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Abstract. In the constant-workspace model, the input is given as a read-only
array which allows random access and the output is to be produced on a write-
only array as a stream. In addition to that, only a constant number of variables
are available, independent on the size of the input. Most ordinary algorithms for
geometric problems make heavy use on the construction of smart data structures
such as doubly-linked lists, heaps, and search trees which enable fast processing.
In the constant-workspace model such data structures are not available due to the
small amount of memory. Instead we need to access the input repeatedly. We try
to minimize the number of accesses in order to make the algorithms as efficient as
possible.

In this thesis, we present new algorithms for visibility problems in the plane using
constant workspace. We devise an O(n2)-time algorithm computing the circular
visibility region of a polygon with n vertices from a given point within the polygon.
Next, we present an O(n)-time algorithm to compute the visible part of one edge
from another edge in a polygon. Using that algorithm, we describe an algorithm
computing the weak visibility polygon from a segment in O(mn) time, where m is
the number of vertices of the weak visibility polygon. Finally, we show how the
computation of weak visibility polygons makes it possible to compute a minimum
link path between two points in a polygon in O(n2) time.
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1. Introduction

A visibility problem is the task of computing what is visible to some observer
under given circumstances, or a problem derived from such a problem, for
instance determining the circumstances where the visibility of the observer
satisfies some properties. The core of a visibility problem is to find the prin-
ciples determining what is visible and what is not, and to efficiently use those
principles to compute the visible parts of the surroundings of the observer.
A real-world observer does not have to bother about such principles, as it
is indeed solved by nature what he can see and what he cannot. It is clear
that visibility problems are important in many practical applications, for
instance in computer graphics, computer-aided design, and robotics. Vis-
ibility problems belong to the field of computational geometry and there
have been made extensive research on a plethora of different problems. We
are only concerned with two-dimensional visibility problems. The book by
Gosh [15] gives a good overview of the most important problems and results
in the area. The perhaps most famous visibility problem is the art gallery
problem. In its simplest form, it is the task of placing a minimum number
of stationary guards in a room with the shape of a simple polygon so that
each point in the room can be seen by at least one guard. The book by
O’Rourke [21] is a good introduction to a lot of variants of the problem.

1.1. The constant-workspace random-access model

Most of the algorithms developed for visibility problems are for the random-
access model with Ω(n) variables available, where n is the size of the input.
Here, we exclusively use the constant-workspace random-access model (or,
for brevity, the constant-workspace model). In this model, the input is stored
in a read-only array, but with random access, so that we can look up any
value in constant time given its index. The output is to be produced on a
write-only array in a stream-like manner, so that the storage cells of the array
receive their values in the order of the array. In addition to that, a workspace
consisting of only a constant number of variables is available—independent
on the size of the input, though the constant can be arbitrarily large. Many
problems become much more difficult to solve since it is extremely limited
what data structures one can make withO(1) variables. Ordinary algorithms
often construct linked lists, heaps, and search trees which facilitate fast
processing. Such data structures are not available in the constant-workspace
model. Instead, we need to be extremely careful to make a minimal number
of accesses to the input.

We assume that each variable can contain a pointer to a value in the input
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or a real number. We are aware that this assumption can be misused, since
arbitrarily much information can be coded in the digits of one real number.
Even though we cannot rigorously define when an algorithm makes illegal
use of the model, we are sure that the algorithms in this thesis are sound in
that sense. We assume that we can make comparisons between numbers and
have access the elementary operations addition, subtraction, multiplication,
and division in constant time. In Chapter 5, we also need the square-root
function in order to do various computations involving circles and circular
arcs. Those operations enable us to perform all elementary computations
on points, lines, and line segments such as finding the intersection point
between two lines, deciding if a point is to the right or to the left of an
oriented line etc., see for instance the book by Cormen et al. [12, Chapter
33].

When the result of some computation consists of more than O(1) values,
we report the result using several report statements, where the reported
values are to be written to the output array in the order in which they are
reported. Otherwise, we just use one return statement.

1.2. Motivation

Constant-workspace algorithms are known to complexity theorists as log-
space algorithms, since each variable takes up Θ(log n) bits, see for in-
stance the book by Savage [23, Section 3.9.3]. We prefer the term “constant
workspace” since it seems more intuitive to think of the number of available
variables than the number of available bits. With less than dlog(n + 1)e
bits in the workspace, one cannot make any computation involving all of
the input, since we cannot even store an index of one of the input values.
Therefore, the constant-workspace model is the random-access model with
the asymptotically smallest amount of memory that enables one to make
a computation where each value in the input is considered at some point
during the computation. The model may seem unnecessarily restrictive and
irrelevant since most of today’s computers have memory in abundance. How-
ever, we think it is a healthy and interesting exercise to investigate what one
can do with a minimum of memory. As we shall see in Chapter 2, it is in-
deed sometimes possible to make a constant-workspace algorithm solving
a problem in optimal time when the best previously known algorithm uses
Ω(n) variables. The constant-workspace model is in some sense a computer
analogy of dementia—the computer can only remember its own program
and a fixed number of variables, there is no room for new “impressions”.
We think that makes the model interesting in its own right.

It is common to consider the space-time tradeoff of a problem. That
means to establish upper and lower bounds of the space-time product ST ,
where S is the amount of space allowed and T is the required computation
time given S space [23, Chapter 10]. For many problems, bounds of the
space-time product independent on S for a whole range of different values of
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S have been established. For instance, Beame [8] showed that the problem of
sorting n numbers using comparisons requires ST = Ω(n2) for S = Ω(log n),
where S is measured in bits. Subsequently, Pagter and Rauhe [22] showed
that ST = O(n2) is also an upper bound whenever c1 log n ≤ S ≤ c2n/ log n
for some constants c1 and c2. Notice that the range of S is maximal since
any comparison-based sorting algorithm uses Ω(n log n) time [19, Section
5.3.1]. Recently, Asano et al. [3] gave a simpler memory-adjustable algorithm
reaching the same bound.

In order to understand the space-time tradeoff for some problem, we think
it is natural to start by considering algorithms in the extreme cases. For the
problems in this thesis, efficient algorithms using Θ(n) variables have long
been known, but the other extreme where we only use O(1) variables is still
to be investigated. In the rest of the thesis, the space complexities always
refer to the number of variables used, not the number of bits.

1.3. Related work

One of the best-known constant-workspace algorithms for a geometric prob-
lem is Jarvis’ march [17] for computing the convex hull of n points in the
plane in O(hn) time, where h is the number of points on the hull. Recently,
Asano et al. [2] and Asano et al. [4] gave constant-workspace algorithms solv-
ing many elementary tasks in planar computational geometry like reporting
triangulations of point sets and polygons, trapezoidations of polygons, find-
ing Euclidean minimum spanning trees of point sets, and computing the
shortest path between two points in a polygon. We give more detailed ref-
erences to related work in each of the chapters.

1.4. Overview of the rest of the thesis

In this thesis, we address some planar visibility problems which were previ-
ously unsolved in the constant-workspace model.

In Chapters 2, 3, and 4, we consider “ordinary” visibility, where one can
look from a point p to a point q if no object is on the line segment pq. In
Chapter 2, we give a new algorithm to compute the visible part of one edge
from another edge of a polygon. Imagine that a guard patrols back and
forth along a wall in a very complex art gallery. Our algorithm can compute
the part of another wall that the guard can see from his wall. The algorithm
runs in O(n) time and is thus optimal and superior to the already known
algorithms for this problem, since they use Ω(n) space. We made a paper
about the algorithm for The 25th Canadian Conference on Computational
Geometry, which was accepted. The paper is included in Appendix A.

The weak visibility polygon from some segment in a simple polygon is all
the points in the polygon which can be seen from some point on the segment,
i.e. the region visible to a guard patrolling along the segment. The edge-to-
edge-visibility algorithm of Chapter 2 enables us to devise an O(mn)-time
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algorithm to compute the weak visibility polygon in Chapter 3, where m is
the number of vertices of the weak visibility polygon.

Imagine that one has to place a minimum number of mirrors in a complex
room that enables an observer in a point s to see another point t. The posi-
tions of the mirrors define a minimum link path, which is a polygonal path
contained in the polygon connecting the two points such that the number of
line segments of the path is minimal. The algorithm for weak visibility poly-
gons of Chapter 3 leads to an O(n2)-time algorithm to compute a minimum
link path given in Chapter 4.

In Chapter 5, we consider circular visibility. Imagine that light moves
along circular arcs of all radii instead of straight lines, so that an object
is visible to the observer if a circular arc from the object to the observer
exists that does not interfere with other objects. How would the world look
like? We answer that question partially by giving a constant-workspace
algorithm to compute the circularly visible part of a polygon from a point.
The algorithm runs in O(n2) time, where n is the number of vertices of
the polygon. In Section 5.3, we round off the thesis by sketching how the
methods used to deal with circular visiblity can be used to compute what one
can hit with a canon in a two-dimensional vertical world with a boundary
shaped as a simple polygon. In Chapter 6 we sum up the results and give
some open problems and ideas for future work.

Whenever we do not state the origin of a result, we believe it to be our
own original work.

1.5. Notation and some basic definitions

See Figure 1(a). Given two points a and b in the plane, the line segment with
endpoints a and b is written ab. Both endpoints are included in segment
ab. If s is a line segment, the line containing s which is inifinite in both

directions is written ←→s . The half line
−→
ab is a line infinite in one direction,

starting at a and passing through b. The right half plane RHP(ab) is the

closed half plane with boundary
←→
ab lying to the right of ab. The left half

plane LHP(ab) is just RHP(ba).
Let V = {v0, v1, . . . , vn−1} be n ≥ 3 points in the plane and let E =

{v0v1, v1v2, . . . , vn−1v0} be the set of segments defined by neighbouring points
in V . Assume that (i) no two points in V are equal, (ii) no three points in
V are collinear, and (iii) if two segments in E do not share an endpoint,
they are disjoint. In that case, V is the vertices and E is the edges of a
simple polygon P. The edges in E makes a simple, closed curve, which is
the boundary of P. The boundary is also written ∂P. P is all the points on
the boundary and the points that the boundary encloses in its interior. We
might write polygon instead of simple polygon since we only consider simple
polygons in this thesis. The requirement (ii) to the vertex set V is that
no three vertices of P are collinear, which is a general position assumption.
The assumption makes definitions and algorithms more elegant, but can be
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−→
cd

c

d

LHP(cd)

←→
ab

a b

(a)

p

q

P(p, q)

(b)

Figure 1. (a) A segment ab (thick), and the doubly infinite line
←→
ab through a and b.

The half line
−→
cd and the half-plane LHP(cd) are also shown. Dashed lines indicate that

the lines continue to the infinite. (b) A polygon with points p and q on its boundary and
P(p, q) drawn with thick lines.

removed by introducing some special cases where it is used. The vertices of
a polygon are always given in CCW (counterclockwise) order, so that the
interior of P is on the left-hand side when traveling around ∂P in the order
of the vertices. Vertices with indices congruent modulo n are the same, so
that v0 = vn.

For two points p and q on ∂P, we let P(p, q) be the set of points on ∂P
we meet when traversing ∂P CCW from p to q, both included, see Figure
1(b). A chain of P is such a set P(p, q) for some p, q ∈ ∂P. We see that
P(p, q) ∪ P(q, p) = ∂P. A vertex v is a reflex vertex or a concave vertex if
the interior angle at v is more than 180◦. Otherwise, it is a convex vertex.
A chord ab of P is a line segment contained in P such that the endpoints a
and b are on ∂P.



2. Visibility Between Two Edges

Consider the edge v0v1 of a simple polygon P. A beam emanating from v0v1
is a segment pq where p ∈ v0v1 and pq is contained in P. We also say that
pq is emanating from p. A point q in P is visible from v0v1 if there exists a
beam pq emanating from v0v1. A right support is a reflex vertex v of P such
that v ∈ pq and the edges meeting at v are both contained in RHP(pq). A
left support is defined analogously. Since no beam emanates from a point to
the left of v0, we use the convention that v0 is a left support of any beam
v0q. Likewise, v1 is a right support of any beam v1q. A support is a right
support or a left support.

In this section, we present an O(n)-time algorithm to compute the visible
part of one edge vivi+1 from the edge v0v1 using constant workspace. The
algorithm is clearly asymptotically optimal even if we allow O(n) workspace.
Toussaint [27] devised a query algorithm to decide if one edge is visible
from another edge. The algorithm first computes a triangulation of P as
preproccessing and thus uses Ω(n) space. Hereafter, each query is answered
inO(n) time. We need to use Chazelle’s extremely complicated triangulation
algorithm [9] to make the algorithm of Toussaint run in O(n) time which
is very inefficient if only a few queries are made. Later, Avis et al. [5]
described an O(n)-time algorithm computing the visible part of one edge
from another needing no triangulation or other involved data structures, but
using Ω(n) space. Our algorithm is clearly significantly simpler and saves
a lot of memory. De et al. [13] claimed to present an O(n)-time algorithm
using constant workspace. However, their algorithm has a fault, as we shall
see.

The edge vivi+1 is totally facing the edge vjvj+1 if both of the points vj
and vj+1 are in LHP(vivi+1). Notice that vivi+1 can be totally facing vjvj+1

even though vjvj+1 is not visible from vivi+1. Edge vivi+1 is partially facing
vjvj+1 if excactly one of the points vj and vj+1 are in LHP(vivi+1) and not
facing vjvj+1 if none of the points are in LHP(vivi+1). We say that vivi+1

is facing vjvj+1 if vivi+1 is partially or totally facing vjvj+1. It follows from
the definitions that vivi+1 is either totally facing, partially facing or not
facing vjvj+1. That gives 9 different combinations of how vivi+1 is facing
vjvj+1 and how vjvj+1 is facing vivi+1. However, only 8 of the cases are
possible when vivi+1 and vjvj+1 are edges of a simple polygon, since they
cannot both partially face each other. That would imply that they intersect
each other properly. All of the remaining 8 cases are possible, see Figure 1
for an example of each.
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a

b
cd

e
f

g

h

i

Figure 1. A polygon realizing each possible combination of types of facing between two
edges: cd and fg are not facing each other. ab is partially facing de, de is not facing ab.
bc is totally facing de, de is not facing bc. hi is totally facing ef , ef is partially facing hi.
ia and ef are totally facing each other.

