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Abstract

As multicore processors become increasingly common, robust concurrent programming
techniques are getting increasingly important. Locking mechanisms such as mutexes and
monitors are commonly used, but are hard to use correctly, and do little to prevent common
error situations such as race conditions, deadlocks and livelocks. Code written using these
techniques also prevent programmers from abstracting away the implementation details of
their code, as individually thread-safe pieces of code can not be safely composed into larger
thread-safe components.

Software Transactional Memory (STM) is an alternative concurrency model, which uses
transactions as the basic synchronization mechanism; any code within a transaction is
executed in isolation from other transactions and commits its changes atomically, providing
semantics very similar to those known from database systems.

In this work, strategies for designing and implementing a STM system in C++, and the
upcoming language revision informally known as C++0x, are explored. With an emphasis
on correctness and simplicity of use, generic programming techniques are used to design
an elegant and general interface for library users, preserving compile-time type safety and
minimizing the scope for programmer error, while also avoiding the performance penalty of
run-time polymorphism.

We also develop a double-buffered deferred update scheme, eliminating many of the problems
typically associated with deferred update systems. As all transactional data is allocated
in-place, we also avoid the extensive dynamic allocations and pointer indirections typically
associated with indirection-based systems.

Resumé

Idet flerkerne-processorer bliver mere og mere almindelige, oges nedvendigheden af bedre
teknikker til at handtere samtidighed ogsa. Mutex’er og monitorer benyttes ofte, men er
sveere at bruge korrekt og ger intet for at forhindre “race conditions”, “deadlocks” eller
“livelocks”. Kode skrevet ved hjeelp af disse teknikker besveerligger endvidere abstraktion,
idet individuelt tradsikre programstykker ikke nedvendigvis kan sammenseettes til storre
tradsikre programstykker.

En alternativ made at kontrollere samtidighed er Software Transactional Memory (STM),
en model hvori transaktioner benyttes til at synkronisere adgang til delte data. Al kode
i en transaktion udferes isoleret fra andre transaktioner, og eendringer i data foretaget
i en transaktion synliggeres atomisk for resten af programmet, ligesom det kendes fra
databasesystemer.

I dette speciale udvikles og evalueres et STM system implementeret i C++, med brug af
ny funktionalitet inddraget fra den kommende revision af sproget, ofte kaldet C++0x. Vi
fokuserer pé korrekthed og enkelhed i bibliotekets greenseflade, og praesenterer en elegant
og generisk greenseflade der forhindrer en reekke brugerfejl, og ved at benytte generiske
programmeringsteknikker undgas desuden de omkostninger der er forbundet med keretids-
polymorfi.

Vi beskriver desuden en ny dobbelt bufferet opdateringsteknik, der forhindrer de problemer
der typisk er forbundet med “deferred update”-baserede STM systemer og tillader potentielt
bedre ydeevne end indirection-baserede systemer.
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1. INTRODUCTION

1.1 Motivation

Concurrent programming is hard. While specialized programming paradigms such as CSP*
and languages such as Erlang have been created to allow programs to scale across large
numbers of processors with relative ease, these typically require the entire program to be
structured radically different from what we are used to, and from what is often considered
convenient. These approaches typically eliminate shared data entirely, instead offering
message-passing primitives as the sole mechanism for exchanging data between threads or
processes.

Functional programming languages also promise to simplify or even automate parallelization
of code due to the elimination of side effects, theoretically eliminating any risk of race
conditions, but again, the reality is not quite as simple. At the time of writing, I am not
aware of a functional language that is able to give us such a level of concurrency “for free”.

No matter how promising these approaches may be, they still suffer from one major problem:
they cannot be retrofitted onto existing code. “Messy” imperative languages, full of side
effects and shared state are the norm, and most existing code is written in these languages.
So even if compilers for functional languages could give us automatic parallelization, and no
matter how compelling the advantages of strict message-passing paradigms such as CSP, they
do not solve the problem that in the most widely used languages, shared data is the norm,
and parallelism and multithreading are extremely error-prone and ensuring correctness is
nearly impossible.

In most common languages, primitives such as mutexes are used to serialize execution of
certain code paths. Locking a mutex ensures that all other threads attempting to gain access
to the same mutex are blocked until the thread currently owning the lock releases it. However,
such a locking mechanism only ensures serialized access to code, when it was really the
data that we wanted to protect. Ultimately, what matters is that only one thread at a time
attempts to modify a piece of data, and that no reads occur while a write is ongoing. But
many different code paths may attempt to access the same data, and so with this type of
locking mechanisms, we have to protect every one of these code paths, which is tedious and
error-prone. A further problem is the risk of deadlocks: if threads acquire the same locks in a
different order, we create a potential deadlock — each thread may own a lock that another
thread needs, so each one gets blocked waiting for other threads to release their locks, which
never happens because they too are blocked and waiting.

Many variations and refinements of these concepts exist, which I have not described in detail.
Monitors, semaphores, barriers and reader-writer locks are available in various languages or
threading APIs, but suffer from many of the same flaws; they serialize access to code, rather
than data. As a consequence, software written using these primitives is not composable: two
individually thread-safe pieces of code cannot be safely composed into one larger thread-
safe operation, as the following example shows. Assuming the following pseudocode class

! Communicating Sequential Processes — a theory of concurrency developed by C.A.R. Hoare in 1978, in which
message-passing “channels” are used as the sole synchronization and communication primitive between
concurrent processes
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representing a bank account,

class Account ({
synchronized Withdraw(amount);
synchronized Deposit(amount);

}

where the member methods for withdrawing and depositing money are both thread-safe
(as indicated by the Java-like synchronized keyword), there is no way to implement a
general money transfer function in terms of them. A transfer of money between two accounts
consists of first withdrawing money from one account, and then depositing it on the other —
but with the catch that the operation as a whole must be atomic: other threads in the system
may never see the intermediate inconsistent state where money has been withdrawn from
one account, but not yet deposited on the other. Such an atomic “transfer” function cannot be
written given the existing interface. We have no way to prevent other threads from accessing
the account after the money has been withdrawn from the source account and before they
are deposited on the destination account. Instead, we would have to open up the class and
add a Transfer (Account dest) method — but this is only postponing the problem. We
still have no way to deal with more complex transactions, such as “if possible, take 100 euros
from account A, otherwise take whatever is on account A, and the remaining amount from
account B, and deposit the full amount on account C”, or “take 20 euros from each of A, B
and C, and deposit everything on account D”.

Another option would be to break the abstraction that the class represents a bank account,
and add explicit LockAccount () and UnlockAccount () methods, which would expose
implementation details and introduce potential errors as the user may forget to unlock an
account after use.

Ideally, we would like some kind of high-level “atomic” primitive, able to ensure that all
modifications that occur within a block of code marked as “atomic” is carried out atomically.
Then the above transfer function could simply be implemented as follows:

void Transfer (srcAccount, destAccount, amount) {
atomic {
src.Withdraw (amount );
dest .Deposit (amount );

}

Rather than protecting individual code paths, this would have the effect of protecting the
data that is manipulated: the state of each account is updated atomically, so that no matter
how other threads access the same accounts, the system will be in a consistent state.

Of course, defining such an atomic? primitive is easier said than done. It is not obvious how
the system should even know which data modifications occur within an atomic block, much
less ensure atomic updates of the relevant data. But theoretically, such a primitive could
solve many of the problems with concurrency, without requiring programmers to rewrite
their code in a completely different programming paradigm. As shown above, such an atomic
block, if it can be implemented, fits naturally into imperative languages such as Java and
C++.

2 It has been pointed out that the term “atomic” is somewhat misleading [11] — the properties we are interested
in are a subset of the ACID properties known from databases: namely, atomicity, consistency and isolation, or
ACL But the key property of our atomic block is really isolation, rather than atomicity — the modifications
made inside the block must be carried out in isolation, so changes made within the block cannot be seen by
other threads, and changes made elsewhere in the system are not seen inside the “atomic” block. However, the
name “atomic” is more common in the literature.
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1.2 Enter transactional memory

Transactional memory, as first proposed by Herlihy and Moss [8] offers to define just such a
programming model. They proposed a way to introduce an abstraction similar to database
transactions into general purpose programming languages. A database transaction guarantees
four properties known as the ACID properties; a transaction occurs atomically, so the rest
of the system will never see a partially completed transaction. They preserve consistency,
and they execute in isolation, as if they were the only process executing in the system. The
durability property used in database transactions is irrelevant in the context of transactional
memory, as all data in main memory is transient and we do not normally expect programs
to be able to survive hardware malfunctions or sudden shutdowns.

