). An example of
how this preprocessing compiler directives would look like if pthreads were
used can be seen in Figure 3.12. The parallelism strategy of the library
built on a hierarchical thread model where a main thread creates a set of
children treads, knows as forks. The main thread will wait until all the chil-
dren threads are finished with their work, named join. The sequential code
from Listing 3.1, can be parallelized with a few modifications. What stands
out looking in the parallelized code, in Listing 3.3, is that parallelization in
OpenMP is mostly based on for loops. One thing to have in mind when us-
ing this type of parallelization is that this will fork the threads in linear time
O(n). A way to achieve this in logarithmic time is to use nested for loops
where the iterations are limited to 2. The syntax of the code is pure C++.

The thread limit is once again an issue. By comparing the codes from Listing
3.2 and 3.3 and based on Figure 3.1. OpenMP will actually create twice
the amount of threads than POSIX reaching earlier the operating system
maximum limit of system threads. The problem could be solved in POSIX
by using a thread pool. This solution is not possible for OpenMP.

2http://www.cs.aau.dk/∼adavid/teaching/MTP-06/11-MVP06-slides.pdf
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1 template<typename RandomAccessIterator>
2 #include <omp . h>
3 void f oo ( RandomAccessIterator f i r s t , RandomAccessIterator l a s t ) {
4 i f ( f i r s t == l a s t ) { return ; }
5 RandomAccessIterator middle ( f i r s t +(( l a s t − f i r s t ) >> 1) ) ;
6 #pragma omp p a r a l l e l for
7 for (typename i t e r a t o r t r a i t s <RandomAccessIterator > : : va lue type i (0 ) ;
8 i < 2 ; ++i ) {
9 i f ( i == 0) { f oo ( f i r s t , middle ) ; }
10 else { f oo ( middle , l a s t ) ; }
11 }
12 }

Listing 3.3: Parallel implementation of the sequential code with OpenMP

A set of compiler directives are given in order to work with shared data
structures. By adding shared(x) to the compiler directive #pragma for, all
the forked threads will then have access to the data structure x. An example
can be seen below:

int bar [] = { 42 };

#pragma omp parallel for shared(x)

for(int i(0); i < n; ++i){

foo(bar);

}

Synchronization is done when all forked threads are finished and the parent
threads join them. Another way to achieve synchronization between threads
is to use the compiler directive barrier. The barrier will ensure that until all
forked threads reach that point, the execution of the parallel code will not
be resumed.

3.3 Cilk++

The Cilk++ library [18] is an extension to the C++ programming language
based on MIT’s parallel programming language, Cilk, created among other
by Professor Charles E. Leiserson, co-author of [8]. Even though the library
is commercial software, property of Intel, the source code is available under
an open source licence3.

The library offers parallelism through three keywords: cilk for, cilk spawn
and cilk sync. This three primitives are mapped directly to parallel, spawn
and sync in [8]. With these keywords, parallelizing sequential code is ex-
tremely easy. The code from Listing 3.1, is parallelized, in Listing 3.4, under
less than a minute in a very intuitive way. The code is almost identical but

3http://sourceforge.net/projects/cilk/
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1 template<typename RandomAccessIterator>
2 #include <c i l k . h>
3 void f oo ( RandomAccessIterator f i r s t , RandomAccessIterator l a s t ) {
4 i f ( f i r s t == l a s t ) { return ; }
5 RandomAccessIterator middle ( f i r s t +(( l a s t − f i r s t ) >> 1) ) ;
6 cilk spawn f oo ( f i r s t , middle ) ;
7 f oo ( middle , l a s t ) ;
8 cilk sync ;
9 }
10

11 int c i l k ma in ( int argc , char *argv [ ] ) {
12 int bar [ ] = { 42 } ;
13 f oo ( bar+0,bar+1) ;
14 }

Listing 3.4: Parallel implementation of the sequential code with Cilk++

in order to compile it a specialized compiler must be used4. The syntax of
the code is not pure C++.

In order to work with shared data structures, Cilk++ introduces hyperobjects,
which allows several threads to update the data structure maintaining the
sequential order and ensuring no race conditions. The hyperobjects available
are reducers which offers the possibility to append elements to a list or a
string, basic logic operations and the possibility to find the maximum or
minimum over a set of values. All other types of shared data structures are
handled with mutex as in the pthread library. A visual application named
cilkscreen can be used to detect race conditions.

As mentioned before, the created applications will only compile with the
specialized compilers and only if the main function in the applications is
renamed to cilk main. This will restrict portability, if only a minor part of an
application needs to be parallelized. Because of this, the whole application
must be made parallelizable. Looking at the manual5, merging C++ and
Cilk++ libraries is not a straightforward task.

In [2, 18] the scheduler for multi-threaded computations used in Cilk++ is
proved to execute an application that is suited for parallelization with T (n)
work and T∞(n) span in an expected running time of:

Tk(n) ≤ T (n)

k
+ O(T∞(n)) (3.1)

The utilized scheduler, work stealing, is based on a greedy scheduling tech-
nique where it is the inactive processors that try to steal work from the active

4Intel offers two compilers: One based GNU Compiler Collection (GCC) for Linux
systems and the other based on Visual C++ for Microsoft systems.

5http://software.intel.com/en-us/articles/download-intel-cilk-sdk
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processors. This differ from the conventional schedulers, work sharing, when-
ever a processor creates new threads, the scheduler tries to migrate them to
other inactive processors.

By recalling the work law (2.3) and span law (2.4) the optimal execution
time is:

Tk(n) ≥ T (n)

k
=⇒ Tk(n) =

T (n)

k
(3.2)

The optimal span is:

Tk(n) ≥ T∞(n) =⇒ Tk(n) = T∞(n) (3.3)

And the ratio of parallelism between work and span is:

T (n)

T∞(n)
(3.4)

The result of using (3.2) and (3.3) as upper bounds for an optimal greedy
scheduler to execute a computation with T (n) work and T∞(n) span on a
computer with k processors, as in (3.1), is:

Tk(n) ≤ T (n)

k
+ O(T∞(n)) (3.5)

With (3.5) and if the ratio of parallelism (3.4) exceeds the number of k
processors with a sufficient margin, at least 10 times more parallelism than
processors, then a guarantee of a nearly perfect linear speedup is ensured. By
rewriting the work law (2.3) as:

Tk(n) ≥ T (n)

k
=⇒ k ≥ T (n)

Tk(n)
(3.6)

And combining (3.6) with (3.4). No perfect linear speedup can be achieved
when the number of processors are greater than the ratio of parallelism

T (n)

Tk(n)
≤ T (n)

T∞(n)
< k (3.7)

We assumed that the ratio of parallelism (3.4) exceeds the number of k
processors with a sufficient margin

T (n)

T∞(n)
� k =⇒ T∞(n)� T (n)

k
(3.8)
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By combining (3.5) with (3.8) the term T (n)
k

dominates. The running time
is:

Tk(n) ≈ T (n)

k
(3.9)

And a nearly perfect linear speedup is achieved:

k ≈ T (n)

Tk(n)
(3.10)

3.4 C++CSP2

The C++ Communicating Sequential Processes 2 library is the only reviewed
library that has a network model and not a shared-memory model like the
other mentioned frameworks. The library is based on CSP [13] as the name
indicates. The basics of CSP are that each process must have its own en-
capsulated data and algorithms and the only way to communicate between
processes is by sending synchronized messages over channels. In order to
share readable and writable data with this library, channels usage must be
avoided. As channels work, it is only possible to send data structures as
readable copies, const T &, which ensures that the data can not be modified
by another process. A parallelization of the sequential code, in Listing 3.1,
can be seen in Listing 3.5. The syntax of the code is pure C++. Two main
problems in this way of implementation is that as in pthreads and OpenMP
the limit of available system threads are reached very soon. Even though the
library allows to create user threads, RunInThisThread, this will restrict the
created threads only to run on a single processor. The other main problem
is that, if channels are not used, then there is no longer any mechanism to
avoid race conditions, which will make this type of implementation useless.

3.5 MCSTL

The Multi-Core Standard Template Library [15] is a parallel implementa-
tion of the C++ Standard Template Library (STL). It makes use of multiple
processors with shared memory and it is based on the previously described
OpenMP API. Most of the algorithms from the STL are implemented. Data
Structures heaps and the STL containers are not implemented. Since 2008
the library has been part of the GNU Compiler Collection (GCC 4.3). The
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1 #include <cppcsp/ cppcsp . h>
2 template<typename RandomAccessIterator>
3 class Foo : public CSProcess{
4 private :
5 RandomAccessIterator f i r s t ;
6 RandomAccessIterator l a s t ;
7 protected :
8 void run ( ) {
9 i f ( f i r s t == l a s t ) { return ; }
10 RandomAccessIterator middle ( f i r s t +(( l a s t − f i r s t ) >> 1) ) ;
11 Run( I nPa r a l l e l
12 ( new Foo<RandomAccessIterator >( f i r s t , middle ) )
13 ( new Foo<RandomAccessIterator >(middle , l a s t ) ) ) ;
14 }
15 public :
16 Foo ( RandomAccessIterator f i r s t , RandomAccessIterator l a s t )
17 : f i r s t ( f i r s t ) , l a s t ( l a s t ) {}
18 } ;
19 template<typename RandomAccessIterator>
20 void f oo ( RandomAccessIterator f i r s t , RandomAccessIterator l a s t ) {
21 Start CPPCSP ( ) ;
22 Run( new Foo<RandomAccessIterator> ( f i r s t , l a s t ) ) ;
23 End CPPCSP( ) ;
24 }

Listing 3.5: Parallel implementation of the sequential code with C++CSP2

library is very straightforward. For example an application that uses the
STL sort function can be refactored by changing only a few things, outcom-
menting using std::sort and adding using std:: parallel::sort and some extra
parameters to ensure parallelism. An example of this can be seen in Listing
3.6.

