

 Master's thesis, Department of Computer Science
University of Copenhagen, spring 2009
Supervisor: Jyrki Katajainen

Domain-driven design in action
Designing an identity provider

Klaus Byskov Ho�mann

iii

Abstract. In many scienti�c disciplines �complexity� is one of the most exciting

current topics, as researchers attempt to tackle the messiness of the real world. a

software developer has that same prospect when facing a complicated domain that

has never been formalized.

In this thesis the principles of domain-driven design are used to model a real-

world business problem, namely a framework for an extensible identity provider.

A speci�cation for the software is presented and based on this speci�cation a com-

plete model is created, using the principles of domain-driven design which are also

presented. The thesis also includes an implementation of a generic domain-driven

design framework that leverages object-relational mappers. It is then showed how

this framework can be used to implement the designed model. Finally, the qual-

ity and completeness of the model is validated through a series of reviews and

interviews.

The work shows that applying the principles of domain-driven design is a good

approach to modelling a complex business domain.

Resumé. I mange videnskabelige discipliner er kompleksitet et af mest spændende

aktuelle emner, idet forskere forsøger at takle den virkelige verdens rod. En software

udvikler har den samme udsigt når han står overfor et kompliceret domæne der

aldrig er blevet formaliseret.

I dette speciale bruges principperne fra domænedrevet design til at modellere et

forretningsproblem fra den virkelige verden, nemlig et rammeværk for en udvidbar

identity provider. En speci�kation for softwaren præsenteres, og baseret på denne

speci�kation udvikles en komplet model ved brug af principperne fra domænedrevet

design, der ligeledes præsenteres. Specialet indeholder også en implementering af

et generisk domænedrevet design rammeværk der gør brug af objeckt-relationelle

oversættere. Herefter bliver det vist hvordan dette rammeværk kan bruges til at

implementere den designede model. Slutteligt valideres modellens kvalitet og kom-

plethed igennem en række reviews og interviews.

Arbejdet viser at det at benytte principperne fra domænedrevet design er en god

tilgang til at modellere komplekse forretningsdomæner.

Chapter

Contents

Abstract . iii

Resumé . iii

Contents . iv

Preface . 1

Acknowledgements . 4

1 Identity provider . 5

2 Speci�cation . 8

3 Domain-driven design . 21

4 De�ning the model . 44

5 Object relational mappers . 88

6 A domain-neutral component . 103

7 Implementation . 118

8 Design validation . 133

9 Conclusion . 136

A C# language elements . 139

B Interviews . 147

Bibliography . 151

iv

Chapter

Preface

This master's thesis concludes my cand. scient degree in Computer Science

at the University of Copenhagen. The thesis was written in the period from

September 1st 2008 to May 29th 2009.

Introduction

The thing that determines how complex a problem that can be solved by a

piece of software, is not how many programmers you hire to code it but how

well you design it. If the design is not thought through from the beginning,

and everyone involved in the programming solves their tasks from a varying

understanding of the problem domain, then chances are that you will end

up with a cluttered code base which is both hard to understand, maintain,

and extend. The premises for domain driven design are that each software

project should be based on a model and that focus should be on the domain

and the domain logic instead of on the technology that is being used. When

focusing on the model it is easier to achieve a shared terminology between

the domain experts and the programmers, thus breaking down the language

barriers that often exist between them. Domain driven design is not a tech-

nology or a method, but a mind set and a set of priorities. Domain-driven

designdeals with choosing a set of design principles, design patterns and best

practices in order to achieve faster development of software dealing with a

complex business domain, while at the same time achieving a code base that

is maintainable and extensible.

In order to discuss how domain-driven design can be used to design com-

plex software, it is important to me that the discussion is based on a real life

problem, and not just on �ctitious examples. Therefore, this thesis is based

on a project that I am working on with my current employer, a company

called Safewhere. On this project, I alone am responsible for the development

of the software, which makes the project well suited for this one-man thesis.

The project does of course have other stakeholders, such as the technical

director and the CEO of Safewhere.

1

2

The project at hand concerns the development of a framework needed to

implement a multi-protocol identity provider, as described in Chapter 2. The

thesis does not include a fully functional version of the product, but does

include a complete design and implementation of the core functionality.

To make sure that I have achieved making an easily maintainable and

extendible model I have asked a few of my peers to review the model. I have

interviewed each person and had them assess the quality of the design and

the bene�ts of using domain-driven design in general.

Chapter overview

The �rst three chapters contain a general introduction to the problem domain

and to domain-driven design. Thus, these chapters mainly contain material

from books and papers and my contribution to the contents found herein is

merely that of passing on knowledge in a suitable and more compact format.

The last six chapters contain my main contribution, where I take the theory

from the �rst chapters and put it into practical use.

Identity provider: This chapter explains, in general terms, what an Iden-

tity Provider (IdP) is.

Speci�cation: This chapter contains the feature speci�cation of the soft-

ware that is going to be developed.

Domain-driven design: This chapter contains an introduction to domain-

driven design and the concepts it uses.

Model: This chapter contains the design model of the software using domain-

driven design.

Object-relational mappers: In this chapter I discuss how object-relational

mappers can be leveraged in domain-driven design.

A domain neutral component: In this chapter I will present the imple-

mentation of a domain neutral component that implements a lot of

basis functionality that is useful for implementing a system based on

domain-driven design.

Implementation: In this chapter I will showcase the source code for some

of the most interesting parts of the implementation of the system.

Design validation: This chapter is based on interviews with some of my

peers, and its purpose is to let me assess the quality of the model and

the software presented herein.

3

Conclusion: This chapter contains a conclusion on what has been learned

from working with domain driven design.

Tips for the reader

This thesis is written in British English. The thesis is intended to be read

from beginning to end, since most of the chapters build on theory explained

in previous chapters.

The reader should be familiar with object oriented programming and de-

sign. All code samples in this report are in C#, a language of the Microsoft

.NETTM family. A code sample may look like this:

A code sample
1 public void DoNothing(int i, int j)
2 {
3 //Do nothing with the input data and return
4 return;
5 }

If you are not familiar with C# you may refer to the Appendix A, which

contains a short introduction to the language.

The developed code can be found on the enclosed disk. Having Microsoft

Visual Studio 2008 installed is a prerequisite for opening the solution �le,

however each code �le can be inspected in any text editor.

Chapter

Acknowledgements

First of all I wish to thank my supervisor, professor Jyrki Katajainen for his

support and thorough dedication to the project. I also want to thank the

technical director at Safewhere, Peter Haastrup, for his sincere interest in

the project, for shielding me from things I did not need to bothered with,

and for keeping encouraging me throughout the entire process. I also wish

to thank the CEO at Safewhere, Niels Flensted-Jensen, for letting me write

my thesis in collaboration with the company, and Mark Seemann, Mikkel

Christensen and Peter Haastrup for taking time to review the model and

participate in interviews. Finally I wish to thank my beautiful wife Gitte

Byskov Ho�mann for bearing with me on the late nights and weekends where

a substantial part of my time has been spent studying for and writing on

this thesis.

4

Chapter

1
Identity provider

An identity provider (IdP) is a centralized identity service whose primary

responsibility is identifying a user and stating something about that user,

such as the users name, email or CPR number. The IdP identi�es the

user based on some credentials and the statements that it makes about the

user are known as claims. Figure 1 shows the primary work of an identity

Figure 1. An identity provider.

provider. In general terms it can be said that an IdP performs the function

f(ε) = ζ : ζ ∈ φ where ε is a given set of credentials and ζ is a set of claims

from the complete set φ of claims that can be issued by the IdP. Throughout

this thesis I will refer to f(ε) as token issuance. ζ will be referred to as

token, ε will be referred to as user credentials and �nally I will refer to φ

as identity provider claims

1.1. IdP use case example

The advent of a range of new technologies such as SOAP web services, Ajax,

new browser capabilities and higher internet bandwidth has made it feasi-

ble for ISV's to provide software that is hosted in the cloud. This type of

software is referred to as software as a service. Buying software as a service

is becoming a more and more popular for a number of reasons. Primarily

because the total cost of ownership for software as a service vs. self-hosted

software tends to be lower. In fact, according to [Daarbak 2008], the ana-

lyst company Gartner predicts that 30 percent of all CRM systems will be

running on the software as a service model in the year 2012. Software as

a service solutions are hosted in large data centers and provide the ability

5

6

to quickly scale the application for a given customer should the need arise.

This extra �exibility is another selling point for �software as a service� solu-

tions. ISV's that sell software as a service solutions may choose to use claims

based access control in their applications. Figure 2 below shows a �ctitious

company that uses two SaaS applications in the cloud.

Figure 2. IdP use case.

The shoe sales company uses a shipping application and a bookkeeping

application in the cloud. The bookkeeping application uses the SAML2.0

identity protocol and the shipping application uses the OpenId protocol.

When user 1 wants to log in to the bookkeeping application, he is asked to

go and get a security token from an identity provider that is trusted by the

bookkeeping application. The identity provider now issues a security token

containing a claim that the holder is a �SalesPerson�. Since this is the claim

required by the bookkeeping application, User 1 is now allowed to use its

features. When user 1 later wants to go and use the shipping application, the

same thing happens. The only di�erence is that the shipping application uses

another identity protocol, namely OpenId. This setup has several bene�ts.

First of all, user 1 only has to log in once within a session, since the identity

provider will remember him. Secondly, the shoe sales company has one single

7

place where it can manage it's users and the claims that are issued about

them. This means that it would be possible to revoke user 1's access to both

the shipping and bookkeeping application by revoking his SalesPerson claim

in the IdP. Last, the IdP allows the shoe sales company to easily integrate

with software as a service products that use di�erent identity protocols.

Please note that the IdP shown here is actually a �software as a service�

product itself, although conceptually it could just as well be a stand-alone

application in the shoe sales company.

It is the design and implementation of an identity provider such as the

one in Figure 2 that is the goal of this thesis.

Chapter

2
Speci�cation

This chapter includes the feature speci�cation of the identity provider soft-

ware that is going to be designed and implemented. The chapter will contain

requirements to both the software and the platform on which the software

runs. The main focus of this thesis is, of course, the software, however, con-

siderations about the platform are important for a complete understanding

of the system, and therefore they are included here for completeness.

Before we go into the speci�c details, I want to present the following text,

taken from a marketing brochure made by Safewhere, to give you an idea of

what the project is about, from a business perspective. In the following text

the product is referred to as Safewhere*Identify, a term that I will not use

throughout the remainder of the thesis.

Safewhere*identify is a new kind of user identi�cation solution pro-

viding for seamless and heterogeneous authentication across the

supply chain of web applications and web services. With Safe-

where*identify an organization may handle user identi�cation cen-

trally and outside of all web applications and web services. Safe-

where*identify supports any kind of authentication including tra-

ditional methods such as username/password and X.509 as well

as various identity federation mechanisms. Selected bene�ts and

advantages include:

Externalization of authentication. Applications and services

move all authentication to the Safewhere*identify �identity bro-

ker�, which in turn integrates with any and all authentication

mechanisms

Federated identities. User identities are seamlessly and securely

transferred from their origin � the place where the user �rst

logged in � to your infrastructure, thereby removing the need

for operation and administration of a local extranet user database

Traditional user authentication. For external users not ready

for federated authentication Safewhere*identify provides inte-

gration to local user databases, thus allowing for seamless lever-

age of your existing investments in user directories.

8

9

Figure 3. Logical identity �ow from users to web applications

Delegated user administration. Safewhere*identify automati-

cally provisions a user database per organization for authen-

tication purposes and maintenance of other user attributes.

Each database belongs to, and is administered by, one orga-

nization.

Service provider integration. As more and more of your ap-

plications leverage the new identity solution, Safewhere*identify

provides identity conversion/mapping to successfully transfer

identities between applications

Provided both �as a service� and as traditional on premise software.

Due to the unique and standards compliant architecture and

communication patterns, Safewhere*identify may equally well

be leveraged as an external service (Software as a Service) or

as software installed in your own infrastructure. Whichever is

chosen has no e�ect on feature set or security.

Safewhere*identify provides a rich set of features with the aim to

remove entirely all need for local administration and authentication

10

of users. The key capabilities include:

Browser based federation. Safewhere*identify implements a num-

ber of federation protocols including SAML 2.0 and WS-Federation

for browser based authentication

Federated authentication for Web services � aka. "active"

federation � through WS-Trust and possibly WS-Federation

One Identity Provider instance per organization (e.g. each of

your extranet partners) providing for full separation of data.

Separate IIS Application Pools under di�erent service accounts

for each instance ensure very tight security around each orga-

nizations data all the way to the �le system and database level

Claims mapping. Applications leveraging Safewhere*identify po-

tentially all need di�erent kinds of user attributes, or claims,

and often with slightly di�erent names and formatting. (E.g. a

role to one application is a group to another). Safewhere*identify

provides delegated administration of attribute mappings to trans-

parently and correctly transfer identity between applications.

Self registration of organizations and users. Work�ows support

the signing of new organizations � e.g. new business partners

� as well new uses of each organization. The �rst requires

review and approval of you whereas the latter leverages the

distributed nature of user administration and leaves it up to

the user's home organization.

2.1. IdP

The main di�erence between this IdP and �standard� IdP implementations

is that it must support more than one �instance�. An instance is an iso-

lated IdP that runs side by side on the same server as other instances, but

without being coupled to the other instances in any way other than sharing

storage. Systems that host multiple instances of the same software for di�er-

ent customers are often called multitenant systems. Designing a multitenant

system requires extra considerations regarding data storage layout and data

security. Another key feature of the IdP is that it must be extensible in a

way that it can support more than one identity exchange protocol and more

than one authentication mechanism.

11

2.2. Technical requirements

The IdP must be developed in C# and Asp.NET. Con�guration data will

be stored in SqlServer 2008. The IdP will be running on Windows Server

2003/2008 on IIS 7.

2.3. Terms

This chapter makes use of the following terms:

Customer: An organization that has bought an IdP instance.

Administrator: A person who administrates a single IdP instance.

User: An end user who uses an IdP instance to identify himself to a service

provider.

2.4. Overview

Figure 4 shows an overview of the SaaS IdP.

The �gure shows the following concepts:

IdP instances: The SaaS IdP contains a number of IdP instances. Each

IdP instance belongs to a customer, except for one instance, the system

instance. There is no implementation di�erence between the system IdP

instance and the customer's IdP instances. The system IdP instance is

used to authenticate administrators when they log in to administrate

their own IdP instance through the Admin web.

Admin website: The admin website acts as a service provider against the

system IdP, and relies on a set of claims issued by the system IdP

to determine which IdP instance the administrator belongs to. On

the admin website an administrator must be able to con�gure his IdP

instance in a number of ways which will be discussed in further detail

below.

Registration website: The registration website is where new customers

can sign up for the services provided by the SaaS IdP.

Personal data store: All changes made to IdP con�gurations through the

admin website are written to the personal data store. Each IdP instance

12

Figure 4. IdP overview.

uses the personal data store to read it's con�guration, retrieve claims,

authenticate users etc. The personal data store is either a separate

database or a separate database schema.

2.5. IdP instance

This section contains the speci�cation of which features a single IdP instance

contains. An IdP instance is driven by its con�guration. The con�guration

mainly speci�es the following �ve things:

Credentials: Which types of credentials are accepted.

Protocols: Which protocols does the IdP support.

13

Claims (attributes): Which claims does the IdP issue.

Certi�cates: Which certi�cates does the IdP use for signing and decryp-

tion, and which SP certi�cates are trusted.

Service Providers: Which service providers is the IdP connected to.

Figure 5. IdP instance.

Figure 5 shows a single IdP instance. The IdP instance may be con�gured

to accept a large range of di�erent credentials. Initially, the only require-

ment is to support �username/password� and SAML2.0 credentials, but it is

important that checking credentials is done in way such that further types

of credentials can be added later. The same requirement for being pluggable

applies to the protocols that the IdP supports. The only initial requirement

is to support the SAML2.0 protocol, however this must be done in a way

that does not impede future support for other protocols such as OpenId or

WSFederation. As Figure 2 shows, the IdP may also be con�gured to issue a

set of di�erent claims. All the di�erent con�guration options are saved in the

personal data store. Most identity protocols use certi�cates for encryption

and signing of messages. Therefore the con�guration must contain informa-

tion on which certi�cates are to be used for this purpose. The certi�cates

themselves must be stored in a personal certi�cate store on the Windows

server. In windows, a certi�cate store is tied to a system account, so in order

to achieve having a personal certi�cate store for each IdP instance, every

instance must run under a separate user account.

14

2.6. Hosting

Figure 6. IdP instance hosting.

Figure 6 shows how an IdP instance should be deployed in IIS (Inter-

net Information Services). The IdP instance runs in its own IIS website.

Running in its own website means that it can have its own unique domain

name, e.g. somecustomeridp.saasidp.com. The alternative would be to have

each IdP instance run in an IIS virtual directory, and accessing it through

www.saasidp.com/somecustomeridp. However, in order to be able to con-

�gure di�erent SSL certi�cates for each IdP instance it is important that

the IdP instance has its own unique domain name. An SSL certi�cate is

always tied directly to a domain name. So if the instances were running in

a virtual directory, all instances would be using the same SSL certi�cate,

namely that pertaining to www.saasidp.com. To make SOAP requests over

SSL to an IdP instance running in a virtual directory would require trusting

the SSL certi�cate belonging to www.saasidp.com. However, by doing so,

a trust relationship would be implicitly made to all IdP instances on the

server. To avoid this, each IdP instance must run in its own IIS website

and have a unique domain name and therefore also a unique SSL certi�cate.

This would imply explicitly trusting every SSL certi�cate for each individual

IdP instance. Another bene�t of separate IIS websites is the ability to tie a

website to an application pool. An application pool lets us de�ne the system

account under which the website runs. If each IdP instance runs under a

di�erent system account, we can achieve having personal certi�cate stores

15

for each IdP instance. By having personal certi�cate stores the operating

system ensures that certi�cates in the personal store can only be accessed by

the user to which the store belongs. Furthermore, personal certi�cate stores

provide a way of con�guring di�erent trusted certi�cates, something that

is important when importing certi�cates from federation partners. Having

personal certi�cate stores requires creating a new system account for each

IdP instance. This account should be created as part of the installation of

each IdP instance. The password for the speci�c system account should be

randomly generated and forgotten. When con�guring the IIS application

pool, the password should be entered and the remember password feature

should be used. By doing this, no one will ever be able to use that account

for anything other than running the IdP instance, and the account will be

hard to compromise. By using the deployment structure shown in Figure 3,

a clear separation of the IdP instances is achieved when it comes to certi�-

cates and certi�cate trust. This is deemed very important since most identity

protocols rely on mutual certi�cate trust.

2.7. IdP instance administration

Figure 7. IdP instance administration.

Figure 7 shows how an administrator can administrate his IdP instance

through the administration website. The administration website acts as a

service provider to the system IdP instance, in which all administrators of

16

all customer IdP instances have an account. The system IdP issues a set of

claims about the speci�c administrator, the most important claim being an

OrgId. Based on the OrgId, the administration website knows which data to

get from the data store, and lets the administrator edit them. When changes

are made, these are saved back to the shared data store. The customer's

running IdP instance uses the data from the personal data store to fetch it's

con�guration.

2.8. Claim de�nition

An administrator must be able to de�ne a set of claims for his IdP. The

de�nition of a claim contains the following properties:

Property Description

ClaimType The type of the claim, for example �Email�. There

exists a set of prede�ned claim types, and claim types are

typically on URI form. For example:

dk:gov:saml:attribute:CvrNumberIdenti�er

ClaimValue This property contains a speci�c value for the

claim. It is used when users are not allowed to override the

value, and when only one speci�c value for the claim makes

sense.

DefaultValue Some claims may have a default value. This

property lets the administrator specify a default value

for the claim.

UserEditable This property speci�es whether or not the

user will be able to edit the value of this claim.

ValidationRule The administrator must be able to add some

kind of validation rule for the value of a claim. This

is especially useful when claim values are typed in by

users. The IdP should specify a set of prede�ned rules,

but it would probably also be useful if the administrator

was able to type in a regular expression do meet speci�c

validation needs.

17

Figure 8. User and attribute management.

2.9. User and attribute administration

Figure 8 shows an overview of user and attribute management. The �gure

mainly focuses on the username/password case, where users are created in

the data store. An organization may have several hundreds or thousands of

users, so many that it would be infeasible for a single administrator to create

them all. This fact calls for some import functionality. If we assume that a

company has de�ned the claims �FirstName�, �LastName� and �Email�. The

administrator must be able to import a list of email addresses, and the IdP

should automatically send an email to each address, asking the recipient to

go to a self registration page where he or she can enter a desired username,

a password, and the value for the claims de�ned for the IdP instance, in this

case �FirstName� and �LastName�. The �Email� claim will be �lled out on

beforehand because it is already known. When the user has �lled out the

claim values, each user needs to be approved by the administrator. It should

of course also be possible for the administrator to create users manually, but

this is considered a special case. It must be possible for a user to change the

value of his/her claims, which leads to the need for an update page, shown

in the �gure as the �user attribute update page�. To access the page, the

user presents his credentials, and is presented with a list of his claims. It

must be possible for the administrator to de�ne which claims can be edited

18

by the users and which cannot. This property must be de�ned when the

claim is de�ned. As the �gure shows, both the self registration page and the

attribute update page must be customizable with regards to look and feel

such that it is possible for the customer to make it look like other of their

corporate websites.

2.10. Groups

Group claims are no di�erent from any other type of claims. However the

IdP must make it easy to add and remove users from groups. Consider a

group claim with value �Managers�. Behind the scenes, this claim is just

another claim in the user's security token, however the administration pages

for an IdP instance must provide the ability to work with groups in a familiar

manner. This involves listing all groups, listing all users in a group and an

easy way to add and remove users from groups. Since group claims are merely

expressed as claims, and claims have no hierarchical structure, groups are not

hierarchical either. This is important to note, since in some systems groups

have a hierarchical structure where a group can be a member of another

group. This is not the case in this system.

2.11. Claims mapping

When a connection to a service provider is created, the service provider may

specify that it requires some speci�cally named claim. Figure 2 showed two

service providers that both required a �SalesPerson� claim. Let us assume

that the �SalesPerson� claim was a group claim with the value �SalesPerson�.

In some speci�c customer organization they may have a group claim called

�SalesManager�, which is conceptually identical to the �SalesPerson� claim.

The IdP should allow a simple mapping of claims such that when a user that

has the �SalesManager� claim is connecting to the service provider which

requires the �SalesPerson� claim, the �SalesManager� claim is automatically

mapped to the �SalesPerson� claim. Figure 9 shows the order in which this

claims mapping is performed.

19

Figure 9. Claims mapping pipeline.

2.12. Customer registration

The IdP must contain a customer registration page which is the entry point

for the work�ow shown in �gure 7. When a customer wants to buy the ser-

vices provided by the IdP, the customer goes to the registration page and

enters his data, such as a contact name, email, address etc. This data is

saved, and a sales representative is alerted. The sales representative then

contacts the user to con�rm his identity and his intent to buy. A contract is

then sent to the customer, and when the contact is returned the order is con-

�rmed and the customer's IdP instance is created automatically. Thus, the

IdP must support automatic creation of new IdP instances. This automatic

process includes:

� Creating the administrator in system IdP instance.

� Con�guring website and application pool in IIS.

� Creating SSL certi�cate and con�guring SSL in IIS.

� Creating certi�cates for encryption and signing.

� Sending log in details to administrator.

2.13. Conclusion

The support for multi-tenancy is an important commercial concern for this

system. However, as we have seen in this chapter, the multi-tenancy aspect

can be solved by the platform alone. Tenant isolation is achieved through a

per-tenant system account running each tenants instance. Having a per-

tenant system account allows database isolation through either separate

20

Figure 10. Claims mapping pipeline.

databases or separate database schemas, to which only that system account

has access. The same goes for the certi�cate store, which, as mentioned, is

also isolated on a per user basis. Therefore, the software design presented in

this thesis will be totally multi-tenancy agnostic, without compromising the

commercial demand for multi-tenancy.

Chapter

3
Domain-driven design

This chapter serves as an introduction to domain-driven design. The material

discussed herein is largely based on the book �Domain-driven design: tackling

complexity in the heart of software� by Evans [2004]. The chapter is however

not just a summary of the book, but will also contain my own perspectives

and the explanatory examples provided here will be based on the problem

at hand whenever possible.

Before we dive into the details of domain-driven design, let us start with an

excerpt from an interview with Eric Evans, the author of the book �Domain-

Driven Design� (Evans [2004]). The interview was brought in the Software

Development Times (Handy [2009]) on March 12, 2009.

What are the primary aspects of domain-driven design?

I could boil it down into two or three basic things. The �rst is the

ubiquitous language. On most projects, you'd have di�erent people

talking in di�erent languages. Your technical people will discuss

the system with a certain language. They will describe the actual

functioning of the system in the same way. They will have words

for the functional entities that are di�erent from the words used

by the business people. Some will know the language the business

people use, so they act as interpreters for the technical people who

don't know that language. You have a process broken into parts.