However, the ACI properties provide a very nice abstraction under which to coordinate
concurrent reads and writes of shared data in a multithreaded system.

These transactional properties were originally envisioned as built into the hardware: the
processor itself should have a separate cache into which intermediate modifications during
a transaction could be written, and when a transaction commits, this buffer would be
flushed, atomically updating main memory. Thus, the system memory itself would be given
transactional behavior. Such systems are commonly called HTM, for Hardware Transactional
Memory.

There were some notable shortcomings of this approach:

e it would require special hardware support, meaning it cannot be used on the billions of
computers already in use across the world, from mainframes to servers, PCs or mobile
phones,

e the hardware must necessarily impose some limitations in terms of the size of the
transaction-local buffer. If a transaction attempts to modify more data than will fit
in the buffer, how can this be handled safely and without violating the transactional
properties?

To solve this, hybrid approaches have been proposed which exploit such hardware support,
but are also able to fall back to a software implementation. If the transaction-local hardware
buffer overflows, an interrupt could be fired, invoking software handlers executing the
remaining part of the transaction using buffers dynamically allocated in main memory, and
using more conventional synchronization mechanism to ensure the ACI properties.

A more radical solution is to abandon the idea of specialized hardware entirely, and imple-
ment transactional memory in software only (STM, or Software Transactional Memory), as
first proposed by Shavit and Touitou [13].

Despite the advantages offered by a transactional memory, the idea has not yet caught on out-
side the research community. This is largely because no production-quality implementation
exists. Many different approaches and implementation techniques are still being explored,
and there is still no consensus yet as to what the desired semantics of such a system should
be, or what operations would be necessary for real-world use.

1.3 Goal of this thesis

The overarching goal of this thesis is to bring STM systems one step closer to real-world use:
a STM system should be developed with the goal of being as usable in real-world code as
possible. To achieve this, it must not incur an unacceptable performance penalty, and the
syntax and semantics should be well-defined and intuitive enough to enable programmers to
understand and reason about the concurrency in their code.
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In the following chapters, I will describe and implement such a STM system in C++. The
C++ language is chosen for the following reasons:

o C++is a widely used and supported language on almost every platform. A STM library
for use in C++ will benefit a wide range of programmers,

e The accepted way to improve or extend the C++ language is through new libraries —
language extensions are generally only considered once existing libraries have shown
that a feature would be beneficial, and if implementing the feature as a language
extension rather than a library would provide significant benefits. C++ is also expres-
sive enough that many complex new concepts and features can be implemented as
libraries without requiring modification of the compiler or the underlying runtime
library, which is a common way to extend other languages or platforms, such as Java
or .NET. It is possible in C++ to define a reasonably type-safe, performant and general
STM library as a library. In most other languages, such a system would require at least
some language extensions, and indeed most STM research on these platforms have
focused on extending the language with new primitives and semantics,

e C++ has historically evolved in a very “bottom up” manner: rather than new fea-
tures being added by the C++ standards committee to benefit C++ programmers as
a whole, language improvements have often been added by the C++ developer com-
munity through libraries such as the Standard Template Library (STL) [16] or the
Boost libraries [2], pioneering techniques such as generic programming and template
metaprogramming. As explained by Stroustrup [17], library extensions are preferred to
language extensions, and many language extensions are intended as support for library
developers, rather than for users of the language. This tradition of external libraries
influencing the course of the C++ language makes the development of a library-only
STM system in C++ a tempting next step,

e the next revision of the C++ language is due to be finalized within the next year or
two, and partial compiler support is already common. This new revision, commonly
known as C++0x, enables several new features which may aid in the implementation
of a STM system, either by enabling better performance or a cleaner and more concise
syntax for users of the system.

However, I have no illusions that my implementation will be the last word on the subject.
Many different implemention strategies and approaches are still being tried, and even
between existing implementations, accurate and realistic performance measurements are
difficult, making it hard to determine which is “best” from a performance point of view.
Instead, this report will explore one specific implementation strategy to provide the desired
semantics with acceptable performance.

A general and reusable interface for STM systems is also presented, so that if and when
a better STM system is created, it can reuse the interface designed here, enabling users of
the STM system to swap out the STM implementation without having to rewrite their own
code. A uniform interface would also enable standard test suites to be applied to different
STM implementations, allowing the relative performance characteristics of different STM
systems to be studied and compared. A general and reusable interface for STM systems is
also presented, so that if and when a better STM system is created, it can reuse the interface
designed here, enabling users of the STM system to swap out the STM implementation
without having to rewrite their own code. A uniform interface would also enable standard
test suites to be applied to different STM implementations, allowing the relative performance
characteristics of different STM systems to be studied and compared.

To achieve these goals, I will first analyze the requirements we as programmers and users
of the STM system place upon it. It must define a suitable interface and semantics that
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make the system as easy, intuitive and useful as possible — it must fit well into the language
conventions, which in the case of C++ largely means that the system must work well with
the STL and with generic programming,.

We must then consider how the system can actually be implemented in C++. We must
decide on the strategy used to implement the STM semantics: what is the mechanism that
keeps transactions from seeing uncommitted modifications made in other transactions?
Performance is a consideration as well: the system does not need to outperform traditional
lock-based multithreaded code, but it must perform “well enough” to be considered a usable
alternative.

Based on this analysis, the DikuSTM system is described and implemented. Finally, the
system is evaluated, partly by testing that its performance is acceptable, and partly by
demonstrating that the syntax and semantics are such that the library can be easily used in a
broad range of real-world cases.

1.4 Source code availability

Source code for the DikuSTM library is available at either http://jalf.dk/thesis/
dikustm.zip or at http://www.diku.dk/forskning/performance-engineering/
Jesper-Dam.

The author can be contacted at jalf.diku.dk or mail@jalf .dk.


http://jalf.dk/thesis/dikustm.zip
http://jalf.dk/thesis/dikustm.zip
http://www.diku.dk/forskning/performance-engineering/Jesper-Dam
http://www.diku.dk/forskning/performance-engineering/Jesper-Dam

2. FUNDAMENTALS

Before getting into the detailed requirements and design considerations of our STM library,
we must first establish some definitions and assumptions. In Section 2.1, we will detail
the terms and concepts with which the reader is assumed to be familiar, as well as the
environment in which the STM system is intended to work — including both the requirements
placed on the underlying hardware, and the restrictions and considerations that must be kept
in mind due to our choice of programming language.

An introduction to STM is provided in Section 2.2.1. We will establish some basic terms and
definitions, and describe a hypothetical and syntactically simplified STM system, to illustrate
what the basic programming model looks like and to introduce the basic operations that an
STM system must provide.

The purpose of this chapter is not to perform a complete analysis of the problem domain, or
attempt to solve all the problems encountered, but simply to establish a basic understand-
ing of the domain: what does transactional memory programming “look like”, and what
assumptions must be made to make it possible to implement such a system?

2.1 Prerequisites

In the following, the prerequisites for the rest of the report are described: the assumptions
made about the hardware on which the STM system is executing and some key characteristics
of C++ that the STM system must respect.

The reader is assumed to be familiar with concurrency terms such as deadlocks, livelocks
and race conditions, as well as common synchronization primitives such as mutexes. A basic
knowledge of transactions in the context of databases is also assumed: in particular, the
ACID properties of transactions, and commit or rollback of a transaction.

Finally, the reader is assumed to be familiar with C++ [9]. A few features from the upcoming
revision C++0x [10] are used as well, but prior familiarity with these is not essential, as they
will be explained as necessary in this text.