2.1. Point-to-point and point-to-edge visibility

If the edge vivi+1 is not facing edge v0v1, the only point on vivi+1 that can
be visible from v0v1 is one of the endpoints vi or vi+1. Likewise, if v0v1 is
not facing vivi+1, the only point on v0v1 that can possibly see vivi+1 is one
of the endpoints v0 or v1 by means of beams contained in RHP(v0v1). In
such cases, the problem of computing the visible part of vivi+1 is reduced
to point-to-point and point-to-edge visibility.

Point-to-point visibility is the problem of determining if ab is contained
in P given two points a and b in P. That can easily be tested in O(n) time
using constant workspace by traversing all of ∂P, seeing if ∂P crosses ab
somewhere.

Point-to-edge visibility is the slightly more complicated task of computing
the visible part of an edge from a point p ∈ P. Assume without loss of
generality that the edge is v0v1. We assume that p is not collinear with two
vertices of P. Since P is a simple polygon, the visible part of v0v1 is the
empty set, a segment, or possibly just a single point. If p /∈ LHP(v0v1), it is
only possible that v0 or v1 is visible from p, which can be determined with
point-to-point visibility. Therefore, we assume that p ∈ LHP(v0v1). See
Algorithm 1. The algorithm traverses ∂P once, finding the part of each of
the ends of v0v1 that is in the shadow of some other edges. The algorithm
has the invariant that at the end of iteration i, the visible part of v0v1 from
p with respect of the chain P(v1, vi+1) is ab. L and R are two indices of
vertices of P such that −−→pvL exits P at a and −−→pvR exists P at b. In line 5, we
have found an edge that makes more of the beginning of v0v1 invisible from
p, so we update L and a. Similarly, in line 11, we have found an edge that
makes more of the end of v0v1 invisible. Lines 6 and 12 test if the invisible
parts cover all of v0v1, in which case nothing is visible.
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Algorithm 1: PointToEdgeVisibility(p)

Input: A polygon P defined by its vertices v0, v1, . . . , vn−1 in CCW
order and a point p ∈ P. It is assumed that p ∈ LHP(v0v1).

Output: If no point of v0v1 is visible from p, NULL is returned.
Otherwise, ab is returned, where ab is the visible part of
v0v1, a ∈ v0b and b ∈ av1.

1 L← 0, R← 1
2 a← v0, b← v1
3 i← 1
4 while i < n
5 if vivi+1 crosses ap from left to right
6 if vi+1 ∈ RHP(bp)
7 return NULL

8 else
9 L← i+ 1

10 Let a be the intersection point between v0v1 and −−−→pvi+1

11 if vivi+1 crosses bp from right to left
12 if vi+1 ∈ LHP(ap)
13 return NULL

14 else
15 R← i+ 1
16 Let b be the intersection point between v0v1 and −−−→pvi+1

17 i← i+ 1

18 return ab

We now turn our attention to the more interesting case of computing
the visible part of vivi+1 from v0v1 if the edges are facing each other. We
motivate the development of a new algorithm by giving a counterexample to
the constant-workspace algorithm of De et al. [13]. The authors are aware
of the error [20]. The reader who has not consulted their paper can skip this
section.

2.2. Counterexample to the algorithm proposed by De et al. [13]

The textual description and the pseudocode in the paper of De et al. [13]
does not agree. Figure 2 is an example of a polygon where the algorithm
computes a wrong result in both cases. After PASS1 (), the line L is still
pi+1pj+1. After PASS2 (), L is θpj+1. The text says that PASS3 () is to check
if a vertex on P(pj+1, pi) is to the right of L. No one is, so the algorithm
returns that the rightmost visible point on pjpj+1 from pipi+1 is pj+1, which
is wrong. The pseudocode gives another definition of PASS3 (), according
to which we also check if a vertex on P(pi+1, pj) is to the left of L. Vertex v
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pi pi+1

pjpj+1

θ

v

Figure 2. The algorithm from [13] reports the wrong visible part of pjpj+1 from pipi+1

in this polygon.

is, so the algorithm reports that nothing of pjpj+1 is visible. That is clearly
also wrong.

2.3. Computing visibility between edges facing each other

Assume for the rest of this section that the edges v0v1 and vivi+1 are facing
each other. We want to compute the part of vivi+1 containing vi+1 that is
not visible from v0v1. The main idea is to consider the edges in the right
side chain P(v1, vi) and the left side chain P(vi+1, v0) alternately, changing
side after each edge. When an edge in one side is found that causes more
of vivi+1 to be invisible from v0v1, we retract the search in the other chain
to the last interfering edge in that chain. This will be made more precise in
the following.

Let � = �v0v1vivi+1 be the quadrilateral with vertices v0v1vivi+1 in that
order. The possible beams from v0v1 to vivi+1 are all contained in �, so
when computing the visible part of vivi+1, we are only concerned about
the edges of P that are (partially) in �. A beam pq is a proper beam if
pq ⊂ LHP(v0v1) and pq ⊂ LHP(vivi+1). An improper beam is a beam that
is not proper. Each beam pq where p is an interior point on v0v1 and q is an
interior point on vivi+1 is necessarily proper. Therefore, if pq is improper,
p = v0, p = v1, q = vi, or q = vi+1. The visibility due to improper beams
can be computed using point-to-edge visibility, so in this section, we focus
on the visibility due to proper beams only.

Lemma 1. Let vR ∈ P(v1, vi) ∩� and vL ∈ P(vi+1, v0) ∩�. Every proper
beam pq from v0v1 to vivi+1 satisfies p ∈ LHP(vRvL) and q ∈ RHP(vRvL).
In particular, if v0v1 ∩LHP(vRvL) = ∅ or vivi+1 ∩RHP(vRvL) = ∅, then no
proper beam from v0v1 to vivi+1 exists.

Proof. Consider the continuous curve γ consisting of P(v1, vR), vRvL and
P(vi+1, vL), see Figure 3(a). γ is not necessarily simple, since the chains
P(v1, vR) and P(vi+1, vL) might intersect vRvL, but that doesn’t matter for
this proof. γ divides P into at least two regions, one to the left of vRvL
containing v0v1 and one to the right containing vivi+1. Therefore, a proper
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v0 v1

vivi+1

vR

vL

p

q

p′

q′

(a)

v0 v1

vi−1

vi, q
′, vR

vi+1

vL

p′

(b)

Figure 3. Illustrations for Lemma 1. (a) The curve γ is drawn with thick lines. (b) If
p′ /∈ LHP(vRvL), the beam p′q′ is improper.

beam p′q′ must cross γ to get from v0v1 to vivi+1. Since p′q′ does not
intersect P(v1, vi) or P(vi+1, v0), it intersects γ only at a point on vRvL.
If p′ /∈ LHP(vRvL), p′q′ must hit vRvL at vR or vL. Assume it is vR, the

situation is showed in Figure 3(b). The line
−→
p′q′ continues in LHP(vRvL)

after vR and cannot hit vivi+1 there, so we must have q′ = vi = vR. The four
segments q′p′, vivi−1, vivi+1, and vRvL all start at vi, and they appear in that
CCW order. Therefore, since p′q′ ∈ RHP(vRvL), also vivi+1 ∈ RHP(vRvL),
so p′ /∈ LHP(vivi+1). Hence, p′q′ is not a proper beam. The case where p′q′

hits vL and the case where q′ /∈ RHP(vRvL) can be handled similarly.
Therefore, if p′q′ is a proper beam, p′ ∈ LHP(vRvL) and q′ ∈ RHP(vRvL).

2

Assume that there are some proper beams from v0v1 to vivi+1. We say
that the beam pq is the rightmost beam from v0v1 to vivi+1 if p is as close
to v1 as possible and q is as close to vi+1 as possible among all proper
beams. Similarly, pq is the leftmost beam from v0v1 to vivi+1 if p is as close
to v0 as possible and q is as close to vi as possible. If v0v1 and vivi+1 are
totally facing each other, all beams from v0v1 to vivi+1 are proper, so the
visible part of vivi+1 is the points between the endpoints of the leftmost
and rightmost beams. If one of the edges is only partially facing the other,
the visible part of vivi+1 can be computed using the leftmost and rightmost
beams in combination with point-to-edge visibility.

If pq is a beam from v0v1 to vivi+1, a generalized left support of pq is
vi+1 if q = vi+1 or a left support of pq otherwise. The following lemma
characterizes rightmost beams by means of their supports.

Lemma 2. Let pq be a proper beam from v0v1 to vivi+1. The beam pq is
a rightmost beam if and only if pq has a right support vR and a generalized
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left support vL and vL ∈ vRq.
Proof. If pq does not have any supports, we can choose p to be closer to
v1, so pq is no rightmost beam. If pq has a generalized left support vL, but
no right support on pvL, we can turn pq CCW around vL to get a proper
beam from a point closer to v1 to a point closer to vi+1. The same is true if
pq has a right support vR but no generalized left support on vRq.

It is also clear that if pq has a right support vR and a generalized left
support vL, every other segment p′q′ from pv1 to qvi+1 crosses ∂P, so p′q′ is
not a beam. Therefore, pq is a rightmost beam. 2

If the edges v0v1 and vivi+1 are totally facing each other and no edge
obstructs the visibility between the edges, then the rightmost beam is pq =
v1vi+1 and it has supports vR = v1 and vL = vi+1.

Algorithm 2 returns the indices (R,L) of the supports of the rightmost
beam if it exists. See Figure 7 for an example of how the variables change
when running the algorithm on a concrete example. The algorithm itera-
tively computes the correct value of R and L, taking the edges into consid-
eration one by one. Initially, R is set to 1 and L is set to i+1, as if no edges
obstructs the visibility between the edges. The points p and q on v0v1 and
vivi+1, respectively, are always defined such that the segment pq contains
vR and vL. The algorithm alternately traverses P(v1, vi) and P(vi+1, vn)
one edge at a time using the index variables r and l. The variable side is 1
when an edge in P(v1, vi) is traversed and −1 when an edge in P(vi+1, vn)
is traversed. Each time an edge vr−1vr or vl−1vl is found that crosses pq,
the value of R or L is updated to r or l, respectively. If the value of R is
updated, we reset l to L, since it is possible that there are some edges on
P(vL, vn) that did not intersect the old segment pq, but intersect the up-
dated one. Likewise, when L is updated, we reset r to R. Although segment
pq is changed when R or L is updated, P(v1, vR) or P(vi+1, vL) does not
cross pq after the update because pq is rotated CW away from the chains.

All our figures illustrate the case where v0v1 and vivi+1 are totally facing
each other, but that assumption is not used in any of the proofs. If vivi+1

is partially facing v0v1 such that v0 ∈ LHP(vivi+1), then vi might be the
right support of the rightmost beam from v0v1 to vivi+1. Likewise, if v0v1 is
partially facing vivi+1 such that vi ∈ LHP(v0v1), v0 can be the left support
of the rightmost beam.

Lemma 3. Assume that Algorithm 2 terminates after k iterations of the
loop at line 5. Let Rj, Lj, pj, and qj be the values of R, L, p, and q,
respectively, at the beginning of iteration j, j = 1, 2, . . . , k + 1, where the
values when the algorithm terminates have index k+ 1. Then Rj = Rj+1 or
Lj = Lj+1 for j = 1, . . . , k. p1, p2, . . . , pk+1 is a sequence of points moving
monotonically along v0v1 from v1 towards v0. Likewise, q1, q2, . . . , qk+1 is a
sequence of points moving monotonically along vivi+1 from vi+1 towards vi.

Let aj be the CW angle from ←−−−−−−→vRj−1vLj−1 to ←−−→vRjvLj . Then
∑k+1

j=2 aj < 180◦.
In particular, aj < 180◦ for each 2 = 1, . . . , k + 1.

Proof. See Figure 4. It is clear that at most one of R and L changes in
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Algorithm 2: FindRightmostBeam(i)

Input: A polygon P defined by its vertices v0, v1, . . . , vn−1 in CCW
order and an index i such that v0v1 and vivi+1 are facing each
other.

Output: If no proper beam from v0v1 to vivi+1 exists, NULL is
returned. Otherwise, a pair of indices (R,L) is returned such
that the rightmost beam from v0v1 to vivi+1 has right
support vR and generalized left support vL.

1 R← 1, L← i+ 1
2 r ← R, l← L
3 p← v1, q ← vi+1

4 side← 1 (∗ 1 is right side, −1 is left side ∗)
5 while r < i or l < n
6 if side = 1
7 if r < i
8 r ← r + 1
9 if vr−1vr enters LHP(pq) ∩�

10 if vr−1vr intersects vLq
11 return NULL

12 R← r, l← L

13 else (∗ side = −1 ∗)
14 if l < n
15 l← l + 1
16 if vl−1vl enters RHP(pq) ∩�
17 if vl−1vl intersects vRp
18 return NULL

19 L← l, r ← R

20 Let p be the intersection point between −−−→vLvR and v0v1
21 Let q be the intersection point between −−−→vRvL and vivi+1

22 if p or q does not exist
23 return NULL

24 side← −side
25 if pq ⊂ LHP(v0v1) ∩ LHP(vivi+1)
26 return (R,L)

27 else
28 return NULL

iteration j, since the lines 12 and 19 cannot both be executed. There-
fore, Rj = Rj+1 or Lj = Lj+1. If R is redefined in iteration j, then←−→vRvL is rotating around vL and the new value of R, namely Rj+1, satis-
fies vRj+1 ∈ LHP(vRjvLj ). Therefore, pj+1 is on the segment v0pj and qj+1
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is on the segment qjvi. The same is true if L is updated. Hence, p1, . . . , pk+1

is monotinically moving along v0v1 from v1 towards v0 and q1, . . . , qk+1 is
monotonically moving along vivi+1 from vi+1 towards vi. Because of the
monotonicity, the angles are additive, so that the CW angle from ←−−−→vR1vL1 to
←−−−−−−→vRk+1

vLk+1
is
∑k+1

j=2 aj . Since v0v1 and vivi+1 are facing each other, at least
one of them is totally facing the other. If v0v1 is totally facing vivi+1, every
qj is contained in LHP(v0v1). Otherwise vivi+1 is totally facing v0v1 so that

every pj is contained in LHP(vivi+1). In either case,
∑k+1

j=2 aj is bounded
by 180◦. That bound cannot be reached, since it would require that v0v1 or
vivi+1 was infinitely long in both directions. 2

v0
v1, p1, p7

p16p18p25

vi+1, q1
vi

q7 q16 q18 q25

a7
a18a16

a25

Figure 4. Illustration for Lemma 3. The points pj , qj are shown with the number j of
the first iteration where they occur. The segments pjqj are drawn dashed. The angles
aj > 0 are indicated with grey arcs. The polygon is the same as the one in Figure 7.

