Supporting Intellectual Work through Rendering and Review

Lars Yde

11 April 2001



Contents

1 Introduction and background

1.1 Acknowledgements . . . . . . . . ...

2 Purpose, methodology and overview

2.1 Imtroduction . . . . . . . . . L.
2.2 The purpose of PeerView . . . . . . . . . .
2.3 Methodology . . . . . . . e
2.4 Supporting Intellectual Work Through Artifact Rendering and Group Review .
2.5 Overview . . .. ...
2.6 Description of the Prototype . . . . . . . . .. .. Lo oo
2.6.1 System Overview . . . . . . . .. . ...
2.6.2 Architecture . . . . . . . ...
2.6.3 The PeerView Client . . . . . . . .. . . ... .. ...
2.6.4 The PeerView Server . . . . . . . . . . .. e
2.6.5 Design Rationale . . . . . . . ... oL
2.7 Implementation Overview . . . . . . . . ... . e
2.7.1 The User Interface . . . . . . .. .. . . ... ...
2.7.2 Communication and Data Distribution . . . . . ... ... ... ... ..
2.8 Potential Uses for PeerView . . . . . . . . . . . . ..o
2.9 Earlier Work . . . . . . . e
2.10 Future Plans . . . . . . . . .
2.11 Conclusion . . . . . . . oL e e

3 PeerView - background and details

3.1 AnalysSis . . . ..
3.2 Design . . . ..
3.2.1 Imterfacedesign . . . . . . . . .. . L
3.2.2 Functionality design . . . . . . . ... .o Lo

10

12
13
13
13
13
15
15
16
16
16
17
18
19
20



3.3

4.1
4.2
4.3

323 Classdesign . . . . . . . . . e
Implementation . . . . . . . ... Lo
3.3.1 Thescalable desktop . . . . . . . ... o L
3.3.2 Message and progress bar . . . . ... ...
3.3.3 Communications layer . . . . .. ... ... L 0oL
3.34 Groupdirectory . . . . . . ..
3.3.5 Discussion forum . . . . . .. .. L
3.3.6 Artifact updating . . . . . ... Lo
4 Experimental evaluation of PeerView
Introduction . . . . . . .. L L
The experiment . . . . . . . . L
Discussion . . . . . . . o e
4.3.1 Experimental findings . . .. .. ... oo oo
User evaluation . . . . . . . . . . ..

4.4

5 Implications of PeerView 1.0 for future systems

5.1 Introduction . . . . . . . . . .
5.2 Design analysis . . . . . . . .
5.2.1 Imtroduction . . . . . . . . . . L
5.22 Imterface . . . . . . . . .
5.2.3 Functionality . . . . . . . . .
5.3 Implementation analysis . . . . . .. . ... L Lo
5.3.1 Introduction. . . . . . . . . . .. ..
5.3.2 Implementation language and technologies . . . . . . . .. ... ... ..
5.3.3 Representation of properties and messages . . . . . .. .. ... ... ..
5.3.4 Implementation of the distributed architecture . . ... ... ... ...
6 InSiter
6.1 Introduction . . . . . . . . . .. . L
6.2 User audience . . . . . . . . . . oo e e
6.3 Design objectives . . . . . . ..o
6.4 Interface design . . . . . . . .. L L e
6.4.1 Introduction. . . . . . . . .. L
6.4.2 Screen designs . . . ... ..o
6.4.3 Design rationale . . . . . ... o Lo
6.5 Architecture . . . . . . ...

39
39
39
40
41
43

44
44
44
44
45
46
47
47
47
49
50



6.5.1 Information architecture . . . . . . . . . . . . . . ... . 64

6.5.2 Distributed architecture . . . . . . .. ... ... 69
6.6 System requirements . . . . . . . .. ..o 69
Conclusion 71
7.1 Results and contributions . . . . .. ... oL oL o 71
7.2 Lessons learned . . . . . . . . . . L 72
7.3 Future work . . . . . . . 73
Design documentation 74
AT Usecases . . . v v v i i e 74
Al11 Adddocuments . . . . . . . ... 74
A1.2 Remove documents . . . . . . . . . .. ..o 75
A.1.3 Open group directory dialog box . . . . ... ... ... ... .. .... 76
A.14 TUpdate group directory . . . . . . . . . ... 76
A.1.5 Submit group directory . . . . ... ... 77
A1.6 Create group . . . . . . i i i e e 78
A17 Deletegroup . . . . . . . L 78
A18 Edit group . . . . . e 79
A19 Joingroup. . . . . oo e 79
A.1.10 Select document from visible documents box . . . . . . .. ... ... .. 79
A1.11 Zoom t0 OVErvVIEW . . . . . . ... e 80
A1.12 Centre document . . . . . . . ..o 80
A2 Class diagrams . . . . . . . .. .o 80
A.3 Class diagram for package clientapp. . . . . . . . . . .. .. .. 81
A4 Class diagram for package serverapp . . . . . . v« v v v i b 82
A5 Class diagram for package peerviewmisc . . . . . . . . .. ... ... ... 82
Evaluation experiment materials 83
B.1 Tasklists . . . . . . . . . 84
B.1.1 Danish version . . . . . . .. .. . . 84
B.1.2 English version of task list for rank-and-file members . . . . . . ... .. 88
B.1.3 English version of task list for group creator . . . . . . .. ... .. ... 90
B.2 Transscript . . . . . . . . e e e e 92
B.2.1 Danish version . . . .. . .. ... 92
B.2.2 English version . . . . . . . ... L 96
B.3 Questionnaires . . . . . . . .. 100



B.3.1 Danish version . . . ... .. .. ...
B.3.2 English version of PeerView questionnaire for first participant . . . . . .
B.3.3 English version of PeerView questionnaire for second participant

B.3.4 English version of PeerView questionnaire for third participant . . . . .

C Source code

C1
C.2

Introduction . . . . . . . .. e e

List of listings . . . . . . . .« o o o e

D PeerView help system

D.1
D.2
D.3
D4
D.5
D.6
D.7
D.8

Introduction . . . . . . . L
Add documents . . . . ... L
Remove documents . . . . . . .. . L. L e
Panorama . . . . . . . . L
Discussion forum . . . . . . .o
Group directory . . . . . . . L.
Preferences . . . . . . . L

Using adivider bar . . . . . . .. ..o L

112
112
112



Chapter 1

Introduction and background

Software development is difficult. This observation comes not only from my personal experi-
ence, but seems to be universally acknowledged by practitioners and researchers in the field
alike |11, 51, 19]. Nor is it a particularly novel or sensational insight: numerous manuscripts
and much research have recognized it, addressed it and, in many cases, proffered some panacea
for remedying it. The problem persists, though, with no signs of abating. Software systems
continue to be late, continue to frustrate their intended users and continue to be flawed or
even dysfunctional [21]. The most important reason for what seems to be a perennial problem
is probably the inherent complexity of software development with its complicated interplay of
technological, social and psychological factors. The difficulty in managing this complexity is
severely compounded by the intangibility of software engineering’s subject matter. Contrary
to other branches of engineering which are typically concerned with the transformation of
physical matter in one form or another, software engineering is concerned with the creation of
symbolic artifacts. In other words, software engineers have no immediate sensory perception
of the product they fashion because it is, in essence, a purely intellectual construct. In his
much quoted 1987 article [11], Fred Brooks states it so:

“The reality of software is not inherently embedded in space. Hence, it has no ready
geometric representation in the way land has maps, silicon chips have diagrams,
computers have connectivity schematics ...In spite of progress in restricting and
simplifying the structures of software, they remain inherently unvisualizable, and
thus do not permit the mind to use some of its most powerful conceptual tools.
This lack not only impedes the process of design within one mind, it severely
hinders communication among minds.”

Instead of direct observation, we rely on tools (compilers, debuggers, code analyzers, bench-
marks, etc.) to help us gauge and probe the end product of a software development process,
namely the code itself'. Such external measurement and experimentation can only process
the syntactic and (formal) semantic properties of code. It does not yield information about
its “sanity”, that is, whether it is sensible relative to its problem domain or whether it makes

LA similar argument can be made for other phases, such as design and analysis but I will focus on program
code for now.



logical sense?. To that end, a developer must still rely on human review conducted by herself
or by others, either informally or systematized as code inspection meetings, walkthroughs or
the like [40]. The value of review and scrutiny of program code and other symbolic artifacts,
particularly by others than the author herself, should not be underestimated. Mathematicians
have known and applied this knowledge for centuries through the institutionalized practice
of proving the logical consistency of their ideas and then subjecting those proofs to scrutiny
by other mathematicians. Software engineering has rediscovered the value of this mechanism
and has accumulated statistical evidence to support it. For example, in [30] Humphrey writes
that

“ ...if you were to inspect a software product that contained 100 defects, how
many would you expect to find? We will call the percentage of the defects found
the yield of the review or inspection. Again, there are no published data but my
experience at IBM was that inspections typically yielded between 60 percent to 80
percent. Data from another organization support this with a reported 68% yield
for one large operating system.”

These characteristics of being intangible and subject to improvement through review is of
course not exclusive to software. All artifacts of intellectual work seem to share them, consider
for example coauthoring on scientific articles, proof-reading by editors, paper submissions by
students to teachers, and so on. Software development is, however, conducted on an industrial
scale and produces systems whose complexity dwarfs that of most other human artifacts. It
might therefore be the area that could benefit the most from technologies, for example in the
form of software tools, that could make software artifacts perceptible to its developers and
thus more susceptible to both traditional and entirely new forms of inspection and review as
the artifacts were being developed. Ideally, such tools would render a representation of a set
of artifacts and the process by which they are brought about and would provide facilities for
the generation and accumulation of review material concerning that representation. That is,
in its fully fledged incarnation, the support tool envisioned would provide a both spatial and
temporal rendition of a software project and facilities for communicating about it.

In Chapters 2 and 3 of this thesis, I present and discuss a prototype for such a tool, called
PeerView, which was implemented by me in the latter half of 2000. The first part of that
presentation will be an overview of this prototype in the form of an article coauthored with
Jyrki Katajainen, which appeared as [62] and has been submitted to an international journal®.
It is followed by a more thorough discussion of the material it introduces. In Chapter 5, I
analyze the design, implementation and development process of the PeerView project, and
discuss what lessons can be derived from it. Next, in Chapter 6, I apply those lessons to
the design of a more ambitious system that is to succeed and in part build on the PeerView
prototype. This system, which has been given the working title InSiter, will be implemented
if the necessary resources can be made available, and will hopefully then be subjected to
extensive usability testing. The thesis concludes with a brief summary and look at results
achieved and experience garnered as well as a perspective on the future of this work.

2The “sanity” of a design, a piece of code or other symbolic information might be called its natural semantics
to distinguish it from formalized descriptions of its semantics.
3 Another, somewhat shorter article appeared in the February issue of Distributed Systems Online [61]



1.1 Acknowledgements

Thanks to my supervisor Jyrki Katajainen who provided guidance and ample room for discus-
sion, both technical and otherwise, and who helped ensure that i’'s were dotted and t’s crossed
by proof-reading the draft manuscript. Also, through financial support from grant 9801749
(project Performance Engineering), he made it possible for me to focus on thesis writing, not
making ends meet. Thanks also to Morten Nielsen who gave useful feedback on late drafts
of the manuscript which helped improve the final version. The three participants in the ex-
perimental evaluation — Paul Broholm Abrahamsen, Thomas Hyldahl and Rikke Iversen —
provided valuable oral and written feedback by allowing me to tape record our communication
during the experiment and by subsequently completing a questionnaire. I would like to thank
them also for their assistance. The Department of Computing at the University of Copenhagen
(DIKU) proved helpful by providing me with office facilities and funds for external consultancy
on portions of the thesis manuscript. Thanks also to Kasper Hornbak for some interesting
feedback on the PeerView interface. Finally, thanks to my girlfriend Jeanette Vedelstjerne
Gersager who helped me regain what I was at times lacking in moral fibre.

Errors, omissions and typos are hopefully few and far between, but whatever may persist are
of course entirely of my doing.



Chapter 2

Purpose, methodology and overview

2.1 Introduction

This Chapter provides an overview of the prototype software that was developed for this thesis
and the problems that it addresses. This Chapter also includes a description of the work
methodology used for the present thesis, i.e. what was the intended progression of events from
inception to conclusion. The concluding Chapter (Chapter 7) assesses how this methodology
was implemented, i.e. how was the correlation between what was intended and what actually
happened.

2.2 The purpose of PeerView

PeerView is an exploratory prototype. Its purpose is to provide groups of users involved in
intellectual work with a common information space and facilities for communicating about
the contents of that information space. The notion of a common information space (CIS) is
not unequivocally defined in existing literature, but in [4], Bannon and Bgdker discuss the
concept and give a description that can be summed up for the purposes of this work by the
following quote from [48]:

“ ...a central archive of organizational information with some level of ’shared’
agreement as to the meaning of this information (locally constructed), despite the
marked differences concerning the origins and context of these information items.”

They go on to note that:

“Cooperative work is not facilitated simply by the provision of a shared database,
but requires the active construction by the participants of a common information
space where the meanings of the shared objects are debated and resolved, at least
locally and temporarily.”

PeerView is primarily intended as a CIS system for software developers since the artifacts
of their shared work are often voluminous and it can be difficult to formulate the mental



equivalent of the physical representation that manual workers have of their work simply by
virtue of their artifacts being physical. In other words, if one’s subject matter are strings
of symbols, the very act of making sense of what one is working on takes effort, whereas
with physical matter, the act of making sense is an unconscious "making of sense" through
processing of sensory data that does not require the sometimes painstaking intellectual effort
needed to understand complex symbolic representation. Common information spaces thus
seem to derive their justification from the way in which they can help automate the work of
constructing and maintaining representations of external activities, namely shared work. The
potential benefits are not only the savings in work time and effort that one would suspect
to see when individual collaborators can more quickly and systematically access and absorb
the information needed to carry out their work, but also the organizational rewards that can
potentially be reaped from an integrative model of shared work. By the latter I mean that when
workers and management can access a comprehensive and coherent model of the work that
goes on within their organization or group, they acquire an object of both conversation and
contention. They can discuss and monitor progress, either informally or by means provided
by the workspace system itself, and can review the shared artifacts themselves in a more
immediate way than if they were not accessible at a central locus. It seems plausible that this
can ultimately affect not only the work process itself, but also the organization within which
that process is undertaken since such a model can give all stakeholders in the organization a
common focal point for discussion. The above is largely speculative and the intention behind
PeerView is not only to give users a support tool for their collaborative work, but also to
explore how these ideas can best be translated into reality.

In [27], Gutwin and Greenberg refer to a particular type of common information space, namely
the shared worksspace as “a bounded space where people can see and manipulate artifacts re-
lated to their activities.” [27, Section 2.2]. They go on to note that “In these spaces, the focus
of the activity is on the task artifacts: the visible and manipulable objects through the task
is carried out.” [27, Section 2.3|. This form of common information space is limited in that it
usually seeks to reproduce or simulate a physical workspace such as a desktop or a conference
room. Other forms of shared information, such as organizational structure or awareness of
where coworkers are physically located and what they are doing, need not be present in the
shared workspace or even deducible from it. If it is, the relationship between workspace ar-
tifacts and such awareness information might be entirely coincidental. PeerView’s dominant
feature is such a shared workspace where users can share and manipulate artifacts. The pur-
pose of providing this workspace is both to give users a window onto the work of whatever
group they are currently associated with and to experiment with the design and implemen-
tation of this type of common information space. The latter has yielded useful information,
both through the process of development itself and through experimental evaluation, as dis-
cussed in Chapters 4 and 5, respectively. This information can be fed into the development of
other systems that use common information spaces to support collaboration, one of which is
outlined in Chapter 6.

In addition, PeerView demonstrates novel methods of navigation, at least in a groupware
context, by giving users a fully zoomable desktop on which the shared artifacts can be placed
and manipulated. This is an experimental way of addressing the “detail /overview” problem of
how to represent both local detail and global overview in a usable manner which is discussed
in [22], where the authors describe a different solution to this problem, namely the fisheye
lens. PeerView also addresses the practical problem of catering to groups operating in a



heterogeneous computing environment by being implemented in pure Java, i.e. without any
native code, and therefore able to run on a variety of machine architectures and platforms.

Being a prototype, PeerView also helps answer the development question: how can a fully
fledged CIS support system best be developed? PeerView may be limited in its functionality
but it incorporates all the components that should be present in more ambitious systems
requiring many man-years of development time, and the experience gained during all phases
of PeerView development can facilitate implementation of such systems. Chapters 3 and 5
describe the development process and discuss what lessons can be learned from it.

PeerView imposes little structure on its users and their work process. This means that it
affords users a great degree of freedom which is in keeping with an observation by Grintner
[23]: “one of the emergent trends in workflow research . .. [is] to make the systems more flexible
to accomodate the contingent aspects of work.”. However, it also means that PeerView does
little to systematize and automate work for its users. Later systems, such as that described
in Chapter 6, will have to address the specific needs of a more narrowly defined user audience
to go beyond the simple functionality found in PeerView. In a sense, this implies a range of
possible applications from the pure, unadorned support of shared information in a CIS to a
highly structured, user customizable workflow system centered around a CIS. Viewed in that
light, PeerView is clearly towards the former end of the spectrum. For that same reason,
PeerView may appeal to a broad audience but does not purport to appeal to an equally broad
range of work situations. That is, although PeerView may be used by anyone from the office
clerk with basic computer literacy to the veteran software developer, it does not necessarily
support all of their work situations and nor does it have to in order to fulfill its purpose.

2.3 Methodology

The methodology used in this project is a hybrid resulting from the need to reconcile scientific
exploration with the practicalities of software development. The idea for a distributed ap-
plication supporting intellectual work through rendering and review sprang from reading [52]
among other works, and from personal experience with software development projects where
lack of communication and coordination can complicate or derail efforts. Now, this conception
of an idea could have been followed by lengthy elaboration process where the initial ideas were
translated into a detailed paper model, i.e. a verbal and diagrammatic description, and not
necessarily implemented as an executable application. This approach would obviously have
allowed for a much more ambitious initial design since the lenghty implementation cycle of
“code-execute-debug” could have been eliminated. However, I believed such an approach to
be of questionable scientific value at best and worthless at worst since a pure “armchair de-
sign” that was not put to an experimental test through implementation would be much like
a physics theory that was never empirically tested, i.e. insubstantial though possibly intellec-
tually stimulating. Also, most software development methodologies advocate incremental or
iterative development [6, 42, 32] which corresponds to my personal experience which is that
most system development benefit from many short iterations rather than monolithic, phased
design as in the traditional “waterfall” model [51, p. 9]. I therefore decided to advance quickly
from idea to design and implementation, followed by a posteriori analysis of the development
process and evaluation of the finished prototype in the hope that this would yield valuable
feedback based on empirical data that could help improve the design and development of

10



future systems.