2.1.1 Hardware

When programming concurrent programs in a shared memory environment, we cannot
normally assume that writes from one thread are immediately visible to other threads, or
even that reads/writes occur in the order in which they were listed in the source code.
Both the compiler and the processor may reorder instructions to improve performance. So
to safely exchange data between threads, we assume the presence of a memory barrier
primitive — that is, an operation that reads and writes may never cross. When a memory
barrier is encountered, all reads and writes previously issued must complete before execution
continues, and likewise, no read or write originally placed after a barrier may be moved up
before it. These barriers are typically implemented as special hardware instructions, and
exposed as intrinsic functions in the compiler.

Given such a primitive, we can work around the uncertainties of the memory model under
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which our code is executing. We also assume the ability to execute certain operations
atomically: reading and writing of native word-sized memory fields are assumed to be
atomic, which is the case on most hardware. A more specialized requirement for my
implementation is that incrementing and decrementing 16-bit integers must also be possible
to do atomically. The x86 architecture defines such atomic increment/decrement operations
for all integer sizes, but on platforms without this operation, the operation can either be
emulated using the widely supported compare and swap operation, or the 16-bit fields can be
widened to a size on which increment/decrement can be performed atomically.

2.1.2 The C++ language

The C++ language leaves many operations undefined. When undefined behavior is invoked,
we can make no assumptions about the state of the system. Where many high-level languages
offer a completely well-defined environment, in which every action is handled in a well-
defined way (for example, bounds-checking on array accesses at run-time to catch and prevent
out of bounds memory accesses ensures that even if such an operation is attempted, the
system is left in a valid state). The C++ standard simply leaves the result of such operations
undefined, and since the consequences of the action are not known, they cannot be recovered
from safely. Segmentation faults can typically be caught through some mechanism provided
by the operating system, but this merely keeps the application from terminating — it does
not guarantee that the application is in the same state as before the error occurred.

This means that we must guarantee that transactions never encounter an inconsistent
application state: if they do this, they could enter execution paths that should be logically
impossible, thus perhaps entering an infinite loop, or performing out-of-bounds memory
accesses, both of which would be impossible to recover from safely in C++.

2.2 Transactional Memory

A transaction in the context of transactional memory is inspired by database transactions,
although with some important differences. As with database transactions, a Transactional
Memory (TM) transaction consists of a sequence of operations to be executed in isolation,
and committed atomically. It is possible that a conflict may occur during the transaction itself
or in the commit phase. In that case, the transaction is rolled back, and all its speculative
changes reverted.

It is possible that, after a transaction ¢y has accessed an object x, but before ¢y has committed,
another transaction ¢; commits a modification to x. In this case, ¢y’s view of the application
state is no longer valid when it attempts to commit, and the transaction must be rolled back.
Another scenario may be that the same transactions access two objects, g and x7: first
to reads xg, then t; commits a modification to both zy and 1, and finally, ¢y attempts to
access x1. In doing so, t( encounters an inconsistency: the version of z it saw earlier, and
the version of x; it is about to read have never coexisted. If the transaction is allowed to
proceed, it will see an inconsistent view of the application. Since the programmer may have
written ¢y to assume some kind of consistency between xg and x, proceeding with the read
could violate some programmer-defined invariant, causing unexpected behavior. This means
that a transaction must validate each access of shared variables, and roll back immediately if
an inconsistency is detected. A final cause for rollbacks may be that the transaction cannot
acquire exclusive locks of the objects to be modified during the commit phase. Perhaps
another transaction is in the process of committing changes to the same objects, so again, the
transaction must roll back and release its locks.

In general, if the system rolls a transaction back due to a detected conflict or inconsistency, it
will automatically retry the transaction immediately. The programmer is not notified that
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the transaction failed to commit, and can simply assume that when the transaction returns, it
will have committed successfully. By contrast, a programmer-initiated abort will roll back
the transaction, and then instead of retrying, return control to the caller.

In order for transactions to execute in isolation, they typically rely on some mechanism for
creating private copies of shared data, so that their speculative changes can be made to one
instance of the object, while another preserves the original value so the transactions changes
can be reverted in the case of a rollback. To avoid ambiguity, I will describe the “original”
or “non-speculative” version of an object as the canonical one, while uncommitted modified
versions are termed either transaction-local or private objects.

The set of objects accessed by a transaction is known as its read set. The subset of this
which is modified by the transaction is known as its write set. In some TM systems, all code
is implicitly executed in a transaction and so all types of data must support transactional
accesses, but in most STM implementations, only a subset of types support transaction
semantics and can be safely accessed by multiple transactions. These must typically define
some additional metadata for the TM system to use, and are said to be transactional or we
may simply call them shared objects or types.

2.2.1 The STM programming model

Before trying to define my own STM system, it is worth illustrating what we would like
STM programming to be like. A basic STM system only has to support one single type of
operation: It must allow us to mark a block of code as a transaction, ensuring transactional
execution of the code. Some implementations consider this to be two separate operations,
“begin transaction” and “commit transaction”, but at a conceptual level, we simply wish
to mark a block of code as transactional. The transaction should commit implicitly when
leaving the block.

In pseudocode, such a transactional block could use syntax such as this:

void foo(list, length) {
atomic {
list.append(x); // append a new element to a list
++length; // adjust the length
}
}

In this simple example, we place an atomic block inside the function — anything that occurs
within this block must be committed atomically when we leave the block. In our case, the
transaction simply consists of appending some new element to a list, and then updating a
separate variable describing the length of the list. For the sake of simplicity, assume that
function arguments are passed by reference, so that the same list may be visible to other
threads.

The atomic block is dynamically scoped, so that functions called from within the block are
also considered part of the atomic block. If function calls temporarily left the atomic block,
transactions would no longer be composable.

Implicit in the above example is the opening of shared data — when a transaction attempts to
access shared data, it must maintain certain metadata to preserve consistency and isolation,
and to keep track of which objects must be updated when the transaction commits. To do
this, each shared object on which the transaction operates must be opened for reading and/or
writing. So a more explicit version of the above sample could look like this instead:
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void foo(list, length) {
atomic {
txlist = list.open();
txlist.append(x); // append a new element to a list
txlength = length.open ();
++txlength; // adjust the length

}

Further, for optimization purposes, we may wish to distinguish between opening an object
for reading only, and opening it for modification, so the general open() function may be
replaced by open_r () and open_rw().

The commit operation is implicit, in that whenever control leaves the atomic block, all mod-
ifications are committed. An implementation could expose an additional explicit commit ()
function

2.3 Side effects

Since the system may roll back and retry a transaction any number of times, side effects
cannot be safely expressed inside a transaction — the side effect would be executed each
time the transaction attempts to run, rather than occurring only once as part of the atomic
commit operation. In general, STM systems commonly prohibit side effects entirely, although
in principle, side effects could be allowed as long as they are reversible, and we are willing to
relax the transactional properties of the system slightly. For example, imagine a transaction
that inserts a new node into a linked list. That operation in itself is safe and side-effect free,
but the node itself must be created on the heap, dynamically allocated with new, which is a
side effect, and cannot be safely repeated if the transaction retries.

A solution could be to enable a mechanism for the programmer to specify additional actions
to perform on a rollback, so that the side effect can be manually rolled back. In this case,
the user could allocate the new node immediately when it is needed during the transaction,
and at the same time specify that if the transaction is rolled back, this allocation must
be freed. This still violates our atomicity and isolation requirements, as the side effect
becomes visible immediately when performed, rather than when the containing transaction
is committed — but since this only occurs when the programmer explicitly wishes it, that
may be a worthwhile trade-off. If the programmer does not explicitly request otherwise, the
ACI properties are maintained.

2.4 Extended operations

In 2006, Harris et al. [6] presented an STM implementation in Haskell which introduced two
new operations: retry and orElse. While not essential in a STM system, these operations
provide some useful semantics which simplify a number of tasks, so they should at least be
considered when implementing an STM system.