Lemma 4. Algorithm 2 correctly computes the rightmost beam from v0v1 to
vivi+1 as specified. The algorithm is a constant-workspace algorithm.

Proof. First, consider the cases where the algorithm returns NULL. In line
11, we have found an intersection point x between P(vR, vi) and vLq. That
means that P(v1, vi) intersects pq properly at x, since no three vertices are
collinear. Lemma 1 establishes that the only possible proper beams from
v0v1 to vivi+1 are of the form p′q′, where p′ ∈ v0p and q′ ∈ qvi. At the same
time, if we use Lemma 1 with v0v1 and vivi+1 interchanged by each other
and using x as ‘vL’ and vL as ‘vR’, we get that p′q′ satisfies p′ ∈ pv1 and
q′ ∈ vi+1q. Therefore, p′ = p and q′ = q, but pq is not a beam. Hence, there
are no proper beams from v0v1 to vivi+1. The case in line 18 is analogous.

Due to Lemma 3, we know that p is moving monotonically from v1 towards
v0 and q is moving monotonically from vi+1 towards vi. The case of line 23
happens if p has moved outside v0v1, so that v0v1 ∩ LHP(vRvL) = ∅, or q
has moved outside vivi+1, so that vivi+1 ∩RHP(vRvL) = ∅. In each of these
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v0
v1

vivi+1

vR

vL

p

q

x

y

Figure 5. Case 2 in the proof of Theorem 4.

cases, it follows from Lemma 1 that there are no proper beams from v0v1 to
vivi+1.

The test at line 25 is to ensure that pq is a proper beam, which is not
always the case if v0v1 is only partially facing vivi+1.

Now, assume that the algorithm returns (R,L), but that pq is not a
beam since some edge obstructs the visibility from p to q. Assume that
P(v1, vi) intersects pq properly, and let x be the intersection point closest to
p. P(v1, vi) enters LHP(pq)∩� at x. Let y be the first point where P(x, vi)
crosses pq from left to right. Then y ∈ xq. We have two cases: x ∈ P(v1, vR)
(case 1) and x ∈ P(vR, vi) (case 2). Assume that we are in case 2, see Figure
5. Assume that the final value of R is defined in a later iteration of the loop
at line 5 than the final value of L. After R is defined in line 12, every edge
vr−1vr in P(vR, vi) is traversed and it is checked in line 10 if some edge
intersects pq. In particular the edges in P(x, y) are traversed, in which case
the algorithm either returns NULL or updates R, which is a contradiction.
If R is defined in an earlier iteration than L, then r is reset to R in line 19
when L is defined, and it is checked if some edge in P(vR, vi) intersects pq,
so that cannot happen either.

Assume that we are in case 1, i.e. x ∈ P(v1, vR). Consider the first
iteration, say iteration j, at the beginning of which P(v1, vR) intersects pq
properly, and let x′ be the intersection point closest to p. Let y′ be the
first point where P(x′, vi) crosses pq from left to right. Then y′ ∈ x′q (x′

and y′ might not be the same as x and y, since R and L can change before
the algorithm terminates). We must have vR ∈ P(y′, vi). There are three
possible cases to consider: vR ∈ px′ (case 1.1), vR ∈ x′y′ (case 1.2), and
vR ∈ y′q (case 1.3).

Assume case 1.3. Let Rk, Lk, pk, and qk be defined as in Lemma 3 for each
iteration k. Either R or L is redefined in iteration j−1 due to the minimality
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v0
v1

vivi+1

vRj

vLj , vLj−1

pj

qj

x′

y′

vRj−1

pj−1

qj−1

(a)

v0 v1

vivi+1

vRj , vRj−1

vLj

pj

qj

x′

y′

vLj−1

pj−1

qj−1

(b)

Figure 6. Cases in the proof of Theorem 4. (a) Case 1.3.1.3. (b) Case 1.3.2.

of j. Therefore, Rj−1 6= Rj or Lj−1 6= Lj (case 1.3.1 and 1.3.2, respectively).
First, assume Rj−1 6= Rj but Lj−1 = Lj . Again, there are three cases to
consider: vRj−1 ∈ P(v1, x

′) (case 1.3.1.1), vRj−1 ∈ P(x′, y′) (case 1.3.1.2),
and vRj−1 ∈ P(y′, vRj ) (case 1.3.1.3). Assume case 1.3.1.3, see Figure 6(a).
According to Lemma 3, the CW angle between ←−−−−−−→vRj−1vLj−1 and ←−−→vRjvLj is
less than 180◦. Therefore, a subset of P(x′, y′) would also be contained in
LHP(vRj−1vLj−1) ∩�. That implies that P(v1, vRj−1) intersects pj−1qj−1, a
contradiction because of the choice of j. vRj−1 cannot be in P(x′, y′) (case
1.3.1.2), because then vRj would be in RHP(vRj−1vLj−1), so R would not
have been redefined to Rj in iteration j−1. Finally, if vRj−1 was a vertex in
P(v1, x

′) (case 1.3.1.1), P(x′, y′) would be contained in LHP(vRj−1vLj−1)∩�,
and therefore vR would be redefined to a vertex in P(x′y′) when the edges
of that chain was traversed. Hence, vR would not be redefined to vRj in
iteration j − 1, which is a contradiction.

Now, assume Lj−1 6= Lj (case 1.3.2), see Figure 6(b). The CW angle
between ←−−−−−−→vRj−1vLj−1 and ←−−→vRjvLj is less than 180◦. Therefore, a part of
P(x′, y′) is also in LHP(vRj−1vLj−1). That implies that P(v1, vRj−1) in-
tersects pj−1qj−1, which contradicts the choice of j.

The case where vR ∈ x′y′ (case 1.2) can be eliminated in a similar way.
Consider case 1.1, i.e. vR ∈ px′. The chain P(p, x′) and the segment x′p
forms a simple, closed curve, because x′ is the intersection point between
P(v1, vi) and pq closest to p. The curve can, for instance, be seen in Figure
6(a). Consider the region of P enclosed by the curve. In order to get to vR,
P(y′, vi) has to cross x′p to get into the region. That contradicts that x′

was the intersection point closest to p.

If we assume that P(vi+1, vn) intersects pq, we get a contradiction in an



16

analogous way.
The conclusion is that if (R,L) is returned, vR and vL defines a proper

beam pq with right support vR and generalized left support vL in that order.
Therefore, pq must be the rightmost beam from v0v1 to vivi+1 according to
Lemma 2.

Observe that the vertices of P are not altered. Hence the input is read
only. In addition to that, we only use the variables R, L, r, l, p, q, and side.
The computations of intersections and containment at lines 9, 10, 16, 17,
20, 21, and 25 are easily implemented using constant workspace. 2

Even though we reset l to L in line 12 or r to R in line 19, the running
time is linear since the other variable is not reset, so half of the traversed
edges are never traversed again, as the following lemma explains.

Lemma 5. There are at most 2n − 6 iterations of the loop at line 5 of
Algorithm 2.

Proof. Let N(n) be the maximal number of edge visits for a polygon with
n vertices. Consider the first time line 12 or 19 is executed. Assume it is line
12. There have been made 2(r−1)−1 < 2(r−1) iterations, because P(v1, vi)
is traversed every second time, beginning with the first. The r − 1 edges in
P(v1, vr) are never traversed again. Therefore, N satisifies the recurrence
N(n) ≤ 2k + N(n − k), where k = r − 1. A similar bound holds for some
k ≥ 1 if line 19 is executed first. We know that N(4) = 2, so induction
yields that N(n) ≤ 2n− 6 is an upper bound. 2

It is clear that an algorithm to compute a leftmost beam from v0v1 to
vivi+1 can be constructed symmetrically. As mentioned before, the right-
most and leftmost beams are only sufficient to find the visible part of vivi+1

if v0v1 and vivi+1 are totally facing each other. Otherwise, we can compute
the visible part by taking the union of the interval on vivi+1 between the
leftmost and rightmost beams and the result of point-to-point and point-to-
edge visibility computed from the endpoints of the edges. That gives us the
following theorem:

Theorem 1. The visible part of an edge vivi+1 from v0v1 in a simple polygon
can be computed in O(n) time using constant workspace.

Interestingly, as we shall see in the next section, we only need the method
FindRightmostBeam and not its symmetrical counterpart FindLeftmostBeam
in order to report the boundary of the weak visibility polygon WVP(v0v1),
consisting of all the points that can be seen from v0v1.
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v0
v1, p1, p7

p16p18p25

v13, q1
v12

q7 q16 q18 q25

v6

v7

v16

v21

(a)

Iteration side r R l L

1 1 1 1 13 13
2 -1 2 1 13 13
3 1 2 1 14 13
4 -1 3 1 14 13
5 1 3 1 15 13
6 -1 4 1 15 13
7 1 1 1 16 16
8 -1 2 1 16 16
9 1 2 1 17 16

10 -1 3 1 17 16
11 1 3 1 18 16
12 -1 4 1 18 16
13 1 4 1 19 16
14 -1 5 1 19 16
15 1 5 1 20 16
16 -1 6 6 16 16
17 1 6 6 17 16
18 -1 7 7 16 16

Iteration side r R l L

17 1 7 7 17 16
18 -1 8 7 17 16
19 1 8 7 18 16
20 -1 9 7 18 16
21 1 9 7 19 16
22 -1 10 7 19 16
23 1 10 7 20 16
24 -1 11 7 20 16
25 1 7 7 21 21
26 -1 8 7 21 21
27 1 8 7 22 21
28 -1 9 7 22 21
29 1 9 7 23 21
30 -1 10 7 23 21
31 1 10 7 24 21
32 -1 11 7 24 21
33 1 11 7 25 21
34 -1 12 7 25 21

(b)

Figure 7. Example showing how Algorithm 2 is working when finding the leftmost beam
from v0v1 to v12v13 in the shown polygon. The values of pj and qj as defined in Lemma
3 are also shown. The value of each variable in the beginning of each iteration is listed in
the table (b).



3. The Weak Visibility Polygon

Consider a segment s = ab in a simple polygon P. Visibility from s is
a natural generalization of visibility from an edge of P. We also define
beams emanating from s and supports of the beams analogously. The weak
visibility polygon WVP(s) is the set of all points in P visible from s.1 See
Figure 1. When P and s are clear from the context, we writeWV for brevity.
Intuitively, one can think of WV as the area in P that is visible to some
guard patrolling back and forth on s, or the part of P that is enlightened if
s emits light like a fluorescent tube lamp.

It is well known that WV is a polygon [6]. A beam pq is maximal if−→pq leaves P at q. The boundary of WV consists of chains of P and chords
connecting the chains. The chords separateWV from regions of P not visible
from s. Such regions are called pockets of WV and the chords are doors.
Each door vq is the last part of a unique maximal beam pq. If a pocket is to
the left of the beam containing its door, it is a left pocket. Otherwise, its a
right pocket. At most two doors have an endpoint on a given edge of P. If n
and m denote the number of vertices of P and WV, respectively, it follows
that m = O(n).

1 The reason that we use the word ‘weak’ is that there are other natural definitions of
visibility from a segment, namely ‘strong’ and ‘complete’ visibility. We refer to Avis and
Toussaint [6] for the details.

b
a

q

p

vR

vL

Figure 1. The weak visibility polygon WV of the segment ab. The beams containing
doors are drawn with dashed lines. The grey areas are the pockets. The beam pq has
right support vR and left support vL, and vLq is the door to a left pocket.
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Figure 2. Illustrations for the proof of Lemma 6, where s = ab. (a) When there is no
right support before vL on beam pq, vLq is no door. (b) A beam hitting a point to the
left of vLq does not exist.

The following lemma characterizes the beams containing a door.

Lemma 6. Let pq be a maximal beam emanating from a segment s.

(1) pq contains a door vLq to a left pocket if and only if pq has a right
support vR and a left support vL in that order following pq from p.

(2) pq contains a door vRq to a right pocket if and only if pq has a left
support vL and a right support vR in that order following pq from p.

Proof. We prove (1); the case (2) follows analogously. If pq has no supports,
there exist beams containing all points in a neighborhood around pq, so pq
does not contain a door. If pq has left support vL but no right support
before vL, there exists beams containing all points in a neighborhood to the
left of vLq, so there cannot be a door to a left pocket on pq, see Figure 2(a).
The same is true if pq has a right support vR but no left support after vR.

Now assume that pq has supports vR and vL as defined in the lemma.
See Figure 2(b). Assume that some point q′ to the left of vLq is visible
from s. Let p′q′ be a beam from s to q′. The segment vLq divides P into
two regions, one containing p′ and one containing q′. The beam p′q′ is a
continuous curve from p′ to q′, so it intersects vLq at some point r. Also,
the segment vRvL divides P into a region containing p′ and one containing
q′, so p′q′ must intersect vRvL at some point t. Since the beams pq and p′q′

share two points t and r, they must be on the same line, so no point to the
left of vLq is visible from s. Therefore, vLq is a door to a left pocket. 2

The vertices of WV are either vertices of P visible from s or endpoints of
beams containing a door. Hence, the following lemma clearly follows from
Lemma 6:

Lemma 7. A point q is a vertex of WVP(s) if and only if one of the fol-
lowing three properties holds:

(1) q is a vertex of P visible from s.

(2) There is a maximal beam pq with a right support vR and a left support
vL in that order following pq from p.
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(3) There is a maximal beam pq with a left support vL and a right support
vR in that order following pq from p.

Guibas et al. [16] presented an O(n)-time algorithm to compute the weak
visibility polygon from an edge of P if a triangulation of P was provided,
where n is the number of vertices of P. Later, Chazelle [9] described an
O(n) time deterministic triangulation algorithm, implying that WV can be
computed in O(n) time using O(n) space. We present an O(mn) algorithm
using constant workspace, where m is the number of edges of WV. As is
mentioned before, m = O(n), so the algorithm runs in time O(n2).