The business people are talking to technical people in requirements

gathering, and then it's written up and handed o� in this other sort

of language for implementation. That means you can never have

a conversation about how the system really works. The software

on the inside is actually nothing like what the business people are

imagining it to be.

This leads to usability problems. Translation is never a perfect

thing. It also hurts estimates. The way estimates work is that

the technical person says, "I have feature A and feature B, so it

seems to me that feature C is a natural extension of A and B." The

business person says, "No, no, no, that's a totally di�erent thing

and will take an enormous amount of time." When in fact, for the

21

22

technical people, it's not totally di�erent from an implementation

point of view.

There's no communication there. There's no way for a non-technical

person to anticipate what might be easy or what might be hard.

Also, business people never propose ideas that might have been easy

because it's not evident to them that they would be easy.

Does that mean that something as simple as naming your

libraries and classes after the business tables they repre-

sent? At the most basic level, it's naming things the way they

would expect. There are more subtle aspects. With the applica-

tion model itself, it's a system of names and relationships among

things. We share this, and when we talk about it, we use that con-

sistent language. When we build the system, we stay true to this.

If the system isn't built that way, we're just talking about some �c-

tion. I don't mean this thing where people say we take the business

language and the conception, and just make software that re�ects

it.

What are the other two important aspects of domain-

driven design? The second element is that you have to bring

about a creative collaboration between the domain experts and the

technical experts. It's very closely related and so much easier said

than done. You'd have to start with an intention to do it. Some

people are good at it and some are not. One of the keys to this is

in recruitment. You have to hire the kind of people who are good

at this, who are good at getting in a fruitful conversation with a

domain expert.

The third aspect is what I call an awareness of context. Here is one

of the areas where I kind of had to invent a system because no one

had really systematized this. Within any given project there are

multiple models in play. I'm not talking about the kind of models

I've already spoken of. In this subsystem we talk about it this way,

and in [that] subsystem we talk about it that way. This we cannot

eliminate. People have tried, and the results are much worse. It's

one of those cases where the cure is worse than the disease.

Instead, we try to understand them and map them out. What are

the boundaries that de�ne where each one applies? If you say pot-

ay-to and I say pot-ah-to, that's �ne, as long as we know where

pot-ay-to is used and where pot-ah-to is used. Projects that succeed

have usually accomplished this.

23

Having a language to describe this and a terminology and a system

serves to make it more reproducible.

3.1. The philosophy of domain-driven design

Most software projects, if not all, address a speci�c problem. Solving this

problem well is important to making the software, and therefore the business,

successful and pro�table. The main philosophy of domain-driven design is

that the primary focus of any software project should be on the domain and

the domain logic, ie. the business logic. This may sound like common sense,

put in practice, the book argues, many software projects are too focused

on technology when designing their software. Therefore, the design models

produced are cluttered with �unimportant� aspects that draw attention away

from, or completely hide, the core domain logic.

Domain-driven design is not a development method per se, nor is it tied

to any particular methodology. It is however oriented toward agile develop-

ment as we shall see further on, and it also draws on well established software

design patterns. One of the primary concepts of domain-driven design is the

so-called domain model. The domain model represents a large amount of

knowledge contributed by everyone involved in the project and it re�ects

deep insight into the domain at hand. The domain model is not a particular

diagram, or document, or drawing on a whiteboard, and it is de�nitely not

just a data schema. This does not mean that the such diagrams, documents,

or drawings could not exist, and they probably should, but they are not the

domain model as such. The domain model is the idea that the combination

of these diagrams and documents intend to convey. The domain model is an

abstraction of all the knowledge about the domain, carefully organized in a

way that it conveys this knowledge in the most expressive way possible, or

as the book puts it, the model is distilled knowledge. Therefore, the model

is also the backbone of the language spoken by all team members: devel-

opers, domain experts, software users, and testers. Developers and domain

experts can have a di�erent view of the problem domain. The developer's

view is often not as complete as that of the domain expert and thus the

model produced by the developer is not as rich and communicative as that

of the domain expert. It is therefore of utmost importance that developers

and domain experts collaborate intensely on the creation and maintenance

of the model. The book refers to this discipline as knowledge crunching.

24

Knowledge crunching is achieved through brainstorming and experimenting,

continuous talking, diagramming and sketching, involving experiences from

current systems or legacy systems and drawing on knowledge from domain

experts, current users, etc. This is important because deep and expres-

sive models seldom lie on the surface. Knowledge crunching is therefore an

extensive exploration of the domain and a continuous learning experience.

Distilling as much knowledge as possible in the model is important because

of the natural leaking of knowledge from most software projects. Skilled and

knowledgeable programmers get promoted, and teams are often rearranged,

and when such things happen knowledge is essentially lost. But when a

deep and expressive model exists, most of this knowledge is to a large extent

preserved on the project. Using this method of modelling also has various

bene�ts over methods such as the waterfall method. In the waterfall method,

knowledge is usually passed on from domain experts to analysts, and from

analysts to programmers. But the waterfall method has various shortcom-

ings, as argued in [Evans 2004]. First of all, the method lacks feedback, and

knowledge is potentially lost through the chain of information.

3.2. Ubiquitous language

A model should be based on a ubiquitous (universally present) language.

Usually, domain experts use the business jargon and technical team mem-

bers use another, perhaps more technical jargon. But the overhead cost of

translation, not to mention the risk of misunderstanding makes the use of

di�erent jargons dangerous. Thus, the principles of domain-driven design

state that a conscious e�ort should be made to encourage a common lan-

guage and that the model should be based on the ubiquitous language. This

model based language should not only describe artifacts but also tasks and

functionality, and as such it goes far beyond �nding the nouns, a widespread

practice when modeling. The ubiquitous language must be used in both

oral and written communication within the team, and the model and lan-

guage are very tightly coupled. This e�ectively means that any change to

the language is also a change to the model and viceversa. Having a common

language resolves the confusion that often occurs when domain experts and

developers use di�erent terms to describe the same thing. In [Evans 2004],

Evans states that he has met many developers who initially do not like the

idea of a common language because they think that domain experts will �nd

their terms too abstract or will not understand objects, but he argues:

25

If sophisticated domain experts don't understand the model, there

is probably something wrong with the model.

I really agree on this point. Especially because the focus of the model should

be on the business domain and not on technical details. So if a domain expert

does not recognize his own business in what is supposed to be a model of

that same business, then the model is by de�nition not right.

3.3. Relationship between model and code

If the ubiquitous language is one representation of the domain model, then

the code is de�nitely another representation of that same model. It is ar-

guable that the code is the most correct representation of the model, but

one thing is for sure; the code is always the most detailed representation of

the model. The vital details of the model lie in the code. Diagrams and

documents can be used to clarify design intent or decisions, but they should

represent skeletons of ideas and not be overly detailed. Being detailed is

something that the code does particularly well. Coupling the model and

the implementation from an early start through prototyping is very impor-

tant. Doing this will uncover any infeasible facets of the model early on and

it is also an important part of getting the developers involved in the design

process. By taking part in the modelling process with domain experts, devel-

opers will improve their modelling skills and domain speci�c knowledge, but

most importantly the will feel responsible for the model. And that is very

important, because developers must realize that by changing the code they

also change the model. If they do not realize this, any future refactoring of

the code will weaken the model instead of strengthening it. The code should

be written to re�ect the domain model in a very literal way and it should use

the same terminology as in the ubiquitous language. It is obvious that every

application has a lot of plumbing concerned with graphical user interfaces,

database and network access and other things that are not related in any

way to the domain. Thus, in order to achieve the tight coupling between

model and code, and to avoid cluttering the code, a layered architecture as

that shown in Figure 11 should be used.

Figure 11 shows the layers that make up the layered architecture. Domain-

driven design focuses exclusively on the domain layer, and this is the layer

which should contain all domain logic. It is important to notice that the

components of each layer only interact with other components in the same

26

Figure 11. A layered architecture.

layer or in layers below them. The user interface (UI) layer contains code for

interaction with the user, the application layer contains application speci�c

code, such as managing long running transactions or work�ows, and �nally

the infrastructure layer contains code related to data access, network access,

logging, etc. When domain related code is scattered throughout the UI,

infrastructure layer, etc, it becomes very hard to see the domain logic and

reason about it. To change a business rule may require code changes in many

di�erent parts of the code and this can be very error prone. So the value of

using a layered architecture is that each layer can be specialized to manage

di�erent aspects of the computer program.

Since domain-driven design deals heavily with assigning responsibilities to

the right places in code, it renders itself well to object-oriented programming

languages.

3.4. Building blocks of the model

Domain-driven design speci�es a set of conceptual objects that should be

used in code to create the domain model. Evans refers to the act of design-

ing the code components that make up the model as model-driven design.

27

Figure 12 shows an overview of these concepts, which will be discussed in

detail next.

Figure 12. The building blocks of domain-driven design.

3.4.1 Entities

Entities are objects that are de�ned by their identity rather than by the

values of their properties. The �lifespan� of entity objects is usually long, and

the values of its properties can change often over time whereas the identity

does not change. An example of an entity object could be a User object.

Consider a User object with properties UserId, UserName, CreatedDate, and

UserAttributes as shown below.

1 public class User{
2

3 private Guid _userId;
4 private string _lastName;
5 private DateTime _createdDate;
6 private IEnumerable<Attribute> _userAttributes;
7

8 public User(Guid userId,

28

9 string lastName,
10 DateTime createdDate){
11 this._userId = userId;
12 this._lastName = lastName;
13 this._createdDate = createdDate;
14 }
15

16 public Guid UserId{
17 get{return userId;}
18 }
19

20 public string LastName{
21 get{return _lastName;}
22 set{_lastName = value;}
23 }
24

25 public DateTime CreatedDate{
26 get{return _createdDate;}
27 }
28

29 public IEnumerable<Attribute> UserAttributes{
30 get{return _userAttributes;}
31 set{_userAttributes = value;}
32 }
33

34 public overrides bool Equals(User other){
35 return this.UserId == other.UserId;
36 }
37 }

Even though two User objects have the same LastName, they are only

identical if the UserId is the same. Two objects could even represent the

same user regardless that LastName are not identical as long as the UserId is

the same, for example, if the user changed his or her last name. Thus, when

implementing entity objects, it is important to implement equality functions

in such a way that the equality of two objects is based on comparing identity

rather than comparing the individual properties of the object, since these

can, and most likely will, change over time. The Equals method above is an

example of such an implementation. The identity �eld of an entity object is

often automatically generated such as it would be the case in the example

of the User object. The identity �eld (UserId) is not always important to

the user of the system, but it could be, for example if the id was a social

security number, or package tracking number.

29

3.4.2 Value objects

Value objects, contrarily to entity objects, are objects that do not have a

unique id. Value objects are often used to describe entities, and we care

about them only for what they are, not who they are. A good example of a

value object could be a Money object as the one below. After all, ten dollars

are ten dollars no matter what. We usually do not care about the identity of

the ten dollars (unless of course we are looking for stolen money) but only

the value they represent.

1 public class Money{
2

3 private int amount;
4 private Currency currency;
5

6 public Money(int amount, Currency currency){
7 this.amount = amount;
8 this.currency = currency;
9 }
10

11 public int Amount{
12 get{return amount;}
13 }
14

15 public Currency Currency{
16 get{return currency;}
17 }
18

19 public Money Add(Money other){
20 // Make sure currency is the same
21 // Add amounts
22 // return new money object
23 ...
24 }
25 }

Note that the value objects, such as the Money class, are by de�nition

immutable, meaning that after creation the properties of the object cannot

be changed. When adding Money objects, new objects are created instead of

changing any of the objects being added. This maintains the immutability

of the objects.

3.4.3 Services

Services are classes that implement domain logic that does not naturally be-

long to an entity or a value object. A service's interface should be de�ned in

30

terms of other elements of the domain model and its operation names should

be part of the ubiquitous language. Classes that implement services should

be stateless. In practice, stateless classes are often comprised of static meth-

ods that do not require an instance of the class in order to be invoked. An

example of a service in our problem domain could be a CertificateService

with operations such as CreateCertificate and RevokeCertificate. Since

the concept of a service is used widely in computer science in general I feel

it is important to clarify that a service in terms of domain-driven design

should not be confused with a service such as in web-service. This does

not mean that a system built using domain-driven design should not expose

web-services, however, when using domain-driven design and a layered ar-

chitecture, a web-service would be part of the application layer and not part

of the domain layer. In terms of the CertificateService mentioned above,

a web-service could be created in the application and the only responsibility

of that web-service would be to digest the XML input and delegate the call

to the CertificateService in the domain layer.

3.4.4 Aggregates

Aggregates are clusters of associated objects which are worked on as one

unit when it comes to data changes.

Figure 13. An aggregate.

31

Figure 13 shows an aggregate made up of a User object with various

Attribute objects. Attribute objects are only interesting to modify in the

context of a User and do not make sense outside the context of a User. In

this example, the User object is said to be the aggregate root, meaning that

it is the primary entry point when accessing the objects that make up the

aggregate. Aggregates can only have one aggregate root, but the aggregate

itself can be much more complex than the one shown here.

3.4.5 Repositories

The purpose of a repository is to fetch and save entities and value objects

from a data store. The repository should hide all database code and give

the illusion that all objects are in RAM. The following is the skeleton of a

repository:

1 public class UserRepository : IUserRepository {
2

3 public User this[Guid userId] {get{ ... }}
4

5 public IEnumerable<User> FindByLastName(string lastName) ...
6

7 public IEnumerable<User> FindRecentlyCreated() ...
8

9 public IEnumerable<User> FindAllUsers() ...
10

11 public void AddUser(User newUser) ...
12

13 ...
14 }

The above repository lets us fetch a User object by a unique id, �nding all

users with some last name, and it also allows us to add new users. All these

methods actually implement some kind of domain logic with regards to users.

The FindRecentlyCreated method could be using a SQL statement such as

select firstname, lastname from users where createdDate > :createdDateThreshold

(where :createdDateThreshold would be a bound parameter). But this SQL

statement expresses domain logic so if we did not have a central place to put

this function, that SQL statement could potentially be duplicated many

places in the code, making it harder to change the logic of �nding recently

created users, if for some reason the de�nition of �recently created� would

change. Another bene�t of using repositories is that they can be made inter-

changeable. By implementing the IUserRepository and referencing the con-

crete instance only by means of its interface, separate speci�c implementa-

32

tions of the repository can be seamlessly interchanged. This is especially use-

ful for testing. A live system typically fetches its data from large databases,

and replicating these databases to a development server can be both time

consuming and sometimes even impossible. By specifying the concrete class

that implements the repository in some external con�guration �le can make

it easy to switch between the live environment and a developer or testing

environment1. In our current example we could imagine an alternative im-

plementation of the IUserRepository, called InMemoryUserRepository, that

could be used for fetching dummy instances of the User class, thus facilitat-

ing a means of testing various aspects of the code without having to access

the production database. However, when using this approach, it is important

that developers understand the implementation of the repository being used.

For instance, if someone was to write a method for counting all users in the

system the function FindAllUsers could be used and the Count method of

the IEnumerable<User> could be used to return the number of users. This

would probably perform quite well with a dummy repository implementa-

tion returning only a limited number of users. However, when using a �real�

repository implementation that accesses the production database the e�ect

of performing the count this way would be that all users in the database

would be loaded into memory just for the sake of counting them. That

would most likely perform badly, thus stressing why it is important that

developers understand the implementation of repository functions.

In Chapter 5 I will discuss how OR-mappers can be leveraged to create

repositories quite easily even for complex database schemas.

3.4.6 Speci�cations

Specifications provide a means of encapsulating and more importantly nam-

ing those small Boolean expressions that tend to appear in most programs

but whose purpose and or meaning with regards to business logic can be

hard to �gure out. A speci�cation is a class with only one method called

|IsSatis�edBy|. The method has a Boolean return type and the argument

of the method depends on the type of object it is a speci�cation for. If we

continue our User class example from above, we could imagine the need to

determine if a given instance of the User class was created recently. The term

recently is chosen on purpose because it is unspeci�c and de�nitely contains

1 This concept is actually a well established design pattern, often referred to as strategy
or policy. See [Gamma et al. 1995]

33

business logic with regards to our current example. Let us assume that the

de�nition for a recently created is that it is was created within the last 10

days.

1 User u = ...
2 if(u.CreatedDate > DateTime.Now.AddDays(−10)){
3 ...
4 }

The above code snippet shows one way of determining if a User was created

recently. However it su�ers from two serious drawbacks. First of all it is not

very expressive, meaning that without code comments it does not convey to

the reader which business rule it is checking. Furthermore, if the same check

was needed somewhere else, the code would have to be duplicated, leading

to extra maintenance if the criterion ever changed.

1 //Specification class that determines if a user has
2 //been created recently
3

4 public class RecentlyCreatedSpecification{
5 public static bool IsSatisfiedBy(User u){
6 return u.CreatedDate > DateTime.Now.AddDays(−10);
7 }
8 }

The above code snippet is a class that implements the recently created

business logic. Now if we were to use this speci�cation in code it could look

something like the following:

1 User u = ...
2 if(RecentlyCreatedSpecification.IsSatisfiedBy(u)){
3 ...
4 }

The above code example shows how the resulting code is much more ex-

pressive in terms of what business rule is checked, and furthermore we have

created a single placeholder for the business logic, making it easy to maintain.

It could be argued that what is achieved by the speci�cation in this example

could just as well have been placed in a function on the User class. This

observation is probably right for this very simple example. However, a class

with a lot of predicate functions like IsRecentlyCreated easily becomes very

large. Furthermore, one could easily imagine cases where the object itself

does not contain all the necessary information to check the condition.

34

3.4.7 Factories

The factory design pattern is widely used in object-oriented design. The

analogy of the factory object is that sometimes the construction of an object

is too complex for the object itself to perform, and it needs to be created

in a factory. One important bene�t of using factories as opposed to con-

structors is that the methods of the factories can have abstract return types

or return some implementation of an interface. This way, the user of the

factory method does not need to reference the concrete type of the object

that is returned, which makes changing or substituting these objects com-

pletely transparent to the caller. Factories should of course not be used for

everything. Simple objects that do not implement a common interface or

use polymorphism should probably not use factories for their construction.

I have seen examples of open source software packages (such as OpenSAML

[OpenSAML 2009]) where even the simplest of objects had to be created

through a factory. The overuse of factories can actually obscure simple ob-

jects and make the user think that the object is more complex than it actually

is. The most important property of factory methods is that they should be

atomic. This means that everything needed to construct the object should

be passed to the factory such that the construction can take place in one

single interaction with the factory. Furthermore, it is important that the

factory ensures that all invariants for the object being created are met. This

does not mean that the logic that checks these invariants should be moved

outside the object being created, but it does mean that the factory should

make sure to invoke this logic before returning the instance of the object

in question. Factories used for construction of entity objects should behave

di�erently when creating new instances of an object as opposed to creating a

reconstituted instance of the object. Most importantly factories should not

automatically assign new ids to entity objects when they are reconstituted,

because if they did, the continuity of that particular object would be broken.

3.4.8 Modules

The concept of modules is used to group related concepts from the model,

e.g. all classes containing User related logic, in conceptual packages. A

module could be either a dll2 or merely a namespace within a dll. As with

everything else in the domain model, module names should make sense in

2 Or .jar, .lib or whatever equivalent is o�ered by the technology used.

35

terms of the ubiquitous language. Determining whether to use individual

dll's or just namespaces within that dll should probably be based on the

number of classes involved although no details are o�ered in [Evans 2004].

3.5. Refactoring

When we set out to write software we never know everything about the do-

main. It is therefore important to make the design open to refactoring and

change such that new knowledge can easily be incorporated into the design

when it is discovered. A system that lacks a good design does not encourage

developers to leverage existing code when refactoring, thus leading to dupli-

cate code. Likewise, monolithic design elements also impede code reuse, just

as design elements with confusing or misleading names may lead them to

used inconsistently by di�erent developers. In fact, the lack of a good design

may completely stop refactoring and iterative re�nement since developers

will dread to even look at the existing code and they will be afraid to make

changes, since a change to the existing mess may break some unforeseen

dependency or just aggravate the mess, Evans argues. In domain-driven de-

sign a design that renders itself well to refactoring and iterative re�nement

is called a supple design. There are no exact formulas to achieving a supple

design, but Evans o�ers a set of patterns that could lead to it. These patterns

are shown in Figure 14, and will be discussed in detail in this section.

3.5.1 Intention-revealing interfaces

The word interface in intention-revealing interfaces should not be confused

with the keyword interface as known from many programming language. In

this context, the word interface refers to the naming of all public elements of a

software artifact. Therefore, classes, operations, and argument names should

be named in a way that reveals the e�ect and purpose. The names should

however not contain any information on how the e�ect is achieved. An ex-

ample of an intention revealing method could be the AddUser(User newUser)

function from the UserRepository discussed in Section 3.4.5 on page 31. The

method name reveals that the method adds a user, and that the argument

should be a new user (as opposed to an already existing one). It should

be obvious that the naming of this method and parameter is more inten-

tion revealing than for example Create(User u). By being explicit about

36

Figure 14. Patterns that contribute to a supple design.

what the method does, and what its parameters are, the risk of some de-

veloper unintentionally using the method for something else than its intent

is minimized. In [Evans 2004], Evans gives the following example of why

intention-revealing interfaces are important:

If a developer must consider the implementation of a component in

order to use it, the value of encapsulation is lost. If someone other

than the original developer must infer the purpose of an object

or operation based on its implementation, that new developer may

infer a purpose that the operation or class ful�lls only by chance.

If that was not the intent, the code may work for the moment, but

the conceptual basis of the design will have been corrupted, and the

two developers will be working at cross-purpose.

3.5.2 Side-e�ect-free functions

A side e�ect normally means some unintended consequence, but in the con-

text of computer science in general and domain-driven design speci�cally,

a side e�ect means a change in the state of a system. Evans argues that

generally there are two di�erent types of functions in a system. Functions

that query system data and functions that alter system state. Evidently,

37

changes to system state neither can nor should be avoided per se. However,

according to the side-effect-free functions pattern, these two types of be-

haviors should not be mixed. This means that functions that return data

should not alter the system state in any observable way. In the same way,

functions that alter system state should not return data.

3.5.3 Assertions

As we have just discussed in the preceding section, side e�ects cannot be

avoided. The assertions pattern in conjunction with intention revealing

interfaces makes it even more explicit what the side e�ect of a function is.

This is achieved through a set of pre- and post-conditions that should always

be satis�ed before and after invoking a function. It does not always make

sense to code the pre and post-conditions as part of the program because of

performance overhead or missing support in the programming language, so

if that is the case, the assertions should be included in automated unit tests

and in the documentation of the program.

3.5.4 Conceptual contours

The conceptual contours pattern strives to achieve a meaningful granularity

of functions, classes and interfaces in the model. Evans argues that no single

granularity will �t everything in our domain model, so instead of using a

naive approach where every function or class is limited to a �xed number of

lines of code or the like, the granularity should be based on what the function

or object conceptually achieves. Thus, according to the conceptual contours

pattern, each object should be a whole concept, nothing more and nothing

less. In the same way, each function should perform something meaningful

in its own right, but it should not span several conceptual operations. As an

example of the latter, Evans states that the add() function should not be split

up into two separate functions. In the same way the add() and subtract()

functions should not be combined into one. There is of course no simple

recipe for achieving conceptual contours, and therefore the decomposition

of design elements into cohesive units is something that must be based on

intuition and which must be expected to undergo many changes over time

until a good granularity has been achieved.

38

3.5.5 Standalone classes

The pattern called standalone classes revolves around reducing coupling

between objects. The goal of this pattern is to achieve low coupling where

ever possible because it makes the model easier to understand. Evans argues

that every dependency that a class has makes the class more complex and the

relationship between the class and its dependencies have to be understood

in order to fully understand the class. Therefore, classes with low coupling

are easier to understand. It is obvious that taking the standalone classes

pattern to the extreme leaves us with a (useless) model where everything is

reduced to a primitive. However, it is important to reduce the number of

interdependencies between classes, especially those that are not essential to

the concept.

3.5.6 Closure of operations

The name closure of operations comes from mathematics. In mathematics,

the addition operation is closed under the set of integers, e.g. 1+2 = 3. The
addition of two integers yields another integer. This property can be used

when designing a good model, since it does not introduce new concepts, and

it is easier to understand. In general, the closure of operations pattern is

mostly used for value types, and not so often for entities. Because of the

life cycle of an entity it is not natural that a function on an entity would

return another instance of that entity. However, value types can often have

functions that o�er closure of operations. An example of a value type that

has a function with closure of operations is the Money class presented in

Section 3.4.2 on page 29. Its function add is closed under instances of the

Money class.

3.6. Model integrity

Building large systems often involves several teams of developers who de-

velop each their part of the system. It is of paramount importance that

these teams have a shared understanding of the model such that the mean-

ing of each concept in the model is the same for all teams. If this is not the

case, classes that represent one concept to one team could potentially repre-

sent a di�erent concept to another team, thus leading to misuse of that class

39

and in the end maybe faulty behavior in the system. Within the scope of

this thesis, the system being developed is developed only by this author, nev-

ertheless, the patterns of domain-driven design that address model integrity

are still interesting to describe, not least because the future maintenance of

the system being designed may have to be undertaken by more than one per-

son or team, but also because some of these patterns are useful for modelling

in general. The patterns used for maintaining model integrity, as outlined

by domain-driven design are shown in Figure 15.