2.4.1 retry

The retry operation can be considered the TM equivalent of condition variables. The user
tests whether a condition holds, and if not, invokes retry, to restart the transaction when
conditions have changed so that the test may pass. A naive implementation could simply
retry the transaction immediately, although this would be extremely inefficient, equivalent
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to polling, as the transaction constantly executes and re-executes until the condition being
tested succeeds. A more useful implementation will instead record the set of objects opened
by the transaction at the point when retry is invoked, and only restart the transaction when
one of these is modified. This gives us an efficient method for blocking a transaction until
some condition holds true. A simple pseudocode example could look as follows:

void foo(list) {
atomic {
if (list.empty()) {
retry;
}
list.pop();

}

This implicitly opens the 1ist object, and if the list is empty, the transaction immediately
aborts. The system will then monitor the 1ist object, and restart the transaction when a
modification to the list is committed. When the transaction restarts, it will perform the same
test again, and assuming no other transaction has emptied the list again, it will pass the test
and pop an element off the list.

Due to the isolation property of transactions, there is no risk of race conditions. The pop ()
operation is performed in the same transaction as the test on empty (), and so the state of
the list is guaranteed to be consistent between the two.

2.4.2 orElse

The orElse operation provides support for alternatives, conceptually similar to the alt
construct in CSP. orElse is used to chain two transactions together as one larger compound
transaction, so that if the first transaction retries, the second is executed.

A pseudocode example may look as follows:

void foo(list)
atomic { // first transaction
if (list.empty())({
retry;
}
list.pop();
}
orElse { // second transaction (is also implicitly atomic)
list.append(x);
}
}

As before, we use retry to verify that the list is non-empty before pushing elements off
it. However, this time, this transaction is followed by an orElse statement — if retry
is invoked, the transaction does not restart as described in Section 2.4.1, but instead the
alternative transaction listed after the orElse is attempted. If this retries as well, the entire
compound transaction retries: when an object opened by either transaction is modified, the
process starts over, attempting each transaction in order until one of them succeeds.

This simple construct allows the library user to decide whether or not to block on a call: if
the user wishes to block until the operation succeeds, the operation is attempted in isolation.
If non-blocking behavior is desired, orElse is used to provide an alternative which, for
example, simply returns an error code indicating that the first transaction did not succeed.
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2.5 Related work

Transactional Memory was first introduced by Herlihy and Moss [8] in 1993 who proposed a
set of hardware extensions to enable transactional memory semantics. Shavit and Touitou
[14] introduced the term Software Transactional Memory. Herlihy et al. described the first
dynamic STM implementation[7] in 2003, which, unlike earlier systems, did not require the
set of memory locations accessed by a transaction to be specified in advance.

In 2005, Harris et al. introduced the retry and orElse operations in their Haskell STM system.
In addition to the two new primitive operations, this implementation used the type system to
prevent side effects occurring in a transaction. The Haskell language already uses a special
monad to introduce all I/O operations, effectively making side effects visible to the type
checker. The STM system introduced a similar Transaction monad, allowing the type checker
to verify at compile time that transactions do not contain side effects. The primary drawback
of this system is the somewhat esoteric language used: while Haskell is getting fairly popular,
it is still not accessible to mainstream programmers.

Another master’s thesis was written here at DIKU by Egde [4] in 2007 which described his
ESTM library. Where earlier work on STM systems in C++ has treated the language very
much like C with a few extra features, ESTM used more advanced concepts and features
such as generic programming and compile-time polymorphism to create a very clean and
elegant system. To my knowledge, this is the first STM system for C++ that allows existing
types to be reused as-is.

Larus and Rajwar’s book, Transactional Memory [11] provides an excellent introduction to
transactional memory, and contains a detailed explanation of the basic concepts, as well as a
discussion of what goals implementers should strive to achieve, both in terms of features,
syntax, semantics and performance, in order to deliver a widely useful STM system. Finally,
the book provides an overview of existing implementations, highlighting important milestone
systems.



3. ANALYSIS

In Section 2.2.1 the basic usage of an abstract STM system was described. In Section 3.1 we
will identify the requirements for a STM system to be considered practically useful. The
different implementation strategies and design choices available for the DikuSTM system are
discussed in Section 3.2. Based on this analysis, the high-level design of the DikuSTM system
is described in Section 3.3.

3.1 Requirements

In order for our STM system to be usable in the real world, it must satisfy a number of
requirements. The abstractions, syntax and semantics presented to the programmer must
be consistent, usable and intuitive, and the system must be safe and efficient enough to be
considered worth using.

3.1.1 Genericity and type constraints

The STM system should be as generic and type-agnostic as possible; if modifications to
existing types are necessary, they should be as unobtrusive as possible, but preferably, existing
types should be able to be reused unmodified. So far, most STM implementations in C++ have
required types to inherit from some kind of base object such as the transaction_object
of TBoost.STM. This approach causes a number of problems:

e POD types’, including built-in types, cannot be used in transactions,
e existing types must be modified in order to be used in transactions,

e introducing an additional base class is not always desirable, as it may force program-
mers to use multiple inheritance, which is often considered bad design, and invalidates
certain assumptions about the layout of the class.

We do not actually need the “is-a” relationship usually represented by inheritance. The data
we wish to work on does not have to know about transactions, as long as the transaction
is able to copy and overwrite the data. There is no reason why it should not be possible to
apply transaction semantics to built-in types such as int. Apart from the synchronization
and locking needed to ensure atomicity, the only thing we really need is the ability to take a
copy of the data being modified, and on commit/rollback, write this private copy back into
the original object.

The STM system should require only this minimum of functionality from types, without
any intrusive changes such as forcing objects to derive from a special transaction base class.

!In C++, a POD (Plain Old Data) type is essentially a type compatible with C — that is, it must either be
a primitive type, or a struct/class where all members are public, no inheritance is used and containing no
nontrivial constructor/destructors, and where all members are POD types. Such types are given special
treatment in many cases. For example, the memcpy function from the C standard library may only be used on
POD types.
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For this, a simple class template could be used, which internally stores the object that must
be transaction-enabled. RSTM? and ESTM both use the name shared to describe the object
fulfilling this role, so reusing this terminology, we can name the template shared<T>, where
T is the type to be made transaction-enabled.

3.1.2 API design

As mentioned in Section 1.3, part of the objective of this work is to define a good generic
interface that does not expose any unnecessary implementation details, so that the STM
implementation can be swapped out without affecting the code using it.

C++ is already a rich language with its own distinctive style, idioms and conventions. A
STM library that does not fit into this model cannot be adopted in real-world C++ code.
Beyond simply adhering to existing conventions, we must also expose an API that is simple
and understandable. It must present well-defined and logical abstractions, and it should be
hard to misuse the API and thus break the STM system.

Previous C++ STM systems have tended to rely on macros, or required the user to explicitly
write large amounts of boilerplate code. For example, to define a transaction in RSTM, we
have to use a pair of BEGIN_TRANSACTION/END_TRANSACTION macros.

TBoost.STM?, another well-known C++ STM library, does not even provide these macros,
and instead requires the user to write all the retry logic manually. The following example is
taken verbatim from Gottschlics and Connors [5] paper describing the system:

transaction t;

transaction_state state = e_no_state;
int val = 0;
do
{
try
{

t.write(global_int).value()++;
val = t.read(global_int).value ();
state = t.end_transaction();
}
catch (aborted_transaction_exception&)
{t.restart_transaction ();}
} while (state != e_committed)

These approaches have several problems: they are error-prone and rely on the user to
strictly follow the correct structure for a transaction. The macro approach suffers from all
the problems normally associated with macros, while the explicit approach is extremely
verbose and cumbersome. Further, they both allow the transaction to easily see all other local
variables declared in the enclosing function. While this is not necessarily an error, allowing
the transaction to see too much nontransactional state is going to make the transaction harder
to reason about, as it can easily modify nontransactional variables. In the macro case, we
have also effectively hidden a loop from the user, meaning that code such as the following
does not do what the user expects:

2 Rochester Software Transactional Memory, developed at the University of Rochester [15].
3 Formerly known as DracoSTM, this STM system developed at the University of Colorado-Boulder[5]. The
stated goal of this library is adoption into the Boost libraries, as the new name indicates.
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for (int i = 0; i < 100; ++i)f
BEGIN_TRANSACTION
break
END_TRANSACTION

}

In this case, the user would intuitively expect to break out of the visible loop. But the break
statement will instead break out of the loop created by the transaction macros. Likewise,
return statements may have surprising effects, returning from a function in the middle of a
transaction.