As mentioned before, MCSTL is based on OpenMP and hereby inherits the
problem of the operating system thread limit. In the implementation of their
quicksort algorithms two solutions are presented. The first solution will call
the best sequential sort algorithm whenever the limit is reached, in Listing
3.7. Second a load-balanced version of the algorithm is implemented on the
work-stealing technique [2], described in Section 3.3, where if one threads
finish all its tasks it looks for more work randomly on other threads. If there
is work to do, the thread will steal half of the victim threads work.
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1 #include <algor ithm>
2 #include <p a r a l l e l / algor ithm>
3 #include <p a r a l l e l / s e t t i n g s . h>
4 #include <omp . h>
5 #include <algor ithm>
6 // using s td : : s o r t ;
7 using std : : p a r a l l e l : : s o r t ;
8 using g n u p a r a l l e l : : f o r c e p a r a l l e l ;
9

10 typedef g n u p a r a l l e l : : S e t t i n g s s e t t i n g s ;
11

12 int main ( int argc , char *argv [ ] ) {
13 const int k (2 ) ;
14 const int n(1 << 20) ;
15 int * a (new s ize t [ n ] ) ;
16 srand ( time (0 ) ) ;
17 for ( s i ze t i (n ) ; i −−;){
18 a [ i ] = ( rand ( ) % (n >> 1) + 1) ;
19 }
20

21 omp set dynamic ( fa l se ) ;
22 omp set num threads (k ) ; // a v a i l a b l e proces sors
23

24 s e t t i n g s s ;
25 s . a l g o r i t hm s t r a t e gy = f o r c e p a r a l l e l ;
26 s e t t i n g s : : s e t ( s ) ;
27

28 s o r t ( a , a+n) ;
29

30 return EXIT SUCCESS ;
31 }

Listing 3.6: MCSTL Parallel sorting application

1 . . . / gcc44 c++/p a r a l l e l / qu i ck so r t . h
2

3 template<typename RandomAccessIterator , typename Comparator>
4 void
5 p a r a l l e l s o r t q s c o n qu e r ( RandomAccessIterator begin ,
6 RandomAccessIterator end ,
7 Comparator comp ,
8 th r ead index t num threads )
9 {
10 . . .
11

12 i f ( num threads <= 1) {
13 gnu s equ en t i a l : : s o r t ( begin , end , comp) ;
14 return ;
15 }
16

17 . . .
18 }

Listing 3.7: MCSTL parallel quicksort calls sequential sort when limit of threads
are reached



Chapter 4

EAD++ framework

In this chapter the framework developed under this Master’s thesis will be de-
scribed briefly in the introduction. Afterwards an analysis reasoning why the
framework was created followed by the design and implementation in C++.
Finally a detailed description of the API is presented and the sequential code
example from Listing 3.1 will be parallelized.

The Efficient Algorithm and Data Structures framework for C++ (EAD++)
is a multi-threaded based on a shared-memory model that offers:

� a limit on the usage of threads with the help of a thread pool ;

� a mechanism that ensures that jobs with higher priorities are executed
first. This is achieved with help of a job pool ;

� automatic load-balance of jobs based on a helping technique;

� atomicity when changing the state of a shared data structure;

� a pure and simple C++ application programming interface (API);

� no dependencies to certain compilers;

� a synchronization mechanism based on global thread and job barriers;

� little memory overhead, a constant factor, defined on initialization.
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The framework is around 400 lines of code, including the open source licence.
The implementation can be seen in Appendix A.2.

The practical efficiency measures, speedup, efficiency and scalability, from
the benchmark test matched up with Cilk++ and MCSTL. In some cases
EAD++ even outperformed the other frameworks. For more information on
the benchmark tests, look at Chapter 8.

4.1 Analysis

Why create a new framework instead of using some of the previously de-
scribed in Chapter 3?

The main problem is that frameworks such as pthread, OpenMP and CP-
PCSP2 have no built in mechanism to limit the creation of threads. As
showed with the recursion example, the limit of the operating system is
reached very fast. MCSTL which is based on OpenMP solves this prob-
lem by calling a sequential version of the algorithm. This approach is not
acceptable. If there are no available threads at the time when the sequential
algorithm is called there might be some later on but because the algorithm
now is sequential it cannot make use of the available threads. A framework
should have a mechanism that can limit the usage of threads.

The way that pthread handles the sharing of data structures is by casting
data of different types to void pointers and back to the given type. This
approach removes the responsibility from the compiler, C++ is a strongly
typed language, and gives it to the developer. The errors will no longer be
found at compiling time but at run time. This is not acceptable.

The synchronization mechanism must not be built on an optional specifica-
tion of a library, as barriers in pthread. A clear definition must be made so
executed code have the same behavior independent on the platform on which
it is executed.

The presented application programming interface (API) must be simple, in-
tuitive and pure C++. Writing code with compiler directives and performing
all parallelism with for loops it is not very easy or intuitive. Even though
Cilk++ achieves parallelism with the help of only the following primitives:
cilk for, cilk spawn, cilk sync and cilk main. The problem is that these prim-
itives are not considered pure C++ and are specific to Intel’s version of the
GNU Compiler Collection (GCC).

Finally the presented framework must not be compiler specific as MCSTL
and Cilk++ are to the GNU Compiler Collection (GCC).
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4.2 Design and implementation

Based on the previous analysis, a pure C++ framework needed to be created.
The backbone of the framework is built on the pthreads library because it:

� allows to create system threads and hereby take advantage of a multi-
core architecture;

� is implemented on most platforms such as Unix, Linux and even Mi-
crosoft Windows ;

� has a mechanism to handle shared data structures;

The limitations of the library, as previously mentioned, are solved by intro-
ducing:

� a thread pool that limits the creation of threads;

� an abstract class, Job, that must be inherited in order to add work to
the thread pool. Because there is only one type of work accepted by
the thread pool, the responsibility of casting void pointers back to data
is removed from the developers;

� global thread and job barriers in order to allow synchronization between
threads;

Thread pool

The amount of threads in the thread pool are set on initialization. It is not
possible to add or remove threads once the thread pool is running. All the
threads created by the thread pool are system threads. Threads in the thread
pool have three states: active when executing a job, sleeping when no job
is available and waiting at a synchronization barrier. A thread sleeps by
waiting on the job pool condition variable. A thread will be awaken when
another thread sends a signal, condition broadcast, after adding a job to the
job pool.

The way the thread pool load-balances the work between the threads is based
on a helping technique. The helping technique is introduced in this thesis
and it is based on that a thread will only create a job if there is at least one
inactive thread. The created job is placed in the job pool and the inactive
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threads are notified. It is now the responsibility of the inactive threads to
remove the job from the job pool and execute it. By using this technique,
work can be distributed to k inactive processors in logarithmic time. Once
all the processors are active, no more jobs will be created. This will reduce
the amount of created jobs based on work. On other techniques such as work
stealing, previously described, even though there are no inactive threads, the
active threads will still create jobs because when other threads are finished
with their tasks and they become inactive they need to be able to steal work
from other threads. Assuming that all threads finish at the same time, all
the resources and time used to create the stealable jobs are wasted.

Job pool

Thread pool

Active thread

Sleeping thread

Waiting thread (sync)

Work

Finished work

Job

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: EAD++ helping technique.

A visual representation on how the thread pool works, can be seen in Figures
4.1 and 4.2. The thread pool is started with four threads and a job pool of
size eight (Figure 4.1.b). All threads are active, they notice that the job pool
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is empty and go to sleep (Figure 4.1.c). The main thread adds a job and
notifies all the threads from the thread pool. One of them will take the job
and execute it (Figure 4.1.d). The thread will now check if other threads in
the thread pool are sleeping. In this case, three threads are sleeping. The
thread adds a job from the left branch of the graph and continues to work
on the right side of the graph (Figure 4.1.e). This will be repeated until all
threads are active (Figure 4.1.f). After all threads are active there are no
need to create more jobs (Figure 4.2.b). Once again, when there are sleeping
threads, new jobs will be added to the job pool (Figure 4.2.c and 4.2.e).

Job pool

Thread pool

Active thread

Sleeping thread

Waiting thread (sync)

Work

Finished work

Job

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: EAD++ helping technique.
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Job pool

The job pool is implemented as a stack (LIFO), where the last job arrived
is the first one served. The underlying container is a vector from the C++
STL. Because of polymorphism, the job pool must be implemented as vector
of job pointers. The memory used for the job pool is reserved when the
thread pool is instantiated and because no dynamic memory allocation is
used, the jobs can be added and removed in constant time O(1). The job
pool can also be used as a priority queue. This can be achieved by setting
the parameter heap to true when instantiating the thread pool. Jobs, based
on their priority, can be added and removed from the heap in logarithmic
time. Because the underlying data structure is a min-heap, jobs with lower
priorities will be served first. The behavior of a FIFO can also be achieved if
created jobs have a higher priority then the job creating them. If not specified
the initial size of the job pool is set to the amount of available threads in the
thread pool. No dynamic memory allocation is allowed and it is defined on
initialization, constant factor.

Shared data structures

The change of state of a shared data structure is handled with help of mutex
and condition as in pthreads. This will ensure atomicity. Note that Cilk++
only allows the usage of mutex. It is the developers responsibility not to create
deadlocks, and as in the other mentioned frameworks, there is no mechanism
to detect them.

Synchronization

Synchronization can be done in the form of two barriers. The first one is a
global thread barrier that should only be called from the main thread of the
application. This barrier ensures that all threads that are part of the thread
pool will have finished their work and that the job pool is empty before
resuming the execution of the code that follows the barrier. If the global
barrier is called from a thread belonging to the thread pool, the condition
will never be fulfilled because there will always be an active thread waiting
at the barrier. Correct usage of the barrier from the main thread is the
following:
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Job pool

Thread pool

Active thread

Sleeping thread

Waiting thread (sync)

Work

Finished work

Job

(a) (b)

(c) (d)

(e)

Figure 4.3: EAD++ job barrier.

{

...

gtp_init(nr_threads, heap, buffer);

shared_ptr<Job> j1(new Foo<RandomAccessIterator>(first, middle));

gtp_add(j1);

gtp_sync_all();

shared_ptr<Job> j2(new Foo<RandomAccessIterator>(middle, last));

gtp_add(j2);

gtp_sync_all();

gtp_stop();

...

}

The other type of barrier is the job barrier. This barrier ensures that a thread
will wait at that point until the job given as a parameter is finished. If no
other thread is executing the job. The waiting thread will execute the job.
This way the waiting time at job barriers is minimal.

A visual representation can be seen in Figure 4.3. The active threads add a



32 EAD++ framework

job to the job pool because they notice that a thread is sleeping. The awoken
thread retrieves the a job from the job pool. There are now three threads
active and one job in the job pool (Figure 4.3.c). The thread performing task
in the left branch of the graph reached a leaf and goes one level up waiting
for the other leaf to be done (Figure 4.3.d). The two other threads are busy
performing a task on the right side so they are not able to help. The left
thread, instead of waiting for the other threads to do the job, does it itself.
Once the job is done the threads go back to sleep, but it does not remove
the job from the job queue, that task will be performed by another thread
whenever it checks if there are more jobs available (Figure 4.3.e).

The waiting thread can access the unfinished job in the job pool in constant
time because the barrier has a pointer to the job. The implemented pointers
are not standard pointers but std::tr1::shared ptr1. This type of pointer is
used because the job pointed at is guaranteed to be deleted when the last
shared ptr pointing to the job is destroyed. The only compiler that does
not have implemented TR1 ’s shared pointer is Intel’s C++ Compiler (ICC).
This can be solved by adding the implementation of the boost library instead.

4.3 API

The application programming interface presents two interfaces: a global thread
pool and a local thread pool. The global thread pool is presented in order to
reduce the overhead of parallelizing an algorithm by allowing functions to
call a global variable instead of having to add an extra parameter, the thread
pool, to all the functions.