3.1. Computing the weak visibility polygon from an edge

We show how to compute WVP(v0v1) given that the vertices v0 and v1
are both convex. Under that assumption, the weak visibility polygon is a
subset of LHP(v0v1), so that we do not need to consider the visible part of
P in RHP(v0v1) from the endpoints v0 and v1. We eventually show how
to remove that assumption and how to generalize the method to computing
WVP(ab) for an arbitrary segment ab in P. The following lemmas lead to
the desired algorithm.

Lemma 8. Assume that v0 and v1 are convex vertices and that q1q2 is the
visible part of an edge vivi+1, q1 6= q2 and q1 ∈ viq2. Then the rightmost
beam from v0v1 to vivi+1 has the form pq2, p ∈ v0v1.

Proof. Since v0 and v1 are convex, a point q on an edge vivi+1 where
q ∈ RHP(v0v1) is not visible, because vn−1v0 obstructs the visibilty from v0
and v1v2 obstructs the visibilty from v1 to all points in RHP(v0v1). Hence
all beams from v0v1 to vivi+1 are contained in LHP(v0v1). Since q1 6= q2,
the visible part of vivi+1 is not just an endpoint. Therefore, there must be
beams contained in LHP(vivi+1) to all the points on the segment q1q2. In
particular, there is a proper beam ending at q2, so the rightmost beam is on
the form pq2. 2

Lemma 8 argues for the existence of the rightmost beam pq2 in the fol-
lowing lemma.

Lemma 9. Assume that v0 and v1 are convex vertices and that WV =
WVP(v0v1) has an edge q1q2 ⊆ vivi+1 where q1 ∈ viq2. Let pq2 be the
rightmost beam from v0v1 to vivi+1 and let vR and vL be its right support
and generalized left support, respectively. Let s be the point on v0v1 closest
to v0 that can see q2.

(1) If L = i + 1 and s ∈ LHP(vi+1vi+2), the edge following q1q2 = q1vi+1

CCW on ∂WV has the form vi+1u ⊆ vi+1vi+2.

(2) If L = i + 1 and s /∈ LHP(vi+1vi+2), let x be the point where −−−→svi+1

exits P and let vjvj+1 be the edge containing x. The edge following
q1q2 = q1vi+1 CCW on ∂WV is vi+1x and then an edge on the form
xu ⊂ vjvj+1 follows.

(3) If L 6= i + 1, the edge following q1q2 CCW on ∂WV is q2vL and then
an edge on the form vLu ⊆ vLvL+1 follows.
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Figure 3. The three cases of Lemma 9. (a) Case (1). (b) Case (2). (c) Case (3).

Proof. Figure 3 illustrates each of the cases. Consider case (1). Since L =
i+ 1, vertex vi+1 is visible from s. It is also given that s ∈ LHP(vi+1vi+2),
so a portion vi+1u of vi+1vi+2 must be visible from sv1. The edge vi+1u is
therefore the edge following q1vi+1 on ∂WV.

Consider case (2). Since s is the point closest to v0 that can see vi+1, the
beam svi+1 has a left support vT . Therefore, the maximal beam sx has a
left support vT and a right support vi+1. Hence vi+1x is a door to a right
pocket according to Lemma 6. It follows that vi+1x is the edge after q1vi+1

on ∂WV, and that the edge following that has the form xu ⊂ vjvj+1.

Consider case (3). According to Lemma 6, the segment q2vL is a door to
a left pocket. Therefore, the edge following q1q2 on ∂WV is q2vL, and then
follows an edge of the form vLu ⊆ vLvL+1. 2
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Algorithm 3 reports WVP(v0v1) using the characterisation of Lemma 9.
The correctness follows immediately.

Algorithm 3: Report WVP(v0v1)

Input: A polygon P defined by its vertices v0, v1, . . . , vn−1 in CCW
order. The vertices v0 and v1 are convex.

Output: The vertices of WVP(v0v1) starting with v0 are reported.
1 report v0
2 report v1
3 i← 1
4 while i < n− 1
5 (R,L)← FindRightmostBeam(i)
6 if L = i+ 1
7 report vi+1

8 Let s be the point on v0v1 closest to v0 that can see vi+1

9 if s ∈ LHP(vi+1vi+2)
10 i← i+ 1
11 else
12 Let x be the point where −−−→svi+1 exits P and let vivi+1 be the

edge containing x
13 report x

14 else
15 Let q be the intersection point between vivi+1 and −−−→vRvL
16 report q
17 report vL
18 i← L

Theorem 2. Algorithm 3 can be implemented using constant workspace so
that it runs in O(mn) time, where m is the number of vertices of WV.

Proof. Each call of line 5 takes O(n) time according to Theorem 5. Line
8 can be implemented as point-to-edge visibility by computing the visible
part of v0v1 from vi+1. Line 12 also takes O(n) time, since we need to find
the first edge intersecting −−−→svi+1 properly. In total, we use O(n) time on
each iteration of the loop at line 4. In each iteration, we report one or two
vertices. Therefore, the algorithm runs in O(mn) time. 2

3.2. Generalizing the method to arbitrary segments

Consider the task of computing WVP(ab) for an arbitrary segment ab in P.

We assume that no vertex of P is on the line
←→
ab . We leave it to the reader

to consider the case where there is a vertex on
←→
ab , in particular the case

where a or b is a vertex. Let a′b′ be the maximal chord containing ab such

that
−→
ab leaves P at b′ and

−→
ba leaves P at a′. Assume that a′ is on edge
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Figure 4. Computing WVP(ab) by splitting P into two pieces.

vivi+1 and b′ is on vjvj+1, 0 ≤ i < j ≤ n − 1, see Figure 4. We make a
modification P ′ of P in the following way: We cut the edge vivi+1 at a′ and
insert the edges a′a and aa′. Likewise, we cut vjvj+1 at b′ and insert b′b and
bb′. The segment ab is a chord in P ′, dividing it into two polygons P1 and
P2. In both P1 and P2, the four vertices a′, a, b, and b′ are collinear, but
after inspection, it is seen that Algorithm 3 can report the boundaries of
WVP1(ab) and WVP2(ab) correctly. Combining the two results and being
careful not to report unwanted vertices, we get a method for reporting the
boundary of WVP(ab).



4. Minimum Link Paths Between Two Points

Let two points s and t inside a simple polygon P be given. A link path from
s to t is a polygonal chain x0 · · ·xk such that x0 = s, xk = t, and xixi+1

is contained in P for each i = 0, . . . , k − 1. The link path is a minimum
link path if k is as small as possible, in which case k is the link distance
between s and t. Contrary to the shortest path between s and t inside P, a
minimum link path is not unique in general. One can think of the problem
of computing a minimum link path as the problem of placing as few mirrors
as possible that enables an observer at s to see t, namely one mirror at each
vertex xi, i = 1, . . . , k − 1. Suri [26] showed how to compute a minimum
link path using O(n) time if a triangulation of P is provided. Using the
very complicated triangulation algorithm of Chazelle [9], a minimum link
path can be computed from scratch in O(n) time and space. In this section,
we show how to compute a minimum link path using constant workspace in
O(n2) time.

Let d0 = ss be the degenerated segment consisting only of the point s
and let P0 = P. Consider the weak visibility polygon WV0 = WVP0(d0),
i.e., the set of points q such that sq ⊂ P. If t is contained in WV0, the
segment st is contained in P, and hence st is the unique minimal link path.
Otherwise, t is contained in some pocket P1 ⊂ P0 of WV0 with door d1. In
that case, the link distance must be larger than 1. In general, if t is in Pi
but not in WV i, t must be in a pocket Pi+1 of WV i with door di+1, and
we let WV i+1 = WVPi+1(di+1), see Figure 1. Thus, we have a sequence of
nested polygons

t ∈ Pk−1 ⊂ Pk−2 ⊂ . . . ⊂ P0 = P,
and a sequence of weak visibility polygons

WV i ⊂ Pi, i = 0, . . . , k − 1,

where WV i has door di+1 to the pocket Pi+1. Therefore, di+1 is a common
edge on the boundaries of WV i and WV i+1. There is a unique beam piqi
emanating from di that contains di+1 because di+1 is a door to a pocket of
WV i, see Lemma 6. Choose pk−1 such that pk−1t is a beam from dk−1 and
let pk = t. The following result is due to Suri [26].

Lemma 10. The path p0p1 · · · pk is a minimum link path.

Proof. We first notice that each of the segments pipi+1 is contained in
P, since pi+1 ∈ di+1 and pi is the starting point of the unique beam piqi
emanating from di that contains di+1. It remains to prove that k is minimal.

Consider a minimal link path X = x0x1 · · ·xl from s to t. Since p0p1 · · · pk
is a link path from s to t, we have l ≤ k. The path X must cross each of the
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s, d0, p0
t, p6

p1

p2

p3

p4

p5WV0

WV1

WV2 WV3

WV4

WV5
d1

d2

d3

d4

d5

Figure 1. The construction of a minimum link path p0p1 . . . p6 from s to t. The doors
on the boundaries of weak visibility polygons are drawn with dashed lines.

doors d1, . . . , dk−1, since each of them divides P into one part containing
s and one containing t. A segment xixi+1 crossing door dj ends in WVj
because WVj contains all points visible from dj . The segment x0x1 is con-
tained in WV0. Therefore, there are at least as many links on X as weak
visibility polygons WVj , j = 0, . . . , k − 1. Hence, l ≥ k and we conclude
that p0p1 · · · pk is indeed a minimum link path. 2

Algorithm 4 reports a minimum link path using the construction. The
variable P ′ stores the pocket in which t is currently known to be. The
variable d is the door of P ′.
Theorem 3. Algorithm 4 can be implemented so that it uses constant
workspace and O(n2) time.
Proof. The pocket P ′ can be stored using two values, namely the start-
and endpoint of the common boundary of P and P ′ in CCW order. The test
in the loop at line 3 can be decided by point-to-edge visibility in O(n) time
using constant workspace. In order to perform the test in line 5 in constant
time, we do the following precomputation inspired by Asano et al. [4]: We
let t′ be the point where the upward-going vertical half-line starting at t
exits P. t′ can be found in linear time using constant workspace. We store
the indices of the vertices that are the endpoints of the segment containing
t′ as well. That enables us to determine if t′ is on the boundary of the
pocket Q with door ab in constant time, since we know the indices of a and
b or the indices of the edges containing them. We can also in constant time
determine if ab intersects tt′. t is in Q if and only if t′ ∈ ∂Q and ab and tt′

do not intersect or t′ /∈ ∂Q and ab and tt′ do intersect, see Figure 2.
Let mi be the number of vertices of WV i, i = 0, . . . , k − 1. According

to Theorem 2, Algorithm 4 uses time
∑k−1

i=0 O(min). Since the boundaries
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Algorithm 4: Report a minimum link path from s to t

Input: A polygon P defined by its vertices v0, v1, . . . , vn−1 in CCW
order. Two points s and t inside P.

Output: A minimum link path p0p1 . . . pk from s to t.
1 d← ss (∗ a segment consisting of one point ∗)
2 P ′ ← P
3 while t is not visible from d
4 for each door ab reported while computing WVP ′(d)
5 if the pocket Q with door ab contains t
6 report the point on d from where the beam containing ab

starts
7 d← ab
8 P ′ ← Q
9 continue from the loop at line 3

10 report a point on d that can see t
11 report t

of the weak visibility polygons are disjoint except for one common edge
between WV i and WV i+1, we have that

∑k−1
i=0 mi = O(n), so the running

time is O(n2) in total. 2
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Figure 2. Figures showing how to decide in which pocket t is in Algorithm 4, assuming
that t is not visible from d. The door d divides the polygon into two, P ′ is on the right-
hand side of d. The visibility polygon WVP′(d) has two pockets. In each of these figures,
the grey area is the pocket Q considered in line 5 of the algorithm. t is in Q if and only
if t′ ∈ ∂Q and ab and tt′ do not intersect or t′ /∈ ∂Q and ab and tt′ do intersect. This is
the case in figures (b) and (c), respectively.



5. The Circular Visibility Region

5.1. The visibility polygon from a point in a simple polygon

One of the most fundamental visibility problems in the plane is to compute
the visibility polygon LVP(p) given a point p inside a simple polygon P. A
point q in P is linearly visible from p if the line segment pq is contained in
P. The visibility polygon LVP(p) is the set of all points in P linearly visible
from p, see Figure 1(a). When P and p are clear from the context, we might
omit them and just write LV.

It is well known that LV is a polygon, and that a vertex of LV is either
a vertex of P visible from p or an intersection point between an edge of P
and a line going through p [7]. The boundary of LV consists of chains of ∂P
and chords connecting the chains. Each chord d on ∂LV separates a region
Q ⊆ P from LV, so that no point in Q is visible from p. A pocket is such
a region Q, and the chord d is called the door to the pocket. A door has
the form rr′, where r is a reflex vertex of P and r′ is the point where −→pr
leaves P. A pocket is a left pocket if it is on the left-hand side of its door.
Otherwise, it is a right pocket.

The problem of computing LV was first described as the “hidden-line
problem” by Freeman and Loutrel in 1967 [14]. They gave an O(n2) algo-
rithm for the slightly more general problem where p is also allowed to be
outside P and n is the number of vertices of P. Joe and Simpson [18] de-
scribed an O(n)-time and -space algorithm. Barba et al. [7] recently devised
an output sensitive algorithm that computes the visibility polygon using
constant workspace in O(nd + n) time, where d is the number of doors of
LV.2 It is clear that d = O(n) since one of the endpoints of a door is a
reflex vertex of P. Actually, though the algorithm of Freeman and Loutrel
is not presented as a constant-workspace algorithm, the general strategy
of their algorithm closely resembles that of the algorithm of Barba et al.
An algorithm using O(log r) variables that runs in O(n log r) randomized
expected time or O(n log2 r) deterministic time, where r is the number of
reflex vertices of P, was also presented by Barba et al.