Since a transaction should occur in isolation, it makes sense to give it a unique scope, in
which other local variables will not be visible, and so that the transaction loop only has to be
written and maintained in one place. It is worth noting that the entire transaction actually
has a fairly simple structure, consisting of a number of lines setting up the loop, then the
actual transaction that the user wishes to execute, and finally, the end of the loop and a bit
of cleanup code. Both the setup and cleanup code is independent of the actual transaction
being executed, and should ideally be factored out to avoid duplication.

In a functional language, this could be easily achieved using higher-order functions. Assum-
ing the user expresses his transaction as a separate function with some type TxFunc, perhaps
with the signature void myTx(transaction tx), we could simply define a higher-order
function taking this user-defined function as its parameter:

void Atomic(TxFunc f) {
while (not committed) ({
transaction tx; // create a transaction
f(tx); // execute the user—supplied transaction
commit (tx); // attempt to commit the transaction

}

A structure such as this would solve many of the above problems: The scope of a transaction
is now a user-defined function, meaning that it cannot accidentally access local variables of
the calling function. Nor is the transaction loop visible to the transaction body, so that break
statements cannot affect the loop. return will also behave as expected, simply exiting the
transaction body, but without automatically leaving the transaction commit loop.

Fortunately, this approach is not limited to functional languages. C++ does not directly
support higher-order functions, but the effect can be approximated, either with function
pointers or with function objects or functors. This is a well-known idiom, and is used to
implement the algorithms of the STL. If TxFunc is made a template type, then Atomic
can be called with either a function pointer or a function object. With the support for
lambda expressions in the upcoming C++0x, we could get even closer to an ideal syntax,
as the user-defined transaction body no longer has to be a separately-defined function.
Instead, a transaction which increments a transactional object x could be expressed as
Atomic([&] (stm:transaction& tx){++tx.open(x);} )*. Using this approach, we have
eliminated the explicit loop as well as the macros and the scoping problems.

The explicit transaction parameter could perhaps be omitted, if the opening of transac-
tional objects was implicit, but passing such an object to the transaction function solves a
couple of other problems: it gives the user a single interface to manipulate in order to interact

* The precise syntax of lambda expressions in C++0x is beyond the scope of this text, but in a nutshell, the
first [1 indicates what should be included in the lambda function’s closure. The ampersand indicates that a
reference to local variables visible in the enclosing function should be added to the closure, effectively making
x visible to the lambda function. After the bracket follows the function definition, consisting of the function
parameters followed by the function body as in any other function definition.
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with the STM system — for example, aborting a transaction can simply be done by calling
tx.abort () inside the transaction body. It also helps us ensure that certain operations can
only take place within a transaction function — outside a transaction, the object will not be
available, and so there is no way to call its member functions and interact with the STM
system.

If transactions were allowed to see inconsistent data, all rollbacks could be deferred until the
entire transaction has completed executing. In that case, rather than committing when the
user-defined transaction function returns, we would simply revert all modified objects to
their canonical values. However, as previously described, we cannot allow transactions to see
any kind of inconsistency, and so we must be able to roll back in the middle of a transaction,
when it attempts to open a variable. The only way to do this in the C++ language is to throw
an exception, unwinding the current function, and being caught in the outer “atomic” loop.
Apart from the performance penalty incurred by exception handling, which in most cases is
insignificant, a more serious problem is that the user may catch these STM exceptions that
are intended to pass through the user’s transaction function.

To discourage this, STM exceptions should not be derived from the std: :exception base
class. Of course, a catch(...) statement will catch STM-internal exceptions as well
as the ones actually intended for the user to handle, so these cannot be allowed inside a
transaction body. But assuming the user only attempts to catch exceptions derived from
std: :exception, which is a common best practice anyway, exceptions generated by, and
intended to be caught by, the STM system, will pass through the user-defined transaction
function as intended.

So far, this API has been described making no references to my actual implementation
strategy, which is intentional: one of the goals with the design of this API was to create
an interface general enough to be used for any STM system for use in C++. The only
real constraint this API poses for the library implementation is the explicit open operation
yielding a reference to the transaction-local copy of an object directly. Some STM systems
do not provide this operation, but provide smart pointer objects that must be used on every
access to an object. However, that approach both clutters the syntax and suffers the additional
overhead of updating or looking up metadata on every access. Additionally, that approach
cannot prevent the user from simply dereferencing the smart pointer to get a reference to
the real object being manipulated. As long as the transaction-local object is not moved
around in memory, a reference to it can be returned directly from an initial open operation,
saving the overhead of future accesses. Likewise, the assumption that transactional objects
are implemented through composition, as members of some STM-defined wrapper type,
rather than intrusive inheritance is safe, as it enables additional type safety and prevents
transactional values from being accessed outside of transactions, while allowing predefined
types to be used in transactions with no modifications. Systems relying on inheritance or
other intrusive approaches provide no real benefits, and so I consider it acceptable that those
approaches cannot be expressed using the API described here.

3.1.3 Exception semantics

If a transaction throws an exception, should the transaction roll back or commit? It is
tempting to say that exceptions are indicative of errors or failure to complete some operation,
and so the transaction should be rolled back before the exception is rethrown to the caller.

However, we believe the opposite to be more consistent and intuitive. An exception may
indicate that some user-defined operation failed, but this does not necessarily imply that
the transaction has failed. In particular, a transaction may consist of multiple operations,
the first of which complete successfully, and only the last throwing an exception, and this
may be anticipated by the user. We believe transactions should try to mirror the semantics
of non-transactional code in this respect: if the user calls two functions £1() and £2() in
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that order, and £2 throws an exception, he does not expect the effects of £1 to be rolled
back. Instead, the result of the transaction should be “f1 () completed successfully, and £2 ()
threw an exception, ending the transaction”

If we assume that every exception that escapes the transactions is indicative of transaction
failure, we are second-guessing the programmer, which may lead to surprising semantics in
some cases. Transaction failure should only occur when a conflict is detected by the STM
systel itself. User code failure is a separate concept, and failure in a user-defined function
does not imply failure of the transaction in which it occurred.

A further argument in favor of committing when a transaction escapes a transaction is that
if the transaction is rolled back, then the situation that provoked the exception no longer
exists. At a conceptual level, the transaction never happened, and yet it returned an exception
potentially carrying information about the application state at the time it was thrown.

For these reasons, we believe the most consistent and well-behaved semantics to be that a
transaction implicitly commits when control leaves the transaction function, regardless of
how it leaves the function. The transaction should only be rolled back when the STM system
detected an inconsistency, or when the user explicitly aborts the exception.

3.1.4 Performance

In an ideal world, the STM system should take full control of the entire application: every
variable access, whether a read or a write, should be protected by transaction semantics. In
practice, the cost of this would be prohibitive. C++ does not expose a robust mechanism for
intercepting arbitrary memory accesses, and given that every modified byte of memory would
have to exist in multiple copies (at least one copy containing the transaction’s uncommitted
modifications, and another storing the original value in case the transaction is aborted),
memory consumption would increase dramatically.

Instead, the application must be split into transactional and nontransactional parts. The
user should indicate which objects are required to support transactions, so that there is no
overhead for nontransactional code, following the common C++ design principle that “you
don’t pay for what you don’t use”.

A common source of inefficiency in C++ is excessive copying of objects, and this issue is
very relevant to STM systems. After all, the main mechanism for implementing the isolation
property is the creation of private copies of the data that is being modified. To achieve
reasonable performance, this should be kept in mind when designing the STM system, to
keep the number of copy operations at a minimum. A C++0x feature that may be relevant
here is that of rvalue references, used to implement move semantics. For types with expensive
copy operations, it is often possible to define a cheaper “destructive” move operation. For
example, copying a std: : vector requires the internal array to be copied. But a move can
be implemented simply by “stealing” the array from the source vector, effectively a simple
pointer swap operation.