Global thread pool

gtp init(size t threads, bool heap, size t buffer): The function shuts
down an already global thread pool, if instantiated, and creates a new
thread pool with the given parameters. If heap is set to true the job
pool will be a min-heap. If the buffer value is given, the size of the job
pool will be the amount of threads plus the buffer value.

gtp add(shared ptr<Job> job): Adds a job to the job pool. The job
will be executed by one of the threads from the thread pool.

1Smart Pointers (TR1 document nr. n1450): http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2003/n1450.html
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gtp add optimized(Function f, Parameters ps): A job is only created
if there is at least one sleeping thread. Otherwise the work will be
executed by the thread calling the function. This function is only sup-
ported by compilers that have implemented the experimental version
of the upcoming C++0x.

gtp add optimized args number(F f, P1 p1,... , PN pN): The func-
tionality is the same as the previous mentioned function. There are only
implemented up to three arguments. If more arguments are needed, the
framework should be expanded following the guidelines of these func-
tions.

gtp sync all(): This barrier ensures that no code after the barrier will be
executed until all threads in the thread pool have finished their work
and no jobs are left in the job pool. Remark: This barrier must only
be called by the main thread that has instantiated the thread pool.

gtp sync(shared ptr<Job> job): This barrier ensures that no code, af-
ter the barrier, will be executed until the job, given as parameter, is
executed and finished.

gtp stop(): The global thread pool is shutdown correctly.

Job class

Job(size t priority): An abstract class that must be inherited in order to
add jobs to the thread pool.

virtual run(): This function must be implemented. It is the function that
the threads in the thread pool will execute.

priority(): Get the priority of a job.

set priority(size t n): Set the priority of a job.

status(): Get the status of a job.

done(): Set the status of a job to done when a job is finished.

Mutex and Condition

These are C++ classes wrapping the corresponding pthread procedure calls.
These classes should be used when working with shared data structures to
ensure atomicity.
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1 template<typename RandomAccessIterator>
2 class Foo : public Job{
3 RandomAccessIterator f , l ;
4 Foo ( RandomAccessIterator f i r s t , RandomAccessIterator l a s t )
5 : Job ( ) , f ( f i r s t ) , l ( l a s t ) { }
6 void f oo ( RandomAccessIterator f i r s t , RandomAccessIterator l a s t ) {
7 i f ( f i r s t == l a s t ) { return ; }
8 RandomAccessIterator middle ( ( l a s t − f i r s t ) >> 1) ;
9 gtp add optimized<Foo<RandomAccessIterator> >( f i r s t , middle ) ;
10 f oo ( middle , l a s t ) ;
11 }
12 void run ( ) {
13 f oo ( f , l ) ;
14 done ( ) ;
15 }
16 } ;
17

18 template<typename RandomAccessIterator>
19 void bar ( RandomAccessIterator f i r s t , RandomAccessIterator l a s t ,
20 const s i ze t & nr threads = 1 , const bool & heap = false ,
21 const s i ze t & bu f f e r = 0) {
22 g t p i n i t ( nr threads , heap , bu f f e r ) ;
23 shared ptr<Job> j (new Foo<RandomAccessIterator >( f i r s t , l a s t ) ) ;
24 gtp add ( j ) ;
25 g t p s yn c a l l ( ) ;
26 gtp s top ( ) ;
27 }

Listing 4.1: Parallel implementation of the sequential code with EAD++

Local thread pool

The local thread pool shares the same interface as the global thread pool but
without the prefix gtp . The functions gtp init are replaced by standard C++
syntax when instantiating a class, ThreadPool ltp(42, false, 0);. The gtp stop
function is not necessary. The local thread pool will shut down correctly
when the destructor is called. This occurs whenever the instance of the class
goes out of scope.

An example on parallelizing the code from Listing 3.1, can be seen in Listing
4.1. Basically the only thing that has to be done is to encapsulate a given
function into a class that inherits from the abstract class Job. A virtual func-
tion, run, must be implemented. A new function wrapper that instantiates
the thread pool, in this case the global thread pool adding the first job. The
rest of the jobs will be added recursively by the treads in the thread pool.
Thanks to the global thread barrier no synchronization barrier needs to be
added to the function foo as it was necessary for the framework Cilk++ with
cilk sync and the pthread library with pthread join.



Chapter 5

Sorting in parallel

In this chapter the following sorting algorithms: Bitonicsort, Mergesort
and Quicksort will be studied with emphasis on how they can be parallelized.
The sorting algorithms were chosen primary based on two criteria: the worst-
case asymptotic time and minimal extra space utilization, in this order. A
minimal requirement of being at least as fast as the best sequential algorithm,
C++ STL sort, implemented by David R. Musser1, a visualization of the
sorting algorithm can be seen in 5.1. If the initial experiments show that the
algorithm does not fulfill the minimal requirement, then the algorithm will be
rejected and no practical efficiency measures will be made. The three chosen
algorithms have in common that they can be implemented on a Exclusive-
Read Exclusive-Write (EREW) parallel random access machine (PRAM).

A requirement for the implementation in C++ of the sorting algorithms is
that they comply with the C++ STL container policy [25]. A function, in
this case a sorting algorithm, will only take two iterators as input. The first
iterator will point to the first element in the container and the second iterator
will point to the last element in the container. This will allow the function
to take different containers as input, disregarding of their type. This can be
achieved with the use of templates [26]. No implementation details will be
added to the pseudocode.

1http://www.cs.rpi.edu/˜musser/
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span = O(n lg n)

work = O(n lg n)

h = lg(n)

Figure 5.1: C++ STL sort also known as introsort is a variation of quicksort
were the pivot to the partition is chosen with the median-of-three
technique (white vertices), the large recursive calls are eliminated
with help of heap sort (black vertices) and small subsequences, of at
most size 16 are left unsorted (grey vertices). When the recursion
returns, insertion sort is performed on the whole sequence in chunks
of 16 elements. Worst-Case time complexity is in log-linear time
O(n lg n).

5.1 Bitonicsort

Bitonicsort is a parallel sorting network algorithm, that sorts all input
sequences in a constant number of comparisons which makes it data inde-
pendent. The work is Θ(n lg2 n) and the span is O(lg n · lg n) = O(lg2 n).
The critical path is calculated on the basis that it takes lg(n) stages, where
n = 2m, m ∈ N, to to sort a sequence of n elements with k processors :

Tk(n) =
m∑

i=1

i =
m2 + m

2
=

lg2 n + lg n

2
= O(lg2 n) (5.1)

Sorting the sequence can be done without using any extra space. A visual
representation in form of a directed acyclic graph can be seen in Figure 5.2.

The algorithms is built on a set of network components:

Comparator. The network component, which has two input gates and two
output gates, ensures that the minimal value of the two input values is
set to the first output gate and the maximum value is set to the second
gate. Pseudocode for the component can be seen in Algorithm 5.1.1.

Half-cleaner. The network component, which has 2m, m ∈ N input
and output gates respectively, takes a bitonic sequence of numbers as
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stage 3stage 1 stage 2

span = O(lg  n)
2

work = O(n lg  n)2

                            

Figure 5.2: Representation of Bitonicsort computation as a DAG. Directed
edges go from left to right.

Algorithm 5.1.1: Comparator(x, y)

Data: Let x and y be two arbitrary numbers.
1 x′ ← min(x, y);
2 y′ ← max(x, y);
3 return (x′, y′);

input. A bitonic sequence is defined as a sequence that monotonically
increases and then monotonically decreases, 〈s0 ≤ · · · ≤ si ≥ · · · ≥ sn〉
where 0 ≤ i ≤ n, or monotonically decreases and then monotonically
increases, 〈s0 ≥ · · · ≥ si ≤ · · · ≤ sn〉 where 0 ≤ i ≤ n. The component
ensures that all the elements in the top half of the outputted elements
are less or equal to all the elements in the half bottom of the outputted
elements. Both outputted halves are still bitonic sequences and the
bottom is clean bitonic, every element is greater or equal to the first half
of the output. Pseudocode for the component can be seen in Algorithm
5.1.2.

Bitonic-sorter. The network component, which has 2m, m ∈ N input
and output gates respectively, takes a bitonic sequence of numbers as
input and produces a sorted sequence of numbers. The Half-cleaner

network component is part of this component which ensures that the
received bitonic sequence will be transformed into two bitonic sequences
and from these two sequences the component calls itself recursively.
Pseudocode for the component can be seen in Algorithm 5.1.3.
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Algorithm 5.1.2: Half-cleaner(B)

Data: Let B be a bitonic array.
Data: Let n be the length of B. We assume that n = 2k where k ≥ 1.
Data: Let m be half the length of B,

(
m = n

2

)
1 parallel
2 for i← 1 to n

2
do

3 (B[i], B[m])← Comparator(B[i], B[m]);
4 i← i + 1;
5 m← m + 1;

6 sync;

Algorithm 5.1.3: Bitonic-sorter(B)

Data: Let B be a bitonic array.
Data: Let n be the length of B. We assume that n = 2k where k ≥ 1.
Data: Let m be half the length of B,

(
m = n

2

)
Data: Let B1 = B[1, . . . ,m] be the first half of the bitonic array B and let

B2 = B[m + 1, . . . , n] be the second half.
1 Half-cleaner(B);
2 if 2 < n then
3 parallel
4 Bitonic-sorter(B1);
5 Bitonic-sorter(B2);

6 sync;

Merger. The network component, which has 2m, m ∈ N input and output
gates respectively, takes two sorted sequences of numbers as input and
produces a sorted sequence as output. Merger is a recursive component
that in its first stage produces to bitonic sequences. These sequences
are sorted by calling the Bitonic-sorter afterwards. Pseudocode for
the component can be seen in Algorithm 5.1.4.

Sorter. The network component, which has 2m, m ∈ N input and output
gates respectively, takes an arbitrary sequence of numbers as input and
produces a sorted sequence of numbers. The component is recursive
where in its first stage produces two sorted sequences that are given
as input to the Merger that will produce one sorted sequence with all
the numbers. Pseudocode for the component can be seen in Algorithm
5.1.4.
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Algorithm 5.1.4: Merger(S1, S2)

Data: Let S1 and S2 be sorted arrays.
Data: Let m1 be the length of S1 and let m2 be the length of S2.
Data: Let n be the length of S1 and S2, (n = m1 + m2). We assume that

m1 and m2 have the same length, (m = m1 = m2) and that n = 2k

where k ≥ 1.
1 parallel
2 for i← 1 to m do
3 (S1[i], S2[n])← Comparator(S1[i], S2[n]);
4 i← i + 1;
5 n← n− 1;

6 sync;
7 if 2 < n then
8 parallel
9 Bitonic-sorter(S1);

10 Bitonic-sorter(S2);

11 sync;

Algorithm 5.1.5: Sorter(A)

Data: Let A be an array.
Data: Let n be the length of A. We assume that n = 2k where k ≥ 1.
Data: Let m be half the length of A,

(
m = n

2

)
Data: Let A1 = A[1, . . . ,m] be the first half of the array A and let

A2 = A[m + 1, . . . , n] be the second half.
1 if 2 < n then
2 parallel
3 Sorter(A1);
4 Sorter(A2);

5 sync;

6 Merger(A);

The only limitation to the algorithm is that it can only sort sequences of
numbers with size 2m, m ∈ N. This size limitation is solved by adding
three more components to the network. This does not change the worst-case
asymptotic time complexity but it adds at most n in extra space usage:

Find-max. Given a sequence of size n, finding the maximum number can be
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achieved in O(lg n) time assuming that all non-overlapping operations
are done in parallel. Pseudocode for the component can be seen in
Algorithm 5.1.6.