Figure 15. Model integrity patterns.

3.6.1 Bounded context

On large projects with several teams working on the same system it can

become unclear whether or not the teams are working on the same model.

The teams may have an intention to work on the same model and share

code. But sometimes systems are too big for a single uni�ed model to exist,

especially when communication between teams is not as good as it could be.

Having one large uni�ed model requires good communication and processes

to detect con�icting interpretations of the model. In order to overcome this

40

problem, Evans argues that it may sometimes be bene�cial to split the code

and model into several bounded contexts. A bounded context is an explicit

de�nition of a context in which a given model applies. Once a number of

bounded contexts have been de�ned, the boundaries of these contexts can

be explicitly de�ned in terms of usage within the application, code base etc.,

thus being able to achieve a pure model within the bounded context. Using

bounded contexts makes it explicit to developers that they are working on

di�erent models, and hereby eliminates the risk that di�erent teams will

think that they are working on a uni�ed model when in actual fact they are

working on conceptually divergent models.

3.6.2 Continuous integration

Continuous integration is a well-known practice that is aimed at speeding

up delivery times and decreasing integration times in software development.

Domain-driven design takes the concept of continuous integration a step

further, namely by not only focusing on the continuous integration of code,

but also on the continuous integration of model changes. As opposed to

the continuous integration of code, the continuous integration of a model

is not something for which a set of automated processes exist. Therefore,

continuous integration of the model is something that must be achieved by

continually discussing the model and relentlessly exercising the ubiquitous

language in order to strengthen the shared view of the model and to avoid

that concepts evolve di�erently in developers' heads. Continuous integration

of code is of course something that must take place in parallel with continuous

integration of the model. This should happen through automated builds

and automated tests. A good set of automated tests should make it more

comfortable for developers to refactor existing code, because by running the

automated tests, they will know instantly whether or not something is broken

by the change they made.

3.6.3 Context map

When working with a number of bounded contexts, a context map serves

the purpose of creating a global view of the entire system and de�ning the

relationship between the di�erent bounded contexts. The relationship be-

tween bounded contexts often involves some kind of mechanism to translate

data between bounded contexts. The context map can be a diagram or a

41

text document or both, and it is important that everyone involved in the

development of the system know and understand the context map, and that

the names of every bound context described in the context map enter the

ubiquitous language.

3.6.4 Shared kernel

A shared kernel is essentially a part of the model that is used in more

than one bounded context. The obvious bene�t of having a shared kernel is

that code reuse between teams can be maximized. The shared kernel often

represents the core domain of the system and/or a set of generic subdomains,

but it can be any part of the model that is needed by all or some teams.

Making changes to the shared kernel requires consultation with all its users

such that the model integrity of the shared kernel is not broken.

3.6.5 Customer/supplier development teams

The customer/supplier development teams pattern suggests that when

there exist a relationship between two teams where one team delivers code

that the other team is dependent on, then each team should work within

their own bounded context. Doing so makes it easier to de�ne responsi-

bilities and deliverables and the joint development of acceptance tests will

validate whether these have been met.

3.6.6 Conformist

Sometimes one of the bounded contexts in a system is an o�-shelf component

with a large interface. When this is the case, Evans argues that a pattern

called the conformist pattern should be used. The conformist patterns says

that to conform to the model represented by the bounded context repre-

sented by the o�-shelf component. The rationale behind this is that if there

is a real need for an external component, then that component probably rep-

resents valuable knowledge and probably has a well thought through model3.

Therefore, conforming to the model of the component is usually a good idea

3 Evans also argues that if this is not the case the use of that component should be

seriously questioned.

42

because less translation between concepts is necessary, and because the pos-

sibility of being �dragged into� a better design exists. The conformist pattern

is most important when the interface with the component is big.

3.6.7 Anticorruption layer

Interfacing with legacy systems is often a necessity for one reason or another.

The legacy system may have weak model or a model that does not �t the

current project. When this is case, the anticorruption layer pattern may

be used. An anticorruption layer is a technique where legacy systems are

isolated through classes and functions that honor the current model and

hides any conversion and translation logic from the current model to the

model of the legacy system. An anticorruption layer is often made up of a

number services that have responsibilities in terms of the current model and

internally use the facade and adapter patterns as described in [Gamma et

al. 1995]. The facade is an interface that simpli�es access for the client, thus

making the subsystem easier to use, and an adapter is a wrapper that is used

to transform messages from one protocol to another.

3.6.8 Separate ways

Sometimes the bene�t of integrating bounded contexts is small, and therefore

may not be worthwhile. The separate ways patterns can be used when that

is the case, thus allowing developers to �nd simple and specialized solutions

within a small scope.

3.6.9 Open host service

Sometimes a subsystem has to be used by many bounded contexts, and mak-

ing customized translators between all the subsystems and all the bounded

contexts can be time consuming and hard to maintain over time. So instead

of doing so, the open host service pattern can be used. The open host ser-

vice pattern is about de�ning a protocol that gives access to the subsystem,

and that can be used uniformly by all bounded contexts using the subsystem.

43

3.6.10 Published language

Finally, the published language takes the open host service pattern to the

next level by de�ning a formal common language for the service. An example

of a published language in this context could be SQL or XML.

Chapter

4
De�ning the model

In this chapter I will de�ne a model of the software that was speci�ed in

Chapter (2). In domain-driven design the model is comprised of both the

code and all the documents that describe what the system does and which

parts of the system are responsible for doing what. However, domain-driven

design also emphasizes that the model must be understood by (typically)

non-technical domain experts. Therefore, the aim of this chapter is to present

the model from a point of view that is not overly implementation speci�c. I

will use terms such as classes, interfaces and functions, but the implementa-

tion details will be left for the following chapters (5, 6 and 7). Apart from

presenting the model, the aim of the following sections is also to illustrate

the iterative process involved in domain-driven design. Therefore some sec-

tions may include a refactoring sub-section. You may argue that instead of

having a refactoring sub-section I could have just performed the refactoring

right away. This does, however, not illustrate the iterative process that is

one of the cornerstones of domain-driven designas well, and therefore I have

chosen the sub-section approach.

In the following I will refer to the software as a whole as �the IdP�, and the

person who administrates the IdP �the administrator� (or �an administrator�

since there may be several). It is important to notice that in this context

the administrator is a customer of the software, administrating a single IdP

instance.

4.1. Figure notation

Any model is tightly coupled to the data that it represents, and for most

applications and this one in particular, that data is stored in a database.

Therefore, it seems natural to present the data schema together with the

model. Since I have great focus on the ubiquitous language I will name my

database tables and the classes that encapsulate each row in a given table

(ie. the entity objects) the same.

Figure 16 shows an imaginary model concept called SomeConcept which

44

45

Figure 16. Figure explanation

has attributes called SomeConceptAttribute. The schema view shows shows

all the data properties of each of these two concepts. It also shows the pri-

mary key, which is denoted by a small key symbol next to the property.

Schema view also shows relationships between the classes. For example,

the arrow in the �gure denotes that a SomeConceptAttribute is coupled to a

SomeConcept. In fact, the SomeConceptId is a reference to the OID of some in-

stance of SomeConcept. I use a strict naming convention for these references,

such that is should always be easy to infer which property references the OID

of the other class. I use OID (short for object id) as a primary key for all en-

tity objects. Apart from being naming convention that is easy to remember

and easy to recognize, using this naming convention is useful in the imple-

46

mentation as we shall see in Chapter 5. Please note that I may chose not to

show all relationships of a given table in schema view. For example, when in-

troducing a new concept I will not show relationships to things that have not

yet been introduced. Likewise, when introducing new concepts that expand

something that has already been shown, I will not show relationships that

have already been explained. I will generally explain the type and meaning of

all the properties unless they are self-explanatory are identical to previously

explained properties. The class view on the other hand shows additional

functions, if any, of the classes. I will explain all methods and their parame-

ters where I deem it necessary for understanding its purpose. Class view also

shows what type of class each class is in terms of domain-driven design. This

is denoted in italics above each class. In class view, you may assume that

all the properties that were there in schema view are still there, but they

are not shown in order to keep the �gure simpler. There may sometimes be

properties on the classes in class view, but if there is, these properties will

denote some computed property that is not a part of the data schema. Also

note that some classes are not part of the data schema at all, and therefore

they may have non-computed properties. You may also assume that the

relationships denoted by arrows in schema view still exist in class view. As a

matter of fact, for Figure 16 you may assume that each SomeConcept class has

a (possibly empty) list of SomeConceptAttribute instances (technically these

are references to instances), and that each SomeConceptAttribute instance

has an instance (reference to an instance) of a SomeConcept class. Finally,

there may be blue arrows between the classes in class view denoting some

kind of relationship between the classes. This nature of the relationship is

explained with some text above or under the arrow, as exempli�ed in the

�gure.

Figure 17 shows the convention for interfaces, and abstract classes in class

view. For example, ISomeInterface represents an interface (note the green

color), while, SomeClass is a class that implements that interface, denoted

by the circle and interface name above the class. An abstract class, such as

SomeAbstractClass has dotted line around it, and the class, SomeOtherClass

that inherits SomeAbstractClass has an arrow to class and a small arrow

with the name of the base class next to it.

I have now introduced the �gure notation that is going to be used through-

out this chapter, and it is time to take a look at the core concepts of the

model, which are:

47

Figure 17. Figure explanation

� Plug-ins

� Users

� Con�guration

� Certi�cates

� Credential providers

� Protocols

� Connections

� Claims

� The runtime

� Events

Please note that I have chosen to introduce reporting of events as one of

the last things, since as a concept it is not as central as the others. Events

in this context is logging of errors and other activities in the system. I will

refer to logging and tracing before actually introducing the part of the model

that describes them, which you can �nd in Section 4.12.

48

4.2. An extensible system

One of the most important properties of the system is that it must be exten-

sible in two areas, namely in the way a user presents his credentials and in

the protocols supported by the system. This will be dealt with through the

concept of plug-ins. Current development visions for the IdP do not include

any third-party plug-ins, however, letting the system be extensible in this

way would de�nitely allow for this in the future. Another important bene�t

of using a plug-in structure is that extensions to the system can easily be

deployed to existing installations, without the need of recompilation.

4.2.1 Plug-ins

A plug-in is an extension to the IdP. The core IdP framework itself does not

implement any plug-ins, it only de�nes how such a plug-in should behave. A

plug-in is created by coding a class that implements the IPlugin interface,

and thus the IdP will not have to care about the how the plug-in is imple-

mented, but only that it satis�es the contract de�ned by the interface. This

technique is commonly used, and endorsed by [Gamma et al. 1995] with the

motto "Program to an interface, not an implementation". Figure 18 shows

two important interfaces used for creating plug-ins.

Figure 18. Class view: IPlugin and IEndpoint interfaces

Both the IPlugin and IEndpoint interfaces specify that properties called

Name and Description. These properties are just descriptive strings. The

49

ProvidedLoggingSources property of the IPlugin interface returns a list of

logging source names that the given plug-in uses when (or if) it creates log

entries. During installation of a plug-in, the system must therefore create

the logging sources by using the LoggingSourceRepository. However, the

logging source repository de�nition that we saw earlier did not have an Add

function, so that needs to be added. The GetEndpoints function de�ned

by the IPlugin interface must return a list of IEndpoint implementations.

Conceptually, an endpoint de�nes a (web-site absolute) path and some class

that knows how to handle any requests for that path. The Handler property

should return an instance of a class that can handle web requests. Every

modern web development framework has extensibility points for such classes,

and in the .Net framework it would simply be an implementation of the

IHttpHandler interface.

The plug-in concept of our model is actually a general abstraction that will

be specialized by the more speci�c credential plug-in and protocol plug-in as

we shall see later on.

Each plug-in implementation will be a bounded context in domain-driven

design terms. The bounded context comprised by each plug-in will have a

conformist relationship to the IdP since the plug-in must adhere to the model

de�ned in the IdP.

4.3. Users

One of the core concepts of the IdP is the user. A user represents some person

which is known by the IdP, and that, by de�nition, it knows something about.

Figure 19 shows the properties of a User. Apart from a unique id (the

OID), the user contains a UserName, a DateCreated and a LastLogin prop-

erty. These a quite self-explanatory. Lastly, a User has a Password and a

PasswordSalt property. The Password is a computed hash of the user's plain

text password, and the PasswordSalt is some random value used by the hash-

ing function as entropy. Given the user's plain text password, the hashing

function will only return the same computed hash as the one stored in the

User object if the same salt value is used. So to verify a user's password, all

that needs to be done is to compute the hash of the password entered by the

user, using the original salt value, and comparing the result with the value

50

Figure 19. Schema view: User

stored in the User object. Using this approach disallows anyone with access

to the database to see any of the users' passwords. Note that the User class

shown in Figure 20 has a VerifyPassword function, that does just that.

4.3.1 User creation

The administrator must be able to manually create users. To achieve this,

the classes shown in Figure 20 are needed. The UserFactory class has

a CreateNew method that takes two arguments, namely a userName and

clearTextPassword. When called, the CreateNew method computes the

hashed password and password salt, sets the creation date and other relevant

�elds and returns a User instance. The User instance can then be persisted

by passing it as a parameter to the Add function of the UserRepository class.

Note that the UserRepository also has a ExistsByName function. This func-

tion takes a username and returns true if a user with the given name already

exists, and false other otherwise. The IdP does not allow for more than

user to have the same username, and it is therefore important to use the

ExistsByName function to check that no user with that name already exists.

The ExistsByName function in turn uses a speci�cation (the ExactUserName

speci�cation) to compare the given username with that of existing users.

Now, you may think that this is silly. Comparing usernames is just a matter

string comparison right? The answer is no. The IdP has a rule that says

that usernames are case insensitive, and the ExactUserName speci�cation im-

plements logic that compares usernames case insensitively.

51

Figure 20. Class view: User creation

4.3.2 Displaying existing users

The administrator will need to be able to display a list of all existing users.

To cater to this need, the UserRepository will need to have a FindAll func-

tion. It may also need to have a FindByFirstLetter function to easily fetch

all users whose UserName starts with some speci�c letter. In fact, search

functions will probably be needed in all the repositories. In Chapter 6 I

will discuss how this can be achieved in a generic way. Until then, you may

assume that all repositories have at least a FindAll function.

4.3.3 Inviting users

As you may remember from Chapter 2 an important feature of the system

is that it must be possible to invite users to register at the the IdP. You

can think of this as an easy way for the administrator to create users in

the IdP, because instead of having to type in all the information about each

52

user, the invitation mechanism delegates this work to each user. The act of

inviting a user merely entails sending an email to some email address with

a veri�cation code in it. The veri�cation code is simply an automatically

generated code that the IdP links the email address to which it was sent.

By presenting his email address and the correct veri�cation code, the user

can prove that he was indeed invited. The user then chooses a user name

and types in any additional information (for example values for his claims

as we shall see in section 4.10) and he is then enabled in the system without

further involvement of the administrator.

Figure 21. Schema view: User invitation

Figure 21 shows the schema involved in user invitations. The UserInvitation

class holds the Email and VerficationKey as just explained. Furthermore,

each UserInvitation has a number of UserInvitationStatusHistory refer-

ences, each of which reference a UserInvitationStatus. The UserInvitationStatus

is used to de�ne statuses, such as �email sent�, �code veri�ed� and �user cre-

ated�. The history table merely links a status to an invitation using the

StatusDateTime property to record the date and time of the given status.

When the user is created as an actual User in the system, an InvitationToUser

object is created in order to be able to track which invitations correspond to

which users.

Figure 22 shows the entities from Figure 21 in class view, together with

all the other classes needed for user invitations. The class that orches-

trates most things related to user invitations is the UserInvitationService

53

Figure 22. Class view: User invitation

class. The IniviteUser method takes a single parameter, an email ad-

dress, and performs the following steps; First it calls the CreateNew method

of the UserInvitationFactory, passing the email address as the only pa-

rameter to the method, to create a new instance of the UserInvitation

class. The factory method internally generates the VerificationKey for the

UserInvitation instance, and it also generates an instance of UserInvitationStatusHistory

which it couples to the UserInvitation instance. Next, the UserInvitation

instance is persisted by calling the Addmethod of the UserInvitationRepository.

Finally, a mail message, including the veri�cation key is composed, and the

SendEmail method of the EmailService is called to send the email message.

The InviteUsers method of the UserInvitationService takes a comma sep-

arated list of email addresses and calls the InviteUser method once for each

email address. The CreateUserFromInvitation method takes an email ad-

dress, a veri�cation key, a user name and a password as parameters. It then

�nds the UserInvitation instance corresponding to the email address and

veri�es that the veri�cation key is correct by calling the VerifyKey method

on that instance. The VerifyKey method takes the veri�cation key provided

by the would-be user and compares it to the one it holds internally. If every-

thing is ok, the invitation history is updated by creating the proper objects

and calling the proper repositories. Finally a new User object is created and

persisted, and �nally an InvitationToUser instance is created and persisted.

54

And that concludes the user invitation, and the user is now ready to login

with the IdP.

4.3.4 Self registration

Another way of user creation is through self registration. Self registration

has many similarities with user invitations, but di�ers in that the would-be

user and not the administrator initiates the creation process. Furthermore,

any self registration must be approved by an administrator.

Figure 23. Schema view: Self-registration

Figure 23 shows the schema view of the classes needed for the support

of self registration. You can probably recognize most of the concepts from

user invitations. The main di�erence here is that the SelfRegisteredUser

class contains all the properties needed for creating a User object, such

as Password, PasswordSalt, etc. The SelfRegisteredUser class contains

a property called RequestedUserName. The reason for this is that at the time

of self registration a given user name may be available, but at the time of

actual user creation, the name may have been taken by someone else.

Figure 24 shows the classes for self registration in class view. The classes

are similar to those of user invitation, and therefore I will not explain them

in detail. It is important though, to note that there are many more statuses

involved in self registration than there are for user invitations. �Registered�

55

Figure 24. Class view: Self-registration

is the status for newly registered users. After registration an email is sent

to the provided email address in order to verify the address. When the user

con�rms the email address, the status is changed to �Veri�ed�. When the

address is veri�ed an administrator must take some kind of action. The

administrator can either approve the registration, which results in the status

changing to �User created� and an email being sent to the user, con�rming his

registration. This email will contain the actual user name, which may have

changed from what the user wanted, as described earlier. The administrator

may also choose to deny registration, which results in a status of �Denied�,

and an email being sent to the user. Finally the administrator may choose

to ignore the registration, which results in a status of �Ignored�, but no email

is sent. The UserRegistrationService is the class that provides all these

status changes. Also notice that the UserFactory has been extended to

include a method called CreateFromRegistration which takes an instance

of a SelfRegisteredUser and an optional new user name, and returns an

instance of a User.

4.3.5 Refactoring

The model thus far contains some implicit concepts regarding sending emails

to users. Lets see how the model could bene�t from having these concepts

made more explicit. Instead of having the services, such as UserInvitationService,

UserService and UserRegistrationService compose mail messages inter-

nally and sending them through the EmailService, these di�erent email

messages should be made explicit concepts in the model.

Figure 25 shows the classes involved in sending these email messages.

First of all, the interface IEmailMessage de�nes three properties, Subject,

56

Figure 25. Class view: Emails

Message and Recipient. These are the properties that are needed by the

SendEmailmethod of the EmailService class. So the signature of this method

is changed to take an instance of an IEmailMessage as a parameter. Now, the

BaseEmailMessage implements the IEmailMessage interface, but has all the

properties from the interface as abstract members4. Furthermore, BaseEmailMessage

implements a (non abstract) method called Send. This method calls the

EmailService's SendEmail method, passing itself as the parameter. This

allows us to de�ne explicit email messages such as the ones shown in the

�gure. For example, InvitationEmailMessage is a class that inherits the

BaseEmailMessage, and takes an instance of an UserInvitation in its con-

structor. It implements the abstract properties Subject, Message and Recipient

from the base class (and which originate from IEmailMessage). The Subject

is simply a static string saying something like �You have been invited to

join an identity provider�. The Message property contains the message

body, including the veri�cation key (available through the VerificationKey

property of the UserInvitation instance passed to the constructor) and a

link to the veri�cation page. Finally, the Email property is also read from

UserInvitation instance. You may wonder how the correct address to the

veri�cation page is obtained. This address, and a lot of other parameters

about the the IdP will be made available to all components in a way ex-

plained in Section 4.11.

A last concern is if the EmailService has been made obsolete. Could the

4 Meaning that they must be implemented by any inheriting classes

57

logic implemented by the SendEmail method of the EmailService just as

well have been put in the Send method of BaseEmailMessage? It de�nitely

could have, but I do not think it is good idea. The main purpose of the

EmailService is to know about which SMTP server to use and which cre-

dentials (if any) to present to that SMTP server. Furthermore, if at a later

point I wished to implement a method called CheckServerConnection, it

would de�nitely be more logical to have such a method on an EmailService

class, than on a BaseEmailMessage class.

4.4. Con�guration

Con�guration of the IdP is essential in many ways. First of all, con�guration

of the IdP itself must be possible. Furthermore, each plug-in will rely on

the ability to be con�gured in order to function correctly. This is also the

case for connections, which are described later in this chapter. Therefore a

con�guration framework is called for. The con�guration framework de�nes

three basic types of data; text configuration element which hold string data,

certificate configuration elements which hold references to certi�cates, and

list configuration values which also hold string data, but which are logically

grouped in lists (or tables).

Figure 26 shows the schema view of the con�guration elements. Common

for all the con�guration elements is that they are identi�ed by a NameSpace

and an ElementName. The NameSpace is a string identi�er of the owner of the

con�guration element. The namespace could be something like �idp.core�

for all elements belonging to the IdP itself, or �protocol.saml2� for a some

protocol implementation and �nally �protocol.saml2.connection1� for some

connection. Generally speaking, the namespace is just used to group con-

�guration elements belonging to some part of the system. Therefore, the

namespace used by any given part of the system must be unique. The

TextConfigurationElement has a Value �eld which contains the actual value.

The value is always stored as a string, but the Type �eld is used to indicate

the type of data in the string. The Type could, for example, be �Boolean�,

and indicate thereby indicate that only the values �true� and �false� would be

valid. The CertificateConfigurationElement contains references to certi�-

cates. The information contained in the CertificateConfigurationElement

is to some extent speci�c for the way certi�cates are stored on machines run-

ning Windows. This does not make the model implementation speci�c, but

58

Figure 26. Schema view: Con�guration elements

merely indicates that the bounded context that the model comprises, acts

as a conformist to the environment where it is ultimately going to run.

The ListConfigurationElement is used to de�ne con�guration elements

that have a tabular nature, and where zero or more rows of data may be called

for. Figure 27 shows how a ListConfigurationElement could be presented.

Generally, a single row of data contains several values, the meaning of which

is de�ned by a column. So a ListValue is tied to both a row and a column,

as shown in the �gure.

The most important features of con�guration elements are that they must

be presentable to the administrator such that they can be read and edited.

Furthermore, there must be a mechanism for validating the values typed in

by the administrator. Another important concern is that in some cases, only

certain values make sense for a given con�guration element. The plug-in, or

part of the system, that relies on a given con�guration element must be able

to provide a list of valid values for a given element, if such a list exists.

59

Figure 27. Con�guration lists

Figure 28. Class view: Con�guration elements

Figure 28 shows the con�guration elements and their repositories in class

view. The important thing to notice here is the INamespaceElement inter-

face, that is implemented by all the three entities. The interface merely

de�nes that a single property called Namespace. Since all three entities

60

have such a property already, they can implement the interface without

further ado. This is useful, because we can now de�ne a speci�cation called

NamespaceMatchesSpecification, whose IsSatisfiedBy method takes an in-

stance of a INamespaceElement. This way, all three repositories can use the

same speci�cation to �nd the elements of the respective type that matches

a given namespace, thus making it straightforward to �nd all con�guration

elements belonging to a given component (identi�ed by its namespace, of

course). Also notice that the CertificateConfigurationElement de�nes a

method called LoadCertificate that loads the actual certi�cate from the cer-

ti�cate store. This is useful because the CertificateConfigurationElement

itself only contains information about where the certi�cate is stored. The

method returns an instance of the framework class called X509Certificate2.

Any part of the system that depends on con�guration values, be it the

core IdP itself or any plug-in or connection, we will call a configurable com-

ponent. A con�gurable component provides the following functionality: It

can provide a set of default values for all its con�guration elements. It can

provide a structure that logically groups its con�guration values such that

they can be displayed to an administrator in a way that makes sense in the

context of the meaning of the con�guration elements. It can validate the

values of all con�guration elements as a whole, and the value of a single

con�guration element individually. To provide this functionality a number

of classes and interfaces are called for.

Figure 29. Class view: Con�gurable component

Figure 29 shows some of the concepts needed to support con�gurable

components, in class view. A con�gurable component is represented by the

IConfigurableComponent interface. The interface de�nes which namespace

61

the elements of the component has, through the ElementNamespace property.