2 Actually, the authors claim the running time to be O(nd), but it is clear that the
algorithm uses Ω(n) time if d = 0, so the claimed bound is slightly incorrect.
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5.2. Computing the circular visibility region from a point in a
simple polygon

Circular visibility is defined analogously to linear visibility: q is circularly

visible from p if there exists a circular arc
_
pq from p to q contained in P,

the arc can be CW (clockwise) or CCW (counterclockwise). The arc
_
pq is

called a visibility arc. Notice that a circular arc
_
pq is not uniquely defined

from its notation, since there are infinitely many circular arcs going through

p and q. We merely use
_
pq as the name of an arc defined by the context. We

sometimes write
_
abc to denote the unique arc starting at a, going through

b, and ending at c.

A maximal visibility arc is a visibility arc
_
pq such that no visibility arc

_

pq′ exists where q 6= q′ and
_
pq is contained in

_

pq′. Hence, if
_
pq is a maximal

visibility arc, we know that
_
pq is a full circle or that q is on the boundary

of P. Since a line segment may be considered an arc of a circle with infinite
radius, q is circularly visible from p if it is linearly visible, but the opposite
is not true in general, since one can “look around corners” using circular
visibility.

We often have to find the maximal visibility arc
_
pq given a the start point

p and the center of the circle containing
_
pq, i.e. we want to find the point

q where the circle exits P when followed CW or CCW from p. The point q
is the first proper intersection point between ∂P and the circle. In order to
find intersection points between line segments and a circle, we need access to
the square-root function in O(1) time, since we need to solve second-order
equations.

The circular visibility region CVP(p) is the set of all points in P circularly
visible from p, see Figure 1(b). We write CV if P and p are clear from
the context. We see that the visibility polygon is a subset of the circular
visibility region, i.e. LV ⊆ CV.

We use the word ‘region’ and not ‘polygon’ since, as we shall see, the
boundary of the circular visibility region consists of line segments and cir-
cular arcs. Chou et al. [10] showed how to compute the circular visibility
region in O(n) time using an auxiliary data structure called a circular visi-
bility diagram of P. Chou and Woo [11] showed how to compute the circular
visibility diagram in O(n) time. Hence, the two papers together yield an al-
gorithm to compute the circular visibility region in O(n) time. That method
seems to be of little use in the constant-workspace model, since the circular
visibility diagram takes up Ω(n) space. Here we present an O(n2)-time algo-
rithm for computing the circular visibility region using constant workspace.
As far as we know, there is no literature about computing circular visibility
regions in any memory-constrained model. In addition to the requirement
of using constant workspace, we think our algorithm has the advantage of
being much simpler than the before mentioned, since we avoid the rather
cumbersome computation of the circular visibility diagram.
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Figure 1. Comparison of LV and CV for the same polygon P and point p ∈ P. (a)
The visibility polygon LV of p in P. The pockets are shown in grey. The segment rr′ is
the door of a left pocket and tt′ is the door of a right pocket. (b) The circular visibility
region CV of p in P. The regions of P not visible from p are grey. Maximal visibility arcs
containing caps are drawn.

The boundary of the circular visibility region is to be reported in CCW
order. The main idea is to use the algorithm of Barba et al. [7] to compute
the visibility polygon of p. Their algorithm reports the boundary of LV in
CCW order. Each time a door of a pocket of LV is reported, we compute
the circularly visible part of the pocket. We only explain how to deal with
left pockets, since the method for right pockets is symmetric. It is clear that
only CCW visibility arcs can enter a left pocket and only CW arcs can enter
a right pocket, so in the following we only consider CCW visibility arcs.

A visibility arc
_
pq has two sides: the convex side is the side towards the

interior of the circle containing
_
pq and the concave side is the side towards

the exterior of the circle. A point u on the boundary ∂P is a support of
_
pq

if u is on
_
pq but ∂P is not crossing

_
pq at u, such that ∂P is on the same side

of
_
pq before and after u. If ∂P is on the convex side, u is a convex support

of
_
pq, and if ∂P is on the concave side, u is a concave support of

_
pq. It is

seen that a convex support must be a reflex vertex of P, whereas a concave

support is either a reflex vertex or a point on an edge of P tangential to
_
pq.

See Figure 2.

The boundary of a circular visibility region consists of chains of P and
parts of visibility arcs. The parts of visibility arcs are called caps. A cap
separates the circular visibility region from a region not circularly visible
from p. Such a region is called a deficiency. In Figure 1(b), the deficiencies
are the grey areas. The deficiencies are the connected components of P \CV.
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p
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Figure 2. A CCW arc
_
pq with concave supports u1 and u2 and convex support u3. The

grey areas indicate where the interior of the polygon is relative to the supports.

The boundary of a deficiency consists of some chain of ∂P and one arc, which

is a cap. Let
_
pq be a maximal visibility arc. Assume that

_
uq is a maximal

subset of
_
pq such that no point on the convex side of

_
uq is circularly visible

from p. Then
_
uq is a convex cap and the region to the convex side of

_
uq

is a convex deficiency. A concave cap and concave deficiency are defined
analogously. We compute the circular visibility region by computing all the
visibility arcs that contain a cap in CCW order around ∂P.

The following lemma characterizes the visibility arcs containing caps by
means of their supports. The lemma is due to Chou et al. [10]. Notice the
similarity with Lemma 6.

Lemma 11. Let
_
pq be a maximal visibility arc.

(1)
_
pq contains the convex cap

_
s2q if and only if

_
pq has concave support s1

and convex support s2 in that order when following
_
pq from p.

(2)
_
pq contains the concave cap

_
s4q if and only if

_
pq has convex support s3

and concave support s4 in that order when following
_
pq from p.

Proof. We prove (1); the case (2) follows analogously. If
_
pq has no supports,

there exist visibility arcs containing all points in a neighborhood around
_
pq, so

_
pq does not contain a cap. If

_
pq has a concave support s1 but no

convex support after s1, there exist visibility arcs containing all points in

a neighborhood on the convex side of
_
s1q⊆

_
pq, so there cannot be a convex

cap. The same is true if
_
pq has convex support s2 but no concave support

before s2, see Figure 3(a).

Now assume that
_
pq has supports s1 and s2 as defined in the lemma.

See Figure 3(b). Assume that some point q′ on the convex side of
_
s2q is

circularly visible from p, that is, there is a visibility arc
_

pq′. The arc
_
s2q

divides P into two parts, one containing p and one containing q′. Since
_

pq′ is a continuous curve from p to q′, it must intersect
_
s2q at some point

r. Likewise,
_
s1s2⊂

_
pq divides P into two parts, one containing p and one
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Figure 3. Illustrations for the proof of Lemma 11. (a) When there is no concave support

before s2 on arc
_
pq, arc

_
s2q is no cap. (b) A visibility arc hitting a point on the convex

side of
_
s2q does not exist.

containing q′, so
_

pq′ must intersect
_
s1s2 at some point t. Since the arcs

_
pq

and
_

pq′ share the three points p, t, and r, they must be on the same circle,

so no point on the convex side of
_
s2q is circularly visible from p. Therefore,

_
s2q is a convex cap. 2

From this lemma, we immediately get a naive O(n3)-time algorithm using
constant workspace written in pseudocode as Algorithm 5 and explained in
words in the following.

Let P be given as the vertices v0, . . . , vn−1 in CCW order. We traverse
∂P CCW from v0v1 while reporting the boundary of CV. For each edge

vivi+1, we check if there is a maximal visibility arc
_
pq containing a cap

_
sq

such that s is a point on vivi+1 and s is a support of
_
pq. To check this, we

traverse each edge vjvj+1 of P to find each pair (s′, s) such that there is an

arc
_

pq′ having concave (resp. convex) support s′ ∈ vjvj+1 and convex (resp.

concave) support s ∈ vivi+1, in that order. So far, we know that
_

pq′ is an
arc with the desired supports, but it needs to be a visibility arc. Therefore,

we find the maximal visibility arc
_
pq contained in the same circle as

_

pq′ by
traversing all of ∂P to find the point where the circle exits P. We check if
_
pq contains s, in which case

_
sq is a cap. That is done in lines 4, 7, 10, and

15. We report the part of ∂P since the last found cap until the new cap
_
sq, and the new cap

_
sq. Lines 4–9 finds the caps ending on vivi+1, whereas

lines 10–19 finds the caps starting on vivi+1.
For each edge vivi+1, we use O(n2) time: we traverse each edge vjvj+1 of

P to find each pair (s′, s) where s′ ∈ vjvj+1 and s ∈ vivi+1 such that there

is an arc
_
ps with supports of opposite types s′ and s. For each of these

pairs, we traverse all of P to find the maximal visibility arc. Therefore, the
algorithm runs in O(n3) time.
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Algorithm 5: Report the circular visibility region CVP(p) in a naive
way

Input: A polygon P defined by its vertices v0v1 . . . vn−1 and a point p ∈ P.
Output: The boundary of the circular visibility region CVP(p) is reported.

1 i← 0
2 while i < n do
3 for each j = 0, . . . , n− 1

4 if there is a CCW arc
_

pq′ with a concave support on vjvj+1 and

convex support vi and the maximal visibility arc
_
pq contained in the

same circle as
_

pq′ contains vi
5 report the boundary of P since the last found cap to q

6 report the convex cap
_
qvi

7 else if there is a CW arc
_

pq′ with convex support vj and a concave

support s4 on vivi+1 and the maximal visibility arc
_
pq contained in

the same circle as
_

pq′ contains s4
8 report the boundary of P since the last found cap to q

9 report the concave cap
_
qs4

10 if there is a CW arc
_

pq′ with a concave support on vjvj+1 and convex

support vi+1 and the maximal visibility arc
_
pq contained in the same

circle as
_

pq′ contains vi+1

11 report the boundary of P since the last found cap to vi+1

12 report the convex cap
_

vi+1q
13 Let i be increased so that q ∈ vivi+1

14 continue from the loop at line 2

15 else if there is a CCW arc
_

pq′ with convex support vj and a concave

support s4 on vivi+1 and the maximal visibility arc
_
pq contained in

the same circle as
_

pq′ contains s4
16 report the boundary of P since the last found cap to s4

17 report the concave cap
_
s4q

18 Let i be increased so that q ∈ vivi+1

19 continue from the loop at line 2

20 i← i+ 1

21 report the boundary between the last and first found caps

We can make a more efficient algorithm by finding stronger necessary
conditions that a vertex is a support of a visibility arc containing a cap. The
following lemma characterizes the caps in a more detailed way by describing
which points on ∂P can possibly be the first support of a CCW maximal
visibility arc containing a cap.

Lemma 12. Let
_
pq be a CCW maximal visibility arc where q is in a left

pocket with door rr′.
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Figure 4. Two polygons with maximal CCW visibility arcs
_
pq and doors rr′ to a left

pocket. The regions separated from the rest of the polygon by segment pr and
_
ps2 or

_
ps4

are grey. (a) Arc
_
pq contains a convex cap

_
s2q. (b) Arc

_
pq contains a concave cap

_
s4q.

(1) If
_
pq has concave support s1 and convex support s2, then s1 ∈ P(r, s2).

(2) If
_
pq has convex support s3 and concave support s4, then s3 ∈ P(s4, r).

Proof. Consider the case (1). The segment rp and the arc
_
ps2⊂

_
pq separates

a region from the rest of P, see Figure 4(a). The boundary of the region is

a closed, simple curve consisting of P(s2, r), rp, and
_
ps2. The region is on

the convex side of
_
ps2, so no vertex in P(s2, r) can be a concave support.

Therefore, the concave support s1 must be in P(r, s2).
Figure 4(b) shows case (2), where the regions separated from the rest of

P by segment pr and arc
_
ps4 are grey. The convex support s3 has to be on

P(s4, r), since all other points are on the concave side of
_
pq. 2

Assume we are in case (1) of Lemma 12. Let us follow ∂P CCW from r.
We partition P(r, s2) into three different types:

1a. When ∂P crosses the segment ps2 from left to right it becomes type
1a. Also, P(r, s2) starts as type 1a.

2a. When ∂P crosses the line ←→ps2 from right to left it becomes type 2a.

3a. When ∂P crosses the line ←→ps2, but not the segment ps2, from left to
right, it becomes type 3a.

See Figure 5 where each type has a different color. The polygon in Figure
5 is identical (up to scaling) to that in 4(a). The following lemma says that
we only have to consider the part of P(r, s2) of type 3a.

Lemma 13. Let
_
pq be a CCW maximal visibility arc where q is in a left

pocket with door rr′. If
_
pq has concave support s1 and convex support s2,

then s1 is a point of type 3a.
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Figure 5. The partition of P(r, s2) into types 1a (green), 2a (blue), and 3a (red).

Proof. Let us follow ∂P CCW from r. When ∂P is of type 1a, it is moving
around inside the wedge of the segments ps2 and pr. It cannot exit the
wedge through the segment pr, because then r would not be linearly visible

from p. A point of type 1a cannot be the concave support of
_
pq, because

_
pq needs to have r on its convex side (as noted in the proof of Lemma 12),
and r is on the concave side of any arc going through a point of type 1a.
A point on ∂P of type 2a is to the left of the line ←→ps2, so it cannot be the

concave support of a CCW arc
_
ps2. Therefore, s1 must be of type 3a. 2

Given three points a, b, and c which are not collinear, let C(a, b, c) be the
centre of their circumcircle. If one of the arguments is NULL, so is C(a, b, c). It
is well-known that the centre of the circumcircle is the common intersection
point of the perpendicular bisectors of triangle abc, which can be determined
in constant time using elementary vector computations. All the arcs passing
through two points a and c have centres on the perpendicular bisector of the
segment ac. That means that C(a, b, c) has the form a+c

2 + t · ĉ− a for some
t ∈ R. Here, v̂ of some vector v ∈ R2 is the CCW rotation of v by 90◦. We
say that C(a, b1, c) is further to the left (resp. to the right) than C(a, b2, c)
if the t-value corresponding to b1 is larger (resp. smaller) than the t-value
corresponding to b2.