We should also consider the number of indirections required to access transactional data, and
the impact this has on the CPU cache. Ideally, when opening a transactional object, its data
should already be present in cache, and should exhibit good locality. Some implementations
have required all transactional objects to be allocated on the heap, scattering them and
reducing locality in addition to requiring at least one further level of indirection to access
the object.

It also seems unavoidable that “opening” a shared object will incur some overhead: if the
object has not previously been opened in the transaction, then we must create some kind
of metadata to track the object and ensure isolation while the transaction is running. If the
object has been opened previously in the same transaction, we may be able to avoid updating
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metadata, but instead we have to look up the existing metadata entry. This means that the
open operation should be explicit and return a reference to the “raw” data, so that repeated
reads or writes of an object within a transaction only has to incur the overhead of the open
operation once.

3.1.5 Safety

One of the defining characteristics of good C++ libraries is how safe they are. The RAI®
idiom is used to ensure that acquired resources are released implicitly and automatically,
reducing the scope for programmer error. Exception safety guarantees are offered so that
users of a class or function can be sure that even if an exception is thrown, the application
will not enter an inconsistent or invalid state. Finally, templates and generic programming
are exploited to provide extensive type safety at compile time for all operations. All these
properties should also apply to a STM library.

Given that the entire program cannot run within a transaction for the reasons explained in
Section 3.1.4, there will be a distinction between transactional and nontransactional code, as
well as transactional and nontransactional data. As far as possible, this distinction should be
enforced at compile time by the STM system. For example, nontransactional code should not
be able to inspect transactional data, as this would violate the ACI properties of transactions.
In specific cases, it may be meaningful for transactional code to access nontransactional data,
but outside of these limited cases, that too should be limited by the STM system. Likewise, it
should not be possible to invoke transaction operations such as commit, retry or abort
outside of a transaction.

C++ code normally provides one of three exception guarantees [1], which help ensure
consistency even in the face of unexpected exceptions:

e The no-throw guarantee specifies that the operation cannot throw any exceptions.

e Thestrong guarantee specifies that if the operation throws an exception, all affected
data is reverted to state it was in before the operation. This is similar to the semantics
for rollbacks on transactions, and should be provided when possible.

e The basic guarantee simply specifies that if an operation throws an exception, the
application is left in a valid, consistent state and no resources are leaked. Every
operation should at a minimum provide this guarantee.

For an STM system, we must consider which exception guarantees we are able to provide.
no-throw is out of the picture: a transaction consists of user-defined code, and we have no
way of ensuring that it will not throw an exception. The strong guarantee can often only
be provided through indirection: rather than overwriting an object, which is irreversible,
a separate copy should be made, and a pointer updated to point to the new copy instead
of the original object. This way, even if creation of the copy causes an exception, we can
at least revert to the initial state. If the object was overwritten directly and an exception
thrown afterwards, we could try overwriting again with the original value, but this could
fail, preventing us from reverting to the initial state.

Unfortunately, this rules out the strong guarantee for many implementation strategies.
Providing only the basic guarantee in the general case is unacceptable, and the strong
guarantee much better models the transaction semantics we wish to create. However, it may
be acceptable for the system to provide the strong guarantee in some cases only, and fall back

5 Resource Acquisition Is Initialization — the accepted name for the idiom of mapping resources to classes,
so that resources are acquired in an object’s constructor, and released in its destructor. If the object has a
deterministic lifetime (if it is either a class member of a function local object), we are ensured that its internal
resource will be freed correctly when it goes out of scope.
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to the basic guarnatee in others; if the transaction operates on objects whose copy/assignment
operations themselves provide the strong guarantee, the transaction as a whole should offer
the same. If the user wishes to implement transactions on objects which can only support
the weak guarantee, the transaction as a whole may be downgraded to guarantee only weak
exception safety.

3.1.6 Transparent nesting

Although some STM systems have considered support for nested transactions to be a kind of
optional extra feature, it is essential in order to achieve composability: if two transactional
code snippets are composed into a larger transaction, nesting must be supported. A further
complication is that this nesting must be transparent to the user — a user of the STM system
might not know whether a given function uses a transaction internally, so no special syntax
can be required for nested transactions.

Similarly, since the user might not have a reference to the outer transaction, the inner
transaction’s constructor must not require a reference to the transaction it is nested within.
The system must keep track of this implicitly and automatically.

We must also consider the nesting model to be used. These can be categorized as follows:

e Flattened nesting describes a model in which inner transactions are “merged” into
outer ones: the inner transaction operates directly on objects visible to the outer
transaction, and its commit operation is effectively a no-op. If the inner transaction
attempts to rollback and restart, the outer transaction is restarted as well. Semantically,
this is acceptable in the common case as long as each transactions execute in a single
thread, and nested transactions always execute in the same thread as their parents.
This ensures that although the uncommitted changes of the inner transaction are
technically visible in the scope of the outer transaction, the outer transaction does not
execute until the inner one terminates, and so ACI properties are maintained. It does
mean that the entire “stack” of transactions must be restarted if the innermost one
attempts to restart, which may be considered unnecessary overhead — but on the other
hand, if the innermost transaction encounters inconsistency forcing it to restart, it will
likely encounter the same inconsistency again when the outer transaction attempts to
commit. A more important limitation of this model is that if the inner transaction is
explicitly aborted but not restarted, its speculative changes cannot be rolled back, and
will be seen by the outer transaction.

o Closed nesting is the most intuitive approach: Changes seen in an inner transaction
must be committed to become visible to the outer transaction, and only become visible
to the “outside world” once the outermost transaction commits. If the innermost
transaction commits, the semantics are the same as for flattened transactions. The
difference occurs if the user aborts only the innermost transaction: in that case, the
outer transaction is able to continue unaffected.

e Open nesting allows the committed changes of a nested transaction to be visible
immediately and globally, even before the outer transaction has committed. This
model can enable certain optimizations, but may also result in violations of the ACI
properties of transactions. It is also significantly more complicated to implement.

Since flattened nesting does not work as expected if the user wishes to abort only the
inner-most transaction, a closed nesting model should be implemented.
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3.1.7 N-ary transaction parameters and return values

Transactions cannot be considered in isolation. As indicated in Section 3.1.4, they are going
to be part of a larger, nontransactional program, as tools used to ensure thread safety and
synchronization for the specific operations that require it without introducing overhead
into the nontransactional parts of the program. Therefore, it must be possible to transfer
some data between the transactional and nontransactional parts of the code. For this reason,
a transaction must be able to take at least one, but preferably an arbitrary number of
parameters, just like ordinary functions do.

Transactions must also be able to return data to the surrounding application in some way: A
transaction attempting to read data from a shared data structure must be informed of what
data to try to read, and return that data in order to be useful. However, return values may
not be necessary in every case. For example, an operation that cannot fail, and writes data
rather than reading it, may not need to return anything, and so having to specify a return
type and -value would be tedious and unnecessary.

We should also consider that some transactions may be required to return large sets of data,
rather than individual objects. Since side effects cannot occur inside a transaction, this
may become an important operation. Consider a logging system, or perhaps a graphical
user interface which must, at some specified interval, display a consistent snapshot of some
shared data structure. Because displaying this data is a side effect, it cannot occur inside
the transaction, but we also cannot return each member of the data structure individually,
as we would then lose the consistency guarantee that the snapshot as a whole mirrors the
application state at a specific time.

To solve this, some mechanism should be supported for returning an arbitrary number of
values of differing types. In normal code, we would typically achieve this by defining a
function which takes a number of references or pointers as its parameters, which can then be
modified to point to the additional “return values”. A transaction could do something similar,
although with a small twist: These parameters should not be modified unless or until the
transaction commits. So the simple approach showed here will not work:

void myTx (outParam) {
atomic {
val v =
outParam = v;

}

If the transaction aborts after assigning to outParam, this assignment will still be visible
to the calling code, which violates isolation and atomicity. Instead, the STM system must
provide a mechanism for specifying assignments to perform if and only if the transaction
commits. In pseudocode, this could look like the following:

void myTx (outParam) {
atomic {
val v =
snapshot (outParam, v);

}

Here, the snapshot () function can only be called during a transaction. This would register
the assignment of v to outParam to occur atomically if and when the transaction commits.
While this Snapshot capability could be considered nonessential, I believe it would prove
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very useful in practice, as communication between transactional and nontransactional code
must be painless for STM systems to gain popularity.