Furthermore, the interface de�nes a set of functions; GetDefaultValues is a

function that returns an instance of a ConfigurationSet. This function is

called during installation of a con�gurable component and its main purpose

is to return all con�guration elements such that they can be created in the

database. A ConfigurationSet is merely a container for the con�guration el-

ements of the di�erent types explained earlier. The GetDisplayConfigurationSet

returns an instance of a DisplayConfigurationSet, a class that presents

the con�guration elements in a way suitable for showing in a user inter-

face. The DisplayConfigurationSet class will be explained in greater de-

tails later. The ValidateConfigurationSet is a method that an instance of a

ConfigurationSet as a parameter and returns an instance of a DisplayConfigurationSet

(which will contain information about potential errors). Finally, the ValidateElement

method, is an overloaded method that takes one of the three con�guration

element types as a parameter, and validates its value (or values, if it is a

ListConfigurationElement). It returns a string, containing an error mes-

sage if the value is not valid, or null if the validation succeeds.

The main purpose of the DisplayConfigurationSet is to display a con�g-

uration set in some UI, such as that shown in �gure 30.

Figure 30. Visual conceptualization of con�guration

Figure 31 shows the classes involved in con�guration element display. The

DisplayConfigurationSet is the aggregate root of all the classes, and as you

may have noticed a few extra properties have been added since the class

was introduced in Figure 29. These properties are the Caption property,

which is a string containing a caption, or heading if you like, of the en-

62

Figure 31. Class view: Display con�guration elements

tire display con�guration set. A caption value could for example be �Iden-

tity provider con�guration� or �SAML 2.0 protocol con�guration�. The last

property of this class is the Tabs property. This property returns a list

of DisplayConfigurationTab instances. A DisplayConfigurationTab is a

grouping container, intended to be displayed as a single tab in a tab control.

A tab control is a common user interface control found in most applications.

The DisplayConfigurationTab class also has a Caption property, and most

importantly, it has a Groups property. The Groups property returns a list

of DisplayConfigurationGroup instances. A DisplayConfigurationGroup is

yet another grouping container, used to logically and visually group con�g-

uration elements. Apart from the Caption property it has an Elements prop-

erty, which returns a list of instances of the abstract BaseDisplayConfigurationElement.

The BaseDisplayConfigurationElement class serves the single purpose of

being a common base class for the three display con�guration elements.

This is useful for the order of which the elements are displayed. The base

class contains a single property, namely ReadOnly which is the only property

the three display con�guration elements have in common. The ReadOnly

property indicates whether a given display con�guration element is editable.

DisplayTextConfigurationElement has the following properties; ConfigurationElement

is of type TextConfigurationElement and represent the con�guration ele-

63

ment that is being displayed. The Error property is a string containing a

possible error message for the element. Finally, the PossibleValues is a list

of possible values. The PossibleValues may be null, in which case the ad-

ministrator can type in any value. However, if the PossibleValues is not

null, the string values it contains will be rendered as a drop-down list, from

where a value can be chosen. The other two display con�guration elements

are similar. They di�er in the type returned by the ConfigurationElement.

Furthermore, DisplayCertificateConfigurationElement di�ers in that its

PossibleValues does not return a list of string values, but a list of X509Certificate2

instances, from which the administrator can choose. The DisplayListConfigurationElement

di�ers in that its Errors property is a matrix of error messages, correspond-

ing each ListValue inside the ListConfigurationElement returned by the

ConfigurationElement property. Finally, the PossibleColumnValues is sim-

ilar to the PossibleValues property of the other two display elements, how-

ever it contains a list of lists, where each list corresponds to the possible

values for a column in ListConfigurationElement.

4.4.1 Refactoring

There needs to be some way of communicating the meaning of a con�guration

element to the administrator. Sometimes the name of a con�guration ele-

ment may not be enough do explain what a con�guration element is. There-

fore a Description property is called for. Now, should the Description

property be on the con�guration element, or on its display counterpart?

Since it is primarily a display related thing, I have chosen to extend the

BaseDisplayConfigurationElement with a Description property.

4.5. Certi�cates

If you know a little about X.509 certi�cates, you know that most certi�cates

are issued by other certi�cates. Those certi�cates that are not issued by

another certi�cate are said to be self-issued, and are often referred to as

root certificates. In order for an application to deem some certi�cate to be

valid, it must, amongst other things, trust the root certi�cate that issued

that certi�cate. Quite a few companies world-wide make their living by

issuing certi�cates. Such companies are called certi�cate authorities (CA's),

and they use a very well guarded root certi�cate to issue certi�cates that

64

other companies or people can buy. The root certi�cates of these CA's are

per default trusted by all computers world wide, because they ship with the

operating system. Sometimes, when you do not wish to pay for a certi�cate

that you are going to use for test purposes, you can create your own root

certi�cate, and use this to issue other certi�cates. This will work �ne on

your own systems, because you can choose to trust that root certi�cate.

However other systems will not trust your root certi�cate, but that does not

really matter as long as you are only using it for test purposes, or if you can

persuade your business partners to trust your root certi�cate.

We have already seen how certi�cates can be used in con�guration of the

system. However, the certi�cate con�guration elements were only references

to certi�cates in the certi�cate store. The administrator needs some means

of inspecting (searching for) the certi�cates in the certi�cate store, creating

new certi�cates, deleting existing certi�cates and so on.

Figure 32. Class view: Certi�cates

Figure 32 shows the classes involved in maintaining certi�cates. The most

important class is the CertificateService class. The CreateRootCertificate

method can be used to create a root certi�cate as explained above. The

only parameter to the method is a so-called distinguished name, a string

value that is used to identify the certi�cate later. The CreateCertificate

65

is used to create a certi�cate. As a parameter it also takes a distinguished

name, but furthermore, it takes a root certi�cate that is used to issue the

certi�cate. The root certi�cate parameter is passed to the method as an in-

stance of the X509Certificate2 framework class. The DeleteCertificate is

used to delete a certi�cate, and it takes an instance of an X509Certificate2

class its only parameter. The ExportCertificate method takes as its only

parameter an instance of the X509Certificate2 class, and returns a byte

array representing the certi�cate's public key in a common format5. The

ExportCertificateWithPK exports a certi�cate including its private key. This

method takes an instance of an X509Certificate2 class, together with a

password to use to protect the certi�cate. It also returns a byte array,

this time corresponding to both the public and private key of the cer-

ti�cate, and also in a common format6. The ImportCertificate method

is an overloaded method. The �rst overload only takes a byte array (in

CER format) and imports a certi�cate public key into the certi�cate store.

The other overload, takes a byte array (in PKCS12 format) and a pass-

word, and imports the certi�cate private and public key into the certi�cate

store. The FindCertificates method takes a list of certi�cate speci�ca-

tion instances, and returns all the certi�cates that match those speci�ca-

tions. All the certi�cate speci�cations in the �gure take an instance of the

X509Certificate2 in their respective IsSatisfiedBy methods. The speci�-

cations are; CertificateByDistinguishedName which compares a certi�cate

to the distinguished name string parameter given in the speci�cation's con-

structor. The CertificateIsValid checks if a certi�cate is valid, eg. issued

by a trusted root certi�cate, and not expired. The CertificateIsInvalid

does the opposite, and �nally, the CertificateMatches compares one certi�-

cate to another. The FindRootCertificates does exactly the same as the

FindCertificates method, only it searches in trusted root certi�cates store

instead of in the standard location.

4.5.1 Refactoring

When deleting a certi�cate, it would be useful to have a feature that could

check if the certi�cate is being used by a CertificateConfigurationElement,

and warning the administrator if this was the case.

5 A common format is the canonical encoding rules (CER) format which is supported on

most platforms.
6 A common format for exporting certi�cates with private key is the PKCS12 format.

PKCS stands for Public-Key Cryptography Standards, and 12 is a version number.

66

Figure 33. Class view: Refactoring the certi�cate con�guration element repository

Figure 33 shows that the CertificateConfigurationElementRepository

has been extended to include a method called FindByCertificate. It takes

an instance of an X509Certificate2 and returns a list of CertificateConfigurationElements

that are currently the depending on that given certi�cate. If the list is empty,

it is safe to delete the certi�cate. If the list is not empty, the administrator

can be told which certi�cate con�guration elements depend on that certi�-

cate, and possibly change those con�guration elements to reference another

certi�cate before deleting it.

4.6. Credential providers

Credential providers are specialized plug-ins that facilitate user logins. The

IdP will o�er several di�erent credential providers, but it is the administrator

who chooses which credential providers are enabled for his IdP. A concrete

credential provider plug-in implementation is contained within a module (dll)

on the IdP server, and registered in the database, such that the administrator

can enable it.

Figure 34. Schema view: Credential providers

67

Figure 34 shows the who main concepts involved in setting up credential

providers. A CredentialProviderDefinition de�nes a credential provider

that can be used to log users in. It has a Name and a Description, and

most importantly it has a CredentialProviderType, which is a string that

contains a fully quali�ed type name, that can be used to create an in-

stance of the given credential provider using re�ection. The type name

must represent a type that implements a speci�c interface, which I will

explain in detail below. The ConfiguredCredentialProvider is merely a

pointer to a CredentialProviderDefinition, and indicates that the given

CredentialProviderDefinition has been con�gured (is in use).

As mentioned in Chapter 2, the IdP must be able to accommodate creden-

tials both in the form of username/password and via SAML 2.0 federation.

The credential mechanisms are actually quite di�erent, in that the user-

name/password variant validates users through the local database, while the

SAML variant uses federation with another identity provider to collect the

user's credentials. The model only allows for one instance of each creden-

tial provider to be con�gured. This works well for the username/password

scenario, as there is only one local user database anyway. But what about

the SAML federation scenario. Here, it must be possible to setup several

federations with several other IdPs. And this is indeed going to be possible,

however not by con�guring more than one instance of the credential provider,

but by the concept of connections, explained in Section 4.8.

Figure 35 shows the interface that must be implemented by plug-ins that

are credential providers. The ICredentialProvider interface extends the

IPlugIn interface, and adds two new properties. SupportsConnections is

a boolean that indicates whether or not the credential provider supports

connections. This is useful for displaying a user interface to the administrator

where he can con�gure the connections for a given credential provider that

supports connections. The DefaultEndpoint is a property that returns an

instance of an IEndpoint (see Figure 18 on page 48). The default endpoint is

the endpoint that initiates the login for a given user. A credential provider

may have more endpoints for various purposes, so it is important that the

IdP knows which is the default endpoint, such that it can initiate the login

sequence properly.

68

Figure 35. Class view: Credential provider interface

4.7. Protocols

Protocol plug-ins are specialized plug-ins that provide the implementation

of some protocol for exchanging security related information. Such protocols

include SAML, WS-Federation, OpenID and many more.

Figure 36 shows the schema view of the classes for de�ning and con�gur-

ing protocols in the IdP. There is no real di�erence from the way credential

providers where de�ned and con�gured, so I will not get into a lengthy expla-

nation here. Notice however, that there are repositories for both concepts

(ProtocolDefinition and ConfiguredProtocol) even though they are not

shown here.

69

Figure 36. Schema view: Protocols

Figure 37. Class view: Protocol plug-in interfaces

70

Many, but not necessarily all, protocols rely on the exchange of meta-

data in order to establish a trust relationship between an identity provider

and a service provider7. Our IdP has no way of knowing the metadata

format used in di�erent protocols, therefore the responsibility of creating

the metadata must be delegated to the protocol plug-in implementation it-

self. Therefore, the HasMetadata property of the IPotocolPlugIn can be

used by the implementor of a speci�c protocol to indicate whether or not

the implementation provides (or has) metadata. When that is the case, the

implementation of GetMetadata is supposed to return a string representing

metadata for the given implementation. If HasMetadata returns false, the

GetMetadata method will not be called. It does however still need to imple-

mented, because otherwise the interface will not be implemented. Throw-

ing an exception in the method implementation will be acceptable. The

SupportsConnections property is identical to that of credential providers.

This indicates that the property could be moved to the common interface

IPlugIn, something that I will address below. The IProtocolEndpoint in-

terface is an extension of the IEndpoint interface, which adds one important

property, RequiresAuthentication. This property indicates whether a given

protocol endpoint requires the user to be authenticated before delegating

control to the endpoint. This is the case for all protocol endpoints that

send user's identity to a service provider. The IdPwill check any protocol

endpoint for this property, and make sure to authenticate the user (through

one of the con�gured credential providers) before delegating control to that

endpoint. I will explain this in greater detail in Section 4.11.

4.7.1 Refactoring

As mentioned before, the SupportsConnections property exists in both the

ICredentialProviderPlugIn and IProtocolPlugIn interfaces. Therefore it

can be moved to the IPlugIn interface. Furthermore, some credential providers

also need to export metadata. This means that the HasMetadata property

and the GetMetadata method could also be moved. This leaves the question

of whether the two interfaces should be there at all. However I like the idea

of having them both. They are good to have for the sake of of the possibility

that the two may diverge in the future. Having them both also make them

more explicit as concepts, which is important in terms of domain-driven

design.

7 Service provider is also sometimes referred to as �relying party�.

71

4.8. Connections

As already mentioned, it is normal for an identity provider to require a con-

�gured connection before it wants to communicate with a service provider.

A connection is merely some information about the other party. This in-

formation usually includes certi�cates, and a set of string values describing

various aspects of the way communication between the two parties is carried

out. In other words, a connection is a specialized con�guration set. Given

the fact that the data (the con�guration set) that describes a connection is

speci�c to a given protocol (the language the two parties �speak�), it must be

responsibility of the protocol implementation to provide the default con�g-

uration set values, and the display con�guration set. A credential provider

may also need to con�gure connections, for example in the case of federated

SAML2.0 login. In this case the credential provider acts as a service provider

to some other IdP.

Figure 38. Schema view: Connections

Figure 38 shows the schema view of some of the classes needed to model

connections. A ConfiguredConnection represents some con�gured con-

nection. Besides having an object identi�er, a con�gured connection has

a name, a description, and a namespace, represented by the properties

72

ConnectionName, ConnectionDescription and ConnectionNamespace. The

ConnectionNamespace is used to map a con�gured connection to a ConfigurationSet.

As the �gure also shows, a con�gured connection belongs to either a protocol

or a credential provider. This mapping is achieved through the ProtocolConnection

and CredentialProviderConnection classes, that map a con�gured connec-

tion to either a con�gured connection or a con�gured protocol. Please note

that the ConfiguredProtocol and ConfiguredCredentialProvider classes

are not shown in the �gure.

Figure 39. Class view: Connections

Now, in order to support working with the data classes shown in Fig-

ure 38 a set of services and repositories are called for. These are shown

in class view in Figure 39. A connection service is a service that fa-

cilitates creating, updating and fetching of con�gured connections. The

IConnectionService de�nes these functions. The CreateConnection method

has three parameters, namely the parameters required to create a new in-

stance of the ConfiguredConnection class. These are ConnectionName, ConnectionDescription,

and ConnectionNamespace. The GetConnection method has a single param-

eter, OwnerId and it returns an instance of ConfiguredConnection. The

OwnerId refers to the id of either a ConfiguredProtocol or a ConfiguredCredentialProvider.

Finally, SaveConnection has two parameters; the �rst is an instance of

ConfiguredConnection, and the second is an instance of a ConfigurationSet.

There are two classes that implement the IConnectionService interface,

namely ProtocolConnectionService and CredentialProviderConnectionService.

73

Both classes inherit the BaseConnectionService. The BaseConnectionService

is an abstract class that contains the implementation for SaveConnection,

since this method must do the same thing in the context of protocol connec-

tions and credential provider connections. The SaveConnection method up-

dates (saves) the instance of ConfiguredConnection through the ConfiguredConnectionRepository

(not shown in the �gure), and likewise it saves the instance of ConfigurationSet

through its corresponding service (ConfigurationService shown in the �g-

ure). The implementation of GetConnection and CreateConnection is di�er-

ent for the ProtocolConnectionService and CredentialProviderConnectionService

classes. This is due to the fact that they interact with instances of the

ProtocolConnection and CredentialProviderConnection respectively (shown

in Figure 38). In the case of the CreateConnection method, it is the respon-

sibility of the respective service implementation to create an instance of the

correct connection class (either ProtocolConnection or CredentialProviderConnection)

in order to associate the connection with either a protocol or a credential

provider. Likewise, for the GetConnection method, it is the responsibility

of the concrete implementation to use the OwnerId parameter to fetch the cor-

rect instance of either ProtocolConnection or CredentialProviderConnection

(using the appropriate repository, again, not shown in the �gure for brevity).

It has also been necessary to expand the IPlugIn interface with a property

called ConnectionConfigurator. This property is of type IConfigurableComponent,

and is used to validate the values in the con�guration set for either a pro-

tocol connection or credential provider connection. The concrete implemen-

tation of the IConfigurableComponent must of course be provided by the

implementation of a protocol or credential provider, because only these im-

plementations can know what the valid values are in their speci�c case.

4.9. Plug-in installation

Since the system is plug-in based, it is important that installation of new

plug-ins is supported by the system. Most importantly, the installation of a

new plug-in must not lead to multiple endpoints that handle the same path.

It is also important to test that the new plug-in implements the correct

interface, and that there are no endpoints within the plug-in that handle the

same path.

Figure 40 shows the classes needed for plug-in installation. The central

class is the PluginInstallationService that has two methods; one for in-

74

Figure 40. Class view: Plug-in installation

stalling protocol plug-ins and one for installing credential provider plug-ins.

Each method has two parameters, namely the type string8, and the assembly

containing the plug-in, as a byte array. The two methods perform similar

actions:

Step 1 Load the assembly and instantiate the class given in the type string

through re�ection.

Step 2 Test that the instance implements the correct interface (ICredentialProviderPlugin

or IProtocolPlugin).

Step 3 Create an instance of the AllEndpointPathsAreUniqueSpecification

and make sure that its IsSatisfiedBymethod returns true. The IsSatisfiedBy

method has an argument of type IPlugIn, and it iterates all endpoints

returned by the GetEndpoints method and tests that no two endpoints

have identical path properties.

Step 4 Create an instance of the NoEndpointAlreadyExistsForPathSpecification

class. The constructor of this class takes a list of paths that are regis-

tered for those plug-ins that are already installed. In order to make this

list, the two repositories shown are used get all installed plug-ins, which

are then instantiated, and the paths of their handlers are appended to

the list. Finally, the IsSatisfiedBy method is called for each endpoint

8 Corresponding to the CredentialProviderType or ProtocolType properties of the

CredentialProviderDefinition or ProtocolDefinition classes respectively.

75

in the plug-in that is going to be installed.

Step 5 If we have come this far, the plug-in is ready to be installed. An in-

stance of either CredentialProviderDefinition or ProtocolDefinition

is created and added to the corresponding repository. The name and

description properties of the de�nition object are taken from the con-

crete instance instantiated in step 1. Since this instance implements the

IPlugin interface (both Verb|ICredentialProviderPlugin| and IProtocolPlugin

are extensions of IPlugin) these properties are available on the concrete

instance.

4.10. Claims

The ability to de�ne and work with claims is one of the core features of

the IdP. The IdPde�nes three conceptually di�erent types of claims. The

�rst type of claim is a claim that originates from some credential provider.

In the simple case of username/password credentials, the only claim that

originates from the credential provider is a username claim. However, in

the case of federated login, a number of claims may be returned by the

federation partner. This type of claim is called a CredentialClaim. The

next type of claim is a claim that is de�ned in the IdP itself. This claim

type is called an IdentityProviderClaim. Finally, the last type of claim is

called IssuedClaim, and represents a claim that is issued by the IdP.

Figure 41 shows some of the classes related to claims, in schema view.

The IdentityProviderClaimDefinition class is used to de�ne an identity

provider claim, in the sense that it does not provide a concrete value for

the claim. It does however de�ne every other aspect of the claim. The

DisplayName property is a reader friendly name used for display in UI. The

Name is the actual name of the claim used when sending the claim some se-

curity token. The NameFormat is used to describe the format of the Name.

It is normal for di�erent protocols to de�ne name formats, that a name

must comply to. A name format could, for example, specify that the name

must be a well-formed URI. The ValueType de�nes the type of value that

is acceptable for the claim. The value type is normally expressed as an xml

type, such as xs:string or xs:int etc. The Description is merely a textual

description, mainly used in UI. The DefaultValue is used to de�ne a default

value for the claim, in the case where a user has no explicit value for the

given claim, or in the case where all users must get a prede�ned value for

76

Figure 41. Schema view: Claims

the claim. The DefaultValue is, for example, used for de�ning groups. As

speci�ed in Chapter 2, it must be possible to assign users to groups. Adding

a user to a group simply results in a claim that states that the user is part

of some group. By creating an IdentityProviderClaimDefinition with a

default value of for example Administrator, and ClaimName idp:Group, a

conceptual group can be created. When the claim is issued by the IdP

it looks like any other claim, but having the DefaultValue and IsGroup

properties allows the IdP to display a user interface where the administra-

tor can work with groups. Finally, the IsUserUpdateable boolean prop-

erty is used to specify whether or not the value of a claim can be changed

by a user. Again, in the case of groups, the IsUserUpdateable property

will be set to false, whereas for other claims it could be set to true. The

IdentityProviderClaim couples an IdentityProviderClaimDefinition to a

User, and (optionally) assigns a ClaimValue for the given claim de�nition

to the given user. The CredentialClaimDefinition class is similar to the

IdentityProviderClaimDefinition class in that it also has DisplayName,

Name, NameFormat, ValueType and Description properties. The CredentialClaimDefinition

class does not have a DefaultValue property, since its value is not as-

signed by the IdP. For the same reason it does not have the IsGroup and

IsUserUpdateable properties. It does however have an IsIdentityBearer

property. This property is used to de�ne that a given credential claim

bears the identity of the user, and that its value can be used to �nd a

77

corresponding User instance. For this to work, the credential claim that

is identity bearer must have a value that corresponds to a username of

some given User instance. This solution de�nitely works theoretically, but

it is probably not very practical, and therefore, this mechanism is a clear

candidate for future refactoring. The Verb|ClaimValidation| class is used

to de�ne validation classes for the value of identity provider claims. If,

for example, some claim dictates that its value must be an integer, or

have a speci�c length or format, a ClaimValidation can be coupled to

the IdentityProviderClaimDefinition. When an administrator or a user

assigns a value to the claim, the validator is instantiated and evaluated

against the value. The mechanism is very similar to that of plug-ins in that

a ClaimValidation refers to a type string that can be used to create instances

of the validator through re�ection.

Figure 42. Class view: Claims

Figure 42 shows the three di�erent claim types. The CredentialClaim is

a class whose main purpose is to tie a CredentialClaimDefinition with a

value. Instances of the CredentialClaim class are never persisted, and are

created by a given CredentialProvider implementation. The IdentityProviderClaim

class is the same as we have already seen in Figure 41. It is shown here again

to emphasize the two methods it (and the CredentialClaim class) has. The

ToIssuedClaim method takes no parameters and returns an instance of the

IssuedClaim class. The IssuedClaim class is a simple data class that holds

the values that are needed in the response of a given protocol implemen-

tation. A given protocol implementation can query the IdP for a list of

instances of IssuedClaim for the current user, as we shall see in Section 4.11

on page 79.

78

4.10.1 Claim mapping

As mentioned in the speci�cation, it must be possible to change various

properties of a claim depending on who the receiver of that claim is. This

concept is called claim mapping. It is important to note that it is not the

value of a claim that is changed, but only the descriptive properties, Name,

NameFormat, and ValueType.

Figure 43. Schema view: Claim mapping

Figure 43 shows the entity classes used to model claim mapping, in schema

view. The ClaimMappingDefinition is used to de�ne a claim mapping. A

claim mapping de�nition has a Name and a Description property, that de-

scribe the claim mapping. A claim mapping de�nition is made up of zero

or more CredentialClaimMappings and/or IdentityProviderClaimMappings.

These two classes de�ne a number of Boolean values, OverrideName, OverrideNameFormat,

and OverrideValueType. The semantics of these values are that if they have

the value �true�, the corresponding �New� value (NewName, NewNameFormat, or

NewValueType) will be used to override the original value of the claim. By def-

inition, a claim mapping belongs to either a Protocol or a Connection, and

this fact is modelled in the classes ProtocolClaimMapping and ConnectionClaimMapping,

which hold references to a ClaimMappingDefinition and a ConfiguredProtocol

and ConfiguredConnection respectively.

As with every other aspect of the model, there are services and repositories

to handle reading and writing claim mapping data. The actual mapping of

claims is done by the ClaimMappingService, shown in Figure 44. The service

has one method, GetMappedClaimsForUser, which has three parameters, a

user name, a protocol id, and a connection id. In chapter 7 I will show the

implementation of this method.

79

Figure 44. Class view: Claim mapping

4.11. The runtime system

During runtime, all the components of the model are orchestrated in a way

that makes the system work. Figure 45 shows the sequence of events that

happen when the IdP receives a request for a protocol endpoint.

Figure 45. Runtime request sequence

Each of the steps is described below.

BeginRequest In this phase the IdP initializes the IdPContext (explained

in Section 4.11.1) and establishes a session. All request parameters will

be saved in the IdPContext.