The locus of centres of circles that are tangential to a segment e and pass
through a point a is a fragment of a parabola. Let D(a, b, e) be the contact
point on e of the circle tangential to e and passing through a and b. If the
circle does not exist, let D(a, b, e) = NULL. See Figure 6, where we explain
how to compute D(a, b, e) in O(1) time if we have access to the square-root
function in O(1) time.
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Figure 6. How to find the contact point D = D(a, b, e) on the edge e = e1e2 of the
arc going through a and b tangential to e: Assume that ab and e are not parallel, the
other case is simpler. Let X be the middle point of segment ab, Y be the intersection
point between the perpendicular bisector of ab and the line through e, and Z be the
intersection point between the lines through ab and e. Let r = |aC| = |bC| = |DC| be
the radius of the arc and let h = |XC|, here | · | is the length function. We know that
r2 = h2 + |aX|2 (∗). We see that the triangles XY Z and DY C are similar. Therefore
r = |CY | · |XZ|/|Y Z| (∗∗). We also know that |CY | = |XY |−h. That gives two equations
(∗) and (∗∗) with the unknowns r and h. Isolating one of the unknowns in equation (∗∗)
and inserting in equation (∗) gives a second-order equation in the other unknown. When
the relevant solution is found, C and D can be constructed, and we can check if D ∈ e.

The following lemma uniquely determines the concave support of a CCW
maximal visibility arc with a convex cap given its convex support. That
makes it possible to find the arc in O(n) time if it exists.

Lemma 14. Let
_
pq be a CCW maximal visibility arc where q is in a left

pocket with door rr′. If
_
pq has concave support s1 and convex support s2,

then s1 is a point in P(r, s2) of type 3a such that C(p, s1, s2) is as far to the
left as possible.

Proof. Assume that there is a point s on P(r, s2) such that C(p, s, s2) is
to the left of C(p, s1, s2), see Figure 7. In that case s is contained in the

circumcircle through p, s1, and s2. Therefore ∂P crosses the arc
_
ps2⊂

_
pq to

get to s, so
_
pq is no visibility arc. 2

Based on these observations, we get an O(n)-time algorithm to check if

a convex cap
_
s2q exists given a vertex s2 in a left pocket with door rr′.

The function FindConvexCap(s2, rr
′) in Algorithm 6 returns q if there is

a maximal visibility arc
_
pq containing a convex cap

_
s2q, otherwise NULL is

returned. The algorithm runs through P(r, s2). We keep a variable s1, which
is the point such that C(p, s1, s2) is furthest to the left of all the points on
P(r, s2) visited so far. Each time we visit a segment u1u2 of type 3a, we
check if there is a point s on u1u2 such that C(p, s, s2) is further to the left
than C(p, s1, s2), in which case we update s1 ← s. We know that we only
need to check points s such that D(p, s1, u1u2) is well defined (line 6) and
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p

s1

s2

q

s

r

r′

C1
C2

Figure 7. Illustration for the proof of Lemma 14. The center C2 of the circle through p,
s, and s2 (blue) is further to the left than the center C1 of the circle through p, s1, and s2
(red). The perpendicular bisector of ps2 is green.

vertex u2 (line 3). Notice that some conditions in lines 6 and 3 assume that
s1 6= NULL. If s1 = NULL, those tests are always true. We only check one
endpoint since u1 was checked in the previous iteration. To execute line 10,
we need to run through all of ∂P to find the exit point q. In line 11, we

check that
_
pq contains

_
ps2 and that s1 and s2 are indeed concave and convex

supports, respectively.
Now assume we are in case (2) of Lemma 12. Consider a CCW maximal

visibility arc
_
pq containing a concave cap

_
s4q in a pocket with door rr′.

Remember that the convex support s3 of the arc satisfies s3 ∈ P(s4, r). We
make a similar characterization of the possible supports s3, but the situation
is not completely analogous. The concave support s4 is either a vertex u2 or
a point on some edge u1u2. We partition P(u1, r) into two different types
while following the chain CCW from u1.

1b. When ∂P crosses the segment pu2 from right to left, it becomes type
1b. Also, P(u1, r) starts as type 1b.

2b. When ∂P crosses the segment pu2 from left to right, it becomes type
2b.

See Figure 8, where the two types are drawn in blue and red, respectively.
The polygon in Figure 8 is identical (up to scaling) to that in Figure 4(b).
According to the following lemma, we only need to consider vertices on the
chain P(s4, r) of type 2b.

Lemma 15. Let
_
pq be a CCW maximal visibility arc. If

_
pq has convex

support s3 and concave support s4, then s3 is a point of type 2b.

Proof. Let u1u2 be the segment containing s4, s4 6= u1. A convex support is

in the region bounded by pu2,
_
ps4⊂

_
pq and the possibly degenerated segment
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Algorithm 6: FindConvexCap(s2, rr
′)

Input: A polygon P defined by its boundary ∂P, a point p ∈ P, the
door rr′ of a left pocket in P, and a vertex s2 in P(r′, r).

Output: q if there is a maximal visibility arc
_
pq containing a convex

cap
_
s2q, otherwise NULL.

1 if s2 is not a reflex vertex
2 return NULL

3 s1 ← NULL

4 for each segment u1u2 in P(r, s2) of type 3a
5 s← D(p, s2, u1u2)
6 if s 6= NULL and C(p, s, s2) is further to the left than C(p, s1, s2)
7 s1 ← s

8 if C(p, u2, s2) is further to the left than C(p, s1, s2)
9 s1 ← u2

10 Let q be the point where the circle containing
_
ps2 exits P followed

CCW from p

11 if
_
pq has concave support s1 and convex support s2

12 return q
13 else
14 return NULL

s4u2. Therefore ∂P must cross pu2 from left to right in order to get to the
convex support s3. Hence, s3 is of type 2b. 2

The following lemma says that we the only possible convex support of
an arc containing a concave cap is the one of type 2b that “presses” the
arc as far to the right as possible. There are in a sense two different cases
depending on whether the concave support is a vertex or an interior point
on a segment.

Lemma 16. Let
_
pq be a CCW maximal visibility arc where q is in a pocket

with door rr′. Assume that
_
pq has convex support s3 and concave support

s4, where s4 is on the segment u1u2, s4 6= u1. If there is no vertex vj on
P(u2, r) of type 2b such that D(p, vj , u1u2) is defined, then s4 = u2 and s3 is
the vertex on P(u2, r) such that C(p, s3, s4) is as far to the right as possible.
Otherwise, s3 is the vertex on P(u2, r) such that s4 = D(p, s3, u1u2) is as
close to u1 as possible.

Proof. Assume first that there is no vertex vj on P(u2, r) such that
D(p, vj , u1u2) is defined. We must have s4 = u2 since s4 6= u1. If there
is a vertex vj such that C(p, vj , s4) is further to the right than C(p, s3, s4),
then ∂P must cross

_
ps4⊂

_
pq to get to vj , so

_
pq is no visibility arc. If there

is a vertex vj such that D(p, vj , u1u2) is defined, s4 cannot be u2, since the

arc
_

pvju2 is outside P just before it reaches u2, see Figure 9(a). Therefore
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Figure 8. The partition of P(u1, r) into types 1b (blue), 2b (red).

p

vj
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u1
u2

(a)
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D
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p

u1
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Figure 9. Situations from the proof of Lemma 16. (a) When D = D(p, vj , u1u2) is defined
for some vertex vj , u2 cannot be a concave support. (b) If D = D(p, vj , u1u2) is closer to

u1 than s4 = D(p, s3, u1u2),
_
ps4 is no visibility arc.

s3 must be the vertex that pushes the contact point s4 = D(p, s3, u1u2) as

close to u1 as possible, since otherwise ∂P crosses
_
ps4, see Figure 9(b). 2

The function FindConcaveCap(u1u2, rr
′) in Algorithm 7 checks if there is

a concave cap
_
s4q where s4 is a point on a given segment u1u2 in P(r′, r).

The algorithm runs through the reflex vertices vj on P(u2, r) and finds the
one that makes C(p, vj , u2) become furthest to the right or D(p, vj , u1u2)
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become closest to u1. Notice that some conditions in 3 and 6 assume that
s3 6= NULL. If s3 = NULL, those tests are always true.

Algorithm 7: FindConcaveCap(u1u2, rr
′)

Input: A polygon P defined by its boundary ∂P, a point p ∈ P, the
door rr′ of a left pocket in P, and a segment u1u2 in P(r′, r).

Output: (q, s4) if there is a maximal visibility arc
_
pq containing a

concave cap
_
s4q where s4 is on u1u2, otherwise NULL.

1 s3 ← NULL, s4 ← u2
2 for each reflex vertex vj in P(u2, r) of type 2a
3 if s4 = u2 and C(p, vj , u2) is further to the right than C(p, s3, s4)
4 s3 ← vj

5 s← D(p, vj , u1u2)
6 if s 6= NULL and s is contained in s4u1
7 s3 ← vj , s4 ← s

8 Let q be the point where the circle containing
_
ps4 exits P followed

CCW from p

9 if
_
pq has convex support s3 and concave support s4

10 return (q, s4)
11 else
12 return NULL

Theorem 4. The circular visibility region CVP(p) can be reported in O(n2)
time using constant workspace, where n is the number of vertices of P.

Proof. Algorithm 8 reports the circular visibility region using FindConvexCap
and FindConcaveCap. For each pocket of LVP(p) found by the algorithm
by Barba et al. [7], we run through the boundary of the pocket. For each
vertex u2, we check if there is a convex cap with convex support u2. Sim-
ilarly, for each segment u1u2, we check if there is a concave cap with the
concave support on u1u2. Whenever a cap is found, we report the chain of P
visited since the last found cap as well as the new cap. We need O(n) time
for each call to FindConvexCap and FindConcaveCap. We make O(n) such
calls, giving O(n2) time. The algorithm to compute LV takes O(nd + n)
time, so the total time is also O(n2). 2

5.3. The parabolic visibility region from a point in a simple
polygon

In this section we briefly demonstrate that the techniques of the preced-
ing section can be applied to compute the region of points in a polygon P
parabolically visible from a point p ∈ P. We shall not prove the correct-
ness of the method rigorously, but merely sketch the idea. Without loss
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Algorithm 8: Report CVP(p) using constant workspace

Input: A polygon P defined by its boundary ∂P and a point p ∈ P.
Output: The boundary of CVP(p) in CCW order is reported.

1 for each pocket of LVP(p)
2 if the pocket is a left pocket with door rr′

3 u1 ← r′

4 Let u2 be the vertex following u1 CCW on ∂P
5 repeat
6 q ← FindConvexCap(u2, rr

′)
7 if q 6= NULL

8 report the chain of P from the last found cap to q

9 report the cap
_
qu2

10 Let u1u2 be the CCW next segment on ∂P
11 if u1 6= r
12 continue from the loop at line 5
13 else
14 continue from the loop at line 1

15 (q, s4)← FindConcaveCap(u1u2, rr
′)

16 if (q, s4) 6= NULL

17 report the chain of P from the last found cap to s4

18 report the cap
_
s4q

19 u1 ← q
20 Let u2 be the vertex following u1 CCW on ∂P
21 continue from the loop at line 5

22 Let u1u2 be the CCW next segment on ∂P
23 until u1 = r

24 else
25 Symmetric to the case in line 2

26 report the chain of P between the last and first found cap

of generality, we assume that p has coordinates p = (0, 0). We say that a
point q = (qx, qy) is parabolically visible from p if there exists a function
f(x) = ax2 + bx such that f(qx) = qy and all the points on the graph of f
between p and q are in P, i.e.

{(x, f(x)) | 0 ≤ x ≤ qx or qx ≤ x ≤ 0} ⊂ P.

If a = 0, the parabolically visible point q is also linearly visible. We make the
convention that the linearly visible points on the vertical line through p are
also parabolically visible. The parabolical visibility region is all the points
parabolically visible from p. To our knowledge, the notion of parabolical
visibility has not been described anywhere in the literature.

The notions of concave and convex supports, caps, and deficiencies have
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natural analogies in the context of parabolic visibility. A parabolic arc
starting at p has two degrees of freedom, namely a and b, just as a circu-
lar arc starting at p, namely its radius and start angle. That means that
two parabolic arcs emanating from p with three common points must be on
the same parabola. Therefore Lemma 11 is readily transferred to parabolic
visibility by reading “visibility arc” as “parabolic visibility arc”.3 Likewise,
Lemma 12–16 also hold for parabolic visibility. The analogy of finding the
support giving the leftmost (resp. rightmost) centre of a circle is to find the
support giving the parabola with a vertex having a minimal (resp. max-
imal) x-coordinate. The vertex of the parabola f(x) = ax2 + bx is the
point (−b/2a, f(−b/2a)) = (−b/2a,−b2/4a). The vertex is the point on
the parabola which has the minimal y-coordinate when a > 0 and maxi-
mal y-coordinate when a < 0. Therefore, one can easily alter Algorithm 8
to compute the parabolical visibility region in O(n2) time using constant
workspace.

We say that a point q is shootable if there exists a parabola f(x) = ax2+bx
with q on its graph such that a ≤ 0 and the graph between q and (0, 0) is
contained in P. The shootable region is all the shootable points, see Figure

10. The portion of the graph of f from p to q is written
_
pq and we say that

_
pq is a shot. Analogously to maximal visibility arcs, we define a maximal
shot to be a shot where the graph of f leaves P at q. If we assume that there
is a uniform gravitational force in P working in the direction (0,−1) and
that there is a vacuum in P, a point q is shootable from p if and only if q is
on the trajectory of some punctiform projectile shot from p [29]. Therefore,
the shootable region consists of all the points that one can hit when firing
a canon placed at p. In this ballistic context, it is more natural to think of
the two degrees of freedom of a shot as the angle of the canon and the initial
speed of the projectile. The analogy of having a = 0 is to fire the projectile
with infinite speed.

If rr′ is the door to a left pocket of the visibility polygon LVP(p) and
r has non-negative x-coordinate, then no point in the pocket is shootable
from p. Likewise, if rr′ is a door of a right pocket of LVP(p) and r has a
non-positive x-coordinate, no point in the pocket is shootable. Therefore,
we have the following lemma.

Lemma 17. A maximal region of points of P which are not shootable from
p is either

– a left pocket of LVP(p) with door rr′, where r has a non-negative x-
coordinate.

– a right pocket of LVP(p) with door rr′, where r has a non-positive
x-coordinate.

– a convex or concave deficiency due to a maximal shot containing a
convex or concave cap.

3 Whereas, for instance, the result cannot immediately be used to describe what is ellip-
tically visible from p, since an elliptic arc has four degrees of freedom, namely two radii,
its start angle, and the angle between its major semi-axis and the x-axis.
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Figure 10. The shootable region from p. The regions that are not shootable are grey.
Each of the drawn parabolic arcs contains the boundary between the shootable region and

a region of points that are not shootable from p. The arcs
_
s1q1 and

_
s3q3 are concave caps.