Putting a methodology on a summary form as done below is slightly misguided as method-
ology is more a mindset and structured approach than a formulaic procedure. However, it is
illustrative to see the overall steps taken put into a list form so that is done here:

1. Inception of PeerView

2. Elaboration of PeerView
3. Construction of PeerView
4. Transition

5. Evaluation

6. A posteriori analysis

7. Elaboration of successor system (next iteration)

To anyone familiar with the unified software development process [32], the above sequence will
be recognizable, at least in part, because the activities “Inception”, “Elaboration”, “Construc-
tion” and “Transition” are identical to the phases in a “workflow cycle” to use unified process
parlance. However, this is not in itself of scientific merit since these developmental phases do
not include formal evaluation of the end product and the process by which it was brought
about, and therefore does little to verify their validity. The evaluation and analysis phases
of the process used for this work are intended to address this shortcoming and help give this
thesis the scientific potency needed to have an impact beyond the software product resulting
from it. In Chapter 7, I discuss how the actual progression of events corresponds with the
process intended and what room there might be for improvement.

2.4 Supporting Intellectual Work Through Artifact Rendering
and Group Review

The following is a slightly abbreviated version of an article that appeared as [62] and has been
submitted to an international journal. Only the introduction has been cut to avoid overlap
with Section 1. The article appears here to provide an overview of the PeerView software.

11



Supporting Intellectual Work through Artifact Rendering and Group
Review

Lars Yde
Department of Computing, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark
larsyde@diku.dk
Jyrki Katajainen
Department of Computing, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark
jyrki@diku.dk

Abstract. Intellectual teamwork, such as that done by software development teams, is char-
acterized by the intangibility of its subject matter. This can make it difficult for team members
and outside stakeholders to gain an overview of the product being built. Many software tools
of various designs have addressed this problem, often by using graphs and charts to model on-
going projects. In this paper, we suggest a design based on artifact rendering and group review
and argue that it can promote overview and communication. We also present software built
from that design and describe its potential uses and audience as well as its implementation.

Keywords.Computer-supported collaborative work, component-based development
Category.H.4.3, H.5.3, K.4.3

2.5 Overview

In [Section 2.6] we describe a prototype of a tool intended to support intellectual teamwork
in general. That is, we aim at supporting any process in which a symbolic product, an ar-
tifact, is being produced by individuals in group collaboration, so the use is not limited to
software developers. Our main design goal was to promote overview by artifact rendering and
communication by group review. By artifact rendering we mean the representation of intel-
lectual artifacts by some medium to facilitate processing by humans, and by group review the
activity through which team members exchange information and commentary on the artifact
being built. Our prototype uses visualization to render an artifact that consists of textual and
graphical documents, but other forms can be envisaged, i.e. auditory representation. Also,
discussion fora can be associated with parts of the artifact rendered.

Our prototype was developed using the Java programming language and a set of compatible
component technologies. In [Section 2.7] we discuss both and argue that implementation was
possible only through such component-based development, given our limited resources. Next,
in [Section 2.8], we propose some potential uses of the prototype, both in its present form
and in subsequent versions. We then go on to discuss earlier related work in [Section 2.9] and
finally, in [Section 2.10], we outline our plans for a more advanced system.

12



2.6 Description of the Prototype

The prototype aimed at fulfilling the basic needs of artifact rendering and group review was
named PeerView and work on it was begun in the middle of May 2000 as part of Lars Yde’s
M. Sc. thesis. At the time of writing (mid October), a beta release has been completed and a
stable version is planned for release before the end of the year. The system is released under
a freeware license both in its binary and source form. In this section, we outline PeerView’s
design.

2.6.1 System Overview

PeerView provides users with a dynamic representation of on-going work by rendering the
artifact of that work in a form which allows easy overview as well as inspection and discussion
of detail. PeerView accomplishes this by allowing groups of users to share documents and
have them rendered in a scalable visual panorama. The set of documents is constantly kept
updated so as to provide a real-time window onto the artifact (e.g., a collection of code files)
being developed. With each document is associated a discussion forum that enables a group
to have discussions on the document in a manner similar to a USENET [57] newsgroup having
discussions of a set topic.

2.6.2 Architecture

PeerView is a client/server application with “fat” clients and a “thin” server, meaning that
most system functionality is placed in the client application and relatively little in the server.
Each PeerView user is assumed to be running a single instance of the client program on his
or her machine, but multiple instances are possible, provided they are running from separate
locations (different directories). The server may run on one of the users’ machines or it may
run on a separate host. Currently, PeerView supports two types of connection: TCP/IP
sockets and HTTP. The former is intended for local or closed networks, the latter for use over
the Internet, but both may of course be used differently.

2.6.3 The PeerView Client

The client application provides a window onto a set of documents via a zoomable panorama
|[Fig. 2.1, centre|] where documents can be arranged in an arbitrary pattern and zoomed to
arbitrary scale as well as moved and sized individually. By centring a document, the user can
access its discussion forum [Fig. 2.1, bottom] and read as well as add contributions to the
on-going discussion on that document. The top of the client window is occupied by a selection
panel consisting of standard drop-down menus and toolbar buttons. The drop-down box in the
right-hand side of the toolbar panel lists the documents currently displayed in the panorama
so that each can be selected by name as well as by navigating the panorama using a mouse.

From the selection panel, the user can choose to add or remove documents, customize the
client using a preferences dialog or access and modify the group directory, i.e., the list of groups
currently available. The directory appears on top of the main window as shown in [Fig. 2.2]
where the panorama is zoomed to overview, displaying in this case 32 documents arranged

13



file Setup Help

dsEEe f — |

Name: D Uars\CPHSTL index. himl
Author: Lars Yde

Size: 3432

Last updated: 15-10-0010:42:6

The Copenhagen STL g

DIKU Cours e #5058, autumn 2000

Course outline

aw
¢ DD!WSVCFHST\@:mu is the discussion forwm for the document Dillars\CPHSTL\index.html which was added by lars Vde on Hun Oct IS

(B Fﬂ!hmml@ 10:42:07 PDT 2000

0
Figure 2.1: The PeerView client window.
=gl
NOEEC [ — ~

N 5 o ciector =
LR 5 [ - - ;
* =1 [Group 1 A group E 900276 1 S 015 |LarsYde [l

— - Graup2  Another gro.. 0 0 0 Sun Oe115 .. Lars Yae
3 | [orown3 vetanother. 0 0 0 Sun Oct 15 Lars Vde
5
- - = |
=
[ . o =z el ol 1]
e Ba fog i | Jomgrow | Creaegrow || Emorown | Delete growp Close.
|-
el |

Message area: double-click here to apen in separate window

Figure 2.2: Panorama overview and group directory.

in a grid pattern which can be customized by the user from the preferences dialog available
from the drop-down menus. Each group is listed with its current number of participants, the
number of documents it comprises and their total volume in bytes. Using the button panel at
the bottom of the group directory box, the user can join, create, edit and delete groups. After
joining a group, the other group members, if any, are instructed by the client application to
submit their documents so that they can be added to the panorama of the new group member.

14



® LI DVarsiCPHSTLlindex himi, authored bigh| 1hss 15 tne discussion forum for the document D:)lars\CPHSTL\index.htwl which was added by Lars Tde
System natice, by localhost on Smi on Sun Oct 15 10:42:07 PDT 2000
© (31 dont like the layout —
[} 1 dontlike the layout, by Lars el @
[} Reason for choosing 1, by Jyrki
@ 15 the font OK ?
[} s the fomt OK 2, by Jyrki Kat

Message area: double-chick here o open in separ ate window

Figure 2.3: Discussion forum.

The new member’s own documents are then broadcast to the other group members so that
their panoramas can be similarly updated.

As indicated earlier, centring a document (by double-clicking it) causes the PeerView client
to request the discussion forum for that document from the server and, upon receipt, display
it in the bottommost section of the main window. From there, the user can select a position
in the topic tree [Fig. 2.3, left] and using the small vertical toolbar panel choose to compose
a new message, delete an existing message that has not yet been responded to, or view the
property sheet of the selected message.

2.6.4 The PeerView Server

The central purpose of the server is to maintain a database of clients, groups and discussion
fora which is reflected in its user interface [see Fig. 2.4|. It consists of little else than a listing
of the groups supported, a toolbar and a menu panel from which a few, basic functions (setup
and help) can be selected.

2.6.5 Design Rationale

The choice of a client/server architecture was made based on the responsibilities of the server.
A peer-to-peer architecture would have been equally feasible but would merely have placed the
server functionality in an arbitrary client, resulting in little discernible difference to the user.
More significant is the use of a zoomable panorama. As explained earlier, the underlying moti-
vation is to provide overview without loss of content. The user can achieve this by zooming the
arrangement of documents to his or her preferred scale, of course, but by combining zooming
with a linear setup, an effect similar to that found in work by Eick et al. on the visualization

[ Peerview server M= 3
Setup Help
0 e
| Group name Description | #of [Total data. | Active
|Group 2 Anather group |0 0 i

| Group 1 Agroup 32 248008 1
Group 3 Vet another group|0 0 [

Figure 2.4: The PeerView server window.

15



tool SeeSoft [52, p. 315] can be produced. SeeSoft uses a linear arrangement of multi-coloured
columns to render an overview of a collection of code files and their associated statistics (such
as time of modification), thus giving users access to large amounts of information at a glance.

On a more theoretical level, the idea of a customizable panorama that can be viewed at
arbitrary levels of detail is in keeping with the notion of micro/macro readings as described
by Tufte in [55, p. 381L.]:

“...the power of micro/macro designs holds for every type of data display as well as
for topographic views and landscape panoramas. Such designs can report immense
detail, organizing complexity through multiple and (often) hierarchical layers of
contextual reading.”

Tufte’s focus is on the presentation of cartographical and scientific data but his observations
seem to apply equally well here.

2.7 Implementation Overview

The most important considerations in choosing implementation technology for PeerView were:
broad user appeal, ease-of-use, high degree of portability, extensible structure and reliability.
The Java programming language seemed the obvious choice given these requirements, but
implementing all of the planned functionality bottom-up within the set time-frame of four
months was almost surely infeasible since implementation was in the hands of a single developer
(Lars Yde). The solution lay in using component libraries to implement some of the low-level
features such as data distribution and visualization that would otherwise have demanded
weeks of development, testing, and fine-tuning to function satisfactorily. The specific choice
of components and the reason for choosing them are detailed below.

2.7.1 The User Interface

The PeerView interface is implemented using the Swing classes found in the Java Development
Kit (version 1.2.2) [50]. These are light-weight graphical components meaning that they
make no (or only very limited) use of operating-system-specific code, thus ensuring maximum
portability and a minimum of visual variability across platforms. The zoomable panorama
which occupies the centre portion of the client window is built using the Jazz toolkit (version
1.0) [34], which provides primitives for building scenegraphs and scaling text and/or graphics.
(A scenegraph is a tree structure for organizing graphical objects.) Jazz interacts smoothly with
other Java technologies and its structure facilitates future extensions and modifications. In
that sense, it allows development time to be shortened without imposing arbitrary restrictions
on future development efforts.

2.7.2 Communication and Data Distribution

The PeerView communication infrastructure is implemented using the Java Shared Data
Toolkit (JSDT, version 2.0) [36]. It is a relatively low-level toolkit compared to some of the al-
ternatives surveyed, such as NCSA Habanero [28], TANGO Interactive [53], and DreamTeam

16



[18], all available online and free of charge. However, it has the distinct advantage of being
100% pure Java, meaning that the risk of incompatibility problems — a frequent stumbling
block to developers — seemed minimized.

The JSDT requires a server to maintain a directory of clients and groups, and allows all
members of a group to communicate and exchange data using an arbitrary number of channels.
Currently, PeerView uses only a single channel per group, but extending the design later on
would be easy as would adding a number of advanced features such as data encryption, access
restriction and communication statistics gathering, all of which are supported in part or whole
by the JSDT.

As mentioned earlier, PeerView currently supports two communication protocols, namely
TCP/IP sockets and HTTP, but can easily be extended with additional protocols since the
JSDT design is completely independent of its underlying implementation. Such an extension
is, however, a low priority as other, more interesting features (suggested in the previous
paragraph) are higher on the agenda.

2.8 Potential Uses for PeerView

PeerView was designed for a specific purpose, namely support of intellectual teamwork, but
was deliberately made flexible through simple design and portable technology. It is therefore
suited for other uses than that of facilitating intellectual work. Some possible applications of
PeerView are listed below. Many of these are inspired by examples found at the Jazz website
[34].

Repository inspection: PeerView could be used for the inspection of document repositories
such as those maintained by the version management systems that are often used in
software development. It is planned to try this in practice in the near future by allowing
users to download the PeerView client software from a website and then access a CVS
repository using that software (CVS is short for Concurrent Versions System — a popular
open source version management system, see [14]).

‘Web browsing: PeerView can display HTML documents in its present form and can be
extended to support hyperlinks in future versions, and could, after such an extension
has been implemented, function as an inter-/intranet browser.

Presentation: Documents can be displayed and arranged in PeerView’s panorama and sub-
sequently used in a presentation much like conventional slides but in a more manageable
way, for example, by projecting the panorama onto a canvas and then using a mouse to
navigate while giving the presentation.

Authoring: PeerView could be used as an authoring tool by researchers who could have
separate copies of a shared manuscript placed on the panorama and then edit and
annotate their version while conferring with others about their copies. This could also
be used for commentary and proof-reading and would scale well since the zoomable
PeerView panorama need not consume more user screen space as the number of authors
increases.

17



Education: Due to its simple design and graphical interface, PeerView is accessible to most
users, including children and some groups of disabled people, and so could be used both
for distance learning in geographically dispersed communities and as a support tool in
conventional education. One obvious example of the latter is letting visually impaired
students study teaching materials at their preferred magnification using the zoomable
PeerView panorama.

The above points to some general areas of application, but the number of specific uses is
potentially quite large because of PeerView’s extensible, open-ended architecture and design.

2.9 Earlier Work

The extensive directory of computer-supported collaborative work and groupware resources
at [56] lists a large number of groupware applications for shared editing, conferencing, e-
mailing, and other forms of group collaboration. In theory, such functionality can serve the
same purpose as PeerView, but in practice, many of these products are designed for different
purposes and are thus ill suited for artifact rendering and group review. Two examples are
Cybozu Office [15] and Lotus Notes [38], both of which are large suites of tools for collaborative
work that facilitate resource sharing and communication. However, their size and complexity
makes it impractical to use them for the narrowly defined and specific purpose that PeerView
has.

Several academic initiatives have explored areas related to artifact rendering and group re-
view and have produced software that addresses the same underlying problems as PeerView.
Examples are the TeamRooms software [46] created for supporting team collaboration and
group awareness, and the WORLDS software [60] used for distributed access to one or more
repositories of information. Both are similar in architecture to PeerView and are aimed at
facilitating collaborative work through object sharing and group communication, but their
designs differ from PeerView’s in key areas. Both TeamRooms and WORLDS are based on
spatial metaphors, i.e., the notion of shared electronic spaces. TeamRooms realizes this idea
by letting users define rooms which are persistent fora where objects can be shared and com-
munication can take place between the visitors of the room. Each room is equipped with
facilities for collaborative work in the form of applets for exchanging information and carrying
out other tasks. The TeamRooms user interface is dominated by a panorama onto which the
contents of the room (i.e., the shared objects) are projected for inspection and manipulation
by all users “present” in the room. An implication of such a design is of course that the set of
shared objects can easily occupy more than the visible screen space and TeamRooms addresses
this problem by offering a room overview radar that gives an outline, non-scalable bird’s eye
view of the room (the work on radar overview has been continued at the University of Calgary
[24] where TeamRooms was developed).

On the conceptual level, PeerView differs from TeamRooms by being a tool for artifact render-
ing and group review whereas Teamrooms provides shared electronic spaces for collaborative
work. This is the central difference since the conceptual nature of a system usually dic-
tates future design and development efforts. In terms of design, PeerView has fewer features
than TeamRooms and consequently a simpler interface. It also addresses the issue of artifact
overview differently, namely through its scalable, configurable panorama, but it is similar in its

18



use of object sharing by projection onto a panorama surface. Technologically, the most impor-
tant difference is that PeerView is written in Java while TeamRooms is a Tcl/Tk application
which obviously impacts portability and potential audience since Java is platform-independent
and Tcl/Tk is not, although it is widely supported. The WORLDS collaboration environment,
which is called Orbit, differs from PeerView in much the same way as TeamRooms, but has a
more complex architecture and, consequently, more stringent system requirements than both
TeamRooms and PeerView.

2.10 Future Plans

Given the open design and implementation of PeerView, we expect little difficulty in integrat-
ing new features suggested by future users and ourselves. A handful of useful extensions have
already been brought to our attention and are listed below:

e New display managers to allow advanced document formats such as RCS (the format
used by CVS [14] for storing the revision history) and streaming video in addition to
the existing formats which include plain text, HTML, RTF, GIF and JPG.

e A selection of layout managers, i.e., user configurable program components for auto-
mated control of the documents in the client panorama, in addition to the default man-
ager (the grid layout manager) now available.

e An editable and extensible property sheet associated with each document.

e Discussion fora for groups of documents organized by owner, topic, or some other shared
characteristic.

The above features are for integration into future releases along with any additional suggestions
deemed worthwhile.

The long term plan is to gather feedback about the use of PeerView and from that assess
the viability of its philosophy and design. Provided this assessment is favourable, we plan
to develop a more ambitious system for real-time artifact rendering and process rendering.
That is, in addition to an artifact, the organization and history of a project is rendered. The
system is to assemble global statistics about the state of a project by collating information
and documents gathered from individual clients distributed in a network. Relevant statistics
would be the number of documents worked on by each user, the number and position of
changes made to those documents and, for code files, profiling and debugging information.
That information should then be organized by the server and transmitted around the network
to an arbitrary number of consumers who would render it, either visually or by some other
medium determined by the preferences of the user. Moreover, the system could offer the review
facilities of PeerView along with a set of more advanced features. Ideally, the latter would
include “scribbling pads” to communicate in pictures/diagrams in addition to words, audio and
video conferencing to allow real-time communication among group members, and playback
facilities for observing the evolution of a project over time. Thus, by combining artifact
rendering with process rendering, a both spatially and temporally accurate representation of
on-going work is given.

19



2.11 Conclusion

The problems that PeerView seeks to address are not new, but its approach and design are
relatively untried. Only user feedback and continued research will tell if such an approach
is justified and has enough substance to bear larger initiatives. If so, the potential benefits
from a more ambitious project as outlined seem significant. On a more philosophical level,
the potential merit of the PeerView approach comes from the fact that it is a response to a
real and pervasive problem in software engineering, namely how to get a cognitive grip of an
intrinsically intangible and usually highly complex subject matter. In that sense, PeerView
can be seen as a small step in the evolution towards CASE tools that can help software
engineering attain the maturity of other engineering disciplines and thereby, hopefully, stem
the pandemic of failed projects.