Algorithm 5.1.6: Find-max(A)

Data: Let A be an array.
Data: Let n be the length of A.
Data: Let A1 = A[1, . . . ,m] be the first half of the array A and let

A2 = A[m + 1, . . . , n] be the second half.
1 if 1 ≤ n then
2 return A[1];

3 parallel
4 x← Find-max(A1);
5 y ← Find-max(A2);

6 sync;
7 return max(x, y);

Populate. By taking two sequences as input, A and B, it populates all the
possible elements of A in B when A ≥ B, otherwise it fills the remaining
empty places with the number x, which is given as a parameter. The
numbers can be populated in O(lg n) assuming that all overlapping
operations are done in parallel. Pseudocode for the component can be
seen in Algorithm 5.1.7.

Sorter’. Given a sequence A of size n where n 6= 2m, m ∈ N. Can be
sorted with a bitonic sorter network by moving all the numbers into a
new sequence B of size n′ where n′ = 2dlg ne and populating the empty
spaces in B with the maximum value from A. With the previous two
components, this can be done in O(lg n) time. The sequence B can
now inserted into the bitonic sorting network. Once the sequence B is
sorted all the sorted values are moved back to the initial sequence A, in
O(lg n) time by using the Populate component. Because none of the
used components execution time are greater than O(lg2 n), therefore
it will still dominate the asymptotic time complexity of the algorithm
and Sorter’ will still be in O(lg2 n). Pseudocode for the component
can be seen in Algorithm 5.1.8.
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Algorithm 5.1.7: Populate(A, B, b, e, x)

Data: Let A and B be two arrays.
Data: Let n be the length of A. We assume that n = 2k where k ≥ 1.
Data: Let x be an arbitrary number.
Data: Let b and e be indexes in the array B such that b ≤ e.
Data: Let d be the difference between the beginning and ending indexes,

(d = e− b). We assume that d = 2k where k ≥ 1.
Data: Let m be half the length of d,

(
m = d

2

)
1 if 1 = d then
2 B[b]← x;
3 return;
4 if b < n then
5 B[b]← A[b];
6 return;

7 parallel
8 Populate(A, B, b, b + m, x);
9 Populate(A, B, b + m, e, x);

10 sync;

Algorithm 5.1.8: Sorter’(A)

Data: Let A be an array.
Data: Let n be the length of A.
Data: Let k = dlg ne.
Data: Let A′ be a new array of length n′ = 2k.

1 x← Find-max(A);
2 Populate(A, A′, 0, n′, x);
3 Sorter(A′);
4 Populate(A′, A, 0, n, x);

Implementation details

Implementing the algorithm as a sequential version was a straightforward
task, except when transforming the parallelizable for loops into recursive
calls. Implementing a parallel version based on the sequential code for both
Cilk++ and EAD++ was an easy task. The sequential and parallel code can
be seen in Appendix A.1.

The initial experiments showed that the parallel algorithm did not fulfill
the minimal requirement no matter the size of the input or the amount of
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processors. The algorithm was rejected and there will not be performed
practical efficiency measures with real data.

Even though in this study the implemented parallel algorithm did not per-
form as desired, in [17, 4] they show that by implementing the algorithm with
CUDA and executing it on a NVIDIA GeForce GTX 280 2 with 240 multi-
processor cores, the performance exceeds the best sequential algorithm. A
conclusion can be made that until the number of processors available is in
the same range as NVIDIA GPUs, this algorithm will not be useful.

5.2 Mergesort

h = lg(n)

work = O(n lg n)

h = lg(n)

span = O(n)

Figure 5.3: Representation of Mergesort computation as a DAG.

Mergesort, in Algorithm 5.2.3, is a comparison sorting algorithm, that sorts
input sequences of n elements with O(n lg n) comparisons. The algorithm
is based on the divide-and-conquer paradigm where a main problem is di-
vided into subproblems of the same type until they are simple enough to be
solved. In this particular algorithm the input sequence is split in half and
the algorithm is called recursively on each half. This step is done until the
subproblems are of size one. The two subsequences are merged together, in
Algorithm 5.2.1, forming one single sorted sequence. The time complexity
of the algorithm is in Θ(n lg n) with n extra space. The extra space used is
to allocate the temporary arrays in the Merge process, in Algorithm 5.2.1.
Alternatives to minimize the use of extra space would be to compute the

2http://www.nvidia.com/object/product geforce gtx 280 us.html
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merge process in place. A naive implementation is presented in Algorithm
5.2.2. The problem with this algorithm is that the time complexity is in
O(n2). This term would dominate changing the time complexity of Merge-
sort. This is not acceptable. In [16] an in-place mergesort algorithm is
presented that runs in O(n lg n).

Algorithm 5.2.1: Merge(A, p, q, r)

Data: Let A be an array.
Data: Let p, q and r be indexes in the array A such that p ≤ q ≤ r.
Data: Let A1 and A2 be two arrays of size n1 = q − p and n2 = r − q − 1.

1 for i← 0 to n1 do
2 A1[i]← A[p + i];

3 for i← 0 to n2 do
4 A2[i]← A[q + 1 + i];

5 i← 0, j ← 0, k ← p;
6 while k < r do
7 if A1[i] ≤ A2[j] then
8 A[k]← A1[i];
9 i← i + 1;

10 else
11 A[k]← A2[j];
12 j ← j + 1;

13 k ← k + 1;

Algorithm 5.2.2: Inplacemerge(A, p, q, r)

Data: Let A be an array.
Data: Let p, q and r be indexes in the array A such that p ≤ q ≤ r.

1 while p < q do
2 if A[p] > A[q] then
3 A[p]↔ A[q];
4 q′ ← q;
5 while q′ < r and A[q′] > A[q′ + 1] do
6 A[q′]↔ A[q′ + 1];
7 q′ ← q′ + 1;

8 p← p + 1;

The algorithm can be parallelized because of its nature, divide-and-conquer.
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Algorithm 5.2.3: Mergesort(A, p, r)

Data: Let A be an array.
Data: Let p and r be indexes in the array A such that p ≤ r.

1 if p < r then

2 q ← bp+rc
2

;
3 Mergesort(A, p, q);
4 Mergesort(A, q + 1, r);
5 Merge(A, p, q, r);

Every subproblem can be executed on a separate process. Using a barrier
to ensure that both the subproblems are done before the two sequences are
merged. The work is Θ(n lg n) and the span is O(n). The critical path is
bounded to last merge because the cost of the partitions are in constant time:

Tk(n) =

lg n∑
i=1

i +

lg n∑
i=1

2i = (5.2)

= O(1) + ... + O(1) + 2 + 4 + ... +
n

2
+ n = O(n) (5.3)

A visual representation of the algorithm in form of a directed acyclic graph
and pseudocode can be seen in Figure 5.3 and Algorithm 5.2.4 respectively.

Implementation details

Implementing the algorithm as a sequential and parallel versions for both
Cilk++ and EAD++ was once again straightforward task. The sequential
an parallel version of the code can be seen in Appendix A.1.

An in place merge algorithm is already implemented in C++ STL that en-
sures a worst-case time complexity of O(n lg n). In the initial experiments
showed that the C++ STL inplace merge outperformed the implementa-
tion of the Merge algorithm. The experiments also showed that the parallel
algorithm did fulfil the minimal requirement of being faster than the best
sequential algorithm, C++ STL sort. The result of the practical efficiency
measures based on speedup, efficiency, and scalability can be seen in Chapter
8.
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Algorithm 5.2.4: ParallelMergesort(A, p, r)

Data: Let A be an array.
Data: Let p and r be indexes in the array A such that p ≤ r.

1 if p < r then

2 q ← bp+rc
2

;
3 parallel
4 ParallelMergesort(A, p, q);
5 ParallelMergesort(A, q + 1, r);

6 sync;
7 Merge(A, p, q, r);

worst-case work = O(n ), average-case work = O(n lg n)2

worst-case span = O(n ),
average-case span = O(n)

2
worst-case h = n,
average-case h = lg n

Figure 5.4: Representation of Quicksort computation as a DAG.

Algorithm 5.3.1: Pivot(A, p, r)

Data: Let A be an array.
Data: Let p and r be indexes in the array A such that p ≤ r.

1 return Random(p, r);

5.3 Quicksort

Quicksort, described in Algorithm 5.3.3, is also a comparison-based sort-
ing algorithm, that sorts input sequences of n elements with a worst-case of
O(n2) comparisons but an average of O(n lg n) comparisons. This algorithm
is based on the divide-and-conquer paradigm as Mergesort. The algorithm
is split up into two subsequences. The Pivot is chosen randomly, in Algo-
rithm 5.3.1, and based on this the Partition, in Algorithm 5.3.2, can create
subsequences of different size unbalancing the recursion tree. The algorithm
calls itself until the size of the subsequence is one. Compared to Mergesort,
no bottom-up merging needs to be done. The time complexity of the algo-
rithm is in O(n2), worst-case scenario with O(n2) comparisons. The average
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Algorithm 5.3.2: Partition(A, p, q, r)

Data: Let A be an array.
Data: Let p and r be indexes in the array A such that p ≤ q ≤ r.

1 x← A[q];
2 A[p]↔ A[q];
3 i← p;
4 for j ← p + 1 to r do
5 if A[j] ≤ x then
6 i← i + 1;
7 A[i]↔ A[j];

8 A[p]↔ A[i + 1];
9 return i + 1;

time complexity is in O(n lg n) with O(n lg n) comparisons. Minimizing the
worst-case time complexity can be achieved by always setting the Pivot to
the median element in the sequence as in [8]. The median can be found
in linear time. This will ensure that Partition will always split up in two
equal sized sequences and the depth of the recursive tree would be bounded
to O(lg n).

Algorithm 5.3.3: Quicksort(A, p, r)

Data: Let A be an array.
Data: Let p and r be indexes in the array A such that p ≤ r.

1 if p < r then
2 q ← Pivot(A, p, r);
3 q′ ← Partition(A, p, q, r);
4 Quicksort(A, p, q′ − 1);
5 Quicksort(A, q′ + 1, r);

The nature of Quicksort is also a divide-and-conquer algorithm, as Merge-
sort. The same approach can be used in order to parallelize the algorithm.
An advantage over Mergesort is that Quicksort do not need barriers. Once
a partition have split the sequence up in two halves there would be no need
for merging them back together.

