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Overview

I Problem definition

I Goals of the thesis

I General overview of the road

I Greedy overview of the road

I Non-greedy overview of the road



Problem Definition and Goals

I Problem Definition

Given an undirected, connected graph G = (V ,E ,C ), where
V = {v1, v2, ...vn} is the vertex set, E = {e1, e2, ..., em} the edge
set, and each edge ei has a cost (or weight) associated ci ∈ C ,
where C = {c1, c2, ..., cm}. Let |V | = n and |E | = m. A spanning
tree T = (V ,E ′) of G connects its vertices and the edge set
E ′ ⊆ E has n − 1 edges. The weight of that spanning tree is the
sum of the cost of its edges, i.e.

∑
ei,j∈E ′ ci ,j . In the

minimum-spanning-tree problem the task is to find a spanning tree
of G for which the cost is minimum.
We do not allow duplicate edges.



Problem Definition and Goals

I Goals of the thesis.

In order to solve the open problem, one must compute the
minimum spanning tree of a given graph in a deterministic fashion
in linear time with respect to the number of edges.
This thesis explores the progress done until the current day and
tries to solve the problem.



General Overview



Greedy Overview



Non-greedy Overview



Developing ideas

I A look at special cases of graphs

I Similarities between planar graphs and sparse graphs

I A classification of sparse graphs

I Trimming the subtrees of a graph

I A hierarchy of cycles



Graph structural properties

I The problem is not solved for general case graphs.

I The problem is solved for dense enough graphs.

I The problem is solved for planar graphs.

I The problem is NOT solved for sparse graphs with no
apparent structural properties.
How can we force structure to our graph?



Planar Graph properties

One quickly notices that when dealing with a planar graph, the
triangle inequality can be exploited in order to bound the
neighbourhood of each point.
A linear time algorithm follows just from the Delaunay
triangulation of such a graph.
The main property that a planar graph has in common with a
general sparse graph is that the degree of each vertex under
inspection is low.
For a general sparse graph (number of edges < 4n) with vertices of
low degree (< 4), the problem should be solvable in linear time.



Classification of sparse graphs

I Sparse graphs with only low degree components
We superficially argue that it should be possible to solve this
case in a greedy fashion, either by applying one of the classical
algorithms, or by detecting the cycles and trimming the trees.
(more on this technique next)

I Sparse graphs with some high degree components
High degree components are part of more cycles.
If we use a greedy approach to keep track of the edges of such
components we will end up with n edges, and the running
time will be in a factor of n for just one such component.



Two types of sparse graphs



High degree sparse graph

I How shall we trim the vertices of degree 1?

I It can cascade in a succession of trims that could cover the
whole graph

I What happens if there are more components of high degree?



High degree sparse graph

I How shall we trim the vertices of degree 1?
An idea would be to keep track of the cycles from the shortest
to the longest, and given a vertex of degree 1, to answer in
constant time to which tree it belongs such that the root of
the tree is a cycle.

I It can cascade in a succession of trims that could cover the
whole graph
We can avoid any such cascades by classifying such a
hierarchy of cycles on levels, and then start the trimming
process from the ”longest” cycle.
First we remove the heaviest edge from each disjoint cycle on
each level.

I What happens if there are more components of high degree?



Detecting cycles



Sparse graphs with mixed structure



A General Algorithm

I Reduce the density of the components such that cycle
detection is easy

I The bottleneck will be the data structure used to detect cycles

I Disjoint Sets with table look-up

I Fighting the error produced by the disjoint sets



Density Reduction

I Reduce the density of the components such that cycle
detection is easy
Here we can artificially group components of high degree to
cluster by applying Bor̊uvka Phases, then apply the dense case
algorithm to reduce the number of edges.
The problem is more subtle, as we inspect only local
components and we might discard good edges by doing such
things. Thus we must consider the border edges as well.



Density Reduction

When dealing with density reduction we must consider the
following components:

I Components of high degree and high degree neighbours

I Components of high degree and low degree neighbours

I Components of high degree and mixed degree neighbours

I Components of low degree and high degree neighbours

I Components of low degree and low degree neighbours

I Components of low degree and mixed degree neighbours



Disjoint sets for cycle detection

I The disjoint sets data structure is good at detecting cycles

I We pick a vertex of high degree and find all of it’s closest
cycles; Union-Find each of it’s neighbours, continue until a
cycle is found. (example on blackboard)

I We mark the visited vertices and edges

I We pick an unmarked vertex of high degree and repeat the
procedure
The vertex will either form cycles with already marked ones,
or new cycles.

I Such a pass will take O(m + n) time. Bounding the number
of passes (blackboard).

I Each formed cycle is considered to be 1 vertex in future
iterations
We must also consider if during the density reduction a
component had several expansions towards border edges.



Disjoint sets with table lookup

I The upper bound for disjoint set with union by rank and path
compression is O(mα(m, n))

I If we know the structure of unions in advance Gabow and
Tarjan show that look-up tables can be computed for
components of size Ω(log log n) such that the running time of
the disjoint sets will be O(m + n)

I We can approximate such a union structure, by expanding the
dense components and computing the look-up tables

I Dense components are more likely to be part of more cycles



Disjoint sets with table lookup

However two side effects might occur from using such a table
look-up with the approximation of the union structure:

I The components are connected but the answer to a Find is
false. A Union is usually performed, then the components will
get connected again which will take O(1) time since there is
nothing to do but try to connect. We can correct the value of
the table in O(1) to properly reflect the component, and mark
the Find as faulty; thus only after a Union we can check if the
edge under inspection is part of a cycle or not. This should
not worry us as there is no harm done.



Disjoint sets with table lookup

I The components are not connected and the answer to a Find
is true, then the components will not get connected at this
point in time. We might consider an edge as part of a cycle
even if it isnt. This can create phantom cycles in the running
of the algorithm. The phantom cycles can be addressed after
the hierarchy of cycles has been established. The obvious
side-effect is that some edges that are part of the MST might
be omitted
This should worry us as there is a lot of harm done.
To counter this, we must either try to predict the structure of
the MST pretty good, or aim in creating a pseudoforest, where
we allow some cycles, and some disconnected components.
(blackboard explanation)



Fighting the errors

In order to fight the badness produced by the hardcoded tables we
need to:

I Craft the tables carefully

I After the algorithm terminates expand any isolated component
with it’s lowest degree edge (make use of the cut property)

I Unfortunately we don’t know how to properly bound the
produced segmentation but we can make the following
remarks:
I The errors might occur only at components of low degree that

connect components of high degree
I Some of such errors get remediated in time as the components

of high degree tend to become one
I If the components of high degree don’t colapse into eachother

in the near future, then a gap is formed
I Such a gap is bad only if it is part of a tree that gets trimmed!



Conclusions

I The Road
I Greedy

I Kruskal
I Prim
I Bor̊uvka

I Non-greedy
I Randomized (Karger et. al.)
I Chazelle
I Pettie and Ramachandran’s Optimal

I The Proposed solution



Greedy Overview



Non-greedy Overview



The proposed solution



Future work

I Solve the problem !!!
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