Software Availability
The latest PeerView binaries are available online at:

http://www.diku.dk/research-groups/performance-engineering/PeerView/

The source code and accompanying documentation will be made available at the above address before
the end of this year (2000). Future developments and release plans will also appear there as will related
resources. Please feel free to download PeerView and test its usefulness for yourself.

Acknowledgements

This work was supported by the Danish Natural Science Research Council under contract 9801749
(project Performance Engineering).

20



Chapter 3

PeerView - background and details

The article format places some natural restrictions on style and content, so the level of detail
in the above has by necessity been limited. The following paragraphs seek to remedy that
by providing the background details on the rationale for the design of PeerView, the reasons
for the choice of implementation technologies and architecture, and a discussion of the devel-
opment process. In the below, PeerView is referred to with its current version number, 1.0,
when necessary for the specific point being made or item being discussed. In all other cases,
it is simply referred to as PeerView, i.e. without a version number.

3.1 Analysis

The analysis phase of the PeerView 1.0 design consisted mostly in refinement of the ideas that
underpinned it, namely support for intellectual work through artifact rendering and group
review. For a full-scale system, this would have included empirical research among a target
audience to ascertain their preferences and proficiency. Even for a prototype system like
PeerView 1.0, field research would have been useful, but I deemed it infeasible within my set
timeframe. Naturally, that decision influenced my perspective on the design: PeerView was
to be a vehicle for certain ideas, and at the same time be potentially useful to a wide audience
to demonstrate the generality, in addition to the feasibility, of those ideas. The implication
to me was that PeerView should be simple enough to maintain focus on the core ideas and
facilitate wide use, yet comprehensive enough to provide both real functionality for its users
and material for future research.

The central issues that had to be resolved first are discussed below in the order they were
considered.

The semantics of representation

A central question was of course: what was meant by artifact rendering in practice? What
needed clarification, in other words, were the semantics of representation, i.e. what constituted
an artifact and which of its constituents should a representation render to provide a useful
model for its users.

The answer lay in the fact that any artifact of intellectual work can be represented by a finite

21



string of symbols. The plausibility of this statement follows from its wording: if intellectual
work has resulted in the creation of an artifact, then it has been converted from its abstract
state (“thought stuff”) to material form (a physical artifact). If we assume that all material
objects can be exhaustively described using some symbolic formalism, then any artifact can
be encoded in a computer readable form since any such formalism can be converted to binary
numbers using a binary enumeration of its symbols. This is an abstract formulation, to be
sure, but it allows us to focus on the essential aspect of computerized artifacts, namely content.
Whether the artifact be text, graphics, audio, or something else entirely, it will always have
a string representation. This is one defining property of an artifact, but it is so abstract
a definition that it is almost vacuous. Any rendering mechanism would require additional
information, i.e. “meta-data”, about the artifact such as its medium (text, graphics, audio),
its author, possibly its revision history and so on. The exact composition of the meta-data
should depend on the type of rendering used: 3D graphics might require different information
than 2D graphics, for example.

The form of representation

With a workable, albeit abstract, definition of the artifact concept in place, the next step
was to decide on an appropriate form of representation, i.e. the appearance of the artifact
rendition. I chose visual rendering as the basis for the interface design, but although this may
seem the obvious choice it is not predetermined, at least not if one defines visualization as
done in [52, p. 32]:

“Visualization may be defined as ‘the power or process of forming a mental pic-
ture or vision of something not actually present to the sight’ ...Notice that this
definition allows for the use of sensory modalities other than vision, e.g. hearing
...to assist in the formation of mental picture or images.”

The reason for my preferring a visual rendering mechanism was the conceptual and technolog-
ical difficulty I foresaw in implementing a system that supported multiple sensory modalities
or merely relied on a single modality other than sight. Also, it seemed overly experimental
to base a prototype design on something as relatively untried as auditory, tactile or, in the
extreme, olfactory perception!

The visual interface should of course be tailored to needs and expectations of its intended
audience, but there were other, more specific concerns. The design chosen would for example
have to address two recurring problems for designers of graphical interfaces, namely visual
clutter and overcrowdedness, meaning that interfaces can fill up with objects such as windows
stacked upon each other until they make up an unmanageable jumble. For systems based
on the desktop metaphors there are various solutions such as virtual desktops and multiple
desktops on the same machine, but for systems with a potentially large number of objects,
such as groupware applications relying on object sharing, this may not suffice. Such has been
the experience of Greenberg et al. who in [47] describe the problem as follows:

“A central concern in information visualisation is how a system can present both

global structure (that provides overview and context) and local detail (that reveals
information in the user’s area of interest).”

22



They then propose two complementary software solutions to the problem, namely a fisheye
view mechanism for use with shared editors so that multiple authors can follow each others
work within the same focus, and a magnification lens for use with a graph editor, allowing
customized magnification of portions of a graph being edited.

I did not become aware of the above research until after I had begun implementation, but
I seem to have followed a similar line of reasoning, namely that the central problem was
that of combining local display with global view. This initially led me to 3D graphics as
that intuitively seemed the best way to represent a large volume of visual information within
the confines of a desktop display. However, the advantages of 3D display, namely increased
information volume, flexibility of design and navigation and appeal to human spatial cognition
should be weighed against its disadvantages, summarized in [1]:

e Initial confusion and disorientation combined with the additional complexities
of the interface and greater freedom of movement. Navigating with six degrees
of freedom within an information space as opposed to navigating a set of 2D
windows on an information space through panning and zoom controls.

e Large processing overheads are evident when a typically fast computer is
reduced to crawl by a complex visualisation. Additional equipment such as a
large high resolution monitor and specialized input devices are also a benefit,
though by no means a necessity.

e Navigating any 3D environment requires a level of spatial awareness from the
user. Navigating within an abstract information space demands more from
this skill. Such spaces do not typically conform to our preconceptions of a 3D
environment and various expectations such as a notion of “up” and “down”
can easily be violated.

Also, it was my experience that 3D graphics displays are more taxing to develop than 2D
graphics displays since the former is inherently more complex, thus requiring more resources
to implement, debug and maintain. This gap has been closing for some time as freely available
component libraries mature (such as OpenGL, see [44]) since these can help lift the burden of
implementing a 3D renderer. The point remains, though, that 3D graphics add complexity to
a user interface and have the added disadvantages listed above. I therefore decided to use 3D
only if I could not formulate a satisfactory 2D alternative.

The challenge was therefore to create a 2D display that could be used for detailed inspection
of each element in a set of artifacts yet easily transformed to provide an overview of arbitrary
subsets. A scalable desktop seemed to have all the desired characteristics. If one had a 2D
surface based on the standard desktop metaphor that could be scaled to arbitrary levels of
magnification, one could place a set of artifacts on that desktop and navigate it along the z,
y and z axes, thus solving the problem of visual clutter while adhering to GUI conventions
known by most users and well supported technologically. In terms of implementation, this
solution seemed manageable since scaling a desktop is equivalent to scaling a bitmap which
is a well researched graphics transformation [2, p. 78 ff.]. This still left the exact appearance
of each artifact on the desktop to be determined, but I considered that a design question and
thus left it to be determined at that stage.

23



Modes of communication

To be a prototype for both the ideas of artifact rendering and group review, PeerView should
provide facilities for communicating about its rendering in addition to facilities for display-
ing it. There are a variety of existing models for supporting group communication, such as
mailing lists, USENET news, online chat, email services, and so forth. These provide suitable
metaphors for communication facilities in some existing groupware systems such as FirstClass
[12] and Lotus Notes [38], and were therefore both tried and conventionalized which made
them seem safe, albeit conservative, choices of communication medium. I considered opting
for a more experimental solution, but decided to err on the side of caution, bearing in mind
the intended audience for PeerView and the time constraints I faced®.

I reasoned that PeerView 1.0 should at least have facilities for threaded discussions in the
manner of a USENET discussion [57] and, preferably, support for online peer-to-peer com-
munication (chat) since this would allow review material to be accumulated and organized in
a tried and tested form, and still allow sundry communications to take place more privately,
i.e. without the perhaps dissuasive logging that discussion fora entail. Adding more features
might contribute to usability, but only at the expense of interface simplicity and development
time.

Architecture

Since PeerView was to be used for group review about a set of artifacts which, by implication,
would have be shared, it was clear that the system architecture had to be distributed. There
are a number of ways to implement such an architecture; some commonly used models are
peer-to-peer, client/server and multicast, so a choice still had to be made between the options
available. Under ideal circumstances, this choice would be made without consideration for
the technologies available; one would simply assume that the required means of implementa-
tion were obtainable and design accordingly, i.e. without thought of technological limitations
other than the state-of-the-art. However, this is obviously an unrealistic stance since lack of
technology support can thwart even the best of designs. It was infeasible for me to build a dis-
tributed architecture bottom up within my set timeframe. I therefore decided to only survey
component libraries for building communications layers in distributed applications, prefer-
ably tailored specifically for collaborative applications. This meant that the implementation
language had to be decided on since any communications library was apt to be specifically
targeted at a single programming language.

I considered C++, Java and SmallTalk as possible implementation languages because they
seemed to offer the best mix of extensive library bases, cross-platform support, good develop-
ment facilities and reasonable run-time performance. Java was chosen over C++ and SmallTalk
because of its inherent cross-platform support and the existence of suitable component libraries
for the implementation of PeerView. In fact, the existence of suitable component libraries came
to dictate the choice of programming language rather than vice versa. In particular, it quickly
became apparent that numerous groupware toolkits [25] existed that were almost all imple-
mented in Java and that more general purpose libraries for collaborative applications, notably
the Java Shared Data Toolkit (JSDT) also were available. I chose the latter for PeerView

!Section 6 has a more detailed discussion on alternative implementations.

24



since the toolkits I surveyed all had drawbacks: either they were discontinued, as in the case
of Habanero [28], not suited [18] or otherwise unsatisfactory [53]. Furthermore, JSDT had the
added advantage of being pure Java and licensed by Sun which minimized the potential for
development difficulty such as interfacing different technologies.

JSDT can be used to implement client/server and multicast architectures, but the server need
only be assigned minimal responsibilities such as maintaining a registry of clients so it could
be used to construct an architecture that effectively would function in a peer-to-peer manner.
I was therefore not concerned about limiting myself to a particular architecture prematurely
since JSDT seemed flexible enough to accomodate potential revisions later on in development.

3.2 Design

A commonly used distinction is that between the interface of an application, meaning the
graphical components that the user interacts with, and the functionality, meaning the actions
that the user can carry out by interacting with the interface. This is not the only possible
division, of course, but it reflects the actual design process, so the below discussion reflects
that view.

3.2.1 Interface design

Java was chosen as the implementation language for PeerView during the analysis phase,
and this in part dictated the design of the GUI since the look-and-feel (as the graphical
appearance and response pattern of an interface are sometimes called) of the interface widgets
(i.e. windows, buttons, scrollbars etc.) should be that provided by the Java AWT or Swing
interface classes. Choosing a different look-and-feel did not seem sensible as the Java classes
implement all common interface primitives and can be extended arbitrarily. I chose the Swing
class set which is Java’s lightweight, i.e. platform independent, GUI library rather than the
AWT which shipped with early releases of Java, but is now being phased out.

The specific layout of the PeerView interface should both cater to its intended audience by
being accessible and intuitive or at least adhering to convention, yet at the same time fulfill
its other purpose, namely that of clearly demonstrating the ideas it is built on. The most
important design goal could therefore be stated as providing the user with access to the
functionality required for carrying out a particular task without distracting from that task,
preferably in an aesthetically pleasing manner. In practical terms, this meant sparse displays,
i.e. windows and boxes which are not densely packed with widgets, and sensible layout, e.g.
associating selection controls with the display elements they controlled. This is supported by
Schneiderman [49, p. 318] who reports:

“Crowded displays are more difficult to scan, especially for novice users. In a
NASA study of space-shuttle displays, sparsely filled screens with approximately
70-percent blanks were searched in an average of 3.4 seconds, but more densely
packed screens with approximately 30-percent blanks took an average of 5.0 sec-
onds ... This study also demonstrated that functionally grouped displays yielded
shorter search times.”

25



It is also in keeping with the heuristics formulated by Nielsen in [43] who advocates:

“The ideal is to present exactly the information the user needs — and no more —
at exactly the time and place where it is needed. Information that will be used
together should be displayed close together ...” [43, p. 116]

By aesthetically pleasing I did not mean merely according to my personal preferences, but in
the sense of consistent use of simple and tasteful visual presentation to further usability. This
issue is discussed at length by Nielsen who, among other things, offers the following aphoristic
advice on colour, information density, and graphic design, respectively:

“Don’t overdo it. An interface should not look like an angry fruit salad of wildly
contrasting, highly saturated colors. It is better to limit the design to a small
number of consistently applied colors.” [43, p. 119]

“The ‘less is more’ rule does not just apply to the information contents of the screen
but also to the choice of features and interaction mechanisms for a program. A
common design pitfall is to believe that ‘by providing lots of options and several
ways of doing things, we can satisfy everybody’. Unfortunately, you do have to
make the hard choices yourself.” [43, p. 121]

“Screen layouts should use the gestalt rules for human perception to increase the
users’ understanding of relationsships between the dialogue. These rules say that
things are seen as belonging together, as a group, or as a unit, if they are close
together, are enclosed by lines or boxes, move or change together, or look alike
with respect to shape color, size or topography.” [43, p. 117]

Having settled on the guidelines for design, I immediately began translating it into reality using
a rapid prototyping tool. Some software engineering pundits recommend designing displays on
paper before committing them to electronic form, but with the graphical design tools available
today, I find this approach unwieldy. I started by designing the PeerView client main window
since this was the “control center” of the application, so to speak. The result is shown in one of
the figures used in chapter 2.4, namely Figure 2.1. The window is divided into three parts: the
control section at the top, the middle portion containing the scalable desktop and a bottom
portion containing the discussion forum, which in turn is divided into a navigation frame and
a content frame. The sizes of these elements, except the control Section, can be adjusted
using the divider bars? that separate them. This layout was chosen because it correlated with
the conventions of GUI design by having control at the top, work area below and text input
areas at the bottom. I would have preferred to have the quality of this design verified through
suitability testing in a realistic setting, but had neither the time nor the means to do so, which
was another reason for making conservative design choices. The drop-down menus and toolbar
in the control Section were populated by items reflecting the functionality I could foresee from
the results of my analysis, and were therefore likely to change as design, and perhaps even
implementation, proceeded. The same applied to the pop-up menu that could be activated

*Vertical and horizontal bars with a ridged surface and arrow points at one end.

26



[2% Peerview server

Setup  Help

D Ee
| Group name Description #of documents |Total data. | Active participants] ___:
| Graup 2 Another group 1] 0 ] Sia
| Group 1 A group 32 248098 1

;Group - | et another group 0 0 0

[

D)

Figure 3.1: The PeerView server main window.

by right clicking on an artifact, i.e. I put in the menu items I believed necessary to have a
functioning product in place and left room for extensions if need be. The list box in the right
hand side of the toolbar contains a listing of artifacts, i.e. documents, shown in the panorama
organized by author. By selecting a title from the box, the user can center the panorama on
the corresponding artifact. This form of iterative development may seem meandering, but it
is, in my opinion, more realistic than a rigid, linear design process that leaves little room for
exploration.

The PeerView server window, shown in Figure 3.1, reflects its purpose, namely to serve as
registry and nexus for communication between clients. Consequently, it is kept simple with
only a control Section at its top and a listing of groups below that.

3.2.2 Functionality design

As T had found suitable technologies for implementation during the analysis phase, some
of the design issues had already been settled implicitly. Specifically, the Java Shared Data
Toolkit implements the concept of clients partaking in sessions using channels as lines of
communication. Using that technology therefore meant designing functionality accordingly,
i.e. supporting similar concepts. The PeerView client application was therefore designed to
operate in groups, which were to be implemented as JSDT sessions (“group” was chosen
because it connoted a more permanent affiliation than “session”), and communicate using
JSDT channels. This was the bare minimum of communications infrastructure, but I decided
to limit the initial design to that to keep implementation manageable although the JSDT
contained other facilities that could have benefited the design.

The functionality of the scalable desktop was more of an open question as it depended largely
on what could be implemented in the time available. The Jazz library [34] proved helpful in
answering that question. Jazz is a library of classes specifically targeted at creating scalable (or
zoomable, if you will) interfaces, appropriately named ZUIs, and by using that library, I could
manage considerably more sophisticated designs than if I had had to implement everything

27



bottom up. Jazz provides primitives for constructing and managing a scenegraph [8] which is
a data structure for organizing objects in a 2D or 3D environment and it implements a fast
scaling transform for graphical objects. Furthermore, it can be used with the standard Swing
document and bitmap classes and all in all, this seemed to promise a shortened development
phase by allowing me to use component technology for both the scalable desktop itself and the
artifacts to be rendered on it. In keeping with the conservative design choices made earlier,
I decided to limit desktop functionality to the essential operations, namely translation® of
individual artifacts, scaling of the entire desktop and automatic layout of all artifacts. Later,
after having implemented and tested these features, I realized the need for additional ones,
but given the pop-up menu interface to the desktop functionality, it was straightforward to
add more features by simply implementing the required functions and adding items to the
menu. Specifically, it proved useful to be able to “pin” artifacts to the desktop, i.e. fix their
positions so that they were not repositioned once a rearrange operation was carried out, so
this and a handful of other features were added to the desktop menu before releasing the beta
version.

To put these ideas of functionality into more concrete form, I wrote a series of use cases,
i.e. simple narratives describing typical scenarios of use, as suggested by [33]. Writing use
cases after having outlined functionality and interface was somewhat unorthodox as standard
procedure is to begin by writing use cases, preferably in collaboration with the intended users
of the system. However, this was not a standard development project in that the problem
domain and audience were abstract rather than concrete, so it did not make sense to me to
follow standard procedure. That is, in the absence of a concrete problem domain, one has
to flesh out one’s ideas before use case narratives can be written about them. This could be
either in the abstract, i.e. in the mind, or in more concrete form through design which is what
I opted for in this case. Appendix A contains a use case diagram and brief textual descriptions
of each case.

3.2.3 Class design

With both interface and functionality largely decided upon, I could outline the class structure
of PeerView. The resultant class diagram is shown in Appendix A, and the following describes
the rationale behind the design.

The design was kept as simple as possible to avoid complications and allow easy modifications
at later stages. The classes that make up the design are divided into interface, entity, and
control classes. The interface classes are those implementing the GUI, the entity classes are
those that contain and manage the application data structures without performing any but
minor operations on them, and control classes are those that mediate between model and
interface by modifying the former and updating the latter in response to user interaction.
This division is a very simple object pattern, but is nevertheless not adhered to with absolute
rigour as flexibility of design had priority at all times. For example, the Constants hierarchy
in Diagram A.2 is an appendage to the model classes in that it does not represent a data
structure, but a repository of constants for use by one or more other classes. This allows
constants to stored centrally, accessed through get/set method pairs, and appear where used
in the source code as meaningfully phrased function calls rather than string literals. For more

3Movement along the z or y axis.