The work is O(n2) for the worst-case and O(n lg n) for the average-case.
Respectively the span is O(n2) for the worst-case and O(n) for the average-
case. The critical path for the worst-case is bounded to the partition and the
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unbalanced recursion tree:

Tk(n) =
n−1∑
i=0

n− i = (5.4)

= n + (n− 1) + (n− 2) + ... + 2 = O(n2) (5.5)

The critical path for the average-case is bounded to the first partition:

Tk(n) =

lg n∑
i=1

n

i
= (5.6)

= n +
n

2
+

n

4
+ ... + 2 = O(n) (5.7)

A visual representation of the algorithm in form of a directed acyclic graph
and pseudocode can be seen in Figure 5.4 and Algorithm 5.3.4 respectively.

Algorithm 5.3.4: ParallelQuicksort(A, p, r)

Data: Let A be an array.
Data: Let p and r be indexes in the array A such that p ≤ r.

1 if p < r then
2 q ← Pivot(A, p, r);
3 q′ ← Partition(A, p, q, r);
4 parallel
5 ParallelQuicksort(A, p, q′ − 1);
6 ParallelQuicksort(A, q′ + 1, r);

Implementation details

Implementing the algorithm as a sequential and parallel versions for both
Cilk++ and EAD++ was once again straightforward task. The sequential
and parallel version of the code can be seen in Appendix A.1.

The C++ standard template library offers a function, nth element, that en-
sures that a chosen element in a sequence will be in the same position as if
the sequence was sorted, 〈s0 ≤ · · · ≤ sn ≥ · · · ≥ sm〉 where 0 ≤ n ≤ m.
The function can be used to select the median of a sequence as the pivot and
ensuring that partition always will split the sequence in equal sized subse-
quences. This will ensure that the recursion tree will be balanced. The time
complexity of the function is O(n).
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The initial experiments showed that the C++ STL nth element was slower
than the pivot-partition combined with the load-balancing from Cilk++
or EAD++. The experiments also showed that the parallel algorithm fulfilled
the minimal requirement of being faster than the best sequential algorithm.
Hereby there will be made practical efficiency measures based on speedup,
efficiency, and scalability. The results can be seen in Chapter 8.



Chapter 6

Finding minimum spanning trees
in parallel

As in the previous chapter, the algorithms for finding minimum spanning tree
will also be studied with emphasis on how to they can be parallelized. The
worst-case asymptotic time with minimal extra space utilization and a min-
imal requirement of being at least as fast as the best sequential algorithm
will also be the main criteria to accept or reject an algorithm. The best
sequential algorithm will be chosen from the studied algorithms because no
algorithm to find minimum spanning trees is part of the C++ STL. The algo-
rithms are: Prim, Kruskal with the Kruskal-filter variant and Borůvka.
The chosen algorithms have in common that they can be implemented on
a Exclusive-Read Exclusive-Write (EREW) parallel random access machine
(PRAM).

In a connected and undirected graph, G(V, E), where V is a set of vertices and
E is a set of edges, a spanning tree is defined as a tree containing all vertices
connected through edges. These edges must not form cycles. The minimum
spanning tree is a spanning tree containing all the vertices but only with the
minimal amount of edges connecting the vertices.

6.1 Prim (Dijkstra-Jarńık-Prim, DJP)

Prim, described in Algorithm 6.1.1, finds the minimum spanning tree, T , in
a connected and undirected graph, G(V, E), by:
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span = |E| lg |V|

work = |E| lg |V|

                         

Figure 6.1: Representation of Prim computation as a DAG.

� initially setting all the key values to ∞ and the closest neighbor, π,
to none for all the vertices. These operations are made in linear time,
O(|V |);

� secondly selecting a random vertex, r, and setting the key value to 0.
The operation are made in constant time, O(1);

� afterwards adding all the vertices to a min-heap; The operation is made
in linear time, O(|V |);

� selecting the vertex with the lowest key value removing it from the
heap. In this case the random vertex, r, with a key value of 0. The
removed vertex now updates, all its adjacent vertices key values with
the weight of the edge from v to u and the closest neighbour, π, with
v if the weight of the edge is less than u key value, if they are in the
heap. These operations are made in linear time, O(|E|+ lg|V |);

� repeating the previous operation until there are no more vertices in
the heap. These operations are made in log-linear time, O((|E| +
|V |) lg |V |);

� iterating through each vertex, except the randomly picked vertex, r,
and adding an edge from the vertex to its closest neighbour with a
weight of its key value. The operation are made in linear time, O(|V |);

Depending on the data structures used to implement the algorithm the time
complexity varies from:
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Algorithm 6.1.1: Prim(G)

Data: Let V be a set of vertices.
Data: Let E be a set of edges.
Data: Let G be a connected undirected graph G = (V, E).
Data: Let w(u, v) be the weight function of an edge that connects u to v.
Data: Let vk be the minimum weight of any edge connecting v to the tree.
Data: Let vπ be the parent vertex of v in the tree.
Data: Let vadj be a set of vertices that v is adjacent to.
Data: Let H be a minimum heap.
Data: Let T be a subgraph of G where T = ∅.

1 foreach v ∈ V do
2 vk ←∞;
3 vπ ← NIL;

4 r ← Random(V );
5 rk ← 0;
6 H ← Make-heap(V );
7 while H 6= ∅ do
8 u← Extract-heap(H);
9 foreach v ∈ uadj do

10 if v ∈ Q and w(u, v) < vk then
11 vπ ← u;
12 vk ← w(u, v);
13 Decrease-heap(H, v);

14 foreach v ∈ V \{r} do
15 T ← T ∪ (v, vπ);

16 return T ;

� O(|V |2) if an adjacency-matrix is used, where n = |V |;

� O((|V |+ |E|) lg |V |) = O(|E| lg |V |) if an adjacency-list is used in com-
bination with a binary heap;

� O(|E| + |V | lg |V |) if an adjacency-list is used in combination with a
Fibonacci heap;

A space inconvenience with this algorithm with respect to others minimum-
spanning-tree algorithms is that it needs to store the neighbors of each vertex
in either an adjacency list or matrix. The adjacency matrix will always need
|V |2 extra space and the worst-case scenario for the adjacency list would be
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a complete graph, every vertex is connected to all the other vertices, where
the adjacency list would need |V |(|V |−1)

2
extra space.

The main problem in order to parallelize this algorithm is to handle with
the minimum-heap. While one thread performs the operations from line 8-13
in Algorithm 6.1.1. No other thread can have access to the data structure.
Once the tread terminates it can perform once again the same operations
without needing other threads. Attempts of replacing the heap with other
data structures have been tried but without success. The work is O(|E| lg |V |)
and the span is O(|E| lg |V |). The critical path is bounded to the sequential
operations of the heap combined with the updates on the adjacency lists:

Tk(n) = O(|V |) + O(1) + O(|V |) + O((|E|+ |V |) lg |V |) + O(|V |) (6.1)

= O(|E| lg |V |) (6.2)

Since the algorithm will not gain an increased performance when adding more
processes, the algorithm is rejected and there will not be performed initial
experiments. A visual representation in form of a directed acyclic graph can
be seen in Figure 6.1.

Implementation details

The algorithm is only implemented in a sequential version and can be seen
in Appendix A.1. A vertex’ class is introduced expanding the initial vertex
class with the following properties: key value, adjacency list, closest neighbor
(π) and in heap. There is also implemented a crease function that can be
used for decreasing a node in a minimum heap or increasing a node in a
maximum heap. The crease function complies with the C++ STL container
policy.

6.2 Kruskal

Kruskal algorithm, in Algorithm 6.2.1, finds the minimum spanning tree, T ,
in a connected and undirected graph, G(V, E), by:

� initially adding each vertex to its own set of vertices. These operations
are made in linear time, O(|V |);

� sorting all edges in a non decreasing order by their weight. The sorting
operation is made in log-linear time, O(|E| lg |E|);
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span = |E| lg |V|

work = |E| lg |V|

                         

Figure 6.2: Representation of Kruskal computation as a DAG.

� selecting each edge in a non decreasing order by their weight and check-
ing if the vertices forming the edge, (u, v), are in the same set of ver-
tices. If they are not, the edge will be added to the minimum spanning
tree, T , and the sets will be combined. These operations are made in
log-linear time, O((|E|+ |V |) lg |V |);

The time complexity is set by the sorting operation, O(|E| lg |E|). The graph

is connected therefore can there only be at most |E| ≤ |V |(|V |−1)
2

< |V |2 edges.
The time complexity is O(|E| lg |E|) = O(|E| lg |V |2) = O(|E| lg |V |).

The problem with the algorithm is when a graph is dense, each vertex has
many neighbor vertices, and all the edges have to be sorted. To optimize
the algorithm could be to break out of the loop if there only was one set of
vertices. This will ensure that all the vertex in the remaining edges would
already be in the minimum spanning tree. The problem is that the sorting
algorithm already sorted all the edges in O(|E| lg |E|) and iterating through
all the edges can be done in linear time O(|E|). A possibility could be
introducing a heap that can be made in O(|E|) time and even though all
elements are removed, in case a heavy weighted edge is in the minimum
spanning tree, the combined time complexity would still be in O(|E| lg |E|).
Another approach is to use a filter [22] that will exclude all heavy edges before
checking for a valid edge. The algorithm is similar to Quicksort. It starts by
choosing a random edge as pivot and it partition the edges into two list, the
first containing all the edges were their weights are less or equal to the pivot
edge weight and the other list containing all the edges were their weights
greater than the pivot edge weight. The algorithm is called recursively on
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Algorithm 6.2.1: Kruskal(G)

Data: Let V be a set of vertices.
Data: Let E be a set of edges.
Data: Let G be a connected undirected graph G = (V, E).
Data: Let w be the weight of an edge.
Data: Let T be a subgraph of G where T = ∅.

1 foreach v ∈ V do
2 Vv = {v} ; /* create a subset of V containing only v */

3 Sort(E); /* in a non-decreasing order by w */

4 foreach (u, v) ∈ E do /* in a non-decreasing order by w */

5 Vi ← Find-set(u);
6 Vj ← Find-set(v);
7 if Vi 6= Vj then
8 T ← T ∪ (u, v);
9 Vk ← Union-set(Vi, Vj);

10 if V = Vk then
11 break;

12 return T ;

the first list until a single edge is reached. The edge will be added to the
minimum spanning tree, T , if the vertices forming the edge, (u, v), are not in
the same set of vertices. Once the first part is returned from the recursion, the
filter will now be applied on the second list by checking if the vertex, (u, v),
in each edge are in the same set of vertices. If this is the case, the edge
can safely be removed because both vertex are already part of the minimum
spanning tree. Pseudocode for the algorithm can be seen in Algorithms 6.2.3
and 6.2.2.