3.1.8 Reversible side effects

Some transactions may be difficult to express without allowing at least some side effects: a
simple operation such as appending a node to a linked list requires at the very least a memory
allocation, which is considered a side effect. So some mechanism for allowing selected side
effects within a transaction would be useful. We can loosely divide side effects into three
categories, two of which can be supported by an STM system without too much trouble:

e reversible side effects,
e side effects that can be buffered,

e side effects that cannot be reversed or buffered.

The last group cannot be safely expressed in a transaction. However, reversible side effects
can be allowed, as long as they are reversed during a rollback, and assuming that either the
rest of the system does not see the temporarily applied side effect, or that this slight breach
of the isolation property is acceptable. Dynamic memory allocations fall into this category.
A transaction that attempts to insert a new node into a linked list must create the new node
immediately in order to manipulate it. But the action can be reversed simply by releasing the
allocated memory again. So as long as a mechanism is provided for pairing reversible side
effects with their inverse operations, and registering these with the STM system, reversible
side effects can be performed during a transaction.

Other side effects can be buffered, so that they are not performed until the transaction
commits. An example of this may be the opposite of the above example: Removing a node
from a linked list involves releasing the memory allocated for the node. This operation can
not be reversed. Once memory is released, we have no way to request “the same memory
block again” from the operating system. However, it can be buffered. We do not need the
memory to be released immediately, we simply wish it to occur if and when the transaction
commits. So, for operations that can be buffered until commit time, a registration mechanism
could be provided allowing the programmer to register individual side effects to be carried
out when the transaction commits.

3.1.9 Support for detaching transaction metadata from transactional
object

In the typical case, we can colocate a transactional object and its metadata as suggested in
Section 3.1.1. A wrapper class is developed which holds both metadata and the object that is
being transaction-enabled.

However, in some cases, we may wish the metadata to be located elsewhere. For example,
we may be given an array of objects which should all be transaction-enabled for some
concurrent operations to take place, and afterwards, the resulting array of objects should
once again become non-transactional.

One way of doing this could be through a detached_shared class, which, instead of
owning the object it protects, contains a pointer to the object to be protected. Using
such a class, an array of objects can be transaction-enabled in-place, and can even revert
to becoming non-transactional once the associated detached_shared goes out of scope.
While an object is associated with a detached_shared object, its state is indeterminate if
accessed directly, as ongoing transactions might modify the object at any time. Once the
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detached_shared object associated with an object goes out of scope, the object reverts
to becoming non-transactional, and should contain the value assigned to it by the last
transaction that committed.

3.2 Properties of an STM system

In the previous section we discussed the requirements a user might place on a STM system
in order for it to be considered usable. This section will discuss a number of issues more
related to the implementation strategy. This section will discuss how the atomicity required
for transaction commits should be implemented and how to detect inconsistencies and avoid
“dirty reads” and other such how questions. While some of these issues will have an impact on
the user, the primary concern is what each choice means for the implementation complexity.

3.2.1 Isolation level

Isolation is a premise for any STM system — without it, transactions would be meaningless.
However, different degrees of isolation can be provided. While isolation must always be
enforced between transactions, it is less clear to which degree it should apply between
transactions and nontransactional code. Weak isolation provides only the basic guarantee
of isolation between transactions, and leaves the semantics undefined for transactions and
nontransactional code accessing the same data. In those cases, race conditions may occur,
and both threads may see inconsistent views of the application state. So in a weakly isolated
STM system, the burden is on the programmer to ensure that transactional data is never
accessed outside a transaction.

Strong isolation replaces these undefined semantics with a simple guarantee that transac-
tions must be isolated even from nontransactional code. However, enforcing this is almost
impossible in a language such as C++ — unless every memory location is monitored for
modifications, we have no way to track which objects are accessed at any given time in the
execution of an application. Transactional objects can be given specific types, as suggested in
Section 3.1.1, which can only be opened within a transaction, ensuring that transactional
data is not unintentionally accessed outside a transaction. But even so, we can never prevent
aliasing: A transaction may open such a transactional object, and pass a pointer to it to the
outside world. Since strong isolation is impossible to achieve in C++ without drastically
modifying the compiler, and accepting a significant overhead, I have chosen to implement
weak isolation. However, while the system cannot offer any hard guarantees about the
isolation of transactions from nontransactional code, we can and should make it harder to
accidentally violate this isolation. In order to do so, we must consider communication in
both directions:

e Nontransactional code attempting to access transactional data can be blocked as
described above, by wrapping all transactional objects in a special type that can
only be “opened” if a transaction is passed to them. While this is not fool-proof;, it
would prevent isolation from being accidentally compromised, at least, and require a
conscious decision from the programmer.

e Transactional code attempting to access nontransactional data is harder to prevent,
as nontransactional data consists of regular C++ data types, with no mechanism to
verify that no transaction is ongoing. Scoping rules can be used to prevent local data
from being visible to a transaction if the transaction executes in its own function (see
Section 3.1.2), but global objects can always be accessed. Further, for transactions to
be useful, it must be possible to parametrize them, and these parameters typically
come from nontransactional code. So while there is no general method to prevent
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transactions from seeing nontransactional data, a small amount of discipline should
keep the problem in check: the only nontransactional data visible to a transaction is
whichever global variables are visible, as well as the parameters explicitly passed to
the transaction.

Since we can mostly prevent unintended sharing of data between transactional and nontrans-
actional code, I consider weak isolation to be sufficient for my STM system.

3.2.2 Transaction granularity

One of the most basic decisions for an STM system is the granularity at which changes
are tracked during a transaction. In a hardware-based TM system, no type information is
available, so it makes sense to track fixed-size blocks, either at the level of individual bytes,
or larger units such as cache lines or memory pages. While tracking individual bytes would
reduce the risk of conflicts, larger blocks reduce the number of objects to be tracked by the
STM system, lowering overhead.

Some early software implementations followed a similar strategy, but without significant
support from both compiler, hardware and runtime library, this strategy is impossible to
implement efficiently. A more common approach in software TM systems is to use the objects
defined by the type system: A STM system operating on an int should not see a sequence of
four bytes, but a single object of type int. This gives us fewer objects to track modifications
on which should aid performance of several key operations, and allows us to reuse operations
already defined for the type, such as its copy constructor and assignment operator.

Even if there was an efficient method for tracking accesses to each byte in memory, and
redirecting as needed to either the uncommitted modified version, or the canonical one
with only committed changes, the C++ language standard would simply not permit treating
memory blindly as a sequence of bytes.

So for a library-only STM system implemented in C++, object-based granularity is the only
option that can work.

3.2.3 Contention management and validation

Different STM systems have explored a number of different ways to manage contention
for shared resources. When a conflict occurs, whether it is a read-write or write-write
conflict, one of the conflicting transactions must be aborted. Scherer and Scott [12] have
explored a number of different contention managers for resolving these conflicts. However,
one premise for such managers to work is that the conflicting transactions can be identified.
If a transaction attempts to commit modifications to an object and finds that it is unable to
acquire the object, it must be able to determine who is holding the lock on the object. This
strategy of using visible readers means that whenever an object is opened by a transaction,
some data structure must be updated to point to the transaction that opened the object.
This is potentially expensive, especially as it must be done every time an object is opened.
Other STM systems have used invisible readers, where there is no way to determine which
transactions have opened a given object. This saves a possibly significant amount of overhead,
but also hinders the ability to apply different conflict resolution strategies. When a transaction
encounters a conflict, it cannot request the other transaction involved in the conflict to abort,
and must be aborted itself. Such a naive approach to conflict resolution may potentially
cause some degree of starvation, as long-running transactions may prevent newer, shorter
transactions from committing.