The arcs
_
s2q2 and

_
s4q4 are convex caps. s5q5 is the door of a right pocket.

Using this characterisation, one can make a constant-workspace algorithm
closely resembling Algorithm 8 computing the shootable region in O(n2)
time. Such an algorithm could for instance be used in the Worms games
developed by the British company Team17 to compute the region of points
that some worm could shoot from its current position.



6. Concluding Remarks

We have developed the following algorithms:
– An O(n)-time algorithm for computing the visible part of one edge

from another edge in a polygon.
– An O(mn)-time algorithm for computing the weak visibility polygon

from a segment in a polygon, where m is the size of the output.
– An O(n2)-time algorithm for computing a minimum link path between

two points in a polygon.
– An O(n2)-time algorithm for computing the circular visibility region of

a polygon from a point.
The algorithm for computing the visibility between two edges is clearly

optimal with respect to both time and space, improving the previously best
known algorithm [5].

There are many planar visibility problems for which no constant-workspace
algorithm has been described. As an example closely related to our work,
we mention the problem of reporting all edges from which every point in the
polygon is visible. That problem has been solved in O(n) time using Ω(n)
variables by Shin and Woo [24, 25]. Using the method described in Chapter
3, we can test if WVP(vivi+1) = P for each edge vivi+1 of P, leading to a
constant-workspace algorithm running in O(n3) time. It could be interesting
to try to find a faster algorithm.

The visibility graph of a polygon P is a graph with a vertex set equal to
the set of vertices of P. Two vertices of the visibility graph are adjacent
if the two vertices of P can see each other. The visibility graph is a very
important structure and has applications in many other visibility algorithms
[15, Chapter 5]. The graph has O(n2) edges, and hence an algorithm to find
all the edges runs in Ω(n2) time. Asano et al. [1] and Welzl [28] described
O(n2)-time and -space algorithms, each solving a generalized version of the
problem. A naive constant-workspace algorithm using O(n3) time considers
each pair of vertices (vi, vj) and traverses all edges of the polygon to see if
some edge obstructs the visibility from vi to vj . It would be interesting to
see if a faster algorithm can be made.

Barba et al. [7] described a randomized algorithm for computing the vis-
ibility polygon LVP(p) in O(n log r) expected time using O(log r) variables.
They also gave an O(n log2 r)-time deterministic variant of the algorithm.
Here, r < n is the number of reflex vertices of P. The algorithm is a
divide-and-conquer algorithm that repeatedly divides the boundary of P
into smaller and smaller chains until a chain contains at most two reflex
vertices. The endpoints of each chain are visible from p. That makes it easy
to compute the visible part of the chain. We have thought a lot about how

44
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to adapt that method to the computation of the circular visibility region
or the weak visibility polygon to get algorithms faster than the ones in this
thesis by only using O(log n) variables, but we have not found a way to do it.
The big difference seems to be that the pockets of the visibility polygon are
simpler characterized. A beam emanating from p and containing a door of
the visibility polygon have one support whereas the visibility arcs containing
caps and the beams containing doors of the weak visibility polygon have two
supports. That makes it harder to make a divide-and-conquer algorithm. It
would be interesting to go deeper into these problems.

The O(n)-time algorithm by Joe and Simpson [18] for computing the
visibility polygon has the space-time product O(n2 log n). The algorithms of
Barba et al. [7] improves the bound to O(n log n log r) and O(n log n log2 r),
respectively, when using O(log r) variables. It would be very interesting to
know more about the space-time product for various sizes of workspace, also
for the other problems of this thesis.
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Appendix A: Paper Accepted for CCCG 2013

We submitted the following paper for The 25th Canadian Conference on
Computational Geometry, which is to take place in Waterloo, Ontario,
Canada in August 8th-10th, 2013. The focus of the paper is on Algorithm
2 and Theorem 1 of this thesis. The paper was accepted and the version
provided here is the final version. Notice that a maximum of six pages was
allowed.
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An Optimal Algorithm Computing Edge-to-Edge Visibility in a Simple
Polygon

Mikkel Abrahamsen∗†

Abstract

Let P be a simple polygon with n vertices. We present
a new O(n)-time algorithm to compute the visible part
of one edge from another edge of P . The algorithm
does not alter the input and only uses O(1) variables
and is therefore a constant-workspace algorithm. The
algorithm can be used to make a constant-workspace al-
gorithm for computing the weak visibility polygon from
an edge in O(mn) time, where m is the number of ver-
tices of the resulting polygon, and a constant-workspace
algorithm for computing a minimum link path between
two points inside a simple polygon in O(n2) time.

1 Introduction

Much research has been done on visibility problems in
the plane. See the book by Ghosh [8] for an overview of
the most important problems and results.

Let P be a simple polygon with vertices v0v1 . . . vn−1
in counterclockwise (CCW) order, and let vn = v0. A
point q ∈ P is said to be visible from vjvj+1 if there
exists a point p ∈ vjvj+1 such that the segment pq is
contained in P. In this paper we show how to compute
the visible part of an edge vivi+1 from the edge vjvj+1.
Without loss of generality, we assume that j = 0 for
the rest of this paper. The algorithm uses O(n) time is
therefore optimal. The input is given in read-only mem-
ory and onlyO(1) variables are needed in the workspace,
each consisting of O(log n) bits. Therefore, the algo-
rithm is a constant-workspace algorithm.

The problem of computing visibility between two
edges was first addressed by Toussaint [13], who gave
a linear-time query algorithm deciding if two edges are
visible to each other if a triangulation of P is pro-
vided. Later, Avis et al. [4] described an O(n)-time
algorithm to compute the visible part of one edge from
another which does not require a triangulation or other
involved data structures, but uses Ω(n) variables in the
workspace. De et al. [7] claimed to present an O(n)-time
algorithm using constant workspace. However, their al-
gorithm has a fault, as we shall see.

∗Department of Computer Science, University of Copenhagen,
mikkel.abrahamsen@gmail.com
†Autodesk ApS, Havnegade 39, DK-1058 Copenhagen K, Den-

mark

One of the best-known constant-workspace algo-
rithms for a geometric problem is Jarvis’ march [10] for
the computation of the convex hull of n points in the
plane in O(hn) time, where h is the number of points
on the hull. Recently, Asano et al. [2], Asano et al. [3],
and Barba et al. [5] gave constant-workspace algorithms
solving many elementary tasks in planar computational
geometry. The research presented in this paper is part
of a master’s thesis [1], which contains more details and
space-efficient solutions to some other planar visibility
problems.

1.1 Notation and definitions

Given two points a and b in the plane, the line segment
with endpoints a and b is written ab. Both endpoints
are included in segment ab. If s is a line segment, the
line containing s which is inifinite in both directions is

written ←→s . The half-line
−→
ab is a line infinite in one

direction, starting at a and passing through b. The
right half-plane RHP(ab) is the closed half plane with

boundary
←→
ab lying to the right of ab. The left half-plane

LHP(ab) is just RHP(ba).

If P is a simple polygon, the boundary of P is written
∂P. Let P(p, q) for two points p, q ∈ ∂P be the set of
points on ∂P we meet when traversing ∂P CCW from
p to q, both included. A chain of P is such a set P(p, q)
for some points p, q ∈ ∂P. We use the general position
assumption that no three vertices of P are collinear.

Consider the edge v0v1 of a simple polygon P. A beam
emanating from v0v1 is a segment pq where p ∈ v0v1
and pq is contained in P. Thus, a point q is visible from
v0v1 if and only if there exists a beam pq emanating
from v0v1. A right support of the beam pq is a reflex
vertex v of P such that v ∈ pq and the edges meeting
at v are both contained in RHP(pq). A left support is
defined analogously. Since no beam emanates from a
point to the left of v0, we use the convention that v0 is
a left support of any beam v0q. Likewise, v1 is a right
support of any beam v1q. A support is a right support
or a left support.

The edge vivi+1 is totally facing the edge vjvj+1 if
both of the points vj and vj+1 are in LHP(vivi+1). No-
tice that vivi+1 can be totally facing vjvj+1 even though
no point on vjvj+1 is visible from vivi+1. Edge vivi+1

is partially facing vjvj+1 if excactly one of the points vj
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and vj+1 is in LHP(vivi+1) and not facing vjvj+1 if none
of the points are in LHP(vivi+1). We say that vivi+1

is facing vjvj+1 if vivi+1 is partially or totally facing
vjvj+1. It follows from the definitions that vivi+1 is ei-
ther totally facing, partially facing or not facing vjvj+1.
That gives 9 different combinations of how vivi+1 is fac-
ing vjvj+1 and how vjvj+1 is facing vivi+1. However,
only 8 of the cases are possible when vivi+1 and vjvj+1

are edges of a simple polygon, since they cannot both
partially face each other. That would imply that they
intersect each other properly. All of the remaining 8
cases are possible. See for instance the paper of Avis et
al. [4].

2 Visibility Between Two Edges of a Polygon

2.1 Point-to-point and point-to-edge visibility

If the edge vivi+1 is not facing edge v0v1, the only point
on vivi+1 that can be visible from v0v1 is one of the end-
points vi or vi+1. Likewise, if v0v1 is not facing vivi+1,
the only point on v0v1 that can possibly see vivi+1 is one
of the endpoints v0 or v1 by means of beams contained
in RHP(v0v1). In such cases, the problem of computing
the visible part of vivi+1 is reduced to point-to-point
and point-to-edge visibility.

Point-to-point visibility is the problem of determining
if ab is contained in P for two given points a and b.
That can easily be tested in O(n) time using constant
workspace by traversing all edges of ∂P, seeing if ∂P
crosses ab somewhere.

Point-to-edge visibility is the slightly more compli-
cated task of computing the visible part of an edge
from a point p. This can also be done using constant
workspace and O(n) time by traversing all edges of ∂P
once while keeping track of the vertices shadowing the
largest part of the edge in each of the ends [1].

We now turn our attention to the more interesting
case of computing the visible part of vivi+1 from v0v1 if
the edges are facing each other. We motivate the devel-
opment of a new algorithm by giving a counterexample
to the constant-workspace algorithm of De et al. [7].
The authors are aware of the error [11]. The reader
who has not consulted their paper can skip this section.

2.2 Counterexample to the algorithm proposed by
De et al. [7]

The textual description and the pseudocode in [7] do not
agree. Figure 1 is an example of a polygon where the
algorithm computes a wrong result in both cases. After
PASS1 (), the line segment L is still pi+1pj+1. After
PASS2 (), L is θpj+1. The text says that PASS3 () is
to check if a vertex on P(pj+1, pi) is to the right of L.
All the vertices are to the left, so the algorithm returns
that the rightmost visible point on pjpj+1 from pipi+1

pi pi+1

pjpj+1

θ

v

Figure 1: The algorithm from [7] reports the wrong vis-
ible part of pjpj+1 from pipi+1 in this polygon.

is pj+1, which is wrong. The pseudocode gives another
definition of PASS3 (), according to which we also check
if a vertex on P(pi+1, pj) is to the left of L. Vertex v
is, so the algorithm reports that nothing of pjpj+1 is
visible. That is clearly also wrong.

2.3 Computing visibility between edges facing each
other

Assume for the rest of this section that the edges v0v1
and vivi+1 are facing each other. We want to compute
the part of vivi+1 containing vi+1 that is not visible from
v0v1. The main idea is to consider the edges in the right
side chain P(v1, vi) and the left side chain P(vi+1, v0)
alternately, changing side after each edge. When an
edge in one side is found that causes more of vivi+1 to
be invisible from v0v1, we retract the search in the other
chain to the last interfering edge in that chain. This will
be made more precise in the following.

Let � = �v0v1vivi+1 be the quadrilateral with ver-
tices v0v1vivi+1 in that order. The possible beams from
v0v1 to vivi+1 are all contained in �, so when computing
the visible part of vivi+1, we are only concerned about
the edges of P that are (partially) in �. A beam pq is a
proper beam if pq ⊂ LHP(v0v1) and pq ⊂ LHP(vivi+1).
An improper beam is a beam that is not proper. Each
beam pq where p is an interior point on v0v1 and q is an
interior point on vivi+1 is necessarily proper. Therefore,
if pq is improper, p = v0, p = v1, q = vi, or q = vi+1.
The visibility due to improper beams can be computed
using point-to-edge visibility, so in this section, we focus
on the visibility due to proper beams only. We leave out
the proof of the following lemma due to limited space
[1].

Lemma 1 Let vR ∈ P(v1, vi) ∩ � and vL ∈
P(vi+1, v0) ∩ �. Every proper beam pq from v0v1 to
vivi+1 satisfies p ∈ LHP(vRvL) and q ∈ RHP(vRvL).
In particular, if v0v1 ∩ LHP(vRvL) = ∅ or vivi+1 ∩
RHP(vRvL) = ∅, then no proper beam from v0v1 to
vivi+1 exists.

Assume that there are some proper beams from v0v1
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to vivi+1. We say that the beam pq is the rightmost
beam from v0v1 to vivi+1 if p is as close to v1 as possible
and q is as close to vi+1 as possible among all proper
beams. Similarly, pq is the leftmost beam from v0v1
to vivi+1 if p is as close to v0 as possible and q is as
close to vi as possible. If v0v1 and vivi+1 are totally
facing each other, all beams from v0v1 to vivi+1 are
proper, so the visible part of vivi+1 is the points between
the endpoints of the leftmost and rightmost beams. If
one of the edges is only partially facing the other, the
visible part of vivi+1 can be computed using the leftmost
and rightmost beams in combination with point-to-edge
visibility.

If pq is a beam from v0v1 to vivi+1, a generalized left
support of pq is vi+1 if q = vi+1 or a left support of pq
otherwise. The following lemma characterizes rightmost
beams by means of their supports. The proof is given
in [1].

Lemma 2 Let pq be a proper beam from v0v1 to vivi+1.
The beam pq is a rightmost beam if and only if pq has
a right support vR and a generalized left support vL and
vL ∈ vRq.

If the edges v0v1 and vivi+1 are totally facing each
other and no edge obstructs the visibility between the
edges, then the rightmost beam is pq = v1vi+1 and it
has supports vR = v1 and vL = vi+1.