When parallelizing the algorithm usage of a heap must be avoided, as in the
previous section where the Prim algorithm was not parallelizable because it
uses heap as the primary data structure. By looking at the Kruskal-filter

algorithm there are really no parallelizable parts. The Quicksort is used but
it cannot run both subtrees of the recursion concurrently. The last one has to
wait until the first one returns and then it can apply the filter on the second
branch of the recursion tree. In [22] the parallel sorting algorithm is called
whenever the threshold is reached. The interesting part would be to know the
precise value of the threshold. The performance test of the sorting algorithms
from the previous chapter, shows that MCSTL parallel sort only performs
better than the best sequential STL sort when the number of elements are
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Algorithm 6.2.2: Kruskal-filter-helper(E,T)

Data: Let V be a set of vertices.
Data: Let E be a set of edges.
Data: Let w be the weight of an edge.
Data: Let T be a subgraph of G.

1 if |E| < 2 then
2 if E = {(u, v)} then
3 Vi ← Find-set(u);
4 Vj ← Find-set(v);
5 if Vi 6= Vj then
6 T ← T ∪ (u, v);
7 Union-set(Vi, Vj);

8 return;

9 q ← Pivot(E, p, r);
10 q′ ← Partition(E, p, q, r); /* in a non-decreasing order by w */

11 E1 ← E{ep, . . . , eq′−1};
12 E2 ← E{eq′ , . . . , er};
13 Kruskal-filter-helper(E1, T);
14 foreach (u, v) ∈ E2 do
15 Vi ← Find-set(u);
16 Vj ← Find-set(v);
17 if Vi = Vj then
18 E2 ← E2\(u, v);

19 Kruskal-filter-helper(E2, T);

Algorithm 6.2.3: Kruskal-filter(G)

Data: Let V be a set of vertices.
Data: Let E be a set of edges.
Data: Let G be a connected undirected graph G = (V, E).
Data: Let T be a a subgraph of G where T = ∅.

1 foreach v ∈ V do
2 Vv = {v} ; /* create a subset of V containing only v */

3 Kruskal-filter-helper(E, T);
4 return T ;

greater than 213. Why not sort all the edges with MCSTL parallel sort? The
performance test of the sorting algorithms, showed a speedup of more than 20
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worst-case work = |E |, average-case work = |E| lg |V|2

worst-case h = |E|,
average-case h = lg |E|

worst-case span = |E |,
average-case span = |E| lg |V|

2

Figure 6.3: Representation of Kruskal-filter computation as a DAG.

when using a computer with 32 kernels compared to the speedup of less than
2 using MCSTL quicksort, assuming that Kruskal-filter is implemented
in the same way as the MCSTL quicksort algorithm. More information about
performance tests on the sorting algorithms can be seen in Chapter 8.

The work for the Kruskal algorithm is O(|E| lg |V |) and the span is O(|E| lg |V |).
The critical path is bounded by the set operations because a parallel sorting
algorithm can be used in order to the reduce the subpath for the sort of the
edges from O(|E| lg |E|) to O(|E|):

Tk(n) =

lg |E|∑
i=1

|E|
i

+ O((|E|+ |V |) lg |V |) (6.3)

= |E|+ |E|
2

+
|E|
4

+ ... + 2 + O(|E| lg |V |) (6.4)

= O(|E| lg |V |) (6.5)

A visual representation in form a directed acyclic graph can be seen in Figure
6.2.

On the other hand the work for the Kruskal-filter algorithms is O(|E|2) for
the worst-case and O(|E| lg |V |) for the average-case. Respectively the span is
O(|E|2) for the worst-case and O(|E|) for the average-case. The critical path
for the worst-case is bounded to the partition and the unbalanced recursion
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tree as in Quicksort:

Tk(n) =

|E|−1∑
i=0

|E| − i + O((|E|+ |V |) lg |V |) (6.6)

= |E|+ (|E| − 1) + (|E| − 2) + ... + 2 + O(|E| lg |V |) (6.7)

= O(|E|2) (6.8)

The critical path for the average-case is bounded bounded by the set opera-
tions:

Tk(n) =

lg |E|∑
i=1

|E|
i

+ O((|E|+ |V |) lg |V |) = (6.9)

= |E|+ |E|
2

+
|E|
4

+ ... + 2 + O(|E| lg |V |) (6.10)

= O(|E| lg |V |) (6.11)

A visual representation in form a directed acyclic graph can be seen in Figure
6.3

Implementation details

Both algorithms are implemented as sequential version but only Kruskal is
implemented in a parallel version by replacing C++ STL sort with MCSTL
parallel sort and can be seen in Appendix A.1. The set operations rely on
C++ STL set container.

6.3 Bor̊uvka (Sollin)

Bor̊uvkas algorithm, in Algorithm 6.2.1, works in a similar manner as the
Kruskal algorithm and finds the minimum spanning tree, T , in a connected
and undirected graph, G(V, E), by:

� initially creating a supervertex for each of the vertex. Each supervertex
contain a local minimum spanning tree, sT , a set of adjacent edges to
the supervertex, sadj, and all the vertices contained in the supervertex,
svertices. These operations are made in linear time, O(|E|+ |V |);
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work = |E| lg |V|

h = lg |V|

best-case span = |E|,
worst-case span = |E| lg |V|

                                          

Figure 6.4: Representation of Borůvka computation as a DAG.

� taking for each of the supervertices set of adjacent edges, sadj, the edge
with the lowest weight. The two supervertices forming the edge will
be combined into a new supervertex performing a union on the local
minimum spanning trees, sT , the sets of adjacent edges, sadj, and and
list of vertices contained in each of the supervertex, svertices. These
operations are made in linear time, O(|E|);

� afterwards performing a contraction on the set of adjacent edges, sadj.
in order to find the next lowest adjacency edge to another supervertex.
The operation is made in linear time, O(|E|);

� repeating the previous two operations until there is more than one su-
pervertex. These operations are made in log-linear time, O(|E| lg |V |);

The algorithm can also be thought of as a bottom-up mergesort starting
with |V | supervertices and merging them together ending up with one final
supervertex containing all the vertices and the final local minimum spanning
tree. The time complexity of the the algorithm is O(|E| lg |V |).

Because of the similarity to the mergesort algorithm, the algorithm should
be parallelizable. The main problem with respect to the merge operation in
Mergesort, where no other process will access two sublist while they are begin
merged, is that several supervertices could try to combine with a common
supervertex. In order to ensure that only two supervertices are combined at
a given time a lock mechanism needs to be introduced. This approach will
create a even bigger problem. Assuming that there exists a graph where all
the edges are connected to only one common edge. In order to combine all
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Algorithm 6.3.1: Borůvka(G)

Data: Let V be a set of vertices.
Data: Let E be a set of edges.
Data: Let G be a connected undirected graph G = (V, E).
Data: Let w be the weight of an edge.
Data: Let T be a subgraph of G where T = ∅.
Data: Let S be a set of supervertices where S = ∅.
Data: Let sT be a local minimum spanning tree.
Data: Let sadj be a set of edges that s is adjacent to.
Data: Let svertices be a set of vertices contained in s.

1 foreach v ∈ V do /* convert each v to a supervertex */

2 S ← S ∪ v;

3 while |S| > 1 do
4 foreach s ∈ S do
5 (u, v) ∈ sadj; /* select the edge with the lowest w */

6 Si ← Find-supervertex(u);
7 Sj ← Find-supervertex(v);
8 if Si 6= Sj then
9 sT ← sT ∪ (u, v);

10 Union-supervertex(Si, Sj);
11 foreach (u′, v′) ∈ sadj do
12 Si′ ← Find-supervertex(u′);
13 Sj′ ← Find-supervertex(v′);
14 if Si′ = Sj′ then
15 sadj ← sadj\(u′, v′);

16 s ∈ S;
17 return sT ;

the supervertices into a single vertex all the computations have to be done
sequentially. As in Prim with the heap data structure as bottleneck, the
algorithm will not gain a better performance when adding more processes.

The work for the algorithm is O(|E| lg |V |) for both the worst-case and best-
case. Respectively the span for the worst-case is O(|E| lg |V |) and O(|E|)
for the best-case. The critical path for the worst-case is bounded to the lock
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mechanism on the merging of the supervertices:

Tk(n) = O(|E|+ |V |) + O(E) + O(E) + O(|E| lg |V |) (6.12)

= O(|E| lg |V |) (6.13)

The critical path for the best-case is:

Tk(n) = O(|E|+ |V |) + O(E) + O(E) +

lg |V |∑
i=1

|E|
i

(6.14)

= O(|E|) + O(|E|) + O(|E|) + |E|+ |E|
2

+
|E|
4

+ ... + 2 (6.15)

= O(|E|) (6.16)

Because the studied algorithms are accepted or rejected on basis of their
worst-case or average-case time complexities this algorithm is rejected, as
Prim was, and there will not be performed initial experiments. A visual
representation in form a directed acyclic graph can be seen in Figure 6.4.

Implementation details

The algorithm is only implemented in a sequential version and can be seen in
Appendix A.1. A supervertex class is introduced expanding the initial vertex
class with the following properties: local minimum spanning tree, adjacency
list of edges and list of contained vertices.

An implementation of this algorithm exists for the boost library, [5, 10]. The
practical efficiency measures1 shows an almost perfect linear speedup for dense
graphs.

A dense graph is defined as a graph, G(V, E), where V is a set of vertices and
E is a set of edges, where the set of edges E are close to the maximum number
of edges. The maximum number of edges for a connected and undirected graph
is |V |(|V |−1)

2
which corresponds to a complete graph. Taking the values used by

boost where |V | = 100000 and |E| = 15000000 the percentage of how dense
the graph is, will be calculated:

1http://www.boost.org/doc/libs/1 41 0/libs/graph parallel/doc/html/
dehne gotz min spanning tree.html
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By assuming that the graph is complete, then it would have a density of
100% :

100 % =
|V |(|V | − 1)

2
=

100000(100000− 1)

2
(6.17)

Calculating the density of the graph used by boost is very simple with cross-
multiplication:

x % = 15000000 (6.18)

x % =
100 · 15000000
100000(100000−1)

2

(6.19)

= 0.300003 % (6.20)

From (6.20) a conclusion can be made that the used graphs are not dense.
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Chapter 7

Experimental setup

In this chapter the different hardware architectures on which the experiments
were executed will be described. Afterwards, the used compilers in order to
create binaries are mentioned. Finally, how the pseudo-random input data
is created for the tests and a guide on how the reader can reproduce both
correctness and performance test is presented.

The initial experiments from the fifth step, in Figure 2.2, were performed on
following hardware:

Single-dualcore:

� Hardware type: Laptop.

� Processor: Single Intel(R) Core 2 Duo 2.60GHz and 6144 KB
cache each core.

� Memory: 4 GB RAM.

� Operating system: Mac OS X v.10.6.4 (64-bit).

The hardware was used to reject algorithms that did not fulfill the mini-
mal requirement of being faster than the best sequential algorithm. If an
algorithm was not rejected, practical efficiency measures based on speedup,
efficiency and scalability with real data, the seventh step in Figure 2.2, were
performed on the following hardware:
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Dual-hyperthreading:

� Hardware type: Server.