28



on this, see the source code in Appendix C or Section 3.3. Also, most of the control code is
placed in central control classes, namely ClientManager and ServerManager, and almost all
the entity data in central entity classes, namely ClientData and ServerData. This was done
because the interface design clearly indicated that most data structures would be either read
from or written to by more than one interface class via the appropriate control class. There
was therefore little need to complicate the design by having multiple entity/control pairs (one
for each interface class in the extreme case).

The many classes that implement listener interfaces are event handlers. These were added
as implementation progressed rather than at design time, for although event handling is the
standard notification mechanism in Java and the need for handlers therefore was obvious,
the exact number and interfaces were difficult to determine at this stage. An attempt to
incorporate handlers in the early design was therefore apt to be inadequate. The decision
to add event handlers only during implementation seemed unproblematic since handlers are
highly standardized, and can be nested in other classes, so I deemed the risk of this causing
unplanned structural design change to be minimal.

3.3 Implementation

Implementation was done over a 6 month period from the middle of May 2000 to November
2000 using the VisualAge for Java 3.0 IDE (Integrated Development Environment) [58]. As
for implementation methodology, I decided to proceed iteratively and by small increments,
i.e. frequent builds* and application tests. This may seem an obvious approach, given that
it is probably how most small scale projects are carried out, but there are alternatives. In
[42], Mills et al. discusses cleanroom development where developers are forbidden to test and
execute their code while writing it, and tests are based on statistical analysis. The method is
directed towards projects with no or low fault tolerance, i.e. projects where the code produced
must have a low error to KLOC (Kilo-Line-Of-Code) ratio, and is intended for use by teams of
developers as it relies heavily on peer review. A different approach that seems more attuned
to development of applications like PeerView is Eztreme Programming [6] which supports the
notion of small increments. It also advocates programming in pairs as a method of ensuring
continuous peer review, so I could obviously not adopt extreme programming in toto. Instead,
I considered its recommendations as validation of my personal experience from earlier projects
which was that small increments and constant feedback stimulates motivation and helps reduce
the error rate.

The order in which design features were added to the framework produced during the design
phase® was determined by how essential they were to the end user, or, to put it differently,
how indispensable they were to the application. For example, it would be possible for an end
user to make sensible use of PeerView if it provided nothing more than a client application
with a scalable desktop and functionality for adding artifacts to it. It would not be possible
if that user had only a working server application with a fully functional communications
system but nothing else. This approach was chosen because it ensured that a usable, if
amputated, system would always be in place for demonstration and preliminary releases if
the need arose, and because it allowed realistic interface and functionality testing to take

4A build is the compiling and linking of all components making up an application.
5The interface classes created during GUT design and the skeleton code for entity and control classes.

29



place during development. The major features are discussed below in the order they were
implemented. A major feature in this context is one whose implementation is non-trivial. An
example of the opposite, a trivial feature, could be transfer of string literals from one list box
to another, or reading the contents of a set of files.

3.3.1 The scalable desktop

The scalable desktop is implemented by the class ClientPanorama. The term “panorama’
is used throughout the PeerView implementation and documentation rather than the phrase
“scalable desktop” used during design, because I reasoned that the idea of a panorama window
providing overview of a vista had more intuitive appeal to the average user than the more
technical notion of a scalable desktop. ClientPanorama is derived from the Jazz library class
ZCanvas which implements a simple scenegraph structure, a drawing surface and a viewport
camera (shown in Figure 3.2).

A scenegraph is a collection of hierar-
chically organized nodes that specify

the structure of the scene that is ren-
ZDrawingSurface dered on a users’s display. The nodes
can be either leaf nodes which have no

descendants or inner nodes, so called
. group nodes, from which other group
ZCamera nodes or leaf nodes can descend. Op-
erations applied to a group node af-
fects not only that, but also its de-
scendants which allows operations to
be applied in a flexible manner to ar-
bitrarily sized subsets of the scene-
graph, including the entire scenegraph if operations are applied to the unique root node.
Group nodes can be categorized by the types of operations they support and Jazz includes
such group types as ZTransformGroup, ZStickyGroup and ZInvisibleGroup which can be
used to translate, scale and rotate their descendants, to make them appear at a fixed mag-
nification and to be rendered invisible in the scene, respectively. A separate type of node is
the camera node which can be attached to the scenegraph at an arbitrary position and used
to render an image of the corresponding scene at that position. This means that one can
place multiple cameras in a scenegraph and have different scene renderings produced without
making changes to the graph itself.

ZLayerGroup

Figure 3.2: The ZCanvas scenegraph.

The ZCanvas scenegraph contains the minimum of objects required to render a panorama,
namely a ZRoot object with one child, a ZLayerGroup object which groups the set of nodes
descended from it. Jazz has several types of such group nodes, most of which allows one
to apply an operation to all nodes descended from them by applying that operation to the
group node. The ZCamera node represents a viewport onto the nodes in the scenegraph and
the ZDrawingSurface the surface onto which the camera view is projected. Artifacts are
added to a ClientPanorama object by inserting a ZVisualLeaf node under the ZLayerGroup
of the ClientPanorama (or rather, its ZCanvas super class). A ZVisualLeaf is a leaf node
in the scenegraph which has a visible component that can be rendered in the scenegraph’s
ZDrawingSurface. An artifact is translated by adding a ZTransformGroup node above the

30



ZVisualLeaf corresponding to that artifact and then applying a translation operation to that
ZTransformGroup. Before adding more features to the panorama class, I implemented the
basic functionality of the AddFiles and RemoveFiles classes so that artifacts could be placed
on and removed from the panorama. This was in keeping with the overall aim of adding
functionality in the order of usefulness, but mostly a practical concern since it would be
difficult to test operations on the panorama if there was no way of inserting objects into it.

Scaling

The entire panorama can be scaled, but not individual artifacts. The reason for not allowing
scaling of a single artifact is not only the overarching decision to maintain simplicity of design in
the initial version of PeerView, but also that such a feature could easily be counterproductive.
If individual artifacts could be scaled, the resulting panorama would be a mosaic of objects
at different positions along the z-axis. Translating an object would then become a potentially
user-unfriendly operation since a translation by A of an object o at z-coordinate a along either
the x or y axis is transformed to a translation by % in the ZDrawingSurface rendering that is
visible to the user. The user would then experience differing responses to identical inputs as
an indication to translate an object o at z-coordinate o by A would appear to move o further
than if another object o' at z-coordinate n x o, where n > 1, was translated by the same
amount.

The scaling from magnification Z to the target magnification Z’ is done by interpolating be-
tween the two values over a period of length [, where [ is user adjustable using the preferences
Section of the PeerView client application. The interpolation follows a slow-in-slow-out tra-
jectory and the display is updated after each step, so to the user a scaling operation appears
as a smooth animation from Z to Z' that begins and ends with a gradual slowdown rather
than an abrupt halt.

Performance

When implementing the translation and scaling operations, it became clear that poor runtime
performance would be very detrimental to the usability of PeerView. That is, if those core
operations could not be executed smoothly and with little delay on the average system, then
users were likely to be exasperated which is obviously not conducive to end user satisfaction.
The default behaviour of the Jazz renderer is to render objects on the drawing surface at
one of three levels of detail: low, medium or high. These settings of course reflect a trade-
off between quality and speed of rendering. I was aware of this at the outset, i.e. when
beginning implementation and so had expected that quality could simply be reduced during
critical operations to increase the speed at which they were carried out. However, this was
not sufficient, for although performance was satisfactory on my system which must today
be considered an average configuration PC, it was too sluggish on other systems (such as
thin/dumb terminals) that for example did not have dedicated terminal hardware for graphics
display, but instead received images from a server through a local network. I therefore modified
the renderer so that objects were rendered as filled grey rectangles when translation and scaling
operations were carried out. This improved runtime performance significantly, but not enough
for all systems so there are still minimum system requirements when using PeerView. However,
given the hardware of the average user today, I do not expect this to be a serious problem.

31



Layout

The panorama should support automatic layout. This was decided during design since it is
a feature known from other desktop GUIs that can help the user restore order in a cluttered
display, cf. for example the “Arrange” item on the desktop pop-up menu of the MS Windows
platform. Layout is performed by a layout manager which is a class that accepts a set of
nodes and then arranges them using a layout algorithm that may be arbitrarily sophisticated.
Currently, PeerView 1.0 provides only the GridPanoramalayoutManager class which is derived
from the abstract class ClientPanoramaLayoutManager that forms the root of the so far small
layout manager class hierarchy. A GridPanoramalayoutManager arranges a set of artifacts in
a square grid pattern where spacing is determined by the largest of those artifacts®. The user
may specify the type of layout manager to be used from the preferences dialog of the client
application, but as mentioned, only grid layout is currently available. The layout manager is
called when the user inserts artifacts into the panorama and when she selects the “Arrange”
item from the panorama pop-up menu. I chose the grid layout algorithm because it was
simple to implement and the default layout in most other desktop GUIs. There is no inherent
limitation to the level of complexity of the layout manager, though, and one could envision
managers that laid out according to semantic criteria such as content, type (text, graphics,
etc.) and size in addition of course to the wide variety of geometric layouts that can be
conceived. So far, however, I have not found the time to implement any of these, but since a
layout manager is simply a class derived from ClientPanoramalayoutManager that adheres
to a particular interface and accepts a set of nodes, it should be possible for other developers
to add such managers to PeerView 1.0, if desired.

Additional features

After experimenting with the panorama, I found out that it would be useful to be able to
resize artifacts and to fix their position, i.e. “pin” them to the panorama surface, so to
speak. This would give the user an acceptable degree of freedom in customizing the display
without increasing development time significantly. I therefore introduced a resize feature to the
ClientPanorama class and a corresponding item to the artifact pop-up menu. The operation
is carried out by dragging a corner of the artifact in question to the desired position and then
left-clicking the mouse. The artifact retains its size until removed or resized again. The ability
to fix an artifact at a given position was implemented by maintaining a lock for each artifact
(implemented as a boolean data member) and then excluding locked artifacts from any layout
operations. The lock can be toggled from the artifact pop-up menu which also allows the
user to toggle the default lock setting for any new documents added to the panorama. Both
the resize and the lock feature necessitated changes to some of the method definitions in the
GridPanoramalayoutManager class.

3.3.2 Message and progress bar

At the very bottom of the client application main window there is a small rectangular area
which is used for displaying error and status messages and for indicating progress for operations
of some duration. This area, called the message area or message bar, can be double-clicked to

5This method of spacing was introduced after implementing the resize feature, see Section 3.3.1

32



expand into a window containing a log of previously displayed messages. Implementation of the
message area was mostly straightforward, but one aspect was non-trivial, namely how to make
the progress bar update and display and at the same time perform the operation whose progress
the bar was indicating. I tried first to have the code implementing the operation force the
progress bar to update at each step of execution, but I learned from a newsgroup conversation
that this approach reportedly was grossly inefficient. I decided to rely on this information
and implemented the message area as recommended, namely by executing the code for a task
whose progress was to be indicated in a separate thread. That code will then modify the
progress bar which runs in the event-handling thread” and is therefore automatically updated
by the system when that thread is executed.

Because of Java’s platform independence, the issue of multi-threading is made somewhat more
complicated than it appears from the above. Different operating systems implement different
multi-tasking policies which affects the way in which threads are allotted processor resources.
Notably, the UNIX and Solaris operating systems use preemptive scheduling where executing
threads are only taken out of their running state when they yield control or are forced out
because a thread with higher priority requests execution. The Windows NT operating system,
however, uses time slicing as its multi-tasking control mechanism where processes such as
threads are given a fixed size time-slice in which to execute. When that time-slice expires, the
thread is put out of its running state and the next contender put into its running state instead,
regardless of whether the first thread yielded control or not. In practice, this means that on
systems that use preemptive scheduling, the threads started by PeerView may be preempted,
i.e. put out of their running state, by unrelated processes that happen to have higher priority
and be executing on the system in question at the same time. This will sometimes produce
noticeable delays in updating the PeerView interface which the user will most likely experience
as erratic changes in the length of the progress bar. The code for launching tasks in separate
threads is in the code listing for the ClientApplication class in section C.2 (e.g. the inner
class RemoveDistributedDocumentsFromPanorama).

3.3.3 Communications layer

Before the group management and discussion forum functionality could be implemented, the
basic functionality for message and data exchange had to be in place. It is perhaps debatable
whether this was in accordance with the decision to add features in the order of usefulness to
the end user, but without means of transmitting group and message data it would be difficult
to test the components responsible for those types of data. To create a communications
layer, I had to add some functionality to the server application skeleton code produced during
design. Specifically, the server is responsible for maintaining what the JSDT documentation
refers to as a registry, i.e. a small database listing the clients and sessions registered with
that server. The server also maintains a concurrently updated database of group information,
messages and discussion fora, but most of that functionality was added later when both
the group directory and the discussion forum components which generate that data had been
implemented. Initially, only the methods for creating and destroying a registry and for opening
channels of communication was implemented on the server side. On the client side, code was
written for methods in the ClientManager class to enable it to connect to the server, to join

"Java Swing events are always handled by the thread which started the application generating those events.

33



a session (which, cf. Section 3.2.2, corresponds to a group in PeerView group), and to send
and receive data through communications channels.

3.3.4 Group directory

The group directory is shown in Figure 2.2. It provides a listing of available groups and
functionality for joining a group, adding or editing one or deleting one from the listing. The
interface had been constructed during the design phase so what remained was implementing
the appropriate functionality and associating it with the push buttons at the bottom of the
group directory dialog box. The add, edit and delete operations were “database primitives”
in the sense of being the standard operations for simple interactive data structures which
typically provide the ability to insert and delete elements as well as replace existing elements
with new versions. Implementing these as operations on the local data structure, i.e. the
one whose contents are displayed in the listing above the panel of buttons was therefore
straightforward. However, after each operation, that local data structure is submitted to the
server which maintains the master copy of the group listing. The server then updates the
master to reflect the changes in the local structure and subsequently resubmits the master
to all client currently connected to the server. The data structure is typically quite small so
transmitting it from client to server in its entirety does not add significant overhead compared
to just transmitting a notification of the operation performed and is simpler to implement and
extend (new operations can be added without having to introduce a new type of notification,
for example).

The “Join group” operation is more composite than the data management operations discussed
above. To join a group, the following must be executed, assuming that a group was actually
selected when the user opted to join:

1. If the user is currently member of another group, then:

(a) remove (the copies of) all other group members’ artifacts from the user’s panorama;

(b) notify the server that the user has left so that the master copy of the group directory
can be updated to reflect the change in number of group members and total data
volume;

(c) notify the other group members that the user has left so that they can remove
(their copies of) the user’s artifacts from their panoramas.

2. Join the selected group and then

(a) broadcast copies of all the user’s artifacts to all other group members;

(b) request copies of all other group members’ artifacts and add them to the user’s
panorama when received.

Minor details have been omitted from this definition; they appear from the source code in
Appendix C. The operation was implemented so that the client leaving a group need only
remove its copies of other group members’ artifacts and then actually leave the JSDT session
corresponding to the group. The server will then be automatically notified since it monitors
all channels of all sessions for leave and join operations. Upon notification, the server will

34



notify all other group members that the client has left the group and they will then update
their panoramas accordingly. The server also changes the master copy of the group directory
listing and broadcasts the updated copy to all active clients.

The group listing master copy maintained by the server is written to disk when the server
exits and read again when it is next started.

3.3.5 Discussion forum

The discussion forum has two components: the topic tree which is a collapsible tree structure
that organizes hierarchically a set of nested topics, and a message pane (also referred to as the
message area when addressing the user since “pane” might not make intuitive sense), where
the messages selected from the topic tree are displayed. Each time a user selects an item from
the tree that corresponds to a message added by herself or another user, the client application
requests that message from the server which maintains a database of all discussions and
messages. The server responds to the request by sending a Message object which is a simple
data structure containing the message text and relevant meta-data such as author name, date
and time of composition, etc.

The server database of messages and discussions is written to disk when the server exits and
read again when it is next started. The storage format is plain text, which implies that
compression might reduce the size significantly. I found it unlikely, however, that the size
would become unmanageable great in realistic use scenarios if the data was stored in its
uncompressed form and that therefore became the storage format for all such plain text files
maintained by the server.

3.3.6 Artifact updating

To provide an accurate representation of a set of artifacts, the PeerView client must ensure
that the objects placed in the panorama are updated at regular intervals. The decision to
make the exact interval user adjustable was made during design as this affected the interface,
but the specific method of updating was left undecided since I reasoned that choosing the best
method would require some experimentation which required a code scaffolding, i.e. there had
to be a panorama and artifacts for experiments on them to take place.

A naive and failsafe method of updating artifacts can be formulated using pseudo-code:

1. for each artifact «

1.1. if ( ( changed( o ) == true ) AND ( group( owner( a ) ) != null ) )
1.1.1. broadcast( « , group( owner( o ) ) )

2. goto 1

The functions called in the above are assumed to be defined elsewhere. Function changed( « )
returns true if the artifact a has been changed since the function was last called with a as
argument. Function owner( « ) returns a unique identification of the owner of the artifact «,
and function group( id ) returns a reference to the group to which the user corresponding to
id belongs, or null if he or she does not belong to a group. The function broadcast( «, g )
broadcasts a copy of the artifact « to every member of the group except owner( « ). g.

Since PeerView 1.0 supports both text and bitmap artifacts, this is a potentially very in-
efficient and costly method of updating as the size of a typical bitmap image at resolution

35



1024x768x24 may be in excess of 3Mb, depending on the storage format. An alternative is to
transmit only the difference between an artifact before and after a modification, as outlined
below:

1. for each artifact «

1.1. if ( ( changed( o ) == true ) AND ( group( owner( a ) ) != null ) )
1.1.1. broadcast( diff( « ) , group( owner( « ) ) )

2. goto 1

The function diff computes and returns the difference between the artifact a before and after
the most recent change was made. Each client that received the difference data d would then
execute the following:

1. « = combine( «, diff( o ) )

The function combine computes and returns the artifact o/ that results from merging the
artifact « with the difference returned by diff.

The runtime performance of this method can be enhanced by compressing the difference
packages sent between clients, and it can be further improved by adjusting the quality (and
thus time complexity) of compression to match the processing power to network bandwidth
ratio of the system it is executed on. Such adjustment can be either automatic or user
definable, depending on the implementation effort one is willing to invest.

Simple back-of-the-envelope calculations show that an implementation of the difference algo-
rithm using for example the DEFLATE algorithm [16] for compression will outperform the
naive algorithm by an order of magnitude or more:

Notation:

d the average size of a document in bytes

s the average size in bytes of the difference between a document before and after
a modification.

u the number of update operations pr. sec.
¢ the compression factor.
N the naive algorithm bandwidth consumption pr. sec.

C the compressed algorithm bandwidth consumption pr. sec.