DetermineProtocol In this phase, the IdP uses the requested URI to de-

termine which speci�c protocol implementation to reroute the request

to. This protocol will be referred to as the "handling protocol". If

the requested URI does not match any of the URIs exposed by the

con�gured protocols an error is reported and a trace entry is created.

ValidateRequest During this phase, the IdP lets the handling protocol

perform validation on, for example (but not limited to), the wellformed-

ness of the request. If validation fails an error is reported and a trace

80

entry is created.

AuthenticationCheck During this phase, the IdP will ask the handling

protocol if the requested endpoint is one that requires an authenticated

user. If this is the case, the next phase will be performed; otherwise it

will skip to the ProcessRequest phase. If the user is already authenti-

cated, the IdP will skip to the ProcessRequest phase.

DetermineCredentialProvider (optional) During this phase the IdP will

determine which credential providers have been con�gured. If more

than one provider has been con�gured, the user will be presented with

a list of possible providers to choose from. Otherwise there will be only

one, and that one is chosen. The credential provider that ultimately

collects the user's credentials will be referred to as the "handling cre-

dential provider".

Authentication (optional) In this phase the handling credential provider

will collect the user's credentials and create the set of credential claims.

The credential claims will stored in the IdPContext.

MapUser During this phase, the identity bearing credential claim will be

mapped to a userid in the user store

ProcessRequest During this phase the handling protocol will process the

request as speci�ed by its implementation. Optionally the claims for

the current user will be extracted.

ExtractIdPClaims (optional) During this phase the user's IdPClaims

are extracted. If necessary, each claim is mapped as de�ned in the

IdP con�guration. First a protocol mapping is performed (if it exists)

and then a service provider mapping is performed. Furthermore, all

credential claims that must be reissued are promoted to IdPClaims

SendResponse During this phase the response it sent and the sequence

ends.

4.11.1 IdPContext

The IdPContext is the IdP's main interface for plug-ins. It exists to make it

easier for any plug-in to access the IdP's core functionality without having

to know too many details about services and repositories, but it also serves

as a placeholder for state information between http requests.

Figure 46 shows the IdPContext class in class view. The class does not

have a public constructor, and instead it is implemented using the single-

ton pattern (as explained in [Gamma et al. 1995]). The singleton instance

81

Figure 46. Class view: IdPContext

of the class is accessed through the Current property of the class. The

AuthenticationDone method must be called by a credential provider, upon

successful authentication of the user. The method has an argument whose

type is a list of CredentialClaim instances. If, for some reason, the authen-

tication fails, the AuthenticationFailed method must be called by the cre-

dential provider. The GetClaimsForUser method is the only method that a

given protocol implementation must call. This method returns the mapped

claims for the current user, given a protocol id and a connection id. The

UserName property holds the username of the user, if the person that makes

the request is currently logged in (indicated by the IsLoggedIn utility func-

tion). Finally, the ShouldTrace and Trace functions from the TraceService,

and their log counterparts are being exposed here.

4.11.2 EndpointService

In general, when you request a URI, such as http://www.example.com/index.html,

the last part of the URI, in this case index.html, corresponds to a �le on the

web server. On the IdP, however, no physical �les are requested. Instead,

what is requested are virtual endpoints that map to some implementation

that knows how to respond. This makes it easier to upload new plug-ins,

because a plug-in can be only a single �le, namely the dll containing its im-

plementation. Therefore, when the IdP receives a request, it must be able to

�nd out which plug-in should handle the request. This is done though the

EndpointService.

82

Figure 47. Class view: EndpointService

Figure 47 shows the EndpointService class and related classes. The

EndpointService de�nes a single method, GetEndpointForPath which has

a single argument, a path, and which returns an instance of IEndpoint that

knows how to respond to requests for that path. The GetEndpointForPath

method internally uses the ConfiguredProtocolRepository and ConfiguredCredentialProviderRepository

to �nd all endpoints. It then uses the EndpointHandlesPathSpecification

to determine which endpoint can handle the path.

4.12. Reporting of events

During runtime, the IdP must report events in a way that administrators

of the system can see what is going on in terms of unexpected errors, con-

�guration errors, but also in terms of actions taken by the users and the

administrator or administrators themselves. Reporting of these events will

be split into two di�erent concepts; logging and tracing. Both log entries and

83

trace entries must be saved in the database because of the nature of the IdP

being a software-as-a-service application. In such an application, the admin-

istrator will not have access to �les on the machine where the application

runs, and therefore writing these entries to a �le on the disk is not as good

an option as writing them to a table in a database. Having this information

in a database enables rich query capabilities that are not o�ered by simple

text �les, something that will come in handy when needing to display the

data in a graphical web user-interface.

4.12.1 Logging

As mentioned above, logging has to do with events that happen in the system

as part of normal use. Logging such events will allow administrators of the

system who has made changes to the system and when. Furthermore it allows

him to see information about user activity. This is, for example, useful for

corporations who need to comply to the Danish standard for information

security (DS-484). A single unit of logging data will be called a log entry

and its corresponding class will be called LogEntry. A log entry is always

coupled to a logging source. A logging source is used to de�ne parts of the

system that write log entries. This is useful for grouping log entries, and it

can also be used to turn logging on and o� for di�erent parts of the IdP. the

IdP will itself de�ne a set of logging sources, but logging sources can also be

de�ned for plug-ins as we shall see below in Section 4.2.1. The LogEntry and

LoggingSource classes contains the following �elds shown in Figure 48.

Figure 48. Schema view: LogEntry and LoggingSource

84

As the Figure 48 shows, each log entry contains a timestamp of when

the log entry was created (EntryDateTime) and some message (EntryText).

It also contains the id of the logging source it belongs to. Note that the

relationship between the two is denoted by an arrow. You may have noticed

another arrow pointing to the LogEntry class. That arrow represents the

relationship to the User class, incurred by the UserId property. Finally,

a log entry also contains a SessionId. A session is a well-known concept

when working with web applications, and since the IdP is a web application

it makes sense to log the session id, such that all log entries for a given

session can be found. A logging source also has a unique id, a name and a

description. Finally, it also has an Enabled �ag, that is used to determine

if logging for a given source is turned on or o�. We have now de�ned what

kind of data a log entry contains, but it is by no means obvious how it is

to be used. In fact, how would a user of the class know what unique id to

assign to the log entry, what the id of the current user is, or even what the

unique id of the logging source is. We de�nitely need some way of facilitating

logging. What we probably want is some kind of service class with a function

that takes two parameters; the name of a logging source and some text. The

LoggingService class would then have the responsibility of creating a new

instance of a LogEntry, and �ll in the missing parameters. But logging often

entails building large text messages, which takes both memory and time. So

what if logging has been turned o� for the current logging source? In this

case, the caller might decide not to build the message at all. Therefore our

logging service needs to have a function to help the caller determine if logging

is turned on for a given logging source. Figure 49 shows the LoggingService

class.

Figure 49. Class view: Logging service class

The ShouldLog function takes a single parameter, namely the name of a

logging source, and returns true if logging is enabled for that logging source.

In order to perform the correct logic, the LoggingService needs to interact

85

with other components of the system. Figure 50 shows which other compo-

nents the LoggingService class interacts with. Note that the bold italic text

over or below each component denotes what type of object it is in terms of

domain-driven design.

Figure 50. Class view: Logging service interactions

Lets start by considering the most simple of the two functions, namely the

ShouldLog function. As mentioned this function takes a single parameter,

the name of the logging source. When called, the ShouldLog function calls

the FindByName function on the LoggingSourceRepository, which returns the

corresponding instance of the LoggingSource class. The function can now

check the Enabled property of the LoggingSource instance to determine what

it should return. The Log function takes two parameters, namely a logging

source name and a message. First of all, the function calls ShouldLog to

determine if logging is turned on for the current logging source. If this is

not the case, the function can return. This also means that callers, do not

have to call the ShouldLog function, but that they may do so, if they wish.

If the function determines that logging is enabled, starts by creating a new

instance of the LogEntry class and �lls in the LogEntryText, and the current

time. It calls the LoggingSourceRepository to get the correct instance of

the LoggingSource class from where it can retrieve the LoggingSourceId.

Finally it reads the SessionId, and UserId properties the IdPContext class.

The IdPContext class will be explained later, but for now just accept that

it knows the current user's id and the session id. Finally, the function calls

the Add function on the LogEntryRepository which takes an instance of a

LogEntry as a parameter.

86

4.12.2 Tracing

Tracing has to with recording events that are related to errors and debug-

ging the system. We de�ne 4 levels of error tracing; critical, error, warning

and information. A single unit of tracing data will be called a trace entry,

and have a corresponding class called TraceEntry. Trace entries need to be

written to the database for much the same reason that log entries needed to

be written to the database. However, there is a small di�erence here. Since

tracing is used to report errors, any trace entries with trace level critical

will also be written to a �le on disk. This is especially helpful when dealing

with errors that have to do with missing database connectivity, but the �le

would of course only be accessible to maintainers of the entire software-as-a-

service solution. It must be possible to turn tracing on and o�, especially for

warning and information level trace entries. It will also be possible to turn

o� errors, but it will however not be possible to turn o� tracing of critical

errors. Data regarding whether or not tracing is turned on for di�erent levels

is encapsulated in a concept called a trace pro�le. As before we create a ser-

vice to facilitate adding trace entries. The TracingService and the classes

it interacts with are shown in Figure 51.

Figure 51. Class view: Tracing service interactions

Figure 51 shows that adding trace entries is in many ways similar to adding

log entries. The most important things to notice is that the TraceProfile is a

value object and not an entity objects. This is because a tracing pro�le does

not have an identity, and any two instances of the class can be considered to

be the same if their values are identical. Secondly, the TraceEntryFileWriter

87

is used to write trace entries to a �le on disk. The Trace function of the

TracingService takes as parameters a message and a trace level, and in-

vokes the Add function on the TraceEntryRepository everytime, and the Add

function on the TraceEntryFileWriter whenever the trace level is set to

critical.

4.13. Ubiquitous language

The model described in this chapter has left us with a broad ubiquitous

language, and can be summarized as follows: The IdP is an application

that binds Claims to Users. The IdP is extensible through plug-ins. There

are two kinds of plug-ins, credential provider plug-ins and protocol plug-

ins. A credential provider plug-in can authenticate a user, and the result of

an authentication is a set of Credential claims. A protocol plug-in sends

information about a user and his claims to some other party, called a service

provider. Both protocols and credential providers may rely on connections

to describe how they communicate with other systems. When a protocol

sends information about a user to a service provider, it sends a set of issued

claims. An issued claim originates from either a credential claim, or an

identity provider claim, which is a claim de�ned in the IdP. The set of issued

claims that are sent may have undergone a claim mapping. A claim mapping

is a mechanism that alters any aspect of a set claim, except their value. There

are two di�erent types of claim mappings, namely protocol claim mappings

and connection claim mappings. The two are conceptually identical but

the protocol claim mapping is always performed �rst. Users are created in

the IdP through self registration, import, or invitation. Every aspect of the

IdP can be con�gured through configuration sets, which contain di�erent

configuration elements. When something in the IdP fails, a trace entry is

created, and when an important event occurs, a log entry is created.

Chapter

5
Object relational mappers

Most modern IT systems rely on databases to store application data, and

the database schema used is indeed an important part of the domain model.

As we saw in Chapter 3, the de�nition of a supple model is a model that

can easily be changed. However, when using a traditional data access layer,

changing the database schema would potentially require many changes in the

data access classes and domain objects. Let consider the following simple

example, where we have a User table, a User domain class, a UserRepository

repository class and a UserFactory factory class. The table de�nition might

look something like this:

User table
1 −− User table
2 CREATE TABLE [idp].[User](
3 OID INT IDENTITY(1,1) NOT NULL,
4 UserName NVARCHAR(128) NOT NULL,
5 DateCreated DateTime NOT NULL DEFAULT GetDate(),
6 [Password] NVARCHAR(128) NOT NULL,
7 PasswordSalt NVARCHAR(128) NOT NULL,
8 CONSTRAINT [PK_User] PRIMARY KEY CLUSTERED ([OID])
9)

A User domain class could look like this:
User domain class

1 using System;
2

3 namespace IdP
4 {
5 public class User
6 {
7 public int OID { get; set;}
8 public string UserName { get; set; }
9 public string Password { get; set; }
10 public string PasswordSalt { get; set; }
11 public DateTime DateCreated { get; set;}
12

13 public User(int oid, string userName, DateTime dateCreated, string password, string
 passwordSalt)

14 {
15 OID = oid;
16 UserName = userName;
17 DateCreated = dateCreated;
18 Password = password;
19 PasswordSalt = passwordSalt;
20 }

88

89

21 }
22 }

A repository with methods to �nd a given user, either by name or by id,

could look like the following:

User repository class
1 using System.Data.SqlClient;
2

3 namespace IdP
4 {
5 public class UserRepository
6 {
7 public User GetUserById(int oid)
8 {
9 string sql = "select OID, UserName, Password, PasswordSalt, DateCreated from User

 where OID = @oid";
10 using (SqlConnection conn = new SqlConnection("a valid connection string"))
11 {
12 conn.Open();
13 SqlCommand cmd = new SqlCommand(sql, conn);
14 cmd.Parameters.AddWithValue("oid", oid);
15 SqlDataReader reader = cmd.ExecuteReader();
16

17 return UserFactory.FromReader(reader);
18 }
19 }
20

21 public User GetUserByName(string userName)
22 {
23 string sql = "select OID, UserName, Password, PasswordSalt, DateCreated from User

 where UserName = @UserName";
24 using (SqlConnection conn = new SqlConnection("a valid connection string"))
25 {
26 conn.Open();
27 SqlCommand cmd = new SqlCommand(sql, conn);
28 cmd.Parameters.AddWithValue("UserName", userName);
29 SqlDataReader reader = cmd.ExecuteReader();
30

31 return UserFactory.FromReader(reader);
32 }
33 }
34 }
35 }

And �nally a factory which that is able to translate a record of a SqlDataReader

to an instance of our User domain class, could look like this:

User factory class
1 using System;
2 using System.Data.SqlClient;
3

4 namespace IdP
5 {
6 public class UserFactory

90

7 {
8 public static User FromReader(SqlDataReader reader)
9 {
10 if(reader.Read())
11 {
12 int oid = (int) reader["OID"];
13 string userName = reader["UserName"].ToString();
14 string password = reader["Password"].ToString();
15 string passwordSalt = reader["PasswordSalt"].ToString();
16 DateTime dateCreated = (DateTime) reader["DateCreated"];
17

18 return new User(oid, userName, dateCreated, password, passwordSalt);
19 }
20

21 return null;
22 }
23

24 }
25 }

The preceding classes show how we could implement data access for a the

User table using the building blocks of domain-driven design. However,

what if we were to add another �eld to the User table? Doing so would

require updating the table, adding another �eld to the User domain class,

updating the two select statements and adding another line of code to the

factory method. Needless to say, if we had a large database schema, using

this approach would not yield an especially supple design, since even small

logical model changes would require quite a few changes to the code. In

this chapter we shall see how we can leverage the power of object relation

mappers to create a more supple and maintainable design. Object relational

mappers are software tools that automatically map the tables of a database

schema to classes in a programming language, complete with queries and

update and delete methods. For .Net, several alternatives exist, the two

most feature complete being NHibernate and LINQ to SQL. LINQ to SQL

is part of the .Net 3.5 framework and has been developed in close cooperation

with the SQL Server team for high performance when used with a SQL Server

database. Since the speci�cation requires me to use a SQL Server database,

and I'm already using .Net framework 3.5, using LINQ to SQL seems like a

natural choice.

91

5.1. LINQ

LINQ stands for language-integrated query and provides a set of standard

query operators that can be used directly in any .Net language. Query ex-

pressions in LINQ bene�t from compile time syntax checking, static typing

and intellisense9. The standard query operators apply to IEnumerable<T>

which is the interface implemented by every enumerator (array and special-

ized collections) in .Net over a generic type T. The following code sample

shows the syntax for a standard LINQ query.

LINQ example
1 string[] names = { "Burke", "Connor", "Frank", "Everett", "Albert", "George", "Harris", "

 David" };
2

3 IEnumerable<string> query = from s in names
4 where s.Length == 5
5 orderby s
6 select s.ToUpper();
7

8 foreach (string item in query)
9 Console.WriteLine(item);
10

There are several interesting things to note about the above code. First of

all, the reverse syntax of the query, having the from keyword in the beginning

of the expression. This has been necessary to make intellisense work. The

most important thing to notice, however, is that the SQL like syntax in

the example is merely syntactic sugar on top of a concept called extension

methods. Extension methods are static methods that are declared outside of

a the class they work on, and brought into scope by importing the namespace

where they are declared. The following example shows how an extension

method for the User class could be implemented.

User extension
1 namespace IdP
2 {
3 public static class UserExtensions
4 {
5 public static int UserNameLength(this User u)
6 {
7 return u.UserName.Length;
8 }
9 }
10 }

9 Intellisense is the auto-completion feature in the Visual Studio IDE

92

Note the special this keyword, that tells the compiler that the method

applies to the type User. By importing the namespace where the extension

method is de�ned, I can now call the UserNameLength function directly on

the User class.

1 User u = UserRepository.GetByName("Klaus");
2 int len = u.UserNameLength();

So how does this apply to the LINQ query shown above? Well, as men-

tioned, the syntax of the above example is merely syntactic sugar, and actu-

ally translates to a set of extension methods on IEnumerable<T>. This means

that the above query could be rewritten to this:

LINQ example 2
1 string[] names = { "Burke", "Connor", "Frank", "Everett", "Albert", "George", "Harris", "

 David" };
2

3 IEnumerable<string> query = names.Where(s => s.Length == 5).OrderBy(s => s).Select(s => s.
 ToUpper());

4

5 foreach (string item in query)
6 Console.WriteLine(item);
7

8 Console.ReadLine();

The example shows how extension methods on IEnumerable<T> are used to

express the query. Note that the result of applying a LINQ extension method

to an IEnumerable<T> is itself an IEnumerable<T>, thus allowing us to keep

applying extension methods as the example shows. The signature of the ex-

tension methods used is this IEnumerable<T> source, Func<T, bool> predicate).

The Func type is an expression from type T to bool, which is written as a

lambda expression, such as s => s.Length == 5 in the example. The full

list of query operators de�ned by LINQ can be seen in Table 5.1.

The LINQ examples we have seen thus far have been good for illustratory

purposes, however they have nothing to do with LINQ to SQL. As a matter

of fact, LINQ to SQL is an extension of what we have seen so far, which is

called LINQ to objects. Figure 52 shows the di�erent �avours of LINQ that

are o�ered by the framework.

Figure 52 shows that there are three di�erent LINQ enabled data sources,

LINQ to objects, LINQ to XML and the LINQ enabled ADO.Net. We

have already seen how LINQ to objects works in the preceding examples.

LINQ to XML provides language integrated query for XML documents, and

LINQ enables ADO.Net provides language integrated queries for relational

93

Restriction Where

Projection Select, SelectMany

Ordering OrderBy, ThenBy, Reverse

Grouping GroupBy

Quanti�ers Any, All, Contains

Partitioning Take, Skip, TakeWhile, SkipWhile

Sets Distinct, Union, Intersect, Except

Elements First, FirstOrDefault, ElementAt

Aggregation Count, LongCount, Sum, Min, Max, Average,

Aggregate

Conversion ToArray, ToList, ToDictionary, AsEnumerable,

ToLookup, OfType, Cast

Element First, FirstOrDefault, Last, LastOrDefault, Single,

SingleOrDefault, ElementAt, ElementAtOrDefault,

DefaultIfEmpty

Figure 52. LINQ.

data stores. ADO.Net is the framework for manipulating relational data,

and LINQ enabled ADO.Net consists of three di�erent technologies, namely

94

Figure 53. LINQ to SQL data context (designer view).

LINQ to datasets, LINQ to SQL and LINQ to entities. LINQ to datasets is

an extension to the in memory dataset classes of the .Net framework, and

LINQ to entities is the LINQ extension of the .Net �Entity framework�, a

framework for de�ning conceptual data schemas, called entity data models.

LINQ to entities has still not proven to be mature, mainly because it lacks

tool support in the IDE, but it is said that it will become the predecessor of

LINQ to SQL.

5.2. LINQ to SQL

As with LINQ to objects, LINQ to SQL also supports compile time type

checking. This is achieved through the what is called a �data context�. A

data context is a class that has several responsibilities. First of all, the data

context contains information about which database to connect to. Further-

more, it contains de�nitions for the classes that represent the tables in the

database, and �nally it tracks in memory changes made to the instances of

those classes.

Using the IDE we can create a new data context, and drag the User table

onto the design surface, as shown in Figure 53.

95

We have now seen that we can easily drag tables onto our data context to

generate the corresponding class. Now lets see what kind of code is generated

behind the scenes.
LINQ data context

1 #pragma warning disable 1591
2 //−−
3 // <auto−generated>
4 // This code was generated by a tool.
5 // Runtime Version:2.0.50727.1433
6 //
7 // Changes to this file may cause incorrect behavior and will be lost if
8 // the code is regenerated.
9 // </auto−generated>
10 //−−
11

12 namespace IdP
13 {
14 using System.Data.Linq;
15 using System.Data.Linq.Mapping;
16 using System.Data;
17 using System.Collections.Generic;
18 using System.Reflection;
19 using System.Linq;
20 using System.Linq.Expressions;
21 using System.ComponentModel;
22 using System;
23

24

25 [System.Data.Linq.Mapping.DatabaseAttribute(Name="IdPDatabase")]
26 public partial class IdPDataClassesDataContext : System.Data.Linq.DataContext
27 {
28

29 private static System.Data.Linq.Mapping.MappingSource mappingSource = new
 AttributeMappingSource();

30

31 #region Extensibility Method Definitions
32 partial void OnCreated();
33 partial void InsertUser(User instance);
34 partial void UpdateUser(User instance);
35 partial void DeleteUser(User instance);
36 #endregion
37

38 public IdPDataClassesDataContext() :
39 base(global::IdPTestApp.Properties.Settings.Default.

 SafewhereConnectionString, mappingSource)
40 {
41 OnCreated();
42 }
43

44 public IdPDataClassesDataContext(string connection) :
45 base(connection, mappingSource)
46 {
47 OnCreated();
48 }
49

50 public IdPDataClassesDataContext(System.Data.IDbConnection connection) :

96

51 base(connection, mappingSource)
52 {
53 OnCreated();
54 }
55

56 public IdPDataClassesDataContext(string connection, System.Data.Linq.Mapping.
 MappingSource mappingSource) :

57 base(connection, mappingSource)
58 {
59 OnCreated();
60 }
61

62 public IdPDataClassesDataContext(System.Data.IDbConnection connection, System
 .Data.Linq.Mapping.MappingSource mappingSource) :

63 base(connection, mappingSource)
64 {
65 OnCreated();
66 }
67

68 public System.Data.Linq.Table<User> Users
69 {
70 get
71 {
72 return this.GetTable<User>();
73 }
74 }
75 }
76

77 [Table(Name="idp.[User]")]
78 public partial class User : INotifyPropertyChanging, INotifyPropertyChanged
79 {
80

81 private static PropertyChangingEventArgs emptyChangingEventArgs = new
 PropertyChangingEventArgs(String.Empty);

82

83 private int _OID;
84

85 private string _UserName;
86

87 private System.DateTime _DateCreated;
88

89 private System.Nullable<System.DateTime> _LastLogin;
90

91 private string _Password;
92

93 private string _PasswordSalt;
94

95 #region Extensibility Method Definitions
96 partial void OnLoaded();
97 partial void OnValidate(System.Data.Linq.ChangeAction action);
98 partial void OnCreated();
99 partial void OnOIDChanging(int value);

100 partial void OnOIDChanged();
101 partial void OnUserNameChanging(string value);
102 partial void OnUserNameChanged();
103 partial void OnDateCreatedChanging(System.DateTime value);
104 partial void OnDateCreatedChanged();

97

105 partial void OnLastLoginChanging(System.Nullable<System.DateTime> value);
106 partial void OnLastLoginChanged();
107 partial void OnPasswordChanging(string value);
108 partial void OnPasswordChanged();
109 partial void OnPasswordSaltChanging(string value);
110 partial void OnPasswordSaltChanged();
111 #endregion
112

113 public User()
114 {
115 OnCreated();
116 }
117

118 [Column(Storage="_OID", AutoSync=AutoSync.OnInsert, DbType="Int NOT NULL
 IDENTITY", IsPrimaryKey=true, IsDbGenerated=true)]

119 public int OID
120 {
121 get
122 {
123 return this._OID;
124 }
125 set
126 {
127 if ((this._OID != value))
128 {
129 this.OnOIDChanging(value);
130 this.SendPropertyChanging();
131 this._OID = value;
132 this.SendPropertyChanged("OID");
133 this.OnOIDChanged();
134 }
135 }
136 }
137

138 [Column(Storage="_UserName", DbType="NVarChar(128) NOT NULL", CanBeNull=false
)]

139 public string UserName
140 {
141 get
142 {
143 return this._UserName;
144 }
145 set
146 {
147 if ((this._UserName != value))
148 {
149 this.OnUserNameChanging(value);
150 this.SendPropertyChanging();
151 this._UserName = value;
152 this.SendPropertyChanged("UserName");
153 this.OnUserNameChanged();
154 }
155 }
156 }
157

158 [Column(Storage="_DateCreated", DbType="DateTime NOT NULL")]
159 public System.DateTime DateCreated

98

160 {
161 get
162 {
163 return this._DateCreated;
164 }
165 set
166 {
167 if ((this._DateCreated != value))
168 {
169 this.OnDateCreatedChanging(value);
170 this.SendPropertyChanging();
171 this._DateCreated = value;
172 this.SendPropertyChanged("DateCreated");
173 this.OnDateCreatedChanged();
174 }
175 }
176 }
177

178 [Column(Storage="_LastLogin", DbType="DateTime")]
179 public System.Nullable<System.DateTime> LastLogin
180 {
181 get
182 {
183 return this._LastLogin;
184 }
185 set
186 {
187 if ((this._LastLogin != value))
188 {
189 this.OnLastLoginChanging(value);
190 this.SendPropertyChanging();
191 this._LastLogin = value;
192 this.SendPropertyChanged("LastLogin");
193 this.OnLastLoginChanged();
194 }
195 }
196 }
197

198 [Column(Storage="_Password", DbType="NVarChar(128) NOT NULL", CanBeNull=false
)]

199 public string Password
200 {
201 get
202 {
203 return this._Password;
204 }
205 set
206 {
207 if ((this._Password != value))
208 {
209 this.OnPasswordChanging(value);
210 this.SendPropertyChanging();
211 this._Password = value;
212 this.SendPropertyChanged("Password");
213 this.OnPasswordChanged();
214 }

99

215 }
216 }
217

218 [Column(Storage="_PasswordSalt", DbType="NVarChar(128) NOT NULL", CanBeNull=
 false)]

219 public string PasswordSalt
220 {
221 get
222 {
223 return this._PasswordSalt;
224 }
225 set
226 {
227 if ((this._PasswordSalt != value))
228 {
229 this.OnPasswordSaltChanging(value);
230 this.SendPropertyChanging();
231 this._PasswordSalt = value;
232 this.SendPropertyChanged("PasswordSalt");
233 this.OnPasswordSaltChanged();
234 }
235 }
236 }
237

238 public event PropertyChangingEventHandler PropertyChanging;
239

240 public event PropertyChangedEventHandler PropertyChanged;
241

242 protected virtual void SendPropertyChanging()
243 {
244 if ((this.PropertyChanging != null))
245 {
246 this.PropertyChanging(this, emptyChangingEventArgs);
247 }
248 }
249

250 protected virtual void SendPropertyChanged(String propertyName)
251 {
252 if ((this.PropertyChanged != null))
253 {
254 this.PropertyChanged(this, new PropertyChangedEventArgs(

 propertyName));
255 }
256 }
257 }
258 }
259 #pragma warning restore 1591

LINQ data context

The main data context class begins on line 25. It is decorated with a

DatabaseAttribute which de�nes the name of the database it connects to.