� Processor: Dual Intel(R) Xeon(TM) 2.80GHz with Hyperthreath-
ing enabled and 512 KB cache in each processor.

� Memory: 2 GB RAM.

� Address: benzbox.********.diku.dk

� Operating system: GNU/Linux Ubuntu 10.04 LTS (32-bit).

Dual-quadcore:

� Hardware type: Server.

� Processor: Dual Intel(R) Quad-Core Xeon(R) X5355 2.66GHz and
4096 KB cache in each core.

� Memory: 16 GB RAM.

� Address: knapsack2.********.diku.dk

� Operating system: GNU/Linux Ubuntu 10.04 LTS (64-bit).

Tetra-octacore:

� Hardware type: Server.

� Processor: Tetra AMD Opteron(tm) Octa-Core Processor 6136
2.40GHz and 512 KB cache in each core.

� Memory: 128 GB RAM.

� Address: octopus.********.unipi.it

� Operating system: SUSE Linux Enterprise Server 11 (64-bit).

The servers were used exclusively. No other processes, besides those from the
operating system, were running under the performance tests. It is mentioned,
in Section 1.2, that the ideal mapping between thread and cores is usually
1-to-1. This is confirmed on all tested platforms. Because of the limited time
to use the servers, the tests were run only a few times but always with the
same outcome. The ideal would be to run the test many times and calculate
the average of the results.

The GNU Compiler Collection (GCC) was used in order to compile the source
code, a minimal requirement of MCSTL is GCC 4.3. Note that the Cilk++
code can only be compiled with Intel’s own version of GCC. EAD++ can
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also be compiled using Low Level Virtual Machine (LLVM) and Intel C++
Compiler (ICC).

The input data for the sorting algorithms are pseudo-randomly generated
lists of size 2n. The interval of the pseudo-random numbers are in the range[
1, 2n

2

]
, this will ensure that there will be duplicate numbers. The input data

for the minimum-spanning-tree algorithms are also pseudo-randomly gener-
ated graphs with at most one minimum spanning tree. The initial created list
of vertices is shuffled and then in linear time each vertex will create an edge
with its predecessor vertex and an edge weight in the range

[
1, 2n

2

]
creating

a minimum spanning tree containing all vertices. The maximum degree of
the graph is set to half the number of vertices. Based on this value several
iteration will be made in order to create new edges from random vertices, if
they do not exist already, with an edge weight in the range

[
2n

2
+ 1, 2n

]
. The

random input data is generated before the algorithms are executed.

Correctness tests for the sorting algorithms checks on the output if the next
number is greater than the previous. Correctness test for the minimum-
spanning-tree algorithms are done by checking all edges in the outputted list
against the initial vertex list by finding the first vertex from the edge in the
vertex list. When the vertex is found, the second vertex from the edge must
match the next vertex in the initial vertex list.

The execution of the algorithms are measured in nanoseconds. Creation of
pseudo-random input data is not included in the time measuring.

Both correctness and benchmark test can be reproduced by the reader in
order to confirm the results:

Reproducing correctness tests

From /thesis/src type make test. Go to /thesis/src/test and type sort.bash
1 20 1 2 or mst.bash 1 20 1 2 which stand for execute all the binary files
created and give as a parameter n = 21 . . . 220 and k = 1 . . . 2. Where n is
the number of elements and k is the number of processors to be used. There
will now be created a folder named after date combined with time inside
/thesis/src/test/output containing all the input of the executed applications
each in a separated file. By typing grep -n ’0’ *.txt, will show if any algorithm
has failed. If all files only contain 1, the algorithms are tested to work
properly. The source code and scripts can be seen in Appendix B.1.
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Reproducing benchmark tests

From /thesis/src type make benchmark. Go to /thesis/src/benchmark and
type sort.bash 1 20 1 2 or mst.bash 1 20 1 2 which stand for execute all the
binary files created and give as a parameter n = 21 . . . 220 and k = 1 . . . 2.
Where n is the number of elements and k is the number of processors to be
used. There will now be created a folder named after date combined with time
inside /thesis/src/benchmark/output containing all the input of the executed
applications each in a separated file. The source code and scripts can be seen
in Appendix B.2.



Chapter 8

Results and discussion

In this chapter the results of the benchmarks for executing the sorting and
minimum spanning tree algorithms on different computer architectures are
presented. Only one parallel version of a minimum-spanning-tree algorithm
was implemented, therefore no practical efficiency measures are made for
those algorithms. The practical efficiency measures for the sorting algorithms
are visualized as plots. The presented plots are limited to the results of using
2k, where k = 2i, i ∈ N, processors. Finally based on the hypothesis and
benchmark results, algorithms will be accepted or rejected for the library.

8.1 Sorting

Only MergesortParallel and QuicksortParallel in their Cilk++ and
EAD++ implementations were benchmarked. As mentioned in Section 5.1,
Bitonicsort did not fulfill the minimal requirement of being as fast as the
best sequential algorithm. The two algorithms chosen to measure the parallel
implementations are the C++ STL sort, which is the best sequential sorting
algorithm, and C++ STL parallel sort, which is MCSTL’s implementation
of mergesort.

Dual-hyperthreading server

The initial experiments were executed on this server. The result showed
that the MCSTL implementation of mergesort was much faster than the
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versions implemented in Cilk++ and EAD++. The speedup and efficiency is
similar to the others implementations until the size of the sequence exceeds
210 as in Figure C.1 and C.3. Note that when the sequence is of size 228 the
speedup and efficiency of the MCSTL mergesort is similar to the other two
implemented algorithms. This is due to the memory usage of the algorithm.
The server only have 2 GB of RAM and it was useful to show what happens
when each of the algorithms reach the memory limit. In case of MCSTL
mergesort the practical performance falls drastically. In order to compare
what happened when the algorithms run out of memory the following test
case was run by setting the size of the sequence to sort to 229:

ramon@benzbox:~/$ ./sort_par_tp_mergesort-g++ --n=29 --k=4

Segmentation fault

ramon@benzbox:~/$ ./sort_par_cilk++_mergesort-cilk++ --n=29 -cilk_set_worker_count=4

Bus error

ramon@benzbox:~/$ ./sort_par_mcstl_std_parallel_mergesort-g++ --n=29 --k=4

0.000093411

EAD++ implementation crashed with a segmentation fault, Cilk++ imple-
mentation also crashed with a bus error. The only implementation that did
not crash was MCSTL. Guessing that no algorithm is able to sort a sequence
of 229 numbers in less than 0.1 milliseconds, an error message is expected.
Specially because this implementation is part of the C++ STL parallel li-
brary.

The implementations of the Quicksort algorithm showed that once again
the MCSTL version was the fastest. The practical performance decreases
drastically when a sequences are greater than 225. An explanation can be
that because the algorithm calls the C++ STL sort, a sequential algorithm,
whenever there are no more threads available. In case the recursion tree
is unbalanced and some threads finish before others. The finished threads
cannot help due to the algorithm now runs sequentially. The MCSTL load-
balanced version of quicksort, based on the work-stealing technique, is the
fastest when 2 threads are used. When 4 threads are used then it is EAD++
which is the fastest, outperforming even the C++ STL parallel sort for 228.
The Cilk++ implementation has some discrete results. The results can be
seen in Figure C.2 and C.4.

The scalability plots, from Figure C.5 to C.8, show that the performance
for algorithms implemented in Cilk++ and EAD++ grow whenever extra
processors are added. On the other hand, the performance of the algorithms
implemented in MCSTL grow fast, peak, and then falls. Note on the strange
behaviour of the MCSTL mergesort. This is produced by the algorithm when
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reaching the memory limit. The problem is that when executing the algo-
rithm with only one processor, sequentially, on a sequence of of size 228 the
execution time is 318.01 seconds. Comparing this time to when the algo-
rithm sorts a sequence of size 227 with one processor in only 23.55 seconds.
This would move the time complexity of the algorithm from O(n lg n) to
O(n2).

All the speedup plots (Figures C.1 to C.2), efficiency plots (Figures C.3 to
C.4) and scalability plots (Figures C.5 to C.8) can be seen in Appendix C.1.

Dual-quadcore server

The limitation for the usage of this server only allowed to perform practical
efficiency measures on sequences in the range of 226 to 230. The results on this
server are very similar to the previous. MCSTL mergesort is still the fastest
and without the memory barrier there are no drastic falls in the performance.
The implementation of Mergesort on the other two frameworks, Cilk++ and
EAD++ are almost equal.

The results on the implementation of Quicksort shows that it is now the
Cilk++ version that is the best followed closely by the EAD++ implemen-
tation.

All the speedup plots (Figures C.9 to C.12), efficiency plots (Figures C.13 to
C.16) and scalability plots (Figures C.17 to C.20) can be seen in Appendix
C.1.

Tetra-octacore server

The result on this server confirms what have been seen until now. The best
parallel sorting algorithm implementation is MCSTL mergesort. The best
Quicksort is the version implemented in Cilk++, followed very closely by
the version from EAD++.

All the speedup plots (Figures C.21 to C.26), efficiency plots (Figures C.27
to C.32) and scalability plots (Figures C.33 to C.37) can be seen in Appendix
C.1.

8.2 Finding minimum spanning trees

There was only made benchmark test on the dual-hyperthreading server and
dual-quadcore server. Access to the tetra-octacore server was no longer avail-
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able. No practical efficiency measures were made because only one parallel
algorithm was implemented. The implementation of Kruskal showed to be
the fastest sequential algorithm. In order to execute the benchmark test and
because the server usage was limited by time, the Borůvka algorithm was
excluded. The initial test showed that the implementation of Borůvka was
much slower than the others.

Figure 8.1: MST time on dual-hyperthreading.

The test showed that Prim was the slowest sequential algorithm and that
Kruskal was the fastest. The problem with Kruskal-filter is that is is now
bounded to the worst-case time complexity of Quicksort, which is |E|2, while
Kruskal is still bounded to time complexity of C++ STL sorts, |E| lg |V |.
The best sequential algorithm to measure against the Kruskal parallel imple-
mentation based on the C++ STL parallel sort is Kruskal. As can be seen
in Figure 8.1 and 8.2, the results are very close. The fastest is the parallel
implementation of Kruskal based on the C++ STL parallel sort.
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Figure 8.2: MST time on dual-quadcore.

8.3 Discussion

Based on our hypothesis where the minimum requirement is that the algo-
rithm has to be faster than the best sequential algorithm. Both the im-
plementations of Mergesort and Quicksort for Cilk++ and EAD++ are
accepted. Likewise is the parallel Kruskal implementation based on C++
STL parallel sort.