Assume:
d=n
s = %
c=4
u=3

Then:

36



N=d+u=n+*3=3n

n
sku  To*3
c="—=10__ _o.07n
c 4
and if for example n = 10KB = 10 * 1024 bytes = 10.240 bytes then N = 30.720

bytes and C = 768 bytes.

Although these were loosely based calculations, they convinced me that experiments were
unnecessary: the difference algorithm was the best choice, since its time/space tradeoff was
best by a wide margin.

However, my first attempt at implementing a difference algorithm was hurried and not well
enough thought through as a discussion with Jyrki Katajainen made clear. I had gone ahead
with my initial idea for a difference algorithm which consisted in computing the difference
between two byte arrays representing a document before and after a change by performing a
logical XOR operation between the overlapping portions and appending whatever remained
(which I surmised was likely to be neglible) to the difference which was also stored in an array.
This difference array would then consist of long strings of 0’s and 1’s indicating areas of change
and areas that were unaffected by the modifications made since the previous update. I then
used the Java Deflater class [50] to compress the difference array before it was broadcast
to other clients who in turn used the Java Inflater class [50] to decompress the difference
array. They then combined the difference array with their old version of the document it was
associated with by performing the same XOR operation as was used to derive the difference.
Because of the typical contents of the difference array (long sequences of 0’s and 1’s), the
compression ratios were quite impressive and the entire arrangement seemed to simple and
symmetric that I conveniently forgot to think actual usage scenarios through. The truth of the
matter is that this XOR difference approach is only effective if the size of the array storing the
document before the change is exactly the same as the size of the array storing the document
after the change. Only then will the difference array contain only the difference between the
two input arrays, punctuated by long sequences of identical symbols and thus yielding the
favourable compression ratios compared to transmitting the entire document 81 was after. If,
on the other hand, the change to a document resulted in a change to its size then the difference
array would contain a sequence of identical symbols of length equal to the distance from the
beginning of the document to the beginning of the changed portion. The remainder of the
difference array, i.e. the portion corresponding to the beginning of the change in the document
to the end of the document, would be an XOR combination of the document before and after
it was changed, and because of its change in size, those two versions would be shifted relative
to each other. If we assume that, on the average, a document will be changed at position
% where n is the length of the document (and we ignore the size of the change itself), the
difference array can only be compressed to about half the size that the original document
could since it is, on average, half as “random”, to put it informally. An example might make
this clearer:

8Typical compression schemes will reduce a long sequence of identical symbols to a representation consisting
of the symbol being repeated throughout the sequence and the number of times it is repeated, i.e. the sequence
length.

37



Modification without Modification with
change of size change of size

Original array 0001100110011111110000111111 0001100110011111110000111111 |
Modified array 0001100110011000110000111111 0001100110001 |
Difference array |0000000000000111000000000000 0000000000010111110000111111 |

As the above suggests, the XOR difference array algorithm was far from optimal in that it
only works satisfactorily if a change to a document does not result in a change to its size which
is, of course, an overly restrictive limitation. It is, however, the algorithm used in the current
implementation of PeerView as I have not had time to implement a better alternative. Some
such alternatives are described in [31]|, where Hunt et al. survey different delta algorithms
as algorithms for computing the difference between successive versions of a document are
typically called in available research literature. They find that the traditional diff delta
compressor found on the UNIX operating system is outperformed by more recent algorithms
based on Ziv-Lempel techniques (such as the DEFLATE algorithm used in PeerView) and they
present an alternative that they call vdelta which performs better, both in terms of compression
ratios and in terms of compression/decompression times, than diff, diff combined with gzip
compression and bdiff, a successor to diff.

The vdelta algorithm therefore looks like a promising candidate for use in PeerView. Indeed,
the authors suggest that the algorithm is well suited for use in such applications [31, p.
10]. T have, however, not given implementation of an improved algorithm top priority since
the current version functions satisfactorily: typical compression ratios are better than 1:15
(averaged over text and graphics) so on all but very large documents that are changed with
short intervals, it performs quite well. If the system was to be developed further, however, the
algorithm would have to be replaced since it consumes an unneccesary amount of bandwidth
as the number of users increases.

38



Chapter 4

Experimental evaluation of PeerView

4.1 Introduction

Evaluating groupware is difficult because it combines the traditional problems involved in eval-
uating single user system with the complications introduced by scaling to multiple users [3, 45].
Among those complications are both practical concerns, such as recruiting and compensating
users, planning and conducting experiments and scheduling them as well as methodological
concerns such as how to best gather and use experimental data. This makes it difficult to
formulate a suitable procedure for evaluating groupware. In fact, Baker et al. [3] claim that
no cost-effective techniques to that end exist and that one is therefore consigned to adapting
existing, single-user evaluation techniques to a groupware context.

I opted for a controlled experiment with a small group of participants who were asked to carry
out a set of tasks using PeerView and subsequently to fill out a questionnaire and comment on
their experience using the software. The reason for making this choice is discussed in further
details in Section 4.3. The experiment itself was recorded on audio tape' and combined with
the written feedback from the three participants, it yielded substantial information on the
usability of PeerView.

The below discussion is based on the materials used in the course of the experiment, all of
which can be found in Appendix B.

4.2 The experiment

The experimental evaluation of PeerView was carried out on March 14th, 2001. The setting
was a room in a Copenhagen computer café equipped with four medium-range PC systems
running Microsoft Windows 98. The machines were fitted with 17" displays and Pentium II
processors and were connected by a local area network. On one of the machines, the PeerView
server software had been installed in advance since I did not consider the installation and
configuration relevant to this end user experiment whose primary focus was to be on the

! Circumstances did not allow for video recording, but as appears from the transscript (a written reproduc-
tion of the dialogue on the audio tape) in Appendix B.2, the participants’ comments and questions were quite
interesting in themselves and gave enough information to deduce many of their actions.

39



client side software. The other terminals contained only the software installed by the café
proprietors, i.e. mostly communications software and computer games.

The three participants were a 27 year old woman (referred to as “Rikke” in the transscript)
and two men aged 26 (“Thomas”) and 28 (“Paul”), respectively. They all had good working
knowledge of how to use computers on a day-to-day basis, but had no super-user skills or prior
experience with either groupware or zoomable interfaces. They were each assigned a PC and
handed a task list (reproduced in Appendix B.2) which they were asked to read and proceed
with. The tasks where linearly structured with each being dependent on its predecessor on
the list, but required use of almost all the functionality in PeerView and therefore constituted
a thorough walkthrough of the system. This setup was chosen because it allowed me to focus
on the participants’ behaviour and performance rather than on explaining the intent behind
a set of open tasks with no specification of how to perform them.

The first task on the list was to download and install the latest version of PeerView from
its website [54]. At the time of the experiment, the latest version was 0.95, i.e. still a beta
but close enough to a stable release (1.0) that I found it acceptable to conduct an experi-
ment since I did not intend to add any major functionality nor expect to find any critical
bugs?. The download process took approximately 10 minutes which was considerably longer
than expected. The delay was caused by severe network lag and thus probably an accurate
reflection of the fluctuations that users would experience under less controlled circumstances.
Upon successful download and installation which took place without much difficulty, the par-
ticipants began carrying out their tasks. One of the participants, the 28 year old man, had
been given a task list which was slightly different from that given to the two others. It in-
structed him to create a group for the other two to join and to edit a shared document to
determine whether changes were distributed once they had joined. Both he and the other two
participants were later asked (by the task list) to contribute to the topic tree corresponding to
the shared document he had added. The difference in task lists was necessary to strengthen
the collaborative aspect of the experiment. By setting up a group and have all users join it,
and then collaborate, albeit in a rudimentary fashion, on a shared document, the experiment
came to encompass not only the single user dimensions of PeerView, but also its collaborative
functionality.

The first task for all three, however, was to adjust the preferences so that their name and
the correct server information was entered. They did this by modifying the settings in the
preferences dialog box and then restarted the entire program to make the settings take effect.
The last step was necessary because instant application® had not yet been implemented.
Afterwards, the participant assigned the task of creating a group carried that out while the
other two added a number of documents to their respective panoramas. They then moved on
to carry out the other tasks on their task lists as appears from the material in Appendix B.

4.3 Discussion

The PeerView usability experiment was limited in scope by having only three participants and
a duration of only two hours including the time taken to fill out the questionnaires. In spite of

?Program errors capable of triggering runtime failures such as system crashes.
30ften signaled by an “Apply” button in such dialog boxes.

40



this, it yielded a fair amount of useful information and gave me reason to believe that increasing
the duration and number of participants would probably have given a quantitatively, not a
qualitatively different amount of information. I therefore trust the results to be substantial
enough to safely draw conclusions about the usability of PeerView in its current form. The use
of several techniques — controlled experiment, user observation, questionnaire and informal
discussion after the experiment — was chosen to lend the findings more credibility. That
particular set of techniques was decided upon because I deemed it well suited for gathering a
diverse set of data and because it comprises the most widely used forms of evaluation among
groupware researchers. In [45], Pinelle analyses the evaluation performed in 32 of 45 articles
on groupware (the remainder did not contain formal evaluation), and finds that laboratory
experiment is the most commonly used evaluation type, and that user observation, interview
and questionnaire techniques, in that order of prevalence, are the most popular ways of carrying
out the evaluation.

The experiment produced information on both the single user and collaborative usability of
PeerView, as appears from the transscript (Appendix B.2). After the user* assigned with the
task of creating a group had done so, the other users joined the group and subsequently received
copies of the artifacts that other users had placed in their panoramas. They were then each
given the task of contributing to the topic tree associated with a specific document (referred
to as “test _ gruppe.txt” in the transscript) added by the user who created the group (the only
document he was asked to put in his panorama). Towards the end of the experiment, the same
user modified “test_ gruppe.txt” and the other users checked their copies to see whether the
change had been distributed correctly, i.e. whether their copies of that particular document
had been updated to reflect the change. I had, of course, tested the update functionality
separately, so the purpose was not so much to see whether it worked according to specifications,
but rather to round off the collaborative component of the experiment.

4.3.1 Experimental findings

The experiment participants indicated or remarked repeatedly (e.g. transscript item 28,40,62
and questionnaires) that they had problems understanding the system dialogue or the conse-
quences of the actions they performed. This was mostly due to the dialogue being in English,
using unknown or counterintuitive terminology (such as referring to the nested topic structure
in the bottom portion of the window as a “topic tree”) or to the interface being less informative
than could be desired (as in the case where one participant asked how he could tell whether
he had joined a group [transscript, item 46]). The participants did not use the help system
although they were encouraged to do so which was probably due to me being present while
the experiment took place and answering questions on how to interpret system messages and
other trivial issues such as which keys to press to produce a tilde character).

There were a few concrete interface problems. One was that highlighted text appeared at
a different scale from the highlighting itself [transscript, item 67|, which made it seem as if
a smaller portion of text was highlighted than was actually the case. This confusing phe-
nomenon was referred to as an optical illusion by the participant who noticed it, and his
subsequent attempts to align highlighting and text by scaling the document to 1:1 magnifica-
tion further revealed that panorama scaling was perhaps overly sensitive to user input since he

4He is referred to as “Paul” in the transscript.

41



had difficulty controlling it. An unrelated problem was discovered by the woman participant
who experienced difficulty with the visible documents box in the right hand portion of the
toolbar panel. Her monitor operated at a lower resolution than the other monitors and as a
consequence the visible documents drop-down box could not expand downwards. In effect,
it “dropped up” rather than down by expanding in the upwards direction. This rendered its
contents difficult to access as indicated in [transscript, item 42|. None of the participants
seemed to notice or have use for the draggable resize dividers that separate the topic tree from
the message area in the bottom of the display and the panorama from the discussion forum.
At one point [transscript, item 54|, I tried to draw the participants’ attention to the dividers
to see whether they ignored them because they were unaware of the resize functionality or
because they had no need for it. None of them used the dividers after I had made them aware
of their purpose, but I doubt that can be taken as indication that they are unneccessary since
different participants seemed to grapple a bit with fitting a document in the visible viewport
or seeing the title of a topic in the topic tree. They might therefore have benefited from the
resize functionality if they had been more comfortable with it. It would probably be desirable
to somehow communicate more clearly that the dividers bars can be used for resizing, perhaps
by annotating them with a label containing descriptive text.

A more abstract, general problem reported mainly in the comments section of the question-
naires was that the participants had difficulty understanding the context of their actions
because it was unclear what audience PeerView was aimed at. This became clearer during
the informal discussion afterwards when I explained the idea of making a prototype design
before making a fully fledged program, but the participants nevertheless indicated that they
felt somewhat bewildered during their work with PeerView. I suspect that this reaction is
typical when users meet a program with a set of expectations shaped by work with commer-
cial applications aimed at solving specific work problems. If development had gone through
several iterations, each concluded by experimental evaluation, the problem could have been
countered by using the same group of test participants each time since they would then be
accustomed to the work process and its premises. The drawback of that approach is of course
that such a group of seasoned test participants would quickly become unrepresentative of the
user audience at large, thus probably degrading the value of any experimental findings derived
from their activities.

The collaborative aspect of the experiment (as described in Section 4.2) was too limited for
me to draw any firm conclusions, but it did seem to indicate that the participants had little
awareness of each other. This applies to both group awareness (in the sense of being cognizant
of the other participants) or workspace awareness (being aware of the others’ actions in the
workspace) as indicated by [transscript, item 48, 74] where users display signs of not feeling
part of a collaborative unit, seemingly in part because the PeerView interface does not make
it sufficiently clear that they are. When addressing me, the participants occasionally made
references to what they had overheard me saying to other participants which could be taken
as suggesting that they would benefit from more direct communication facilities such as the
“chat” that was planned for, but unfortunately not included in the PeerView 1.0 release due
to time restrictions.

42



4.4 User evaluation

After the experiment was concluded, the participants and myself sat down to fill out the
questionnaires handed to them and to discuss the experiment. The questionnaires were worded
in a way so that they could be understood without specialized knowledge to minimize the
potential for misunderstandings. They were divided into three Sections:

e A set of Likert scale propositions regarding specific usability issues. A Likert scale can
be used to have informants indicate on a scale ranging from complete agreement to
complete disagreement the degree to which they agree with a proposition.

e A semantic differential schema where the participants where asked to indicate on a bipo-
lar scale the degree to which they felt a set of descriptive phrases applied to PeerView.

e A free form comments Section where participants where asked to write any comments
or remarks they might have about PeerView.

The overall assessment of PeerView was favourable, but the comments indicated some of
the usability problems discussed earlier, namely that the terminology used by the PeerView
interface in its messages and widgets was at times difficult to understand, not only because
of the language being foreign to the participants who were all Danish, but also because they
used terms that were unknown to them. Another problem was that participants lacked a clear
statement of whom PeerView catered to. One participant wrote that: “I have the impression
that you would quickly grow accustomed to the programme and grow to like it in the proper
setting” [questionnaires|. But the subsequent discussion revealed that, like the others, he
had difficulty pinpointing exactly what that setting should be. I suggested that additional
functionality, such as that to be included in InSiter, might make it more useful to them
and their work colleagues as well as other groups, and they seemed to agree that enhanced
awareness in the form of video mosaics of coworkers (for example in the style of PortHoles [17]),
chat facilities and different workspace contents at different magnifications (semantic zooming)
were worth introducing.

43



Chapter 5

Implications of PeerView 1.0 for
future systems

5.1 Introduction

The PeerView 1.0 prototype is exactly that: a prototype for new ideas whose purpose is to
demonstrate their feasibility and viability. It is intended as both a test vehicle, a useful tool
and a learning experience on which to base design of future systems. In this Section, I will
analyse a posteriori the design, implementation and development of PeerView 1.0 to examine
how a future rendering and review system (outlined in Chapter 6) can benefit from the findings
of the PeerView project.

Of course, the below applies not only to successor systems, but also to PeerView 1.0 itself. The
findings and conclusions might therefore conceivably be incorporated into the current version
of PeerView to yield a significantly upgraded product which could aptly be called PeerView
2.0! However, I did not intend PeerView as an “open-ended” project and the experience from
building version 1.0 is so comprehensive that I have found it most appropriate to use a different
name, namely InSiter, for the successor project. PeerView development may continue, though,
since the project has been made open source. Time will tell.

5.2 Design analysis

5.2.1 Introduction

The discussion in the following Sections is mostly general, concerned with the guidelines for
design that can be derived from PeerView. Details are only brought in where appropriate
to this discussion as the purpose is to facilitate future development, not to formulate specific
improvements to the current PeerView design.

44



5.2.2 Interface

In retrospect, it is clear that the design of the PeerView GUI rested on implicit assumptions
about the suitability of metaphors as design devices. That is, by readily adopting the desk-
top metaphor (for the scalable desktop) and a debating society metaphor (for the discussion
forum)!, T accepted the commonly held belief among GUI designers that design based on
metaphors equals user friendly design [9, p. 5]. This assumption is not necessarily justified, as
Blackwell documents in his Ph.D thesis. Based on comprehensive experiments where novice
and expert users were asked to solve various exercises using metaphorical and non-metaphorical
diagrams and notations, he concludes that [9, p. 164]:

“Most of the experiments described in this thesis ...have tested the assumption
that diagrams are universally beneficial in problem solving and design. This is
obviously not the case — even within the scope of these studies, a simple distinction
between ‘experts’ and ‘novices’ has revealed not universal benefits, but a large
difference between individuals with different amounts of experience.”

How, then, can one account for the inarguable success of the desktop metaphor as popularized
by the Apple Macintosh and Microsoft Windows operating systems? Blackwell does not
attribute this success to the metaphor as such, but argues instead that [9, p. 160]:

“The demonstrable advantages of graphical user interfaces, as with many types of
diagram, can be explained in other terms. Direct manipulation — representing
abstract computational entities as graphical objects that have a constant location
on the screen until the user chooses to move them — facilitates reasoning about
the interface by reducing the number of possible consequences of an action ...”

This seems to validate the choice of a desktop GUI design, although not by virtue of its
metaphor design philosophy. I believe a similar argument applies to the discussion forum
design as it relies on a form of direct manipulation that is both familiar to many users (for
example from the graphical directory browsers found in many operating systems) and fits
the description given by Blackwell. This seems to be corroborated by the predominantly
positive assessment made in the questionnaires that the evaluation experiments completed
(see Appendix B).

A useful lesson to be derived from the above is that one cannot ensure a sound design by relying
exclusively on textbook recommendations and established dogma in the design community.
Instead, the interface decided upon during the initial design phase could be translated into a
working prototype or a mock-up, i.e. a “scaffolding” with no real functionality, which could then
be subjected to usability testing on a group of end users. The empirical data thus gathered
could then be used to modify, if necessary, the interface design, and the test cycle should then
continue until the GUI design is deemed satisfactory. Of course, the initial design would rely
on a set of implicit assumptions exactly as the PeerView design did. This seems inevitable
since end users cannot, in general, be expected to describe a priori and in detail their ideal

T have no direct evidence to support that the original USENET design of a hierarchically organized news-
group was inspired by debating societies or similar discursive fora, but my choice of that design was influenced
by such considerations.