Algorithm 1 returns the indices (R,L) of the supports
of the rightmost beam if it exists. The algorithm iter-
atively computes the correct value of R and L, taking
the edges into consideration one by one. Initially, R is
set to 1 and L is set to i + 1, as if no edges obstructs
the visibility between the edges. The points p and q on
v0v1 and vivi+1, respectively, are always defined such
that the segment pq contains vR and vL. The algorithm
alternately traverses P(v1, vi) and P(vi+1, vn) one edge
at a time using the index variables r and l. The vari-
able side is 1 when an edge in P(v1, vi) is traversed and
−1 when an edge in P(vi+1, vn) is traversed. Each time
an edge vr−1vr or vl−1vl is found that crosses pq, the
value of R or L is updated to r or l, respectively. If
the value of R is updated, we reset l to L, since it is
possible that there are some edges on P(vL, vn) that
did not intersect the old segment pq, but intersect the
updated one. Likewise, when L is updated, we reset r
to R. Although segment pq is changed when R or L is
updated, P(v1, vR) or P(vi+1, vL) does not cross pq af-
ter the update. That is because pq is rotated clockwise
(CW) away from the chains.

All our figures illustrate the case where v0v1 and
vivi+1 are totally facing each other, but that assumption
is not used in any of the proofs. If vivi+1 is partially
facing v0v1 such that v0 ∈ LHP(vivi+1), then vi might
be the right support of the rightmost beam from v0v1 to
vivi+1. Likewise, if v0v1 is partially facing vivi+1 such

that vi ∈ LHP(v0v1), v0 can be the left support of the
rightmost beam.

Algorithm 1: FindRightmostBeam(i)

Input: A polygon P defined by its vertices
v0, v1, . . . , vn−1 in CCW order and an
index i such that v0v1 and vivi+1 are facing
each other.

Output: If no proper beam from v0v1 to vivi+1

exists, NULL is returned. Otherwise, a
pair of indices (R,L) is returned such
that the rightmost beam from v0v1 to
vivi+1 has right support vR and
generalized left support vL.

1 R← 1, L← i+ 1
2 r ← R, l← L
3 p← v1, q ← vi+1

4 side← 1 (∗ 1 is right side, −1 is left side ∗)
5 while r < i or l < n
6 if side = 1
7 if r < i
8 r ← r + 1
9 if vr−1vr enters LHP(pq) ∩�

10 if vr−1vr intersects vLq
11 return NULL

12 R← r, l← L

13 else (∗ side = −1 ∗)
14 if l < n
15 l← l + 1
16 if vl−1vl enters RHP(pq) ∩�
17 if vl−1vl intersects vRp
18 return NULL

19 L← l, r ← R

20 Let p be the intersection point between −−−→vLvR
and v0v1

21 Let q be the intersection point between −−−→vRvL
and vivi+1

22 if p or q does not exist
23 return NULL

24 side← −side
25 if pq ⊂ LHP(v0v1) ∩ LHP(vivi+1)
26 return (R,L)

27 else
28 return NULL

Lemma 3 Assume that Algorithm 1 terminates after
k iterations of the loop at line 5. Let Rj, Lj, pj,
and qj be the values of R, L, p, and q, respectively,
in the beginning of iteration j, j = 1, 2, . . . , k + 1,
where the values when the algorithm terminates have
index k + 1. Then Rj = Rj+1 or Lj = Lj+1 for
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j = 1, . . . , k. p1, p2, . . . , pk+1 is a sequence of points
moving monotonically along v0v1 from v1 towards v0.
Likewise, q1, q2, . . . , qk+1 is a sequence of points moving
monotonically along vivi+1 from vi+1 towards vi. Let
aj be the CW angle from ←−−−−−−→vRj−1

vLj−1
to ←−−−→vRj

vLj
. Then∑k+1

j=2 aj < 180◦. In particular, aj < 180◦ for each
2 = 1, . . . , k + 1.

Proof. See Figure 2. It is clear that at most one of
R and L changes in iteration j, since the lines 12 and
19 cannot both be executed. Therefore, Rj = Rj+1 or
Lj = Lj+1. If R is redefined in iteration j, then ←−→vRvL
is rotating around vL and the new value of R, namely
Rj+1, satisfies vRj+1

∈ LHP(vRj
vLj

). Therefore, pj+1

is on the segment v0pj and qj+1 is on the segment qjvi.
The same is true if L is updated. Hence, p1, . . . , pk+1

is monotinically moving along v0v1 from v1 towards v0
and q1, . . . , qk+1 is monotonically moving along vivi+1

from vi+1 towards vi. Because of the monotonicity, the
angles are additive, so that the CW angle from ←−−−→vR1

vL1

to←−−−−−−→vRk+1
vLk+1

is
∑k+1

j=2 aj . If v0v1 is totally facing vivi+1,
every qj is contained in LHP(v0v1). Otherwise vivi+1

is totally facing v0v1 so that every pj is contained in

LHP(vivi+1). In either case,
∑k+1

j=2 aj is bounded by
180◦. That bound cannot be reached, since it would
require that v0v1 or vivi+1 was infinitely long in both
directions. �

Lemma 4 Algorithm 1 correctly computes the right-
most beam from v0v1 to vivi+1 as specified. The al-
gorithm is a constant-workspace algorithm.

Proof. First, consider the cases where the algorithm
returns NULL. In line 11, we have found an intersection
point x between P(vR, vi) and vLq. That means that
P(v1, vi) intersects pq properly at x, since no three ver-
tices are collinear. Lemma 1 establishes that the only
possible proper beams from v0v1 to vivi+1 are of the
form p′q′, where p′ ∈ v0p and q′ ∈ qvi. At the same
time, if we use Lemma 1 with v0v1 and vivi+1 inter-
changed by each other and using x as ‘vL’ and vL as
‘vR’, we get that p′q′ satisfies p′ ∈ pv1 and q′ ∈ vi+1q.
Therefore, p′ = p and q′ = q, but pq is not a beam.
Hence, there are no proper beams from v0v1 to vivi+1.
The case in line 18 is analogous.

Due to Lemma 3, we know that p is moving mono-
tonically from v1 towards v0 and q is moving mono-
tonically from vi+1 towards vi. The case of line 23
happens if p has moved outside v0v1, so that v0v1 ∩
LHP(vRvL) = ∅, or q has moved outside vivi+1, so that
vivi+1 ∩ RHP(vRvL) = ∅. In each of these cases, it
follows from Lemma 1 that there are no proper beams
from v0v1 to vivi+1.

The test at line 25 is to ensure that pq is a proper
beam, which is not always the case if v0v1 is only par-
tially facing vivi+1.

v0
v1

vivi+1

vR

vL

p

q

x

y

Figure 3: Case 2 in the proof of Theorem 4.

Now, assume that the algorithm returns (R,L), but
that pq is not a beam since some edge obstructs the
visibility from p to q. Assume that P(v1, vi) intersects
pq properly, and let x be the intersection point closest
to p. P(v1, vi) enters LHP(pq) ∩ � at x. Let y be the
first point where P(x, vi) crosses pq from left to right.
Then y ∈ xq. We have two cases: x ∈ P(v1, vR) (case
1) and x ∈ P(vR, vi) (case 2). Assume that we are in
case 2, see Figure 3. Assume that the final value of R is
defined in a later iteration of the loop at line 5 than the
final value of L. After R is defined in line 12, every edge
vr−1vr in P(vR, vi) is traversed and it is checked in line
10 if some edge intersects pq. In particular the edges in
P(x, y) are traversed, in which case the algorithm either
returns NULL or updates R, which is a contradiction. If
R is defined in an earlier iteration than L, then r is
reset to R in line 19 when L is defined, and it is checked
if some edge in P(vR, vi) intersects pq, so that cannot
happen either.

Assume that we are in case 1, i.e. x ∈ P(v1, vR). Con-
sider the first iteration, say iteration j, at the beginning
of which P(v1, vR) intersects pq properly, and let x′ be
the intersection point closest to p. Let y′ be the first
point where P(x′, vi) crosses pq from left to right. Then
y′ ∈ x′q (x′ and y′ might not be the same as x and y,
since R and L can change before the algorithm termi-
nates). We must have vR ∈ P(y′, vi). There are three
possible cases to consider: vR ∈ px′ (case 1.1), vR ∈ x′y′
(case 1.2), and vR ∈ y′q (case 1.3).

Assume case 1.3. Let Rk, Lk, pk, and qk be de-
fined as in Lemma 3 for each iteration k. Either R
or L is redefined in iteration j − 1 due to the minimal-
ity of j. Therefore, Rj−1 6= Rj or Lj−1 6= Lj (case
1.3.1 and 1.3.2, respectively). First, assume Rj−1 6= Rj

but Lj−1 = Lj . Again, there are three cases to con-
sider: vRj−1 ∈ P(v1, x

′) (case 1.3.1.1), vRj−1 ∈ P(x′, y′)
(case 1.3.1.2), and vRj−1 ∈ P(y′, vRj ) (case 1.3.1.3). As-
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v0
v1, p1, p7

p16p18p25

vi+1, q1
vi

q7 q16 q18 q25

a7
a18a16

a25

Figure 2: Illustration for Lemma 3. The points pj , qj are shown with the number j of the first iteration where they
occur. The segments pjqj are drawn dashed. The angles aj > 0 are indicated with grey arcs.

sume case 1.3.1.3, see Figure 4(a). According to Lemma
3, the CW angle between ←−−−−−−→vRj−1

vLj−1
and ←−−−→vRj

vLj
is

less than 180◦. Therefore, a subset of P(x′, y′) would
also be contained in LHP(vRj−1vLj−1) ∩ �. That im-
plies that P(v1, vRj−1

) intersects pj−1qj−1, a contradic-
tion because of the choice of j. vRj−1

cannot be in
P(x′, y′) (case 1.3.1.2), because then vRj

would be in
RHP(vRj−1vLj−1), so R would not have been redefined
to Rj in iteration j − 1. Finally, if vRj−1 was a vertex
in P(v1, x

′) (case 1.3.1.1), P(x′, y′) would be contained
in LHP(vRj−1

vLj−1
)∩�, and therefore vR would be re-

defined to a vertex in P(x′y′) when the edges of that
chain was traversed. Hence, vR would not be redefined
to vRj in iteration j − 1, which is a contradiction.

Now, assume Lj−1 6= Lj (case 1.3.2), see Figure 4(b).
The CW angle between ←−−−−−−→vRj−1vLj−1 and ←−−−→vRjvLj is less
than 180◦. Therefore, a part of P(x′, y′) is also in
LHP(vRj−1

vLj−1
). That implies that P(v1, vRj−1

) in-
tersects pj−1qj−1, which contradicts the choice of j.

The case where vR ∈ x′y′ (case 1.2) can be elimi-
nated in a similar way. Consider case 1.1, i.e. vR ∈ px′.
The chain P(p, x′) and the segment x′p forms a simple,
closed curve, because x′ is the intersection point be-
tween P(v1, vi) and pq closest to p. The curve can, for
instance, be seen in Figure 4(a). Consider the region of
P enclosed by the curve. In order to get to vR, P(y′, vi)
has to cross x′p to get into the region. That contradicts
that x′ was the intersection point closest to p.

If we assume that P(vi+1, vn) intersects pq, we get a
contradiction in an analogous way.

The conclusion is that if (R,L) is returned, vR and
vL defines a proper beam pq with right support vR and
generalized left support vL in that order. Therefore, pq
must be the rightmost beam from v0v1 to vivi+1 accord-
ing to Lemma 2.

v0
v1

vivi+1

vRj

vLj
, vLj−1

pj

qj

x′

y′

vRj−1

pj−1

qj−1

(a)

v0 v1

vivi+1

vRj , vRj−1

vLj

pj

qj

x′

y′

vLj−1

pj−1

qj−1

(b)

Figure 4: Cases in the proof of Theorem 4. (a) Case
1.3.1.3. (b) Case 1.3.2.
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Observe that the vertices of P are not altered. Hence
the input is read only. In addition to that, we only use
the variables R, L, r, l, p, q, and side. The computa-
tions of intersections and containment at lines 9, 10, 16,
17, 20, 21, and 25 are easily implemented using constant
workspace. �

Even though we reset l to L in line 12 or r to R in line
19, the running time is linear since the other variable
is not reset, so half of the traversed edges are never
traversed again, as the following lemma explains.

Lemma 5 There are at most 2n − 6 iterations of the
loop at line 5 of Algorithm 1.

Proof. Let N(n) be the maximal number of edge visits
for a polygon with n vertices. Consider the first time
line 12 or 19 is executed. Assume it is line 12. There
have been made 2(r−1)−1 < 2(r−1) iterations, because
P(v1, vi) is traversed every second time, beginning with
the first. The r−1 edges in P(v1, vr) are never traversed
again. Therefore, N satisifies the recurrence N(n) ≤
2k+N(n− k), where k = r− 1. A similar bound holds
for some k ≥ 1 if line 19 is executed first. We know that
N(4) = 2, so induction yields that N(n) ≤ 2n− 6 is an
upper bound. �

It is clear that an algorithm to compute a leftmost
beam from v0v1 to vivi+1 can be constructed symmet-
rically. That gives us the following theorem:

Theorem 6 The visible part of an edge vivi+1 from
v0v1 in a simple polygon can be computed in O(n) time
using constant workspace.

3 Weak Visibility Polygons and Minimum Link
Paths

The weak visibility polygon of the polygon P from the
edge v0v1 consists of all the points in P visible from
v0v1. Guibas et al. [9] presented an O(n)-time algorithm
to compute the weak visibility polygon if a triangula-
tion of P is provided, where n is the number of vertices
of P. Later, Chazelle [6] described an O(n)-time de-
terministic triangulation algorithm, implying that the
weak visibility polygon can be computed in O(n) time
using O(n) space. Using Algorithm 1, one can make a
O(mn)-time algorithm using constant workspace, where
m is the number of edges of the weak visibility polygon
[1]. It is well-known that m = O(n).

A minimum link path between two points s and t
in a simple polygon is a polygonal path from s to t
which is contained in P and which consists of as few
segments as possible. Suri [12] showed how to compute
a minimum link path using O(n) time if a triangulation
of P is provided. Using the algorithm to compute
the weak visibility polygon, it is possible to devise

an O(n2)-time algorithm to compute a minimum link
path using constant workspace. The algorithm does
not use a triangulation of P. The details are given in [1].
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