Out from these results what stands out is the implementation of MCSTL
mergesort. The test performed on the tetra-octacore server showed a speedup
superior to 20. How is this possible? The answer is that the Mergesort

algorithm implemented in MCSTL is not based on a binary merge as the
versions implemented for Cilk++ and EAD++ but its based on a multiway
merge. The multiway mergesort in [20], is an external sorting algorithm. An
external sorting algorithm is based on a memory model where there exist a
fast internal memory of size M and a large external memory. The data is
moved between memories in block of size B. How the multiway mergesort
takes advantage of the internal memory is that it can hold more than one



72 Results and discussion

block. Assuming that there can be k blocks, an output block and a small
amount of extra storage in the internal memory. Then k blocks containing
sorted sequences can be merged in a k-way. The merging of the k sequences
is done with help of a priority queue containing the smallest element from
each sequence. Insertion of elements and extraction of the minimum element
of the priority queue can be done in logarithmic time because its built on a
minimum-heap. The smallest element is written to the output block. Once
the output block is full. The sequence of sorted elements is written to the
external memory. If one of the k blocks is empty in the internal memory a
new block is retrieved from the external memory. The bound set in order to
determine the size of the k blocks is set to:

M ≥ (k)B + B + k (8.1)

Where the terms are for the k blocks, the output buffer and the priority
queue. By doing this the number of merging phases will then be reduced to⌈
logk

(
n
M

)⌉
and the time complexity of the algorithm becomes:

T (n) = O
( n

B

(
1 +

⌈
logM

B

( n

M

)⌉))
(8.2)

In the MCSTL multiway mergesort, the external memory is the shared mem-
ory and the internal memory is the cache of the k processors. The more
processors added the more internal memory will be available. By running
the algorithm against the sequential version of mergesort a speedup of 50
was achieved when using 32 processors getting superlinear speedup. That
is why multiway mergesort is chosen to be the C++ STL parallel sort as
introsort was chosen to be the C++ STL sort.



Chapter 9

Closure

9.1 Conclusion

The two primary goals of the thesis was: to make an experimental study
of the various programming models to implement parallelism from a prac-
tical approach and evaluate them with emphasis on efficiency on multi-core
computers; and to design and implement a framework that could be used by
researchers in future work. Both goals are achieved.

A new terminology is introduced, Tk(n), which stands for: “The running
time of an algorithm on a computer with k processors where k is defined as
a bijection of the k processors to the optimal amount of threads that can be
executed concurrently on a given hardware processor.”. The terminology helps
to avoid unexpected results when performing practical efficiency measures.

In the Efficient Algorithm and Data Structures framework for C++ (EAD++),
a new method to load-balance work between inactive processors is introduced.
The helping technique can distribute work between inactive processors in log-
arithmic time. Two types of barriers are also introduced: a global thread
barrier that can be set by the main thread in order to avoid having to add a
barrier in each functions that are called, as seen in pthread and Cilk++; and
a job barriers that can chose to execute a given job which is binded to the
barrier if no other process is performing the task instead of just waiting.

The implemented framework, EAD++, shows a similar performance on the
studied algorithms if compared to other frameworks such as Cilk++ or MC-
STL. The usage of memory is limited to values given on initialization. This
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would make the framework suitable for embedded devices or upcoming smart-
phones with several cores and a limited amount of memory.

As for the studied algorithms, the Bitonicsorter will still need more cores
in order to perform better as shown in a recent study. The Mergesort and
Quicksort are bounded to Amdahl’s law by having a computation that takes
linear time. With regard to the minimum-spanning-tree algorithms, a study
on how to replace the sequential data structures should be made.

Kruskal-filter and Borůvka only perform well on certain graphs, since the
first one is bounded to a sequential Quicksort and the other only performs
well for sparse graphs. Full results must be made available, specifically testing
on worst-case scenarios.

A general thought for designing parallel algorithms should be to avoid as
much as possible operations that only can be run sequentially. A good exam-
ple of this is multiway mergesort that tackles the sequential merge operation
of the Mergesort algorithm, which restricts the critical path, by executing
the process in parallel. Results of superlinear speedup are achieved when
comparing to the sequential version of the algorithm.

9.2 Future work

Is it possible to make EAD++ perform better? A likely bottleneck in the
implementation could be the job pool, because it is implemented as an ar-
ray of pointers. This is due to the use of polymorphism. Two functions in
TR1, std::tr1::function1 and std::tr1::bind2 can be used to actually introduce
anonymous functions know from functional programming language. This way
the job pool could be defined as an array of functions and then the use of
the operator new, which dynamically allocates memory on the memory heap
for each object, could be avoided. A draft of how the changes would look in
the current code can be seen in Listing 9.1. This will actually simplifies the
interface, no need to encapsulate functions in classes. A challenge would be
to add properties to the jobs like priority and status in order to be used for
the job barriers. These problems are certainly not trivial. Note that propos-
als for TR1 are most likely going to be part of the upcoming version of C++
(C++0x ).

1Polymorphic Function Wrappers (TR1 document nr. n1402): http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2002/n1402.html

2Function Object Binders (TR1 document nr. n1455): http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2003/n1455.htm
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1 . . .
2 #include <t r1 / func t i ona l >
3 . . .
4

5 class ThreadPool{
6 . . .
7 protected :
8 . . .
9 vector<funct ion<void ( )> > j l ; // job l i s t , d e f a u l t array (LIFO)
10 . . .
11 public :
12 . . .
13 void add ( funct ion<void ( )> & job ) { . . . }
14 . . .
15 } ;
16

17 . . .
18 void gtp add ( funct ion<void ( )> & job ) { . . . }
19 . . .
20

21 template<typename RandomAccessIterator>
22 void f oo ( RandomAccessIterator f i r s t , RandomAccessIterator l a s t ) {
23 i f ( f i r s t == l a s t ) { return ; }
24 RandomAccessIterator middle ( f i r s t +(( l a s t − f i r s t ) >> 1) ) ;
25 gtp add ( bind ( foo , f i r s t , middle ) ) ;
26 f oo ( middle , l a s t ) ;
27 }
28

29 template<typename RandomAccessIterator>
30 void bar ( RandomAccessIterator f i r s t , RandomAccessIterator l a s t ,
31 const s i ze t & nr threads = 1 , const bool & heap = false ,
32 const s i ze t & bu f f e r = 0) {
33 g t p i n i t ( nr threads , heap , bu f f e r ) ;
34 gtp add ( bind ( foo<RandomAccessIterator >, f i r s t , l a s t ) ) ;
35 g t p s yn c a l l ( ) ;
36 gtp s top ( ) ;
37 }

Listing 9.1: Proposal to avoid use of polymorphism with help of anonymous
functions
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As for the algorithms. It would be interesting to see how well a implementa-
tion of the multiway mergesort would perform in Cilk++ or EAD++.

9.3 Framework availability

The Efficient Algorithm and Data Structures framework for C++ (EAD++)
and source code, published under a open source license, will be made avail-
able through either the CPH STL or a open source repository such as source-
forge.com.
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Appendix A

Source code

The source code is included a zip file named: appendices A and B.zip

A.1 Efficient library for C++

Sorting algorithms

� /thesis/src/seq/sort.hpp

� /thesis/src/ead/sort.hpp

� /thesis/src/cilk++/sort.hpp

Minimum spanning tree algorithms

� /thesis/src/seq/mst.hpp

� /thesis/src/mcstl/mst.hpp

A.2 EAD++ framework

/thesis/src/ead++/ead++.hpp
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Appendix B

Test

The source code and script are included a zip file named: appendices A and B.zip

B.1 Correctness

� /thesis/src/

� /thesis/src/test/

B.2 Benchmark

� /thesis/src/

� /thesis/src/benchmark/
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Appendix C

Performance measures for sorting
algorithms

C.1 On dual-hyperthreading server
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Figure C.1: Mergesort speedup on dual-hyperthreading with 2 and 4 threads.
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Figure C.2: Quicksort speedup on dual-hyperthreading with 2 and 4 threads.
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Figure C.3: Mergesort efficiency on dual-hyperthreading with 2 and 4 threads.
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Figure C.4: Quicksort efficiency on dual-hyperthreading with 2 and 4 threads.
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Figure C.5: Scalability of EAD++ mergesort and quicksort on dual-
hyperthreading.
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Figure C.6: Scalability of Cilk++ mergesort and quicksort on dual-
hyperthreading.
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Figure C.7: Scalability of MCSTL mergesort and sort on dual-hyperthreading.
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Figure C.8: Scalability of MCSTL quicksort and balanced quicksort on dual-
hyperthreading.
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C.2 On dual-quadcore server
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Figure C.9: Mergesort speedup on dual-quadcore with 2 and 4 threads.
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Figure C.10: Mergesort speedup on dual-quadcore with 8 threads.
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Figure C.11: Quicksort speedup on dual-quadcore with 2 and 4 threads.
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Figure C.12: Quicksort speedup on dual-quadcore with 8 threads.
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Figure C.13: Mergesort efficiency on dual-quadcore with 2 and 4 threads.
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Figure C.14: Mergesort efficiency on dual-quadcore with 8 threads.
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Figure C.15: Quicksort efficiency on dual-quadcore with 2 and 4 threads.
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Figure C.16: Quicksort efficiency on dual-quadcore with 8 threads.
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Figure C.17: Scalability of EAD++ mergesort and quicksort on dual-quadcore.
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Figure C.18: Scalability of Cilk++ mergesort and quicksort on dual-quadcore.
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Figure C.19: Scalability of MCSTL mergesort and sort on dual-quadcore.
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Figure C.20: Scalability of MCSTL quicksort and balanced quicksort on dual-
quadcore.
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C.3 On tetra-octacore server
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Figure C.21: Mergesort speedup on tetra-octacore with 2 and 4 threads.
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Figure C.22: Mergesort speedup on tetra-octacore with 8 and 16 threads.
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Figure C.23: Mergesort speedup on tetra-octacore with 32 threads.
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Figure C.24: Quicksort speedup on tetra-octacore with 2 and 4 threads.
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Figure C.25: Quicksort speedup on tetra-octacore with 8 and 16 threads.
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Figure C.26: Quicksort speedup on tetra-octacore with 32 threads.
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Figure C.27: Mergesort efficiency on tetra-octacore with 2 and 4 threads.
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Figure C.28: Mergesort efficiency on tetra-octacore with 8 and 16 threads.
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Figure C.29: Mergesort efficiency on tetra-octacore with 32 threads.
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Figure C.30: Quicksort efficiency on tetra-octacore with 2 and 4 threads.
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Figure C.31: Quicksort efficiency on tetra-octacore with 8 and 16 threads.
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Figure C.32: Quicksort efficiency on tetra-octacore with 32 threads.
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Figure C.33: Scalability of EAD++ mergesort and quicksort on tetra-octacore.
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Figure C.34: Scalability of Cilk++ mergesort and quicksort on tetra-octacore.
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Figure C.35: Scalability of MCSTL mergesort and sort on tetra-octacore.
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Figure C.36: Scalability of MCSTL mergesort and sort on tetra-octacore.
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Figure C.37: Scalability of MCSTL quicksort and balanced quicksort on tetra-
octacore.
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