45



interface although most can, presumably, give constructive feedback on a concrete proposal
presented to them. The designer should therefore ensure that his assumptions are grounded
in empirical fact and well reasoned rationale, not only in commonly accepted practice and
beliefs.

5.2.3 Functionality

It is clear that the actions that users can perform using PeerView constitute a minimum
of functionality for a usable application. This is hardly surprising, considering that it is a
prototype, but it does indicate that any successor system should not restrict itself to the ideas
now explored if the scope of the research is to be increased. It should provide a fully fledged
system that has the width and depth necessary to be useful in realistic work settings with
large groups and large masses of data. The objective should not necessarily be to compete
with similar, commercial systems, but to elaborate on the ideas embodied in PeerView, and
demonstrate that they can “survive in the wild”.

The bulk of user interaction in PeerView 1.0 is with the scalable desktop, i.e. the panorama
on which artifacts are placed. The issues raised by adopting a desktop metaphor design were
discussed in Section 5.2.2, and the rationale behind using a zoomable interface was presented
in Section 3.1. The actions that users can perform on the panorama, i.e. its functionality, was
limited to the essential operations as discussed in Section 3.1. Hence, there is ample room
for improvement, both by extending the set of operations, although this would be merely a
quantitative improvement, and by using a more sophisticated zoom mechanism which could
make the entire interface qualitatively different. One such enhancement is semantic zooming,
where the level of elevation (i.e. distance from the origo of the z axis) determines the rep-
resentation used in the zoomable display. The reverse — that the choice of representation
determines the elevation — has also been tried and is called goal-directed zoom in [59], where
the authors describe a system that allows users to select an object and choose from a set of
representations how it should be rendered. The system itself determines the appropriate form
of representation at a given elevation by applying what the authors refer to as the Principle of
Constant Information Density, which states that “the amount of visual information per display
unit should remain constant as the user pans and zooms” [59, p. 306].

The Jazz library can be extended to support semantic zooming [8], so implementing such
functionality is quite feasible using known technologies. I believe it could be of particular
use in systems where the rendering was extended to arbitrarily large sets of artifacts and
the process by which they were brought about. The reason is that it would allow a series of
mutually supporting representations of group work to be rendered within the same display
space and navigated in a convenient and familiar fashion. One example might be to have a
project represented by a diagram at high elevations, by clusters of developers represented by
photographs and brief biographical synopses at medium elevations and by grid arrangements
of artifacts at low elevations, as done in PeerView. Chapter 6 elaborates further on this point.

Future rendering systems could of course abandon the idea of zoomable interfaces altogether
and use entirely different modes of presentation. I believe, however, that ZUIs that sup-
port semantic zooming are a near ideal “2%D” alternative to the conventional 2D and 3D
displays, both of which have inherent limitations, as discussed in Section 3.1. Consequently,
future systems would benefit from extending the PeerView 1.0 interface both qualitatively,

46



by introducing elevation dependent representation through semantic zooming, and, possibly,
quantitatively by giving users a wider selection of options than that listed in the PeerView
1.0 artifact pop-up menu.

In terms of support for collaboration, PeerView 1.0 gives users simple workspace awareness,
i.e. who the other members are and what they are doing (to artifacts) in the shared workspace,
and has very rudimentary or no support for other forms of awareness, such as group-structural
awareness (awareness of people’s roles in a group, their status and positions on issues) and
social awareness (awareness of people’s emotional and intellectual states) [47, p. 2]. In [26],
Gutwin and Greenberg find a strong positive correlation between the quality of support for
workspace awareness in groupware applications and the performance and satisfaction of par-
ticipants in experiments based on those applications. Their subjects used a radar view window
which is referred as a “miniature” 2 to get a global perspective on the workspace and to follow
the activities of other users. PeerView 1.0 naturally supports the former of these activities, but
not the latter and that issue should be addressed by any successor systems. In fact, Gutwin
and Greenberg write that [26, p. 517]:

“ ...the main finding of the study is that adding workspace awareness informa-
tion to the miniature — visual indications of viewport location, cursor movement,

and object movement — can significantly improve speed, efficiency, and satis-
faction. These awareness components should be included in shared-workspace
applications.”

This point seems to further underscore the qualities of a zoomable interface as compared to 2D
and 3D alternatives which typically would require some dedicated miniature to be grafted onto
the main interface to obtain the effect recommended by Gutwin and Greenberg. Zoomable
interfaces allow an overview effect to be completely integrated in the ordinary operation of
the interface, as PeerView demonstrates. Future systems could elaborate on that effect by
integrating the features discussed in the above quote without subtracting from the interface’s
ease of use, i.e. without inconveniencing the user.

5.3 Implementation analysis

5.3.1 Introduction

In this Section, I discuss those aspects of the PeerView implementation that carry useful lessons
for implementation of InSiter and of system implementation in general. As with design, those
lessons are mostly general and not specific to implementation details, but the discussion does
bring in concrete examples where necessary.

5.3.2 Implementation language and technologies

As discussed in Section 3.1, the implementation of PeerView was facilitated by using readily
available component technologies to shorten development time. Jazz [34] and JSDT [?] were
the most visible such component packages, but also the Swing interface classes that are usually

2A scaled down representation of the workspace proper.

47



thought of and used as an integral part of the Java Development Kit were a component
technology that helped make implementation by a single developer possible. I experienced
little difficulty using these component technologies and ascribe this in large part to the fact
that all were written in pure Java, i.e. without use of code specific to a particular platform or
architecture, so called native code. Also, Jazz, JSDT and Swing all have well designed APIs
that make interfacing them with one’s own code quite easy.

Judging from this experience, component-based development seems to be good practice but
the following should be borne in mind:

e The interface of components should be well defined and well behaved, meaning that the
APIT documentation should provide descriptions of both the syntax (how to use) and the
semantics (what happens when used) of each component method along with a description
of its side effects and complexity. If these are not available, the developer may realise
that the savings in development time was too dearly bought with deficiencies in the end
product. As Meyer notes in [41]: “ ...the quality of a component-based application is
defined by the quality of its worst component.”

e The components libraries used should be compatible, preferably by being written in the
implementation language of the application proper and by adhering to the same design
principles. The problems that can be incurred by using code from separate languages are
well known: one poignant example is the need to distinguish between different calling
conventions for functions in C++ code where for example one must specify that a function
should be called with the C language convention by prefixing the function definition with
extern "C". The problems that may arise from differences in design may be more subtle,
but no less real. One example could be to make use of two component libraries, one of
which was highly optimized for some time critical operation such as real-time rendering,
the other designed with security concerns as the primary concern and performance as a
distant second or third. Such grinding incongruency between design goals could result
in components cancelling out each other’s respective benefits, making for a whole that
is actually less than the sum of its parts.

e Component based development is not merely an question of picking off-the-shelf com-
ponents, connecting them in some appropriate way and then executing the resultant
mélange. The developer must negotiate between the ideal implementation of her design
and the trade-offs involved in using component technology. In PeerView’s case, for ex-
ample, the Jazz library was used to implement the zoomable interface, i.e. the scalable
desktop, but there were alternatives that had a differently balanced design. OpenGL
[44] was one such alternative, as indicated in Section 3.1, which has a much broader
range of graphics operations than Jazz, but no specialized suppport for the 2D zooming
operations needed to scale text and bitmap graphics at interactive rates on even low-end
systems [7]. One could envision a more sophisticated system that used a combination
of zooming and 3D navigation (for example by means of a scale space representation
[20, p. 110]), and might therefore have to rely on a library such as OpenGL, which in
turn would mean that the minimum system requirements for end users would have to
be raised significantly.

Component-based development therefore affects the entire development cycle, not just class

48



design and implementation. Trade-offs have to be made throughout to find the best bal-
ance between the envisioned end product and the degrees of freedom afforded by available
component libraries.

5.3.3 Representation of properties and messages

An application like PeerView typically contains a set of mutable and constant values that define
its behaviour and interface. An example of the former are error messages most of which are
typically immutable and triggered by specific (exceptional) conditions in the application. An
example of the latter are preferences which determine the general appearance and functionality
of an application and can usually be defined by the user.

It is a basic convention in good programming style not to use so called “magic numbers” [40,
find side], i.e. constants that appear by their literal value in the code and not a symbolic
name. This applies not only to numerical constants, of course, but also to string literals
such as user messages. Consequently, all such literals are represented by symbolic names in
PeerView. The literals themselves are stored in designated classes called ServerConstants
and ClientConstants and are accessed through access methods, not directly, so a literal
whose symbolic name was windowSize would be accessed through a function call to a method
named getWindowSize. This makes it possible to concatenate the constant with one or more
arguments to the get method before the resultant value is returned to the user. One example
is:

public final static String getREMOVING_DISTRIBUTED_DOCUMENT(String documentName,
String senderName)

{

return senderName + " has requested that " + documentName + " be removed from the
panorama.";

}

Since some constants are shared by the client and server application, the ClientConstants and
ServerConstants are derived from the class SharedConstants which contains those shared
constants and the associated access methods. Both the server and client constants class contain
a set of default preferences which are constants used when the user has not specified any value
for a specific property.

This design is not new; using classes of static constants accessed through methods is well-
known practice in Java programming, but by applying this technique consistently as in
PeerView, the textual component of the user interface is separated from the implementa-
tion. This means that if a different version must be installed, either to correct an error (a
“bug fix”) or to change the language, it can be done without requiring a new full install by
the end user, or indeed a compilation by the developer. Users can instead download a small
patch to the finished product and install that as instructed. This is a simpler method than
the internationalization scheme described in [35] and could therefore be useful when the im-
plementation should adhere to good style conventions, but not be bogged down in the details
of internationalization.

49



5.3.4 Implementation of the distributed architecture

The distribution layer or data sharing mechanism of PeerView is implemented using the Java
Shared Data Toolkit (JSDT) as discussed earlier. The JSDT provides a high level interface
for use by developers of collaborative applications (among others) which is independent of
the underlying communication protocol. That is, calls to the JSDT API do not specify or
presume a particular protocol® and therefore do not need to be changed if one protocol is
replaced by another. As a result, one can use the JSDT with any protocol that allows data to
be exchanged among a number of collaborating entities. In its current distribution (version
2.0), the JSDT supports a TCP or UDP sockets protocol which in theory could be used for
both LAN, WAN and Internet traffic. However, in practice, many firewalls will block attempts
to make a direct TCP connection between two machines and so the JSDT also supports an
HTTP protocol which can “tunnel” through such firewalls provided the server side is properly
configured. This is why PeerView allows the user to specify either protocol. The user must
also specify the port to use as target when packets are routed through the network, and she
must make sure that the firewall on both the server and client side allow traffic to pass through
this port.

Sockets based traffic is a simple form of data exchange and for collaborative applications, IP
multicast is a potentially better solution. Whereas unicasting data as done in TCP commu-
nication requires the sender to send separate packages to each receiver, a multicast protocol
allows the sender to send just one package and then have it replicated by multicast routers
on the network and forwarded to the intended recipients, possibly through several more repli-
cations. PeerView does not support multicasting in its present form because it is primarily
intended for work environments where the data density, i.e. the amount of traffic generated,
is moderate and not sufficient to “swamp” the network. However, an application that must
scale to more demanding environments will probably need to use multicasting protocols as
data traffic increases to achieve acceptable performance on all but dedicated networks.

As mentioned, JSDT can be made to work with any suitable protocol implementation, ac-
cording to its documentation, but for multicast there is fortunately a way to minimize time
consuming experimentation. It is, once again according to JSDT documentation, possible to
couple the JSDT with the LRMP (Light weight Reliable Multicast Protocol) package from
Inria [39] with no great difficulty. The LRMP implements a true push service meaning that
clients need not be aware of the server’s name nor have a port number to connect to. Instead,
they subscribe to an information channel and receive data when it is broadcast, so the dis-
tribution scheme resembles a radio channel rather than an telephone line as is the case with
the sockets channels. In addition, the LRMP architecture is based on IP multicast with its
associated advantages of supporting both one-to-one and one-to-many communication as well
as making effective use of available bandwidth.

The primary reason PeerView was not implemented using the LRMP protocol was my reti-
cence towards using a technology that I had no implementation (“hands-on”) experience with.
Sockets based communication is the default protocol in JSDT and consequently the best
documented. Also, I was familiar with the basics of sockets programming and so felt more
comfortably using that technology, knowing there were deadlines to be met for the PeerView
project. In retrospect, I am not sure this was the right decision because the advantages of the

3The protocol may be configured via the JSDT API, but that does not detract from the orthogonality of
the API as a whole.

50



LRMP (greater scalability, simpler user interface, more functionality) may have outweighed
the cost in increased development time. It is, of course, difficult to assess since I did not
experiment with the LRMP protocol and therefore have no experience to base an evaluation
on. However, for any future project, InSiter in particular, a multicast implementation would
be preferable to a sockets based implementation because the advantages of the former become
so compelling as the scope of the application increases that it would be indefensible to use a
simple unicast solution.

PeerView uses only a subset of the functionality in the JSDT library, namely the data dis-
tribution mechanism. The library also has support for data sharing which allows a group of
clients to share a data reservoir (implemented as a byte array) and for implementing a security
layer which enables controlled access to shared data and data distribution. This limited use
of available functionality is not merely due to the limited scope of the PeerView application.
I suspect that most collaborative applications, InSiter included, will have a greater need for
a scalable, efficient, reliable data distribution layer than for auxiliary features such as data
sharing, security and the like. The reason is that with a sound data distribution layer such
as LRMP multicasting in place it is relatively straightforward to implement features such as
security (for example by maintaining a registry of clients and their access privileges) and data
sharing (by using a byte array and a simple token based access scheme) on top of that layer.
If this is the case, then much of the JSDT functionality is unnecessary for the implementation
of InSiter, although the JSDT is far simpler than the alternatives surveyed and mentioned
in Section 3.1. Instead, the best solution may be a library aimed purely at data distribution
and therefore optimized for that purpose. The Web Canal [39] tool from the French research
institute Inria seems a good choice because it uses the LRMP protocol also from Inria and
therefore has the desirable properties of that protocol as discussed earlier. Furthermore, Web
Canal is freely available and pure Java so neither licensing nor compatibility concerns need
hinder or limit integration into one’s own applications.

The experience gained from implementing the PeerView distribution layer is perhaps the
most valuable implementation lesson to be derived from the entire project because the choice
of data communication library has such a significant impact on both the internals of the
implementation and the end user experience (by influencing network load, responsiveness and
ease-of-use).

51



Chapter 6

InSiter

6.1 Introduction

In this Chapter, I present a tentative design of a system for rendering and review that builds
on the experience garnered from the development and evaluation of PeerView. This system is
considerably more ambitious than PeerView and is intended for practical, day-to-day use in a
realistic setting, be it in academia or industry. The working title of this system is InSiter, a
name chosen to signal the organization-wide scope of the rendering it presents to its users. In
the following Sections, I describe the intentions and design philosophy of InSiter and present
the interface design of its main components, and discuss in general terms how this could be
implemented.

6.2 User audience

The intended users of InSiter are the same as for PeerView, namely first and foremost software
developers, but as with PeerView, InSiter should be designed and implemented so that is
accessible to most information workers (from office clerks to civil engineers) without extensive
training. I believe this is not only feasible, but also desirable. Not just because it widens the
potential user audience, but also because it forces design work to focus on the essentials of
the product and how they are best communicated to all users. In Section 3.2.1, I described
the principles of simplicity in connection with interface design and how they are propounded
by industry and academia pundits. This credo of the simple and rejection of the overly
elaborate! recognizes the inherent limitations of the human cognitive system and, arguably,
has some intrinsic aesthetic appeal (see also [55]). The InSiter design should therefore cater to
its intended audience, i.e. software developers, but at the same time be as inclusive as possible.

6.3 Design objectives

PeerView was intended as a prototype to test the viability of the ideas of rendering and review,
i.e. both the usefulness of a design philosophy based on those concepts and the feasibility of

!Facetiously but incisively referred to as the “keep it simple, stupid” or KISS principle by some.

52



translating them into reality. It did yield useful information on the latter aspect, but little
on the first since it was, by necessity, limited in scope and therefore did not lend itself to the
type of prolonged experimentation in realistic settings needed to make conclusive statements
on usefulness.

InSiter should not be an experimental system — it is intended for “production use”, but it
might still produce valuable experimental results by allowing the actual usefulness of rendering
and review to come before a day, so to speak, by being used by real groups working on real
projects in real organizations. The purpose is therefore to produce a workable (in the sense of
being accessible and useful) and working (in the sense of being well designed and implemented)
rendering and review system that builds on the experience from PeerView to provide users
with a common information space and facilities for reviewing and discussing its contents.

The InSiter interface will be a ZUI (zoomable user interface) much in the same way as the
PeerView interface, but it will employ a wider range of ZUI techniques because it must allow
users to insert more types of artifact into its interface and allow them to apply a greater and
more diverse set of operations to those artifacts than PeerView did. This is necessary to give
users the freedom to customize the information space to suit their needs.

The PeerView interface was document-centric in that the only type of artifact that could be
placed on its scalable desktop was documents, albeit their contents ranged from bitmaps to
HTML code. The InSiter interface retains this emphasis on documents since such finite strings
of symbols are after all the only artifact that information workers can produce, but it widens
the scope to include the relationships between those artifacts, the people who create them and
the organizational relationships between those people. By doing so, InSiter aims to render not
only the outcome of a project but also the context it which it is brought about.

InSiter will allow users to form collaborative units (which will be referred to as groups for
the time being) and will give them more extensive communication and review facilities than
PeerView did. It will support a live video feed of each group member to be placed in the
panorama so as to provide a video mosaic similar to that discussed in [17]. Further, InSiter
will allow members to communicate directly on a member-to-member (unicasting) or member-
to-group (broadcasting) basis by exchanging text messages which can contain hyperlinks to
artifacts in the common information space and thus used as a simple means of initiating
collaboration on a specific artifact. InSiter will give users the opportunity to discuss individual
document artifacts by providing review facilities similar to what is found in PeerView. There
seems to be little need to introduce new review facilities since the discussion forum concept
in PeerView captures most of what transspires in a simple code review session which is what
inspired it. Usability testings of early version of InSiter can probably reveal whether more
sophisticated review facilities are desirable and so I leave those considerations to a later, more
advanced stage of design.

InSiter will generate and store statistical information on document artifacts to facilitate anal-
ysis of them.

53



6.4 Interface design

6.4.1 Introduction

One of the most difficult design decisions is where to begin. After all, there is nothing to
hinder design from beginning with how to ship the product to end users before describing
how architecture and interface should be designed. However, the interface is a good place to
start because it constitutes a concrete, visible commitment that can be understood by both
end users and developers, and therefore sets a lower threshold for what subsequent layers of
functionality and architecture must support.