Also note that it is declared as partial, which means that it can extended.

Partial classes are especially useful when one part of the partial class is

autogenerated by a tool, because it means that we can de�ne other meth-

100

ods and �elds of that same class in an other �le, which will not be over-

written if we run the code generation tool again. The class inherits the

System.Data.Linq.DataContext class, which contains most of the logic for

tracking object changes, connecting to the database, committing changes

etc.

On lines 32-35 we �nd a set of extensibility methods, again declared

partial. These methods allow us to implement extra logic whenever User

objects are inserted, updated or deleted.

Lines 38-66 contain various overloaded constructors. On line 68 we can

see a public property called Users. This is the �eld that we can use to

perform LINQ queries, as we shall see in an example shortly. The return

type of the property is Table<User>. The generic Table<T> type is an integral

part of the LINQ to SQL framework and implements the translation from

LINQ expressions to actual SQL statements. The Table class implements the

IEnumerable<T> interface and can thus make use of the extension methods

mentioned earlier. However, even though they can be used, the LINQ to

objects extension methods should not be used with Table<T> classes. This is

because the LINQ to objects extension methods are executed immediately on

the underlying IEnumerable<T> instance. If you remember the example from

page 92, we applied three extension methods to an array. If we were to do this

with the data from a SQL database table, we would e�ectively fetch all rows

into memory and do the selection logic on the in memory data representation.

This would potentially cripple the application's performance, and in general

it would be a complete misuse of the rdbms's capabilities. This problem has

of course been overcome by the designers of LINQ to SQL. The way it has

been done, is that the Table<T> class implements another interface, called

IQueryable<T>, for which all the same extension methods have been de�ned,

but with another internal implementation, of course. In LINQ to SQL, any

query on a Table<T> is not executed until you iterate over the result. This

behaviour allows us to compose a complex query of several less complex parts

without executing the actual query before we iterate over the result. When

we start iterating over the result, a SQL query is automatically generated

behind the scenes and executed against the database.

On line 77 we have the de�nition for the User class. The User class has a

Table attribute that includes information about the actual table name in the

database. Furthermore, the User class implements the INotifyPropertyChanging

and INotifyPropertyChanged interfaces, which allow LINQ to SQL to track

101

in-memory data-changes. Apart from that, the User class has all the ex-

pected properties, such as OID, UserName etc., and all these properties are

decorated with attributes that tell something about the database column

name, database column type etc. The example below shows how we can use

the data context to query the user table.

LINQ to SQL example
1 using(var ctx = new IdPDataClassesDataContext())
2 {
3 //Find users with a UserName of length 5
4

5 var result = from u in ctx.Users
6 where u.UserName.Length == 5
7 orderby u.OID
8 select u;
9

10 //or
11

12 var result2 = ctx.Users.Where(u => u.UserName.Length == 5).OrderBy(u => u.OID).Select(u
 => u);

13

14 //we can further refine the result by adding an extra where clause specifying that OID
 must be higher than 100

15 var result3 = result2.Where(u => u.OID > 100).Select(u => u);
16

17 //The query is not performed against the database before we iterate over the result
18 foreach(var user in result3)
19 {
20 Console.WriteLine(user.UserName);
21 }
22 }

Note that the var keyword is a shorthand that can be used where the

compiler can infer the type by looking at the type of what is assigned to

variable. In this case, all three variables declared using the var keyword are

actually of type IQueryable<User>.

A very nice feature of LINQ to SQL is its ability to translate generic

expressions to SQL statements. We can leverage this ability to declare our

domain-driven designspeci�cations as LINQ expressions, thus enabling us

to have speci�cations that can be used both in code and in the database.

In Chapter 3 we saw an example of a speci�cation called RecentlyCreated,

which contained the de�nition for a recently created user. We could extend

the User class generated by the data context to contain a method that could

tell us if a user was recently created:

Extending the User class
1 using System;
2

3 namespace IdPTestApp

102

4 {
5 public partial class User
6 {
7 public static Func<User, bool> spec = (user => user.DateCreated > DateTime.Now.

 AddDays(−10));
8

9 public bool IsRecentlyCreated()
10 {
11 return spec.Invoke(this);
12 }
13 }
14 }

Note the static variable called spec. This variable can be used in a LINQ

to SQL query too. So if we want to �nd all recently created users in the

database, we can reuse that same LINQ expression, as shown in the following

example.

Using specification to query the database
1 using (var ctx = new IdPDataClassesDataContext())
2 {
3 //Find recently created users
4

5 var result = ctx.Users.Where(User.spec).Select(u => u);
6

7 foreach (var user in result)
8 {
9 Console.WriteLine(user.UserName);
10 }
11 }

In this elegant way, we can ensure that our domain logic is only de�ned

in one single place, thus making maintenance a lot easier.

Chapter

6
A domain-neutral component

In Chapter 5 we saw how LINQ to SQL works, and in this chapter we shall

explore how we can leverage the capabilities of LINQ to SQL to create a

domain-neutral component that can support development using the domain-

driven design concepts.

In Chapter 3 we saw that repositories should be used to store and retrieve

entity objects, thus creating the illusion that these objects are all in memory,

when in reality they are being retrieved from some external storage, such as

a relational database. Given its long life-span, an entity object always has

an identity, and in a relational database, this identity usually translates to a

primary key. We can de�ne an interface for entity objects as shown below.

IEntity.cs
1 namespace Safewhere.Core.Domain
2 {
3 public interface IEntity<TPrimaryKey>
4 {
5 TPrimaryKey OID { get; }
6 }
7 }

The IEntity interface shown above is a generic interface with a type pa-

rameter, TPrimaryKey, which speci�es the type of the primary key. The

interface speci�es that every object that implements the interface must have

a readonly property called OID (acronym for object id).

We will sometimes need to manipulate several di�erent entity objects

from di�erent repositories within a transaction. The word transaction is

well-known from the world of relational databases. A transaction is an en-

capsulation of a series of operations that are co-dependent, meaning that

if one of the operations fail, the result of any of the operations should not

be stored. In the domain-driven design community, and in [McCarthy 2008]

and [Harding 2008] in particular, this transaction concept is referred to as a

�unit of work�. I presume that this term has been chosen instead of �trans-

action� because of the fact that the word transaction is so tightly coupled to

a speci�c storage technology, namely relational databases. It is, of course,

not the responsibility of a repository to know when it is used within a unit

103

104

of work. But a repository must have the ability to be enrolled in a unit of

work. The interface for an abstract unit of work could be de�ned as follows:

IUnitOfWork.cs
1 using System;
2

3 namespace Safewhere.Core.Domain
4 {
5 public interface IUnitOfWork : IDisposable
6 {
7 T Create<T>() where T : IUnitOfWorkElement, new();
8

9 void Complete();
10 }
11 }

The IUnitOfWork interface de�nes two functions, Create and Complete.

The interface also inherits the IDisposable interface, an interface that can

be implemented to release unmanaged resources during garbage collection

when working in .Net. LINQ to SQL resources are not unmanaged , but

should we wish to use some other data storage in the future, including the

IDisposable interface is a safe choice. The Complete method is used to

complete the unit of work, an equivalent to committing when working with

relational databases. The Create function is a generic function that will

create an instance of any class that implements the IUnitOfWorkElement

interface and has a default constructor (eg. a constructor that takes no

arguments. This is denoted by the new() restriction on the generic type T).

The IUnitOfWorkElement interface has the following de�nition:

IUnitOfWorkElement.cs
1 namespace Safewhere.Core.Domain
2 {
3 public interface IUnitOfWorkElement
4 {
5 IUnitOfWork UnitOfWork { set; }
6 }
7 }

The IUnitOfWorkElement interface de�nes a write-only property called

UnitOfWork of type IUnitOfWork. Any implementor of the IUnitOfWorkElement

interface will thus expose a way of setting the associated IUnitOfWork in-

stance, and will be used by the IUnitOfWork's Create method, as we shall

see in the following concrete implementation of a unit of work:

LinqToSqlUnitOfWork.cs
1 using System;
2 using System.Data.Linq;
3 using System.Transactions;
4

105

5 namespace Safewhere.Core.Domain
6 {
7 public class LinqToSqlUnitOfWork : IUnitOfWork, IRepositoryImplementationHelper
8 {
9 DataContext _dataContext;
10 TransactionScope _txScope;
11

12 public LinqToSqlUnitOfWork(DataContext dataContext) : this(dataContext, null){}
13

14 public LinqToSqlUnitOfWork(DataContext dataContext, Transaction transactionToUse)
15 {
16 if (dataContext == null)
17 throw new ArgumentNullException("dataContext");
18 _dataContext = dataContext;
19 _txScope = transactionToUse == null ? new TransactionScope() : new

 TransactionScope(transactionToUse);
20 }
21

22 public T Create<T>() where T : IUnitOfWorkElement, new()
23 {
24 return new T {UnitOfWork = this};
25 }
26

27 public void Complete()
28 {
29 _dataContext.SubmitChanges();
30 _txScope.Complete();
31 }
32

33 public void Dispose()
34 {
35 _dataContext = null;
36 _txScope.Dispose();
37 }
38

39

40 #region IRepositoryImplementationHelper Members
41

42 IEntityContainer<T> IRepositoryImplementationHelper.GetEntityContainer<T>()
43 {
44 return new LinqToSqlEntityContainer<T>(_dataContext);
45 }
46

47 #endregion
48 }
49 }

The LinqToSqlUnitOfWork class has two constructors. The �rst one takes

a LINQ DataContext as discussed in the previous chapter, and calls the

other constructor with a null value for the transactionToUse parameter.

The second constructor saves the DataContext in a private variable and sets

the private _txScope variable based on wether or not the transactionToUse

parameter is null. A TransactionScope is used to implicitly enlist a block of

106

code in a transactions in .Net, as described in [Microsoft 2007].

The Create method is implemented by calling the default constructor10 of

the type T and setting the unit of work instance to the current LinqToSqlUnitOfWork

instance.

The Completemethod is implemented by calling SubmitChanges on the pri-

vate _dataContext object, and then calling Complete on the TransactionScope

instance. The SubmitChangesmethod on a DataContext will make the DataContext

persist the changes made in memory to the database.

Finally, the class implements the IRepositoryImplementationHelper in-

terface by implementing the GetEntityContainermethod. The IRepositoryImplementationHelper

interface is de�ned as follows:
IRepositoryImplementationHelper.cs

1 namespace Safewhere.Core.Domain
2 {
3 public interface IRepositoryImplementationHelper
4 {
5 IEntityContainer<T> GetEntityContainer<T>() where T : class;
6 }
7 }

The IRepositoryImplementationHelper interface is going to be used by

our repository implementation, and de�nes a single method called GetEntityContainer,

which returns an IEntityContainer of a given class T. The Verb|IEntityContainer|

has the following de�nition:

IEntityContainer.cs
1 using System.Linq;
2

3 namespace Safewhere.Core.Domain
4 {
5 public interface IEntityContainer<T> : IQueryable<T>
6 {
7 void Add(T element);
8 void Remove(T element);
9 }
10 }

The IEntityContainer interface is a generic interface that inherits from

the generic built-in IQueryable interface. It de�nes the two methods Add

and Remove, which should be used to add an remove entity objects from a

10 Note the use of the object initializer syntax that is new in .Net 3.5, and allows you to

assign values to public properties during the call to the constructor. See [Microsoft 2009]

for an in-depth explanation.

107

container. The following class is an implementation of the IEntityContainer

interface.
LinqToSqlEntityContainer.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Data.Linq;
5

6 namespace Safewhere.Core.Domain
7 {
8 internal class LinqToSqlEntityContainer<T> : IEntityContainer<T> where T : class
9 {
10 Table<T> _table;
11

12 internal LinqToSqlEntityContainer(DataContext dataContext)
13 {
14 _table = dataContext.GetTable<T>();
15 }
16

17 #region IEntityContainer<T> Members
18

19 public void Add(T element)
20 {
21 _table.InsertOnSubmit(element);
22 }
23

24 public void Remove(T element)
25 {
26 _table.DeleteOnSubmit(element);
27 }
28

29 #endregion
30

31 #region IEnumerable<T> Members
32

33 public IEnumerator<T> GetEnumerator()
34 {
35 return _table.GetEnumerator();
36 }
37

38 #endregion
39

40 #region IEnumerable Members
41

42 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
43 {
44 return _table.GetEnumerator();
45 }
46

47 #endregion
48

49 #region IQueryable Members
50

51 public Type ElementType
52 {
53 get

108

54 {
55 var q = _table as IQueryable<T>;
56 return q.ElementType;
57 }
58 }
59

60 public System.Linq.Expressions.Expression Expression
61 {
62 get
63 {
64 var q = _table as IQueryable<T>;
65 return q.Expression;
66 }
67 }
68

69 public IQueryProvider Provider
70 {
71 get
72 {
73 var q = _table as IQueryable<T>;
74 return q.Provider;
75 }
76 }
77

78 #endregion
79 }
80 }

LinqToSqlEntityContainer.cs

The �rst thing to notice about the LinqToSqlEntityContainer is that it

is marked internal. This means that it can only be used from within the

assembly where it resides. The reason that this class is made internal is that

it is not supposed to be used directly by any client, but only as an internal

datastorage-speci�c container for entities. Since this entity container uses

LINQ to SQL, its internal implementation is based on an instance of a Table,

as described earlier, for the generic type T. The constructor takes a LINQ

DataContext which is uses for retrieving the correct Table for the generic

type T. It implements all the interface methods from IEntityContainer by

calling the suitable methods on the Table instance _table.

We have now seen the de�nition of most of the classes needed for our

generic repository implementation, and we can now de�ne the interface for

the repository as follows:
IRepository.cs

1 using System;
2 using System.Linq;
3 using System.Linq.Expressions;
4

5 namespace Safewhere.Core.Domain
6 {
7 public interface IRepository<TEntity, TPrimaryKey>

109

8 : IQueryable<TEntity>, IUnitOfWorkElement
9 where TEntity : IEntity<TPrimaryKey>
10 {
11 void Add(TEntity element);
12 void Remove(TEntity element);
13

14 TEntity this[TPrimaryKey primaryKey] { get; }
15

16 IQueryable<TEntity> Find(Expression<Func<TEntity, bool>> expr);
17 IQueryable<TEntity> Find(IBooleanExpressionHolder<TEntity> spec);
18

19 TEntity FindFirst(Expression<Func<TEntity, bool>> expr);
20 TEntity FindFirst(IBooleanExpressionHolder<TEntity> spec);
21

22 IQueryable<TEntity> FindAll();
23

24 bool Exists(Expression<Func<TEntity, bool>> expr);
25 bool Exists(IBooleanExpressionHolder<TEntity> spec);
26

27 }
28 }

The IRepository interface is a generic interface of type TEntity and

TPrimaryKey, where TEntity is the type of the entity object that the repos-

itory serves, and TPrimaryKey is the type of the primary key of that entity

type. Furthermore, the interface imposes the restriction that the TEntity

type must implement the IEntity interface with using the same type, TPrimaryKey,

as a primary key. The repository must also implement the IQueryable in-

terface for type TEntity, and the IUnitOfWork interface.

The IRepository interface de�nes Add and Remove functions for adding

and removing entity objects. It also de�nes an indexer function (in line 14)

that allows �nding a single instance of an entity object based on its unique

identi�er. Lines 16-22 de�ne di�erent �nder functions. The two Find func-

tions return a collection of entity objects based on some search criterion. The

�rst function takes a parameter of type Expression<Func<TEntity, bool>>,

which is the lambda expression that was described earlier in this chap-

ter. The second Find function takes an IBooleanExpressionHolder, an in-

terface that we will use to encapsulate our speci�cations, as we shall see

further down. The two FindFirst functions take the same parameters as

the Find functions, but only return the �rst result instead of returning

a collection. The FindAll function returns all the entity objects in the

repository. Finally, the interface de�nes two Exists functions that deter-

mines if one or more entity objects exist for a given lambda expression or

IBooleanExpressionHolder. The IBooleanExpressionHolder interface is de-

�ned as follows:

110

IBooleanExpressionHolder.cs
1 using System;
2 using System.Linq.Expressions;
3

4 namespace Safewhere.Core.Domain
5 {
6 public interface IBooleanExpressionHolder<T>
7 {
8 Expression<Func<T, bool>> Expression { get; }
9 }
10 }

The IBooleanExpressionHolder is a generic interface for a generic type

T and contains a single property of type Expression<Func<T, bool>>. The

purpose of this interface is to hold an expression that will evaluate to a

Boolean value for an instance of a given generic type T. When used in con-

junction with a repository, an implementation of IBooleanExpressionHolder

can be used to express a search criterion for use with the Find, FindFirst or

Exists functions. The most important class in the component that imple-

ments the IBooleanExpressionHolder interface is the LambdaSpecification

class, that is de�ned as follows:
ISpecification.cs

1 using System;
2 using System.Linq.Expressions;
3

4 namespace Safewhere.Core.Domain
5 {
6 public abstract class LambdaSpecification<T> : ISpecification<T>,

 IBooleanExpressionHolder<T>
7 {
8 Expression<Func<T, bool>> _expr;
9 Func<T, bool> _compiledExpr;
10

11 protected LambdaSpecification(Expression<Func<T, bool>> specExpression)
12 {
13 _expr = specExpression;
14 }
15

16 public Expression<Func<T, bool>> Expression
17 {
18 get { return _expr; }
19 }
20

21 public Func<T, bool> CompiledExpression
22 {
23 get
24 {
25 if (_compiledExpr == null)
26 {
27 _compiledExpr = _expr.Compile();
28 }
29 return _compiledExpr;

111

30 }
31 }
32

33 public bool IsSatiesfiedBy(T element)
34 {
35 return CompiledExpression.Invoke(element);
36 }
37 }
38 }

ISpecification.cs

The LambdaSpecification class is a generic abstract class that implements

both ISpecification (described further down) and the IBooleanExpressionHolder

interface. The class is abstract since, even though it could be possible, we

do not want anyone to use instances of the class directly. This is because

in domain-driven design a speci�cation should be explicitly named and be a

concept of it's own. The LambdaSpecification class does however implement

most of the logic for creating those explicitly named speci�cations. The class

contains two properties, Expression and CompiledExpression. The value of

the Expression property is the same that the class gets in the constructor.

The CompiledExpression is that same expression, only compiled internally

for better performance. Lastly, the implementation of the ISpecification

interface is implemented by the IsSatisfiedBy function. The method takes

an argument of an instance of the class' generic type, and invokes the com-

piled expression on this instance. The ISpecification interface is de�ned

as follows:
ISpecification.cs

1 namespace Safewhere.Core.Domain
2 {
3 public interface ISpecification<T>
4 {
5 bool IsSatiesfiedBy(T element);
6 }
7 }

The ISpecification interface is a generic interface that has a single function,

IsSatisfiedBy, just like the example presented earlier. We can now de�ne

a repository in the following way:

Repository.cs
1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Linq.Expressions;
5

6 namespace Safewhere.Core.Domain
7 {
8 public class Repository<TEntity, TPrimaryKey>
9 : IRepository<TEntity, TPrimaryKey>

112

10 where TEntity : class, IEntity<TPrimaryKey>
11 {
12 protected IUnitOfWork _unitOfWork;
13 protected IEntityContainer<TEntity> _entityContainer;
14

15 protected IEntityContainer<T> CreateEntityContainer<T>() where T: class
16 {
17 var repHelper = (IRepositoryImplementationHelper) UnitOfWork ;
18 return repHelper.GetEntityContainer<T>();
19 }
20

21 #region IRepository<TEntity, TPrimaryKey> Members
22

23 public void Add(TEntity element)
24 {
25 _entityContainer.Add(element);
26 }
27

28 public void Remove(TEntity element)
29 {
30 _entityContainer.Remove(element);
31 }
32

33 public TEntity this[TPrimaryKey primaryKey]
34 {
35 get {
36 return _entityContainer.SingleOrDefault(entity => primaryKey.Equals(entity.

 OID));
37 }
38 }
39

40 public IQueryable<TEntity> Find(Expression<Func<TEntity, bool>> expr)
41 {
42 return _entityContainer.Where(expr);
43 }
44

45 public IQueryable<TEntity> Find(IBooleanExpressionHolder<TEntity> spec)
46 {
47 return _entityContainer.Where(spec.Expression);
48 }
49

50 public TEntity FindFirst(Expression<Func<TEntity, bool>> expr)
51 {
52 return _entityContainer.FirstOrDefault(expr);
53 }
54

55 public TEntity FindFirst(IBooleanExpressionHolder<TEntity> spec)
56 {
57 return _entityContainer.FirstOrDefault(spec.Expression);
58 }
59

60 public bool Exists(Expression<Func<TEntity, bool>> expr)
61 {
62 return _entityContainer.Count(expr) > 0;
63 }
64

113

65 public bool Exists(IBooleanExpressionHolder<TEntity> spec)
66 {
67 return _entityContainer.Count(spec.Expression) > 0;
68 }
69

70 public IQueryable<TEntity> FindAll()
71 {
72 return _entityContainer.AsQueryable();
73 }
74

75 #endregion
76

77 #region IEnumerable<TEntity> Members
78

79 public IEnumerator<TEntity> GetEnumerator()
80 {
81 return _entityContainer.GetEnumerator();
82 }
83

84 #endregion
85

86 #region IEnumerable Members
87

88 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
89 {
90 return _entityContainer.GetEnumerator();
91 }
92

93 #endregion
94

95 #region IQueryable Members
96

97 public Type ElementType
98 {
99 get { return _entityContainer.ElementType; }

100 }
101

102 public Expression Expression
103 {
104 get { return _entityContainer.Expression; }
105 }
106

107 public IQueryProvider Provider
108 {
109 get { return _entityContainer.Provider; }
110 }
111

112 #endregion
113

114 #region IUnitOfWorkElement Members
115

116 public IUnitOfWork UnitOfWork
117 {
118 set
119 {
120 _unitOfWork = value;

114

121 _entityContainer = CreateEntityContainer<TEntity>();
122 }
123

124 get
125 {
126 return _unitOfWork;
127 }
128 }
129

130 #endregion
131 }
132 }

Repository.cs

The Repository class, of course, implements the IRepository interface pre-

sented earlier. The most important thing to notice is in the implementation

of the IUnitOfWorkElement interface. When the UnitOfWork instance is set

on the class, the private _entityContainer variable is instantiated by calling

the CreateEntityContainer function. The CreateEntityContainer function

in turn casts the UnitOfWork to a IRepositoryImplementationHelper which

contains the GetEntityContainer function. The rest of the functions in this

class use this EntityContainer internally to perform the work.