Figures 6.1 to 6.6 are mock-up screen designs showing how the InSiter panorama will appear
to the user. This is a simplified representation that captures the overall intent, meaning
that details may differ in the final design. Based on the experience from PeerView and the
experimental evaluation described in Chapter 4, I believe the exact nature of those details
could favourably be decided on through repeated, i.e. iterative, evaluation of progressively
refined design proposals. That way, the final design would likely be an accurate reflection of
user needs, although the rules of thumb applied in the design of the PeerView interface (see
section 3.2.1) can also help guide interface design.

However, for any evaluation to take place, there has to be some interface in place to begin with,
and the below screen designs serve that purpose. Section 6.4.3 then describes the rationale
behind these designs.

54



6.4.2 Screen designs

Figure 6.1: A mock-up of an InSiter panorama. Four author nodes are connected to a number
of document nodes, all of which can be translated and scaled individually by the user. A variety
of layout managers can be used to automatically lay out nodes so that they are arranged by
author, by modification, by some geometric arrangement (as with the grid layout manager in
PeerView), or by some other criterion entirely. The user can zoom manually or by double-
clicking any node or edge.

55



Figure 6.2: Centered view of InSiter document. The user can double-click each of the three
text items in the header bar to zoom quickly to a centered view of either one.

56



Figure 6.3: Close-up view of InSiter document. The user has manually zoomed to a magnifica-
tion that allows her to see all three portions of the document header bar. From here, she can
double-click any of them to have it centered automatically or continue the manual navigation.

o7



Figure 6.4: Author information page. This portion of the InSiter document header bar contains
information on the author of the document and a live video feed of her (if available).

58



Figure 6.5: Document information page. This portion of the InSiter document header bar
contains summary information on the document and a revision diagram (lower left) that
shows an outline of the document along with an indication of when each line was last modified
(colour coded with red indicating recently modified and blue the opposite).




Yehicle

(from da SparePart

[fr utt]

CrankAxle SparkPlug
[from defaul] [from defautt) [from default]

Bonnet Trunk Chassis
[from default] [from default] [from defautt)

Figure 6.6: Document context page. This portion of the InSiter document header bar contains
a user customizable representation of how the document relates to other artifacts. In this case,
the document in question is a code file and its context is therefore appropriately represented
by a UML class diagram.

6.4.3 Design rationale

InSiter aims to provide users with a comprehensive common information space as is reflected
by the above screen designs. Section 6.5 describes the overall architecture that must support

60




the proposed designs, but the rationale behind the inclusion of such features as video feeds
and code statistics merits separate attention.

Video broadcast

In [17], Lee et al. describe their experience with a system called Portholes “that allows dis-
tributed work groups to access information related to general and peripheral awareness” [17,
p. 385] and report a mixed user reaction. However, they also find that user reticence was
attributable to such factors as camera shyness, threat of surveillance, loss of privacy and lack
of control, all of which they address with varying degrees of success by allowing users to edit,
blur and remove frames from the video feed streaming from their camera. They also found
that users request a "lookback" facility for determining who is accessing their video feed or
has done so recently. In other words, users want to be aware of who is looking at them so that
they do not feel passively monitored, but rather on par with whomever is observing them.
User control and support for customization is therefore vital if the InSiter video broadcast
system is to be successful. Portholes provides this through a preferences section for each user
where he or she can regulate who has access to which images and how those images appear.
I plan to incorporate a similar facility in InSiter, but the specifics of the design will depend
on the type and quality of video used. However, users should in any case be able to edit out
specific frames, i.e. block the image stream at will and at any point, and should be able to
see at a glance who is currently looking at them (this reciprocal relationship between observer
and the observed is sometimes referred to as “reciprocity”).

As for the technical feasibility of implementing a video broadcast system, consider the following
back-of-the-envelope calculations:

Notation:
f the size in bytes of each broadcast frame.
r the frame rate measured in number of frames broadcast per second.

c 1
compression factor

b the bandwidth in bytes pr. second necessary to broadcast f * r * ¢ bytes.
Assume:
e A resolution of 320 by 200 pixels and a pixel depth of 8 bits (sufficient for
256 colours or grey scale). Then f = 320 % 200 * 1 = 64.000.

e A reasonable frame rate of % the real-time frame rate. Then r = 8.

e A 1:10 compression ratio which is a conservative estimate, judging from [29].

_ 1
Then ¢ = 36+

61



Then:
b = 64.000 * 8 * {5 = 51.200 bytes = 50KB

Notice that this estimate is independent of the number of users in a group if IP multicast
technology is used, as discussed in Section 6.5.2, since multicast allows the sender to broadcast
to multiple recipients without multiple transmissions by instead making a single transmission
to a group address which is then automically forwarded to the members of the group in
question. 50KB is a fraction of the bandwidth available in standard local area networks and
within the range of many private subscribers with the increasing availability of ISDN and
ADSL services. InSiter will need to distribute other forms of data, but video will probably
account for a significant if not dominant portion of the total bandwidth consumption and so
the above is also an estimate of the magnitude of the total InSiter bandwidth consumption.

Code statistics

In [52, p. 315 ff.|, Eick describes the SeeSoft system which translates large amounts of code into
a visual representation consisting of long vertical columns corresponding to the files containing
the code in question. Each column can show the contours of a portion of code, i.e. how it
would appear if viewed at a distance or, equivalently and more pertinent to InSiter, from a
high elevation (that is, zoomed out so there is significant difference between the z coordinate
of the viewport and that of the code). Each pixel line in a column then corresponded to
a line of code and was colour coded to indicate its most recent date of revision. A similar
arrangement is used in Figure 6.5 where an outline of the entire document is shown in the
lower left corner. Each line is coloured so as to indicate when it was last changed and the
user can double-click any portion of the outline which will result in InSiter zooming out to an
appropriate viewing distance and scrolling to the portion of text corresponding to the clicked
area. This feature will most likely only be enabled for documents containing computer source
code since its usefulness lies in the fact that formatted source code has a distinctive signature
outline that enables experienced programmers to quickly identify relevant segments of code
by inspecting that outline [52, p. 318]. Also, to gather the necessary revision statistics, InSiter
must either interface with the development tools used to create the documents in question, or
make a line-by-line comparison of successive file versions each time a document is updated.
The latter is a better solution since it does not depend on any interfacing with the constantly
changing and largely proprietary development tools in use today. It does, however, carry
with it a processing cost and should therefore only be done where it yields a useful outcome.
The information thus gathered can also be used to implement a special inspection mode
that temporarily modifies the apperance of document artifacts to give a SeeSoft-like overview
representation. This inspection would expand each document so that all of its contents was
visible without scrolling and then arrange the documents beside each other so that they made
up a linear range of columns. By scaling to an appropriate level and perhaps activating
a optional colour coding to indicate revision history, the user could then use the resulting
arrangement of artifacts in the same manner as SeeSoft.

Again, computer source code files are the type of document for which such an overview rep-
resentation would make most sense because of the relationship between code formatting and
semantics (if-then statements and switch-case clauses in the C language are usually indented

62



in an easily identifiable fashion, for example). However, if the line-by-line comparison scheme
suggested above was used, it would be possible to maintain revision statistics for other text
document types as well. Future design refinements will have to address this question in detail.

The other type of statistical data envisaged in this design is the size evolution graph in the
lower right portion of Figure 6.5. This is included because it gives a useful, if incomplete sense
of how the document has evolved over time while at the same time indicating when it was
created and what its current size without taking up significantly more space than those vital
data alone would have taken. Also, it is trivial to implement since the size of each document
will be monitored anyway in the process of maintaining updated copies of the artifacts placed
in the InSiter panorama.

Document context information

In Figure 6.6, the example document used is shown in context using a UML diagram. This is
an illustration of the general principle that when users add documents to the InSiter panorama,
they can specify the relationships of those documents to other documents. They should be
able to do this either by attaching a separate document containg the necessary information
(such as a UML diagram in some portable format) or by entering the relationship textually or
using a mouse. InSiter can then use this specification to render a document context pane as
show in figure 6.6. This need not be a UML diagram, but can be any representation that can
be rendered in the InSiter panorama such as a dependency graph connected to a document
showing which other documents must be updated when that document is. InSiter could then
be configured to automatically notify affected parties when a document is changed that other
documents needs to be maintained in response to the change. All of the above seem to pose
no insurmountable technical problems: the specification of relationships can be entered using
standard interface widgets, diagrams can be constructed using simple graphical primitives and
responding to changes in documents is can be reduced to a question of traversing a dependency
graph, if one exists and submitting messages to any users affected. I therefore leave the details
of this design to a later stage.

6.5 Architecture

In [10], Booch, Rumbaugh and Jacobson (the so-called “three amigos”) define software archi-
tecture so:

“An architecture is the set of significant decisions about the organization of a
software system, the selection of the structural elements and their interfaces by
which the system is composed, together with their behavior as specified in the
collaborations among those elements, the composition of these structural and be-
havioral elements into progressively larger subsystems, and the architectural style
that guides this organization—these elements and their interfaces, their collabo-
rations, and their composition.”

This abstract formulation captures what is probably a common intuition about software ar-
chitecture, namely that it has to do with the relationships between the components that make

63



up a software system, and it does so in a way that stresses the engineering aspect of software
architecture. But architecture can be interpreted differently, namely as the “style and method
of design and construction [of a complex system|” [5], which is a definition closer to how con-
ventional architecture can be perceived, namely as the consistent and reasoned application of
design principles to achieve the most desirable balance between what is aesthetically pleas-
ing, functionally required and economically feasible. I see the job of the software architect as
much the same as that of the traditional architect, i.e. a person who design structures to be
implemented by engineers and used by whomever contracted them or otherwise has use for
them. The InSiter architecture is therefore designed to accomodate the needs of both parties
by being:

e As simple as possible, but no simpler.
e Open and extensible.
e Flexible to allow for user customization and easy redesign at later stages.

e Robust, reliable, efficient and secure, in that order of significance.

6.5.1 Information architecture

I use the term “information architecture” to signify the choice and design of data structures
to represent the information and interface components that the user can access through the
InSiter interface. It is assumed that all data structures in the finished program correspond to
interface components, although some may do so indirectly, perhaps by serving some auxiliary
purpose in relation to another structure. The below only addresses the information archi-
tecture issues in InSiter that are either new, i.e. not addressed by PeerView, or of particular
interest because they affect the entire design or pose some form of difficulty.

The information space multigraph

The most complex portion of the InSiter interface is the panorama where artifacts are placed
and manipulated. The collection of artifacts visible in the panorama constitute a multigraph,
i.e. a graph structure where pairs of vertices may be connected by multiple edges rather than a
unique edge 2. The vertices correspond to either author nodes or document nodes in the InSiter
panorama and the edges correspond to relationships between authors, between documents or
between author and document(s) 2. Relationships may be either unilateral or bilateral and
the direction of an edge between a pair of vertices indicates which apply in a given case. An
example is given in Figure 6.7 where a set of author nodes are indicated by vertices marked An
and a set of document nodes are indicated by vertices marked dn (with n being an integer).

2 A multigraph can be defined as a pair MG = (V, E) where V # () is a finite set of vertices and E is a set
of two-element subsets of V', where any v € V may be in more than one e € E
3The terms vertex and node will be used interchangeable throughout this Chapter.

64



A2

A4 A3

Figure 6.7: An example of an information space multigraph

One interpretation of the graph in Figure 6.7 could be that author A1* is the current main-
tainer of documents {d1,d2,d3} and that authors {A2, A4} are her co-workers. Similarly,
author A3 is responsible for documents {d6,d7}, but she does not have a bilateral relationship
to any of the other authors, and the unilateral relationship to author A2 is most likely an
indication that A2 is her superior in the organization to which they all belong. The relation-
ship between author and document is always unilateral and therefore represented by an edge
directed from the author node to the document node. Documents, on the other hand, may be
bilaterally or unilaterally related, as appears from Figure 6.7. A unilateral relationship may
indicate a one-way dependency such as that between a C++ code file and a standard library, or
it may indicate some other, user-specified relationship such as that between a legal text and
its annotations or a template and the documents based on it. A bilateral relationship may
indicate a two-way dependency such as what exists between a C++ definition file (typically
suffixed by .cpp) and the corresponding declaration file (suffixed by .h), or it may indicate
an entirely different bilateral relation between documents.

The multigraph structure described above is an abstract representation of what can be found
in the InSiter panorama. The user will not need to be aware of this structure when placing
artifacts in the panorama, although she might be, but it will be the underlying structure
behind the artifacts visible in the InSiter interface. The concrete meaning of the multigraph
will depend on how it is annotated, i.e. what properties the individual vertices and edges are
“decorated” with as users collaborate and add artifacts to the panorama. For instance, the
graph in Figure 6.7 is an abstract representation of the panorama that results when 4 authors
collaborate in a group on a collection of 10 documents in all, but it says nothing about either
the rendering of nodes or the rendering of relations between them. Let us assume that author
Al has added one text document containing HTML code and two bitmap graphics documents
to the panorama, represented by nodes d1 and d2, d3, respectively. Let us further assume that

“Rather, the author designated by the node labelled A1, but I will dispense with such verbiage and simply
refer to nodes as authors and edges as relationships where appropriate.

65



she has indicated that node d1 is related to nodes d2,d3 by a dependency relation since the
latter two are bitmaps that are referenced by the HTML code in the former. Let us also assume
that when A1l joined the group to which she currently belongs, she not only submitted her
own profile to the group, but also stated her relationship with the other members, i.e. authors
A2, A3, A4 in a similar manner to how she indicated the relationship between documents.
We then have two sets of information that can be used to determine the rendering of both
documents and author nodes as well the relationships between them. This gives rise to an
annotated multigraph which can be defined as a set of five sets AMG = {V, E, A, Av, Ae},
where V' # () is a set of vertices, E a set of two-element subsets of V', A is a set of annotations,
Av = {(v,a) € Ae : v € V ANa € A} and Ae = {(e,a) : e € EANa € A}. An annotated
multigraph is a both structural and databased representation of the information space that
an InSiter panorama constitutes and therefore seems an appropriate data structure on which
to base its design. This argument is made stronger by the added benefits it brings with it,
namely a large body of research on graph related issues and algorithms and much existing
code for implementing such structures.

Of course, as with any graph structure, the abstract, set theoretic definition above says nothing
about how it should be embedded in the plane, or, in the case of a zoomable display, in three-
dimensional space. This means that there is no inherent correlation between the abstract
multigraph representation and the placement of the corresponding artifacts in the panorama.
An illustration of this is in the relationship between Figures 6.1, 6.8 and 6.7. Figure 6.1
shows how the InSiter panorama might appear (these are tentative design plans, so final
versions may differ) after four users have joined a group and added artifacts to the panorama.
The number of nodes and relationships between them (indicated by lines) correspond to the
number of vertices and edges in Figure 6.7, but there is no deliberate correlation between
the (arbitrary) layout in Figure 6.7 and the deliberate layout in Figure 6.1. Figure 6.8 shows
the relation between the two other Figures more clearly. It is a diagrammatic representation
of the panorama where attributes have been removed to indicate only the graph structure
underlying the panorama contents. Neither Figure 6.1 nor Figure 6.8 contain edges between
documents as this would obscure these particular illustrations, but the intention is that users
should be able to regulate freely which types of nodes and relationships should be rendered
in the panorama. The absence of edges indicating relationships between documents could
therefore be interpreted as the user having requested that such edges not be drawn. Section
6.4 has more on this topic and also shows how document relationships are shown elsewhere in
the panorama, namely in the “Document context” area of individual document nodes.

66



d10 ds

d9
A4
d1 d4
d2 A1 A2
d3 A3 d5
d7 dé

Figure 6.8: A diagrammatic representation of the panorama in Figure 6.1 to show its rela-
tionship to the multigraph in Figure 6.7. Note that the physical layout, which may have been
applied manually by the user or automatically by a layout manager, has no deliberate relation
to the layout of the graph in Figure 6.7 since a graph, by definition, has no inherent geometric
embedding.

The multigraph structure will be represented by a modified version of the scenegraph structure
that is used in the Jazz library as discussed in Section 3.3. Nodes in a Jazz scenegraph can be
either leaves or inner nodes, both of which can be decorated with arbitrarily complex visual
components which is the mechanism used for storing documents in PeerView. This corresponds
to the annotations of the multigraph discussed above, and the relationships between nodes
can be implemented by wrapping leaf nodes in a simple structure containing a collection of
pointers to other leaves (or inner nodes) and tailoring algorithms that are either built from
the ground up or taken from a third party library to work with this modified structure. Since
the Jazz scenegraph supports many different types of operation, from translation, scaling and
rotation to invisibility, hyperlinking and fisheye deformation, such a modified structure will
also be endowed with a host of sophisticated graphics facilities at little or no extra cost in
development time. The details of this design are not in place at the time of writing, but as
the above suggests, it seems a both feasible and promising implementation model.

67



Data storage

InSiter will generate and need to store persistently (on disk) or transiently (in memory) the
following types of data:

e Review contributions — these are plain text contributions by individual authors as well
as the meta-data needed to identify and classify them (author name, date of creation
and so forth).

e Review discussion structure — these are structural descriptions of the relationships
between review contributions. They can converted into a textual representation since
contributions are identified by their meta-data.

e Panorama structure — the multigraph defining the contents of the InSiter panorama
can be converted to a pure text form (“serialized”, in Java parlance) and hence easily
stored in a text file.

e Document artifact statistics — as appears from Figure 6.5, InSiter will maintain sta-
tistical information on each document and since such statistics span the lifetime of the
document, it will have to be committed to persistent storage between invocations of
PeerView.

e Author information — this does not include the live video feeds of authors, but only
encompasses their personal and other information as shown in Figure 6.4 which can all
be converted to a pure text representation and thus easily saved to disk.

e Group data — the collaborative units that authors can form (referred to as groups at
this early stage of design) are represented by textual data specifying name, description,
participants and so forth, all of which can be stored as pure text.

As is suggested by the above description, I plan to store as much data as possible in a pure text
form by using the Java serialization mechanism which allows data structures that implement
a specific interface (the Serializable interface) to be converted to a textual representation
and to subsequently be restored from one. By doing so, InSiter can commit all of the above
data to disk using the standard stream facilities found in the JDK [50] when the application
is terminated, and restore them from disk when it is subsequently restarted. This approach is
used in PeerView which saves discussion fora, discussion contributions, group directories and
preferences to disk as serialized representations which is a simple and compact representations
that can be manually inspected using standard text processing tools. This might be useful
if scouring the materials generated for a specific snippet of information such as a remark in
a discussion contribution. InSiter will reap those benefits by using the text representation
discussed above, and it can improve on PeerView’s storage method by using (optional) com-
pression of files above a certain size which will of course make the text files inaccessible to
simple manual inspection, but will minimize the InSiter disk “footprint”® if so desired.