6.1. Preparing for test

As mentioned in Chapter 3, one important reason for using repositories is

that a concrete repository implementation, for example one that uses an SQL

server backend, can be interchanged with another one. This is very useful

for those unit tests whose purpose is not to test the data storage system,

but only to test the domain functionality. By adding a few extra classes

to the domain neutral component, we can implement an in-memory data

store. For this we need, amongst other things, an InMemoryUnitOfWork and

an InMemoryEntityContainer.

InMemoryUnitOfWork.cs
1 using System;
2

3 namespace Safewhere.Core.Domain
4 {
5 public class InMemoryUnitOfWork : IUnitOfWork, IRepositoryImplementationHelper
6 {
7 readonly IInMemoryDataContainer _container;
8

9 public InMemoryUnitOfWork(IInMemoryDataContainer container)
10 {
11 if (container == null)
12 throw new ArgumentNullException("container");

115

13 _container = container;
14 }
15

16 #region IUnitOfWork Members
17

18 public T Create<T>() where T : IUnitOfWorkElement, new()
19 {
20 return new T { UnitOfWork = this };
21 }
22

23 public void Complete()
24 {
25 //this method does nothing
26 }
27

28 #endregion
29

30 #region IDisposable Members
31

32 public void Dispose()
33 {
34 //this method does nothing
35 }
36

37 #endregion
38

39 #region IRepositoryImplementationHelper Members
40

41 public IEntityContainer<T> GetEntityContainer<T>() where T : class
42 {
43 return new InMemoryEntityContainer<T>(_container);
44 }
45

46 #endregion
47 }
48 }

InMemoryUnitOfWork.cs

The InMemoryUnitOfWork class is a lot like its LINQ counterpart. The most

important di�erence is the argument to its constructor, an instance of an

IInMemoryDataContainer, instead of the DataContext instance that is used

by the LINQ version. Furthermore, this class does not make use of the

TransactionScope class. This is solely by decision, since it easily could, but

because its purpose is to facilitate testing without an underlying database,

the class can be kept simple. The GetEntityContainer function uses an

in-memory version of an entity container.

InMemoryEntityContainer.cs
1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4

5 namespace Safewhere.Core.Domain
6 {

116

7 internal class InMemoryEntityContainer<T> : IEntityContainer<T> where T : class
8 {
9 readonly List<T> _data;
10

11 internal InMemoryEntityContainer(IInMemoryDataContainer container)
12 {
13 _data = container.GetData<T>();
14 }
15

16 #region IEntityContainer<T> Members
17

18 public void Add(T element)
19 {
20 _data.Add(element);
21 }
22

23 public void Remove(T element)
24 {
25 _data.Remove(element);
26 }
27

28 #endregion
29

30 #region IEnumerable<T> Members
31

32 public IEnumerator<T> GetEnumerator()
33 {
34 return _data.GetEnumerator();
35 }
36

37 #endregion
38

39 #region IEnumerable Members
40

41 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
42 {
43 return _data.GetEnumerator();
44 }
45

46 #endregion
47

48 #region IQueryable Members
49

50 public Type ElementType
51 {
52 get
53 {
54 IQueryable<T> q = _data.AsQueryable();
55 return q.ElementType;
56 }
57 }
58

59 public System.Linq.Expressions.Expression Expression
60 {
61 get
62 {

117

63 IQueryable<T> q = _data.AsQueryable();
64 return q.Expression;
65 }
66 }
67

68 public IQueryProvider Provider
69 {
70 get
71 {
72 IQueryable<T> q = _data.AsQueryable();
73 return q.Provider;
74 }
75 }
76

77 #endregion
78 }
79 }

InMemoryEntityContainer.cs

The implementation of the InMemoryEntityContainer class also resembles

its LINQ counterpart, di�ering only in that its internal data-holder is a

generic List (the _data variable). By using the LINQ to objects extensions

de�ned in System.Linq the class can perform its logic on that list just in

the same way as the LINQ counterpart does with its Table instance. The

IInMemoryDataContainer provides the data, and is de�ned as follows:

IInMemoryDataContainer.cs
1 using System.Collections.Generic;
2

3 namespace Safewhere.Core.Domain
4 {
5 public interface IInMemoryDataContainer
6 {
7 List<T> GetData<T>();
8 }
9 }

The IInMemoryDataContainer de�nes a single generic function that provides

data of the correct type.

Chapter

7
Implementation

In the previous chapter we saw how we could use LinqToSql to create a

domain-neutral framework to help us with the implementation of reposi-

tories, entity objects and speci�cations. In this chapter I will present the

implementation of some of the classes described in Chapter 4. Since the

entire implementation is too large to be presented here, I will focus on the

parts that I �nd most interesting, of course including some repository im-

plementations using the framework described in the preceding chapter. If I

have left out some part that is of your particular interest, please feel free to

look at the implementation of that part on the enclosed disk media. The

enclosed disk media contains a Visual Studio 2008 solution �le and all the

corresponding �les. Figure 54 shows an analysis of the solution �le.

Figure 54. Source lines of code.

As you can see the solution contains 155 �les, 10 of which do not contain

source code. As you may have noticed the percentage of lines of comments

is quite low, but this is natural since the system is not fully implemented,

and therefore not fully documented either.

Figure 55 shows the structure of the solution. As you can see the solution

118

119

structure and �le names adhere strictly to the ubiquitous language.

120

Figure 55. Solution �le structure.

121

7.0.1 Runtime system

The runtime system is particularly interesting, since it shows how the IdP

delegates the actual work to the di�erent plug-ins. The class that handles

every request and determines what to do is the IdPEndpointHandlerFactory

class, shown below.

IdPEndpointFactory.cs
1 using System.Web;
2 using System.Web.SessionState;
3 using Safewhere.IdP.Application.Endpoints;
4 using Safewhere.IdP.Application.Pages;
5 using Safewhere.IdP.Domain.Logging;
6 using Safewhere.IdP.Properties;
7

8 namespace Safewhere.IdP.Application.HttpHandlers
9 {
10 public class IdPEndpointFactory : IHttpHandlerFactory, IRequiresSessionState
11 {
12 public IHttpHandler GetHandler(HttpContext context, string requestType, string

 virtualPath, string path)
13 {
14 var loginSpec = new IsGlobalLoginUriSpecification();
15

16 if(loginSpec.IsSatiesfiedBy(context.Request.Url))
17 return new IdPLoginPage();
18

19 IEndpoint endpoint = EndpointService.GetEndpointForPath(virtualPath);
20

21 if (endpoint != null)
22 {
23 return endpoint.Handler;
24 }
25

26 string errorMessage = string.Format(IdPErrorMessages.EndpointNotFound,
 virtualPath);

27

28 IdPContext.Current.Trace(TraceLevel.Warning, errorMessage);
29

30 return new ErrorHandler(errorMessage);
31

32 }
33

34 public void ReleaseHandler(IHttpHandler handler)
35 {
36 return;
37 }
38 }
39 }

The IdPEndpointHandlerFactory class implements the IHttpHandlerFactory

framework interface and is hooked into the web server con�guration �le.

Hereafter, for every request that the web server receives, it will call the

122

GetHandler method of our class to get an appropriate handler. In the

GetHandler method, a check is performed to see if the request is for the

global login page, and if this is the case, an instance of the IdPLoginPage11

is returned. Otherwise, the EndpointService's GetEndpointForPath method

is called, to �nd the endpoint that serves the given path. If an endpoint is

found, its handler is returned. Otherwise an error message is traced, and a

generic error page is returned.

EndpointService.cs
1 using Safewhere.Core.Domain;
2 using Safewhere.IdP.Domain;
3 using Safewhere.IdP.Domain.Credentials;
4 using Safewhere.IdP.Domain.Protocol;
5 using Safewhere.IdP.Infrastructure.Util;
6 using System.Linq;
7

8 namespace Safewhere.IdP.Application.Endpoints
9 {
10 public class EndpointService
11 {
12 /// <summary>
13 /// Gets an implementation of IEndpoint that can handle a given path.
14 /// Looks for both protocol and credential endpoints. Protocol endpoints
15 /// take precedence over credential endpoints if two should exist
16 /// with the same path (eventhough this is considered an error).
17 /// </summary>
18 /// <param name="path">The path.</param>
19 /// <returns>An instance of a class that implements IEndpoint,
20 /// or null if no suitable implementation is found.</returns>
21 public static IEndpoint GetEndpointForPath(string path)
22 {
23 var ep = GetProtocolEndpointForPath(path);
24 if (ep != null)
25 return ep;
26

27 ep = GetCredentialEndpointForPath(path);
28

29 return ep;
30 }
31

32 private static IEndpoint GetProtocolEndpointForPath(string path)
33 {
34 using (var uoo = new LinqToSqlUnitOfWork(new IdPDataClassesDataContext()))
35 {
36 var cpr = new ConfiguredProtocolRepository { UnitOfWork = uoo };
37 var all = cpr.FindAll();
38 foreach (var cp in all)
39 {
40 var plugin =
41 ActivatorUtil.GetInstance<IPlugIn>(cp.ProtocolDefinition.ProtocolType

);

11 The IdPLoginPage is the page that shows the user the di�erent con�gured credential

providers and lets him choose which one to use for authentication.

123

42

43 if (plugin == null) continue;
44

45 plugin.PluginId = cp.OID;
46

47 var spec = new EndpointHandlesPathSpecification(path);
48

49 var endpoint = plugin.GetEndpoints().FirstOrDefault(spec.IsSatiesfiedBy);
50

51 if (endpoint != null)
52 return endpoint;
53 }
54 }
55

56 return null;
57 }
58

59 private static IEndpoint GetCredentialEndpointForPath(string path)
60 {
61 using (var uoo = new LinqToSqlUnitOfWork(new IdPDataClassesDataContext()))
62 {
63 var ccpr = new ConfiguredCredentialProviderRepository { UnitOfWork = uoo };
64 var all = ccpr.FindAll();
65 foreach (var ccp in all)
66 {
67 var plugin =
68 ActivatorUtil.GetInstance<IPlugIn>(ccp.CredentialProviderDefinition.

 CredentialProviderType);
69

70 if (plugin == null) continue;
71

72 plugin.PluginId = ccp.OID;
73

74 var spec = new EndpointHandlesPathSpecification(path);
75

76 var endpoint = plugin.GetEndpoints().FirstOrDefault(spec.IsSatiesfiedBy);
77

78 if (endpoint != null)
79 return endpoint;
80 }
81 }
82

83 return null;
84 }
85 }
86 }

The EndpointService looks for protocol endpoints and credential provider

endpoints, and tries to �nd one that matches the path given as an argu-

ment. First it calls the GetProtocolEndpointForPath method, which uses

the ConfiguredProtocolRepository to �nd con�gured protocols. It uses re-

�ection to instantiate every con�gured protocol implementation, and it then

iterates over the endpoints provided by the implementation to see if any

124

endpoint matches the requested path. Something very similar is done in the

GetCredentialEndpointForPath method.

ConfiguredProtocolRepository.cs
1 using Safewhere.Core.Domain;
2

3 namespace Safewhere.IdP.Domain.Protocol
4 {
5 public class ConfiguredProtocolRepository : Repository<ConfiguredProtocol, int>
6 {
7

8 }
9 }

The ConfiguredProtocolRepository is very simple, because the FindAll

method is implemented by our generic Repository class.

7.0.2 The username/password credential provider

Let us see how the username/password credential provider plug-in is imple-

mented.
UsernamePasswordPlugin.cs

1 using System.Collections.Generic;
2 using Safewhere.IdP.Application.Endpoints;
3 using Safewhere.IdP.CredentialProviders.UserNamePassword.Application.Endpoints;
4

5 namespace Safewhere.IdP.CredentialProviders.UserNamePassword.Application
6 {
7 public class UsernamePasswordPlugin : IPlugIn
8 {
9 public string Description
10 {
11 get { return "Provides login via username/password"; }
12 }
13

14 public List<IEndpoint> GetEndpoints()
15 {
16 return new List<IEndpoint> {new UsernamePasswordEndpoint(PluginId)};
17 }
18

19 public int PluginId { get; set; }
20 }
21 }

The UsernamePasswordPlugin class implements the IPlugin interface, which

is pretty straightforward. The most important thing to notice is the GetEndpoints

method, which in this case returns a list with only one element, an instance

of the UsernamePasswordEndpoint class.

125

UsernamePasswordEndpoint.cs
1 using System.Web;
2 using Safewhere.IdP.Application.Endpoints;
3 using Safewhere.IdP.CredentialProviders.UserNamePassword.Application.Pages;
4

5 namespace Safewhere.IdP.CredentialProviders.UserNamePassword.Application.Endpoints
6 {
7 public class UsernamePasswordEndpoint : IEndpoint
8 {
9 private int _pluginId;
10

11 public UsernamePasswordEndpoint(int pluginId)
12 {
13 _pluginId = pluginId;
14 }
15

16 public string Path
17 {
18 get { return "unpwdlogin.idp"; }
19 }
20

21 public string Description
22 {
23 get { return "Endpoint for username/password login."; }
24 }
25

26 public IHttpHandler Handler
27 {
28 get { return new UsernamePasswordPage(_pluginId); }
29 }
30

31 public string Name
32 {
33 get { return "UsernamePasswordEndpoint"; }
34 }
35 }
36 }

The UsernamePasswordEndpoint class implements the IEndpoint interface,

and most importantly it returns an instance of the UsernamePasswordPage

class in its Handler property.

1 ï ż £ using System.Collections.Generic;
2 using System.Web.SessionState;
3 using System.Web.UI;
4 using System.Web.UI.WebControls;
5 using Safewhere.Core.Domain;
6 using Safewhere.IdP.Application;
7 using Safewhere.IdP.Application.Pages;
8 using Safewhere.IdP.CredentialProviders.UserNamePassword.Properties;
9 using Safewhere.IdP.Domain;
10 using Safewhere.IdP.Domain.Claims;
11 using Safewhere.IdP.Domain.Credentials;
12 using System.Linq;

126

13 using Safewhere.IdP.Domain.Logging;
14

15 namespace Safewhere.IdP.CredentialProviders.UserNamePassword.Application.Pages
16 {
17 /// <summary>
18 /// A page that collects username and password through a form.
19 /// </summary>
20 public class UsernamePasswordPage : CredentialProviderBasePage, IRequiresSessionState
21 {
22 private Label _usernameLabel;
23 private Label _passwordLabel;
24 private TextBox _username;
25 private TextBox _password;
26 private Button _submit;
27 private Panel _buttonPanel;
28 private RequiredFieldValidator _usernameValidator;
29 private RequiredFieldValidator _passwordValidator;
30 private Panel _messagePanel;
31

32 public UsernamePasswordPage(int credentialProviderDefinitionId) : base(
 credentialProviderDefinitionId)

33 {
34

35 }
36

37 protected override void OnLoad(System.EventArgs e)
38 {
39 return;
40 }
41

42 protected override void CreateChildControls()
43 {
44 _usernameLabel = new Label { Text = Resources.UsernameLabelText };
45 _usernameLabel.Width = 100;
46 _content.AddControl(_usernameLabel);
47

48 _username = new TextBox{Width = 150};
49 _username.ID = "username";
50 _content.AddControl(_username);
51

52 _usernameValidator = new RequiredFieldValidator
53 {
54 ControlToValidate = _username.ID,
55 Display = ValidatorDisplay.Dynamic,
56 ErrorMessage = Resources.UsernameValidationText
57 };
58 base._content.AddControl(_usernameValidator);
59

60 base._content.AddControl(new LiteralControl("
"));
61

62 _passwordLabel = new Label { Text = Resources.PasswordLabelText };
63 _passwordLabel.Width = 100;
64 base._content.AddControl(_passwordLabel);
65

66 _password = new TextBox { Width = 150, TextMode = TextBoxMode.Password };
67 _password.ID = "password";

127

68 _content.AddControl(_password);
69

70 _passwordValidator = new RequiredFieldValidator
71 {
72 ControlToValidate = _password.ID,
73 Display = ValidatorDisplay.Dynamic,
74 ErrorMessage = Resources.PasswordValidationText
75 };
76 base._content.AddControl(_passwordValidator);
77

78 base._content.AddControl(new LiteralControl("
"));
79

80 _buttonPanel = new Panel { Width = 255 };
81 _buttonPanel.Style.Add("text−align", "right");
82 _submit = new Button {Text = Resources.SubmitButtonText, CausesValidation = true}

 ;
83 _submit.Click += _submit_Click;
84 _buttonPanel.Controls.Add(_submit);
85 base._content.AddControl(_buttonPanel);
86

87 _messagePanel = new Panel {Visible = false};
88

89 base._content.AddControl(_messagePanel);
90 }
91

92 void _submit_Click(object sender, System.EventArgs e)
93 {
94 if(IsValid)
95 {
96 var user = UserService.GetUser(_username.Text);
97

98 if (user == null || !user.VerifyPassword(_password.Text))
99 {

100 LoginError();
101 return;
102 }
103

104 RetrieveCredentialClaims(user);
105

106 }
107 }
108

109 private void RetrieveCredentialClaims(User user)
110 {
111 var claims = new List<CredentialClaim>();
112 using (var uoo = new LinqToSqlUnitOfWork(new IdPDataClassesDataContext()))
113 {
114 var ccpr = new ConfiguredCredentialProviderRepository {UnitOfWork = uoo};
115 var ccp = ccpr.FindByPrimaryKey(CredentialProviderDefintionId);
116 foreach(var ccd in ccp.CredentialClaimDefinitions)
117 {
118 if (ccd.IsIdentityBearer)
119 claims.Add(CredentialClaim.FromDefinition(user.UserName, ccd));
120 }
121 }
122

128

123 if(claims.Count > 0)
124 {
125 IdPContext.Current.AuthenticationDone(claims.AsQueryable());
126 }else
127 {
128 IdPContext.Current.Trace(TraceLevel.Error, "No credential claims found for

 user " + user.UserName);
129 }
130 }
131

132 private void LoginError()
133 {
134 _messagePanel.Visible = true;
135 _messagePanel.Controls.Add(new LiteralControl("Wrong username and password

 combination"));
136 }
137 }
138 }

The UsernamePasswordPage inherits the Page class from the framework (which

in turn implements the IHttpHandler interface). This page basically displays

two text �elds where the user can enter his username and his password. The

most interesting method is the _submit_Click method. This method uses

the UserRepository class to get an instance of the User class corresponding

to the name entered by the user. It then calls the VerifyPassword method

on the User class instance, to see if the password entered by the user cor-

responds to the one stored in the User instance. If this is not the case, an

error message is displayed, and the user can try again. Otherwise, the user's

credential claims are extracted and the AuthenticationDone method of the

IdPContext class is called, thus �nalizing the authentication.

UserRepository.cs
1 using System.Linq;
2 using Safewhere.Core.Domain;
3 using Safewhere.IdP.Domain.Users.Specifications;
4

5 namespace Safewhere.IdP.Domain.Repositories
6 {
7 public class UserRepository : Repository<User, int>
8 {
9 public IQueryable<User> FindUsersBeginningWith(string beginsWith)
10 {
11 var spec = new UserNameBeginningWith(beginsWith);
12 return Find(spec);
13 }
14

15 /// <summary>
16 /// Checks if a user with the given userName already exists.
17 /// The check is performed case insensitively
18 /// </summary>
19 /// <param name="userName">the userName.</param>
20 /// <returns>True if the user exists, false otherwise</returns>

129

21 public User FindByName(string userName)
22 {
23 return FindFirst(new ExactUserName(userName));
24 }
25

26 public bool ExistsByName(string userName)
27 {
28 return Exists(new ExactUserName(userName));
29 }
30 }
31 }

The UserRepository class also has a simple implementation, even though a

few extra methods have been added. The FindUserByName method used by

the _submit_click method described above simply uses an instance of the

ExactUserName speci�cation class to �nd the corresponding User instance.

7.0.3 A dummy protocol

Although no production-ready protocol implementation has been developed

as part of this thesis, I will show the following implementation of a dummy

protocol. The dummy protocol responds on a single URI. The dummy pro-

tocol displays all the claims for the user that logs in.

TestProtocolPlugin.cs
1 using System.Collections.Generic;
2 using Safewhere.IdP.Application.Endpoints;
3 using Safewhere.IdP.Protocols.TestProtocol.Application.Endpoints;
4

5 namespace Safewhere.IdP.Protocols.TestProtocol.Application
6 {
7 public class TestProtocolPlugin : IPlugIn
8 {
9 public string Description
10 {
11 get { return "Simple test protocol"; }
12 }
13

14 public List<IEndpoint> GetEndpoints()
15 {
16 return new List<IEndpoint> {new TestEndpoint(PluginId)};
17 }
18

19 public int PluginId{get; set;}
20 }
21 }

The TestProtocolPlugin class is very similar to the UsernamePasswordPlugin

presented above.

130

TestEndpoint.cs
1 using System.Web;
2 using Safewhere.IdP.Application.Endpoints;
3 using Safewhere.IdP.Protocols.TestProtocol.Application.Handlers;
4

5 namespace Safewhere.IdP.Protocols.TestProtocol.Application.Endpoints
6 {
7 public class TestEndpoint : IEndpoint
8 {
9

10 private readonly int _protocolId;
11

12 public TestEndpoint(int protocolId)
13 {
14 _protocolId = protocolId;
15 }
16

17 public string Path
18 {
19 get { return "test.idp"; }
20 }
21

22 public string Description
23 {
24 get { return "Test endpoint"; }
25 }
26

27 public IHttpHandler Handler
28 {
29 get { return new TestHandler{Path = Path, ProtocolId = _protocolId}; }
30 }
31

32 public string Name
33 {
34 get { return "testendpoint"; }
35 }
36 }
37 }

The most important feature of the TestEndpoint class is that it returns an

instance of the TestHandler class, which is shown below.

TestHandler.cs
1 using System.Collections.Specialized;
2 using System.Web;
3 using Safewhere.IdP.Application;
4 using Safewhere.IdP.Application.HttpHandlers;
5

6 namespace Safewhere.IdP.Protocols.TestProtocol.Application.Handlers
7 {
8 public class TestHandler : IdPHttpHandlerBase
9 {
10 private NameValueCollection _requestParams;
11

12 public override bool ValidateRequest(NameValueCollection requestParams)

131

13 {
14 _requestParams = requestParams;
15 return true;
16 }
17

18 public override bool RequiresAuthentication()
19 {
20 return true;
21 }
22

23 public override bool ForceReauthentication()
24 {
25 return false;
26 }
27

28 public override void SendResponse(HttpContext context)
29 {
30 string username = IdPContext.Current.UserName;
31 string connectionName = _requestParams["connection"];
32 context.Response.Write("<html><head><title>Claims for user: ");
33 context.Response.Write(username + "</title></head><body>");
34 context.Response.Write("<h1>" + username + "</h1>");
35

36 var claims = ClaimMappingService.GetMappedClaimsForUser(username, ProtocolId ,
 connectionName);

37 string claimStr = "<claims>\n";
38 foreach(var claim in claims)
39 {
40 context.Response.Write("" + claim.DisplayName + "
");
41 context.Response.Write("Name: " + claim.Name + "
");
42 context.Response.Write("Value: " + claim.Value + "
");
43 context.Response.Write("NameFormat: " + claim.NameFormat + "
");
44 context.Response.Write("ValueType: " + claim.ValueType + "

");
45 claimStr += "<claim>\n";
46 claimStr += "<name>" + claim.Name + "</name>\n";
47 claimStr += "<value>" + claim.Value + "</value>\n";
48 claimStr += "<nameformat>" + claim.NameFormat + "</nameformat>\n";
49 claimStr += "<valuetype>" + claim.ValueType + "</valuetype>\n";
50 claimStr += "</claim>\n";
51 }
52 claimStr += "</claims>\n";
53 context.Response.Write("<form><textarea cols=100 rows=50>" + claimStr);
54

55 context.Response.Write("</textarea></form>");
56 context.Response.Write("</body></html>");
57 }
58 }
59 }

You can see that this handler participates in the runtime request sequence de-

scribed in Section 4.11 on page 79. It does so by overriding the ValidateRequest,

RequiresAuthentication, ForceReauthentication and SendResponse meth-

ods from its parent class. Since the RequiresAuthentication method re-

turns true, the core IdP makes sure that the user is authenticated before

132

calling the SendResponse method. Therefore, this method can make use of

IdPContext.Current.UserName and call the ClaimMappingService to get the

user's claims, which it then just outputs as html.

Chapter

8
Design validation

The purpose of this chapter is to evaluate the design that I have presented

in this thesis, and not least, to assess the practicability of domain-driven

design. Before looking into what has been learned, I wish to present the

background for introducing a new design paradigm in Safewhere.

Safewhere is a relatively new company with only three years of existence.

As with many small companies, Safewhere started on a good idea and a pro-

totype written by the founders. In the beginning of the company's life money

was scarce, and in order to attract venture capital having an actual product

to show for was priority number one. So, given the circumstances, not much

time was spent on software design and modelling. Instead, a few program-

mers were hired, myself included, and each programmer was given a few high

level features to implement. as it turned out however, each programmer had

his own individual coding style and understanding of the business domain.

In the beginning, this did not seem to cause that big of a problem, and

version one of the product was delivered, fully functional. After the initial

release the need for new features grew rapidly, and these were added on an

ad hoc basis. The product was working well, but it became increasingly

di�cult to add new features and refactor existing features, as the code base

grew. Despite of established coding guidelines, extensive test suites and a

generally open communication culture, there was something missing in our

development method. One of the ways this manifested itself was that we had

several classes in di�erent assemblies with similar names but with dissimilar

meaning. It was also di�cult to explain the architecture to new members

of the team, since the code was not organized in a heterogeneous manner.

In retrospect, the problem clearly was that we did not have either a model

(and model framework) nor a ubiquitous language. One day, most of the

developers of Safewhere attended a seminar where we were �rst introduced

to domain-driven design. Even though domain-driven design was not the

main topic of the seminar we were all left with the impression that it was

a smart thing to do. Therefore we decided to try out domain-driven design

in practice. Since I was about to write my thesis it was decided that my

current project could be a guinea-pig project for introducing domain-driven

design in Safewhere. Upon writing this thesis, I presented my work to my

133

134

colleagues. The �rst purpose of this was to have them assess the usability

and completeness of the model, and secondly to make them give me their

opinion of domain-driven design, and whether they would support the intro-

duction of domain-driven design as a design standard on future projects in

Safewhere. I interviewed12 three people, and below is what I found.

8.1. Model evaluation

Based on the interviews, I can conclude that the following is true about the

model:

� It solves the business problem well.

� It represents a concise and expressive ubiquitous language,

which makes it easy to talk about.

� It is �exible and has a clear distribution of responsibilities

between components, making it easy to refactor.

� It will lead to a stable and mature end-product.

� It will reduce total cost of ownership of the software.

So overall my work has been very well received, and there is no doubt that

domain-driven design will be the future design paradigm in Safewhere. That

said, there were also a number of less positive things, which I will address

below.

First of all it was noted that a few terms could have had better names.

These include the di�erent types of claims13; CredentialClaim, IdentityProviderClaim

and IssuedClaim. The distinction between the three types of claims is more

important than their names, and even though the names may not be the most

elegant, they do convey important information. Another concept which could

have been named better is the Logging concept. The word �logging� is over-

loaded and has potentially di�erent meanings to di�erent people. A better

name for this model concept could have been �business activity monitoring�

which is both more expressive and unambiguous. As for the �tracing� model-

concept, it should probably not have been made part of the model since it is

an infrastructure concept and has no real relevance to the business problem.

12 The interviews can be found in full length in the Appendix B.
13 Only one interviewee though that these names could have been better. Another inter-

viewee, Peter, found them really good.

135

If anything it could have been part of the domain-neutral component, but it

is not clear if it even belongs here.

It has also been pointed out that there is an excessive use of factories in

the model. There is however a good reason why using a lot of factories is a

good convention for this model. The factories are mainly used to construct

entity objects. The problem is that the LinqToSql framework generates

parameter-less constructors. It is of course still possible to add more con-

structors with more parameters. However if constructors instead of factories

were used throughout the code, it could potentially lead other developers

to the impression that the parameter-less constructors are also an option,

which they are not. So by using factories to create entity objects throughout

the code, I have created a convention that others can follow, and hopefully

avoid unintended use of the parameter-less constructors. Unfortunately this

convention is implicit and I have not been able to come up with a way to

express it explicitly in the model. This is de�nitely a weakness in the model,

and I hope that a better solution can be found in the future.

Another weakness of the model has to do with the plug-in nature of the

system. Refactoring of the plug-in system, mainly the interfaces, could lead

to breaking backwards compatibility with third party plug-ins. I do not think

that this is a �aw in the model per se, but rather a natural consequence of any

plug-in architecture. There are no current plans to allow third party plug-ins

in the IdP, so this is no great concern at the moment, since breaking changes

for self-developed plug-ins can be handled at compile time and during testing.

Chapter

9
Conclusion

This chapter contains my conclusion on what has been learned throughout

the process of writing this thesis.

9.1. The model

All in all I think the model that has been developed is good and thorough,

and solves the business problem de�ned in the speci�cation well, a fact that

is substantiated by the interviews that were carried out. Now, is the model

perfect? No, it is not. And that is exactly one of the points of domain-

driven design. You will never get your model one hundred percent right

the �rst time, and that is why it is so important that the model is �exible

so that future refactorings can be carried out with ease. I have achieved

this �exibility to a high degree through distribution of responsibilities and

by having made the model storage-agnostic. Also, when it comes to the

domain-neutral component, or model framework, I am sure that this will

contribute to shorter development times on future projects because it is

highly reusable.

9.1.1 Future perspectives

Hosting software in the cloud is most likely going to be become very com-

mon in the future. Cloud hosting services are being o�ered by many of

the big players on the market, with products such as �Google App Engine�,

�Microsoft Azure�, �Amazon Elastic Cloud� and more. The bene�t of these

services is that they provide instant on-demand scaling of the applications

they host. It would be natural to host a product such as the IdP in the

cloud to make sure that even extremely high loads on the application could

be handled. However, the storage mechanisms used in these cloud services

are very dissimilar to relational databases. Therefore, the model will face its

greatest test if at some point it is decided to host the IdP in the cloud.

136

137

9.2. Domain-driven design

I can only say that this, my �rst encounter with domain-driven design, has

been very positive. Domain-driven design is based on some very sound prin-

ciples that can be applied to any software design task that I can think of.

Textbooks about domain-driven design often use examples from business

domains that are commonly understood, such as hotel reservation systems,

order systems or the like. The business domain that has been modelled here

is of a very technical nature, and at the beginning of this project I was

anxious to �nd out if the domain-driven design principles could be applied

to this kind of system as well. I think that it is safe to conclude that it

can. Even though there was no sharp distinction between domain experts

and developers on this project, having a broad ubiquitous language that is

re�ected in the model and code has made the system so much easier to talk

about and discuss. Furthermore, a lot of time has been saved by the ability

to refactor in the model instead of refactoring code that has taken a long

time to write. And using the domain-driven design concepts such as enti-

ties, repositories, services, speci�cations, etc. makes the code much more

recognizable to newcomers to the team.

Using domain-driven design on a project requires commitment from all

developers. In the modelling phase, the developers involved must have strong

modelling skills, and a thorough understanding of domain-driven design. In

the development phase, when the model has already been lined out, it is still

important that every developer on the team has knowledge about domain-

driven design such that all the concepts used in the model can be understood

by everyone. I have not had the opportunity to try domain-driven design on

bigger scale since this project has not involved other developers than myself.

I am however convinced that the bene�ts of using domain-driven design

will turn out to be even bigger when working on large teams. The larger

the teams, the more important it becomes to have a common ubiquitous

language and a strong and �exible model.

Mastering domain-driven design is not something that can be learned from

a single project, but my work with it so far has de�nitely encouraged me to

keep using it, and I look forward to becoming even more adept at applying

its principles. For me personally, being able to design software very well

is a goal that I strive to achieve because it will give me greater professional

satisfaction, and by practicing my domain-driven design skills I am sure that

138

I will be able to reach that goal.

Chapter

Appendix A
C# language elements

This aim of this appendix is to give a short introduction to the C# language,

enabling readers without prior knowledge of the C# language to understand

the code samples in the thesis. The contents presented herein are based on

the C# Language Speci�cation [Microsoft 2009], and should by no means

be regarded as complete. Please refer to [Microsoft 2009] for the complete

reference.

A.1. Program structure

The key organizational concepts in C# are programs, namespaces, types,

members, and assemblies. C# programs consist of one or more source �les.

Programs declare types, which contain members and can be organized into

namespaces. Classes and interfaces are examples of types. Fields, methods,

properties, and events are examples of members. When C# programs are

compiled, they are physically packaged into assemblies. Assemblies typically

have the �le extension .exe or .dll, depending on whether they implement

applications or libraries.

A.2. Types

C# programs use type declarations to create new types. A type declaration

speci�es the name and the members of the new type. Five of C#'s categories

of types are user-de�nable: class types, struct types, interface types, enum

types, and delegate types.

Class, struct, interface and delegate types all support generics, whereby

they can be parameterized with other types.

There are two kinds of types in C#: value types and reference types.

Variables of value types directly contain their data whereas variables of ref-

erence types store references to their data, the latter being known as objects.

139

140

With reference types, it is possible for two variables to reference the same

object and thus possible for operations on one variable to a�ect the object

referenced by the other variable. With value types, the variables each have

their own copy of the data, and it is not possible for operations on one to

a�ect the other

A.2.1 Classes

A class type de�nes a data structure that contains data members (�elds) and

function members (methods, properties, and others). Class types support

single inheritance and polymorphism, mechanisms whereby derived classes

can extend and specialize base classes.

Members

The members of a class are either static members or instance members.

Static members belong to classes, and instance members belong to objects

(instances of classes). The following table provides an overview of the kinds

of members a class can contain.

Member Description

Constants Constant values associated with the class

Fields Variables of the class

Methods Computations and actions that can be performed by

the class

Properties Actions associated with reading and writing

named properties of the class

Indexers Actions associated with indexing instances of

the class like an array

Events Noti�cations that can be generated by the class

Operators Conversions and expression operators supported by

the class

Constructors Actions required to initialize instances of the

class or the class itself

Destructors Actions to perform before instances of the class

are permanently discarded

Types Nested types declared by the class

141

Accessibility

Each member of a class has an associated accessibility, which controls the

regions of program text that are able to access the member. There are �ve

possible forms of accessibility. These are summarized in the following table.

Accessibility Meaning

public Access not limited

protected Access limited to this class or classes derived from

this class

internal Access limited to this program

protected internal Access limited to this program or classes

derived from this class

private Access limited to this class

Inheritance

A class inherits the members of its direct base class type. Inheritance means

that a class implicitly contains all members of its direct base class type,

except for the instance constructors, destructors and static constructors of

the base class.

Base access

A base-access consists of the reserved word base followed by either a "."

token and an identi�er or an expression-list enclosed in square brackets:

base-access:

base . identifier

base [expression-list]

A base-access is used to access base class members that are hidden by simi-

larly named members in the current class or struct. A base-access is permit-

ted only in the block of an instance constructor, an instance method, or an

instance accessor.

142

This access

A this-access consists of the reserved word this.

this-access:

this

A this-access is permitted only in the block of an instance constructor, an

instance method, or an instance accessor. Within an instance constructor or

instance function member of a class, this is classi�ed as a value. Thus, while

this can be used to refer to the instance for which the function member was

invoked, it is not possible to assign to this in a function member of a class.

Constructors

The this(...) form of constructor initializer is commonly used in conjunc-

tion with overloading to implement optional instance constructor parame-

ters.

1 class Text
2 {
3 public Text(): this(0, 0, null) {}
4 public Text(int x, int y): this(x, y, null) {}
5 public Text(int x, int y, string s) {
6 // Actual constructor implementation
7 }
8 }

In the above example, the �rst two instance constructors merely provide

the default values for the missing arguments. Both use a this(...) constructor

initializer to invoke the third instance constructor, which actually does the

work of initializing the new instance.

Likewise, a constructor can invoke the constructor of its base class by

using base-access as illustrated below:

1 using System;
2

3 class A
4 {
5 protected string theString;
6 public A(string aString){
7 this.theString = aString;
8 }

143

9 }
10

11 class B : A
12 {
13 private int theInt;
14

15 public B(string aString, int anInt) : base(aString) {
16 this.theInt = anInt;
17 }
18

19 public void PrintIt(){
20 Console.WriteLine("The string: " + theString + ". The int: " + theInt);
21 }
22 }

A.2.2 Structs

A struct type is similar to a class type in that it represents a structure with

data members and function members. However, unlike classes, structs are

value types and do not require heap allocation. Struct types do not support

user-speci�ed inheritance, and all struct types implicitly inherit from type

object.

A.2.3 Interfaces

An interface de�nes a contract that can be implemented by classes and

structs. An interface can contain methods, properties, events, and indexers.

An interfaces does not provide implementations of the members it de�nes,

it merely speci�es the members that must be supplied by classes or structs

that implement the interface. A class or struct that implements an interface

must provide implementations of the interface's function members. An in-

terface may inherit from multiple base interfaces, and a class or struct may

implement multiple interfaces.

A.2.4 Delegates

A delegate type represents references to methods with a particular parameter

list and return type. Delegates make it possible to treat methods as entities

that can be assigned to variables and passed as parameters. Delegates are

similar to the concept of function pointers found in some other languages,

144

but unlike function pointers, delegates are object-oriented and type-safe.

The following example declares and uses a delegate type named Function.

1 using System;
2 delegate double Function(double x);
3 class Multiplier
4 {
5 double factor;
6 public Multiplier(double factor) {
7 this.factor = factor;
8 }
9 public double Multiply(double x) {
10 return x ∗ factor;
11 }
12 }
13 class Test
14 {
15 static double Square(double x) {
16 return x ∗ x;
17 }
18 static double[] Apply(double[] a, Function f) {
19 double[] result = new double[a.Length];
20 for (int i = 0; i < a.Length; i++) result[i] = f(a[i]);
21 return result;
22 }
23 static void Main() {
24 double[] a = {0.0, 0.5, 1.0};
25 double[] squares = Apply(a, Square);
26 double[] sines = Apply(a, Math.Sin);
27 Multiplier m = new Multiplier(2.0);
28 double[] doubles = Apply(a, m.Multiply);
29 }
30 }

An instance of the Function delegate type can reference any method that

takes a double argument and returns a double value. The Apply method

applies a given Function to the elements of a double[], returning a double[]

with the results. In the Main method, Apply is used to apply three di�erent

functions to a double[]. A delegate can reference either a static method

(such as Square or Math.Sin in the previous example) or an instance method

(such as m.Multiply in the previous example). A delegate that references an

instance method also references a particular object, and when the instance

method is invoked through the delegate, that object becomes this in the

invocation. Delegates can also be created using anonymous functions, which

are "inline methods" that are created on the �y. Anonymous functions can

see the local variables of the surrounding methods. Thus, the multiplier

example above can be written more easily without using a Multiplier class:

145

1 double[] doubles = Apply(a, (double x) => x ∗ 2.0);

An interesting and useful property of a delegate is that it does not know or

care about the class of the method it references; all that matters is that the

referenced method has the same parameters and return type as the delegate.

A.2.5 Partial types

A type declaration can be split across multiple partial type declarations. The

type declaration is constructed from its parts by following the rules in this

section, whereupon it is treated as a single declaration during the remainder

of the compile-time and runtime processing of the program.

A.2.6 Extension methods

When the �rst parameter of a method includes the this modi�er, that method

is said to be an extension method. Extension methods can only be declared in

non-generic, non-nested static classes. The �rst parameter of an extension

method can have no modi�ers other than this, and the parameter type

cannot be a pointer type. The following is an example of a static class that

declares two extension methods:

1 public static class Extensions
2 {
3 public static int ToInt32(this string s) {
4 return Int32.Parse(s);
5 }
6 public static T[] Slice<T>(this T[] source, int index, int count) {
7 if (index < 0 || count < 0 || source.Length − index < count)
8 throw new ArgumentException();
9 T[] result = new T[count];
10 Array.Copy(source, index, result, 0, count);
11 return result;
12 }
13 }

An extension method is a regular static method. In addition, where its

enclosing static class is in scope, an extension method can be invoked us-

ing instance method invocation syntax, using the receiver expression as the

�rst argument. The following program uses the extension methods declared

above:

146

1 static class Program
2 {
3 static void Main() {
4 string[] strings = { "1", "22", "333", "4444" };
5 foreach (string s in strings.Slice(1, 2)) {
6 Console.WriteLine(s.ToInt32());
7 }
8 }
9 }

The Slicemethod is available on the string[], and the ToInt32method is

available on string, because they have been declared as extension methods.

The meaning of the program is the same as the following, using ordinary

static method calls:

1 static class Program
2 {
3 static void Main() {
4 string[] strings = { "1", "22", "333", "4444" };
5 foreach (string s in Extensions.Slice(strings, 1, 2)) {
6 Console.WriteLine(Extensions.ToInt32(s));
7 }
8 }
9 }

Chapter

Appendix B
Interviews

B.1. Mikkel Christensen � Developer at Safewhere

Me What is your general impression of the model?

Mikkel I think the model solves the business requirements presented in the

speci�cation well, and in a �exible way.

Me After having read this thesis, is it obvious for you how you could im-

plement a new plug-in.

Mikkel Yes. I would have to implement the IPlugin interface. Or rather,

either the ICredentialProviderPlugin or IProtocolPlugin.

Me Do you think that the model is �exible or good enough to make refac-

toring easy.

Mikkel Well, both yes and no. I think the plug-in structure introduces a

few issues with backwards compatibility, with regards to refactoring.

However, I do acknowledge that these issues will always be present in

systems that use a plug-in structure, and that it is not a problem with

the model per se. As a matter of fact the model probably does make it

easier, because of the way it clearly distributes responsibilities. I guess

that having a well-de�ned model like this, you can actually perform a

lot of refactoring on the model itself, before you begin programming.

Me That is correct, and I have already done that many times.

Me Do you think that this speci�c system bene�ts from being modelled

using the domain-driven paradigm?

Mikkel Yes. I think that DDD allows the model to be described in a short

and concise manner. I think the readability of this model is better than

many other standard-OO models I have seen in the past.

Me What do you think about domain-driven design's focus on a ubiquitous

language? Does it make sense?

Mikkel It makes a lot of sense. I think you avoid the disconnect between

the developers and the business. It makes developers understand the

relevance of all classes, and they don't have to spend time to come up

with good class names. That makes them more productive, I think.

Me You seem like a fan of domain-driven design already. Don't you think

that there is anything negative about it?

147

148

Mikkel Well, if I have to say something it would be that it requires quite

skilled developers in the modelling phase, to bridge the gap between

the business and the code. But apart from that, no.

Me In the modelling phase only?

Mikkel Yes. When the system has been modelled, I think that it should

be a piece of cake to implement, since all the decisions have been made

already. Past the modelling phase, developers would still have to be

familiar with domain-driven design, but they would not have to great

business insight to implement the model, I think.

Me So, would you use domain-driven design on your next project?

Mikkel Based on what I have read in your thesis, it seems e�ective. I can't

conclude that it is the solution to everything, but I am de�nitely ready

to try it out in practice.

B.2. Mark Seemann � Senior Developer at Safewhere

Me What is your impression of the model?

Mark My overall impression is that it is good. I think the distinction be-

tween di�erent claim types is good, however I think the names could

have been better.

Me Do you have a better suggestion for the names?

Mark Hehe, no, not really.

Me Ok, anything else?

Mark I don't like the naming for �Logging�. I think it is an overloaded word

and that it doesn't describe the exact meaning. I think that �business

activity monitoring�, or something like that would have been better.

Me Good point. I agree.

Mark I am also not sure that tracing actually belongs to the domain. In

my understanding it is more of an infrastructure thing.

Me I wouldn't say that I disagree. The only reason I have chosen to make it

part of the domain model is that I want to expose services that allows

inspection of trace messages in the administrator UI.

Mark Also, you have quite a few factories. I appreciate that the factory

pattern is often useful, but it seems that in this model, everything

that these factories do could have just as well been done in constructor

functions.

Me A valid point. The factories are mainly used to construct entity objects.

The problem is that the LinqToSql framework generates parameter-less

149

constructors. It is of course still possible to add more constructors with

more parameters. However if I used constructors instead of factories

throughout the code, it could potentially lead others to the impression

that the parameter-less constructors are also an option, which they

are not. So by using factories to create entity objects throughout the

code, I create a convention that others can follow, and hopefully avoid

unintended use of the parameter-less constructors.

Mark Ok, that makes sense. That is a good convention then.

Me Yes, and I admit that it is a minor �aw in the model. But I think that

the extra productivity provided by the or-mapper is worth making this

sacri�ce for.

Me So what is your overall impression of domain-driven design?

Mark I think that domain-driven design is a very sound approach. The

�domain model� pattern was actually introduced by Martin Fowler a

long time ago. In his book, it was presented on 10�15 pages. However

I like how Eric Evans has written an entire book about it, because it

really is an essential pattern that requires that kind of attention.

Me So do you think there is anything negative to say about domain-driven

design?

Mark Well, not really. But using domain-driven design requires strong

modelling skills. And maturity. Both technical maturity for the pro-

grammer, but also a mature organization.

Me Mark, you are big advocate for test-driven development (TDD). You

even have your own blog about TDD (http://blog.ploeh.dk). Do

you think that a model such as this renders itself well to TDD?

Mark Well, TDD is all about rapid feedback. You want to write tests that

cover the entire system, and run these tests over and over again, to make

sure that you are not making breaking changes. For a system such as

the one you have modelled, it would not be unnatural to have around

1000 unit-tests. Therefore, I am concerned with the tight coupling to

the relational database that you have presented in your model. You see,

for TDD to be e�ective you really have to run your tests often. And

running all, say, 1000 tests often, require them to be execute really fast.

And here, database access really becomes a bottle-neck. If your tests

do not run in a few seconds, you just stop running them, and e�ectively

stop exercising TDD.

Me Well, I agree that unit tests should not rely on database access. There-

fore, the domain neutral component has an in-memory equivalent to

the database access component. This in-memory equivalent was made

http://blog.ploeh.dk

150

exactly with unit testing in mind.

Mark Oh, ok. I must have missed that. In that case I think the model

renders itself well to TDD.

B.3. Peter Haastrup � Technical director of Safewhere

Me Do you think that the model covers the speci�cation?

Peter Haastrup I think that is generally covers speci�cation well, however

I don't think that it covers the multi-tenancy aspect at all.

Me That is correct. The model is multi-tenancy unaware, and the entire

multi tenancy issue is supposed to be handled at installation time, by

using separate database schemas, separate web applications in IIS, and

separate machine accounts for execution.

Me Do you think that model presented herein represents a good ubiquitous

language?

Peter Haastrup Yes, I think that the model has made a lot of concepts

explicit, making the model easy to talk about on a very detailed level.

Me One of the other interviewees found that the claim names could have

been better. Do you agree with this.

Peter Haastrup No, not at all. I am very happy with those names, and

think that they convey important information about what they repre-

sent.

Me Do you think that using the domain-driven design paradigm and the

domain-neutral component presented here will make development faster?

Peter Haastrup I think that it is positive that a lot of decisions about

how to structure the code have been made already. It will be easier

to maintain the code, and programmers will be able to recognize the

concepts used from project to project.

Me What impact do you think that using domain-driven design for this IdP

project will have on the total cost of ownership for the product?

Peter Haastrup Although introducing a new design paradigm, such as

domain-driven design, seems to require more preparation time before

coding can start, I am sure that this extra cost is made up for by faster

development times. As a matter of fact I think that it is made up for

already by the time of the �rst release, and that having such a good

model will make it much easier and faster to develop future releases.

Furthermore, I think that using domain-driven design the way you have

here, will result in a much more stable and mature product.

Chapter

Bibliography

References

Daarbak, Torben. 2008. Hver tredje CRM-løsning er SaaS-baseret i 2012. http://www.

computerworld.dk/art/49054.

Evans, Eric. 2004. Domain Driven Design. Addison-Wesley.

Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides, John. 1995. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley.

Handy, Alex. 2009. Domain-driven design through Eric Evans' eyes. http://www.

sdtimes.com/content/article.aspx?ArticleID=33357.

Harding, Kim. 2008. Domain-Driven Design course. http://www.kimharding.com.

McCarthy, Tim. 2008. .NET Domain-Driven Design with C#. Wiley Publishing Inc.

Microsoft. 2007. Implementing an Implicit Transaction using Transaction Scope. http:

//msdn.microsoft.com/en-us/library/ms172152.aspx.

Microsoft. 2009. C# Language Speci�cation 3.0. http://go.microsoft.com/fwlink/

?LinkId=64165.

OpenSAML. 2009. OpenSAML website. http://www.opensaml.org.

151

http://www.computerworld.dk/art/49054
http://www.computerworld.dk/art/49054
http://www.sdtimes.com/content/article.aspx?ArticleID=33357
http://www.sdtimes.com/content/article.aspx?ArticleID=33357
http://www.kimharding.com
http://msdn.microsoft.com/en-us/library/ms172152.aspx
http://msdn.microsoft.com/en-us/library/ms172152.aspx
http://go.microsoft.com/fwlink/?LinkId=64165
http://go.microsoft.com/fwlink/?LinkId=64165
http://www.opensaml.org

	Abstract
	Resumé
	Contents
	Preface
	Acknowledgements
	Identity provider
	Specification
	Domain-driven design
	Defining the model
	Object relational mappers
	A domain-neutral component
	Implementation
	Design validation
	Conclusion
	C# language elements
	Interviews
	Bibliography