Further elaboration of the design might make it necessary to introduce new data structures,
but I intend to make them serializable as well so as to not introduce exceptions to the above
scheme. I expect little difficulty in doing so since any data structure can be described as a

5The amount of storage allocated.

68



collection of elements and relations between them® which ought to be amenable to textual
representation.

6.5.2 Distributed architecture

As described in Section 5.3.4, the Light-weight Reliable Multicast Protocol (LRMP) package
from the French research institute INRIA seems a promising candidate for implementation of
a multicast distribution architecture which in turn seems a good choice of such an architecture
for colloborative systems. Indeed, in [37], Liao reports that the LRMP has been used in such
applications previously and further describes the design goals of the LRMP library which have
been to deliver a reliable protocol for bulk transfer of data, precisely what is needed in InSiter’s
case. The LRMP is a transport protocol meaning that it implements the transport layer of a
network protocol and therefore does not aim to support what is typically left to layers above
the transport layer, namely authentication and session management services. This need not be
a problem because the LRMP can be used in conjunction with the WebCanal [39] package, also
from INRIA, which provides high-level primitives for creating and maintaining channels that
can be used as communication conduits by the colloborative units. An alternative solution to
using the LRMP protocol could be to build on top of the MulticastSocket class that is part
of the standard JDK [50]. This class offers the bare minimum of services needed to send and
receive multicast data, but can be extended using the standard Java extension mechanisms
(composition and inheritance) so one could conceivably extend this class to support both
managed groups and multiple channels in a manner similar to the JSDT. The advantage
of that approach would be that one could customize freely the multicast protocol to suit
the particular needs of InSiter which would most likely yield better performance than using a
third-party solution aimed at generalized support for applications relying on multicast. Also, it
would reduce the potential for complication incurred by interfacing technologies to an absolute
minimum since extending a JDK class to fit into the InSiter framework would not constitute
a technology interface, but simply a program component like any other.

It therefore seems entirely feasible to implement the InSiter architecture based on a multicast
protocol as an implementation can be obtained over the Internet or built from the ground up
using tested and well-known technology. Issues of security and reliability will have to be dealt
with separately as neither the LRMP or the Multicastsocket class have built-in functionality
to support those aspects. However, the Java JDK contains several classes for implementing
security layers and encryption technology for Java is freely available over the Internet (see for
example [13]), so fitting a distributed architecture with customized security and encryption
layers seem no more complicated than implementing the multicast transport layer.

6.6 System requirements

InSiter is to be implemented in Java. This is a given if the Jazz library is to be used since
interfacing with a different language brings with it its own set of difficulties. I do not expect
performance difficulties to hamper usability or development since PeerView has demonstrated

5This may sound like a gross generalization, but consider for a moment that a “data structure” by definition
is a collection of discrete symbols sets and a collection of relations (which can be defined as pairs of elements)
between them, and the statement may seem more plausible.

69



that both the implementation of a zoomable interface and the distribution of data, even using
a non-optimal delta algorithm (see Section 3.3.6), do not offer unsurmountable performance
challenges. Nor do I expect the added layer of data incurred by the introduction of video
transmission to degrade performance significantly as suggested by the calculation on page 61,
since the frame rate can be adjusted according to available bandwidth and compression can
be applied to further reduce transmission volumes. The feasibility of the former measure is
documented in for example [17], and typical compression ratios of video data can be very
good indeed as is demonstrated by the popular video formats AVI and MPEG. I therefore
expect the minimum requirements for InSiter to be about the same as those for PeerView, i.e.
an average PC system as found in many private homes and in many offices. Each machine
should have a network connection in order to participate in groups, and if users wish to use the
video facilities, their machines should be equipped with a camera which need not cost more
than a few hundred dollars today, depending on resolution and colour range. These modest
system requirements, coupled with the choice of Java as implementation language, should
make InSiter available to a wide audience and help minimize the deployment difficulties that
sometimes arise when new systems are shipped to users.

70



Chapter 7

Conclusion

7.1 Results and contributions

The work conducted in connection with this thesis has produced the PeerView software which
has been the subject of two expositional articles, one quite short which appeared in the
February 2001 issue of IEEE DSOnline [61] and another, somewhat longer article coauthored
with Jyrki Katajainen which is included in this thesis in Chapter 2.4. The latter article has also
appeared as a DIKU technical report [62] and is currently under review by an international
journal. PeerView is listed in various directories of applications demonstrating groupware
concepts and zoomable interface technology, and the visitor statistics I have gathered for the
PeerView home page indicate that it has been frequently accessed by visitors from around the
globe, many of whom seem to have downloaded the application.

In the objective terms of public exposure and amounts of code written, PeerView can be said to
have fulfilled its purpose of being a prototype vehicle for artifact rendering and group review.
Also, the experimental evaluation results and analysis contained in this thesis can likely help
successor system(s) be developed more efficiently and to a higher standard than if they had
had to be developed without any such empirical base. I believe much of this experience can
be of interest also to developers of otherwise unrelated forms of groupware since Chapters
3 and 4 contain information on such matters as distribution technology, design criteria and
evaluation techniques that may help developers make appropriate design and implementation
choices. An outcome from PeerView that is of potential interest both to groupware developers
and to developers building single-user applications is the experience using the Jazz and JSDT
component technologies to shorten development time and the deliberations made in choosing
them, as discussed in Chapter 3. The PeerView source code is in a sense the definitive reference
to anyone who wants to study the details of how these third-party technologies have been used
and it has therefore been made public for anyone to peruse.

PeerView has contributed to existing research literature on common information spaces by
addressing recurring problems with largely untried techniques, such as using a zoomable dis-
play in response to the “detail /overview” problem as discussed in Section 2.2, and a threaded
discussion forum for generating and organizing dialogue among users.

71



7.2 Lessons learned

On a personal level, PeerView has helped me develop my skills as a developer by being a
non-trivial development project in territory that was largely untried for me when I started. It
has also helped improve my research skills since it spans such a broad range of topics, ranging
from theoretical CSCW research on common information spaces [4] to delta algorithms [31]
and APIs [50, 34]. The development, research and writing processes have taught me new
things about project logistics and confirmed what I already knew or suspected, namely that I
tend to be overly optimistic when planning such projects and that as schedules slip, difficult
and unpleasant choices have to be made by removing or scaling down planned features and
lowering ambitions.

The methodology of building a prototype from an initial idea, experimentally evaluating the
end product and performing an analysis of the development efforts to help guide future de-
velopment proved fruitful in that it did yield useful information and did produce functional
software that tested ideas and technologies in practice. Further, the PeerView software pro-
vides a “prototyping base” for similar systems since it allows developers to incorporate ideas
into an existing framework, i.e. the PeerView source code, and subject them to experimental
testing before making end-user versions of them.

This does not mean that the methodology described in Section 2.3 was followed with unswerv-
ing loyalty nor that it cannot be improved. For example, as appears from for example the
discussion in Section 3.3.6 and 3.3.1, not all decisions were planned for or considered as thor-
oughly as could be desired. Further, not all phases and steps of the development process took
place in the prescribed order. I believe the initial design could have been more stable if I had
spent more time studying reports from similar initiatives such as [20] and [7] and drawn the
appropriate lessons from the experience reported therein. An example of how this affected
the process in practice is reported in Section 3.1 where I only became aware of research on
the “detail/overview” display problem after I had carried through my own reasoning on the
issue. The experimental evaluation described in Chapter 4 was not planned in detail until
after implementation was concluded and the software made public, i.e. quite late in the work
process, which resulted in it being limited to the number of participants I could recruit with
short notice. In retrospect, I believe that experimental evaluation would ideally be an ongoing
series of experiments that punctuated different stages of development and were planned as
such, i.e. in detail from the beginning of the project. The first experiment could then be an
assessment of the interface design in isolation based on the “mock-up” made during the early
stages of design. The second experiment could be conducted when core functionality! was
implemented and subsequent experiments as additional functionality was added and official
releases made. This would of course incur greater costs in terms of time taken to plan exper-
iments, recruit participants and possibly compensating them economically, but the feedback
into the development process would make this well worthwhile, I suspect. The techniques used
for experimental evaluation worked well in this case and are widely used as documented in [45],
but if developers lack the resources to regularly schedule such experiments, they could proba-
bly benefit from using a form of heuristic evaluation tailored for groupware [3] for evaluation
at the early stages of development.

n PeerView’s case, this might adding and removing documents and manipulating the group directory.

72



7.3 Future work

If possible, I intend to direct future work at completing the design of InSiter which was begun
in Chapter 6 through an iterative development process where successive design increments are
implemented and the resulting intermediate systems subjected to evaluation which feeds back
into the ongoing development process. This would, I believe, be a fruitful methodology for
realising a system that could go beyond the PeerView basics to provide users with a useful,
scalable and generically designed support system for collaborative work centered around a
common information space. However, for this to move beyond wishful thinking there must
be sufficient funding in place as InSiter is considerably beyond what can be comfortably be
implemented by one or two developers in their spare time. Depending on investor sentiment,
InSiter could then become a freely available system for a general user audience or a commercial,
licensed system for specific customer groups. Either way, the development process in itself
would probably be worth the effort since it can, as demonstrated in this thesis, be a useful
asset per se.

73



Bibliography

[1]

2]
3]
4]
[5]
[6]
7]
8]
[9]
[10]
[11]

[12]
[13]
[14]

[15]
[16]

[17]

P. Youna (Editor), 3D Software Visualization — Visualisations and Representations, Worldwide
Web Document (1997). Available at http://vrg.dur.ac.uk/misc/PeterYoung/pages/work/
documents/BT-report/.

J. Arvo (Editor), Graphics Gems II, Academic Press, Inc. (1991).

K. BAKER, S. GREENBERG, AND C. GUTWIN, Heuristic Evaluation of Groupware Based on the
Mechanics of Collaboration, Technical report, Department of Computer Science, University of
Calgary (2000).

L. BANNON AND S.B. DKER, Constructing Common Information Spaces, Proceedings of EC-
SCW97, Dordrecht, Kluwer (1997), 81-96.

P.L.P.M. BARBARA HAYES-ROTH,KARL PFEGER AND M. BALABANOVIC, A Domain-Specific
Software Architecture for Adaptive Intelligent Systems, IEEE Transactions on Software Engi-
neering 21,4 (1995).

K. BECK, Extreme Programming Explained (2000).

B. BEDERSON AND J. MEYER, Implementing a zooming User Interface: experience building
Pad++, Software Practice and Experience 28,10 (1998), 1101-1135.

B.B. BEDERSON AND B. MCALISTER, Jazz: An Extensible 2D+Zooming Graphics Toolkit in
Java, Technical Report CS-TR-4015, University of Maryland, College Park (1999).

A.F. BLACKWELL, Metaphor in Diagrams, Ph.D. Thesis, Darwin College, University of Cam-
bridge (1998).

G. BoocH, J. RuMBAUGH, AND I. JACOBSON, The Unified Modeling Language User Guide,
1 Edition, Addison-Wesley, Reading, Massachusetts, USA (1999).

F.P. BROOKS, No Silver Bullet - Essence and Accidents of Software Engineering, IEEE Computer
(1987), 10-19.

CENTRINITY INC., Centrinity, Website accessible at http://www.softarc.com.
WWW.CRYPTIX.ORG, Website accessible at http://www.cryptix.org.

OPENAVENUE, INC., Concurrent Versions System: The Open Standard for Version Control,
Website accessible at http://www.cvshome.org.

CyBozU INC., Cybozu, Website accessible at http://www.cybozu.com.

L.P. DEUTSCH, RFC 1951: DEFLATE Compressed Data Format Specification version 1.8
(1996). Status: INFORMATIONAL.

P. DoURISH AND S. BLry, Portholes: Supporting Awareness in a Distributed Work Group, ACM
Annual Conference on Human Factors in Computing Systems (1992).

497



18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]

[37]

LEHRGEBIET PRAKTISCHE INFORMATIK II, FERNUNIVERSITAT HAGEN, DreamTeam Homepage,
Website accessible at http://carmen.fernuni-hagen.de/dreamteam/dreamteam_eng.html.

S. EASTERBROOK, Coordination Breakdowns: Why Groupware is so Difficult to Design, Technical
Report CSRP 343, School of Cognitive and Computing Sciences, University of Sussex.

G.W. FURNAS AND X. ZHANG, MuSE: A Multiscale Editor, Proceedings of the ACM Symposium
on User Interface Software and Technology, Zoomable User Interfaces (1998), 107-116.

R.L. GraAsS, Software Runaways: Monumental Software Disasters, Prentice Hall, Upper Saddle
River (1998).

S. GREENBERG, C. GUTWIN, AND A. COCKBURN, Awareness Through Fisheye Views in Relaxed-
WYSIWIS Groupware, Graphics Interface '96, W. A. Davis AND R. BARTELS (Editors), Cana-
dian Human-Computer Communications Society (1996), 28-38. ISBN 0-9695338-5-3.

R.E. GRINTNER, Workflow Systems: Occasions for Success and Failure, Computer Supported
Cooperative Work 9 (2000), 189-214.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALGARY, GroupLab: Laboratory for
Computer Supported Cooperative Work & Human Computer Interaction, Website accessible at
http://www.cpsc.ucalgary.ca/projects/grouplab.

D1AMOND BULLET DESIGN, Types of Groupware and Groupware Issues, Worldwide Web Docu-
ment (2001). Available at http://www.usabilityfirst.com/cscw.html#TypesofGroupware.

C. GuTrwiN AND S. GREENBERG, Effects of Awareness Support on Groupware Usability, Pro-
ceedings of ACM CHI 98 Conference on Human Factors in Computing Systems, Usability of
Groupware 1 (1998), 511-518.

C. GUTWIN AND S. GREENBERG, A Framework of Awareness for Small Groups in Shared-

Workspace Groupware, Technical Report 99-1, Department of Computer Science, University of
Saskatchewan (1999).

NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS, UNIVERSITY OF ILLINOIS AT

URBANA-CHAMPAIGN, NCSA Habanem®, Website accessible at http://havefun.ncsa.uiuc.
edu/habanero/.

D.T. HOANG, Fast and Efficient Algorithms for Text and Video Compression, Technical Report
CS-97-06, Brown University - Department of Computer Science (1997).

W.S. HUMPHREY, A Personal Commitment to Software Quality (1995), 5-7.

J.J. Hunt, K.P. Vo, AND W.F. TicHY, An Empirical Study of Delta Algorithms, Soft-
ware configuration management: ICSE 96 SCM-6 Workshop, I. SOMMERVILLE (Editor), Springer
(1996), 49-66.

I. JAcoBsoN, G. BoocH, AND J. RUMBAUGH, The Unified Software Development Process,
Addison-Wesley (1999).

I. JACOBSON AND OTHERS, Object-Oriented Software Engineering — a Use Case Driven Ap-
proach, Addison-Wesley (1992).

HUMAN-COMPUTER INTERACTION LAB, UNIVERSITY OF MARYLAND, Welcome to Jazz!, Website
accessible at http://www.cs.umd.edu/hcil/jazz/.

C. A. JoNEs, The Java Internationalization API: Global software for the global village, Dr. Dobb’s
Journal of Software Tools 23,1 (1998), 54, 56—69, 103-104.

SUN MICROSYSTEMS, INC., Java™ Shared Data Toolkit, Website accessible at http://java.
sun.com/products/java-media/jsdt/index.html.

T. Liao, Light-weight Reliable Multicast Protocol, Technical report, INRIA (1998).

498



[38]

[39]
[40]
[41]

[42]

[43]
[44]
[45]

[46]

[47]

[48]

[49]
[50]

[51]
[52]
[53]
[54]

[55]
[56]

[57]
[58]

[59]

[60]

[61]

LoTus DEVELOPMENT CORPORATION, Lotus Notes, Website accessible at http://wuw.lotus.
com/home.nsf/welcome/notes.

INRIA, LRMP Home Page, Website accessible at http://webcanal.inria.fr/index.html.
S. McCoNNELL, Code Complete, Microsoft Press (1990).

B. MEYER, Component and Object Technology: On to Components, Computer 32,1 (1999),
139-140.

H.D. MiLLs, M. DYER, AND R. LINGER, Cleanroom Software Engineering, IEEE Software 4,5
(1987), 19-25.

J. NIELSEN, Usability Engineering, Academic Press, Inc. (1993).
WWW.OPENGL.ORG, Open GL, Website accessible at http://www.opengl.org/.

D. PINELLE, A Survey of Groupware Evaluations in CSCW Proceedings, Technical report, De-
partment of Computer Science, University of Saskatchewan (2000).

M. ROSEMAN AND S. GREENBERG, TeamRooms: Network Places for Collaboration (1996), 325—
333.

C.G. SAuL GREENBERG AND A. COCKBURN, Using Distortion-Oriented Displays to Support
Workspace Awareness, R. C. A.SASSE AND R.WINDER (Editors), Springer-Verlag (1996), 299—
314.

K. ScumipT AND L. BANNON, Taking CSCW seriously: Supporting articulation work, Computer
Supported Cooperative Work 1 (1992), 7-40.

B. SCHNEIDERMAN, Designing the User Interface, Addison-Wesley (1998).

SUN MICROSYSTEMS, INC., Java™ 2 SDK, Standard Edition, Website accessible at http://
java.sun.com/products/jdk/1.2/.

I. SOMMERVILLE, Software Engineering, 5th Edition, Addison-Wesley Publishing Company, Inc.
(1996).

J. STasko, J. DOMINGUE, M. H. BROWN, AND B. A. PrIcE (Editors), Software Visualization:
Programming as o Multimedia Ezperience, The MIT Press (1998).

WEBWISDOM.COM, INC., TANGO Interactive™, Website accessible at http: //www.webwisdom.
com/tangointeractive.

LARs YDE, The PeerView Website, Website accessible at http://www.diku.dk/
research-groups/performance-engineering/PeerView/.

E. TUFTE, Envisioning Information, Graphics Press (1990).

DIAMOND BULLET DESIGN, Usability First'™™, Website accessible at http://www.
usabilityfirst.com/.

WEBMAGIC, INC., USENET.org™, Website accessible at http://www.usenet.org.

IBM, VisualAge, Worldwide Web Document. Available at http://www-4.ibm.com/software/
ad/vajava/.

A. WOODRUFF, J. LANDAY, AND M. STONEBRAKER, Goal-Directed Zoom, Proceedings of ACM
CHI 98 Conference on Human Factors in Computing Systems (Summary), Late Breaking Results:
Look and Learn: Visualization and Education Too 2 (1998), 305-306.

DISTRIBUTED SYSTEMS TECHNOLOGY CENTRE PTY. LTD., The wOrlds Project, Website acces-
sible at http://archive.dstc.edu.au/TU/wlrlds/.

L. YDE, PeerView - a Prototype for Rendering and Review, Distributed Systems Online (2001).

499



[62] L. YDE AND J. KATAJAINEN, Supporting Intellectual Work Through Artifact Rendering and
Group Review, Technical Report 00/11, Department of Computer Science, University of Copen-
hagen (DIKU) (2001).

500