Assuming conflicting transactions can be identified, transactions can perform invalidation,
where, rather than validating their own data-set when attempting to commit, they instead
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mark all conflicting transactions as invalid. Gottschlich and Connors [5] describe some
significant benefits to this approach, but also note that a validation strategy may be more
efficient than invalidation for large numbers of threads.

If it is deemed worthwhile, a transaction could be made to iterate over the set of all active
transactions, scanning the data-set of each to determine which transactions have the object
open, and depending on some conflict management strategy, either invalidate the other
transaction, or abort itself. However, for this initial implementation, the considerable
complexity this would add, and the questionable performance benefits, means that we will
stick to the naive validation-based approach where a transaction is responsible for validating
its own data-set, and must abort itself if validation fails.

While validation could be implemented simply by testing for equality (if a comparison of a
transaction-local copy of an object and its canonical version yields true, the transaction-local
object is assumed to be up to date and valid), this approach is both inefficient (comparisons
may be costly on user-defined types), and may yield false positives. For example it is
vulnerable to the ABA problem common in concurrency: the canonical object (starting with
value A) may have been updated to a different value (B), and then updated again, bringing it
back to the original value (A). The comparison will yield true, despite the transaction-local
object being a copy of an outdated version, that just so happened to have the same value as
the most up-to-date one.

A better approach is to use versioning: associated with each shared object is a version counter,
recording a timestamp for the last modification of the object. When a transaction starts,
it records the current timestamp as its read version, and every shared object it opens is
compared against this. If the shared object has a version higher than the transaction’s read
version, it has been modified since the transaction started, and should not be seen by the
transaction which must then restart and receive a new read version.

When a transaction prepares to commit, it records the most recent timestamp as its commit
version. The version fields of all modified objects are then updated with this commit version
if they are still valid. For this scheme to work, it is important that during the commit phase
of a transaction ¢, the modified objects are not accessed by another transaction ¢; with
higher read versions than the committing transactions commit version. If this happened, 1
would be unable to distinguish between objects already committed by ¢y and objects whose
updates had not yet been performed, since in both cases, the object’s version would be lower
than ¢;’s read version and it would be considered valid and consistent.

3.2.4 Ensuring consistency

As described in Section 2.1.2, the C++ language relies on the user to avoid undefined behavior.
For the STM system to be useful, it must not accidentally exhibit undefined behavior in
the absence of user errors, or present behavior that may lead the users code into undefined
behavior. Some STM systems have allowed transactions to see inconsistent views of data,
which could lead a transaction to reading out of bounds or perhaps enter an infinite loop or
otherwise behave enter erroneous states that cannot be recovered from. Accessing memory
out of bounds invokes undefined behavior, at which point we have no guarantees of the
consistency of other memory in our application, and while an infinite loop could possibly be
interrupted by aborting the thread in which it is executing or provoking it into producing
an error that will abort the loop, such tricks would also risk aborting the thread halfway
through some operation, again leaving the application in an inconsistent state.

So to ensure correctness, we must guarantee that transactions never see any inconsistent
state to begin with. This constrains ou implementation somewhat: On opening an object, we
must immediately verify its validity, and we must then ensure that the STM system does
not update the object while a transaction has it open. If objects are modified in-place, this
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restriction means that only one transaction may have any given object open at a time. If
modifications occur in transaction-local copies, but overwrite the canonical object when
committed, then no commits can occur while other transactions have the object opened.

In managed languages, or given support from the compiler, it may be possible to recover
from transactions seeing inconsistent data, and so it may be worthwhile to delay validation
until commit-time. But as mentioned, a library-only implementation such as this does not
have that luxury: data must be validated before the transaction is granted access.

We must guarantee that once a transaction has opened an object for reading or writing,
the version of the object seen by the transaction will not be modified until the transaction
commits. Additionally, when the object is first opened, the transaction must verify that
the version seen is consistent with all other objects opened by the transaction. This does
not necessarily mean that all conflicts must be detected immediately, however. If multiple
versions can exist of an object, so that the version seen by a transaction is not necessarily
the most recent one, then it becomes possible for a transaction to proceed, operating on
consistent, but outdated data. Of course, the transaction cannot safely commit in this case,
but until it tries to commit, it will behave consistently and predictably, so delaying at least
some conflict detection until commit-time is possible.

An argument in favor of delaying conflict detection when possible is that validating the
consistency of the entire transaction data set is an O(n) operation. We must verify that
every object opened by the transaction is still valid. If this is done every time an object is
opened, for example, the total cost of validation throughout a transaction is O(n?). While
allowing an explicit validate () function that the user can call may be useful, in order to
restart invalid transactions before some long-running operation, the most general solution
may simply be to postpone validation until commit-time.

3.2.5 Update strategies

It is clear that to provide transaction semantics on modifying objects, we must either forbid
concurrency entirely so that conflicts never occur and rollbacks will never be necessary, or
have some kind of copying mechanism in place to ensure that uncommitted modifications
can exist along with the original, unmodified values, so that whether a transaction commits
or aborts, it can ensure the canonical version of the object is in the correct state when
the transaction ends. The first, somewhat pathological, option is obviously not desirable —
concurrency was the entire motivation for STM in the first place — so some strategy for
copying and updating objects must be defined.

The possible update strategies can be roughly categorized along two axes: direct versus
indirect updates, and relying on indirection versus updating in-place

Direct update

A direct update strategy, sometimes described as undo logging since it maintains a log used to
undo speculative changes, means that the canonical version of an object is modified directly
during a transaction. To support rollbacks, a transaction-local copy is made, which contains
the original value of the object, and in the event of a rollback, this is used to overwrite
the canonical object, bringing it back to the initial state. In a naive implementation, this
would make uncommitted modifications visible to other transactions, violating the isolation
property. However, some systems allow this, assuming that the error can be detected at
commit-time, and transactions that have seen inconsistent state can be aborted. Other
systems use locking to prevent other transactions from accessing an object while it is being
modified, which preserves isolation, but limits concurrency. However, a key advantage of a
direct update strategy is that commits become practically free: all modifications have already
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been made directly to the canonical versions of each object, so on commit, a transaction
simply has to validate that no inconsistent reads have occurred, and then update the requisite
metadata. A rollback, on the other hand, requires every modified object to be reverted to
its initial state by overwriting them with private backups created before the objects were
modified. This strategy is sometimes described as redo logging, since the transaction-local
copies containing speculative changes constitute a log that must be applied to the canonical
objects in order for the modifications to take effect at commit.

Deferred update

Using a deferred update strategy, transactions apply speculative modifications to private
copies of data only, and defer updates of the canonical objects until commit time. This helps
ensure that the isolation property is preserved, as the objects seen by other transactions
are only modified briefly when a transaction commits its modifications. Of course, to
avoid inconsistencies, the commit phase must still be protected somehow to ensure other
transactions do not see the canonical object being updated.

Some implementations only create the transaction-local copy if an object is opened for
writing, while read-only accesses are done directly on the canonical object. In that case,
we must further ensure that no currently running transactions have accessed the object, as
inconsistency would then be introduced into those other transactions.

This strategy is also called redo logging, since the transaction-local copies of objects contain-
ing speculative changes constitute a log to be applied, or “re-done” on the canonical objects
when the transaction commits.

Compared to direct updating, this strategy makes commits more costly: both strategies
require private copies of objects to be made before they are modified, but in a deferred update
strategy, this copy must be used to overwrite the canonical object at commit-time as well,
resulting in a total of two copies per modification. However, rollbacks become less expensive,
as the canonical objects are not modified until commit-time, and so the transaction-local
copies can simply be discarded without the canonical objects ever being affected.

In-place update

In-place updating describes an approach where there is always one canonical object stored
in one known location. In order to commit modifications, this object must be overwritten
with the newly modified one. While this allows for potentially better locality and cache
behavior, it also makes it harder to avoid inconsistencies: the same canonical object is
known to all transactions, and so while it is being modified, whether that happens gradually
throughout a transaction as in direct updating or as part of a discrete commit stage at the end
of transactions, we must ensure that no other transaction has the object opened for reading
or writing.

Indirection-based update

To avoid the inconsistency problems with updating in-place, some implementations such
as ESTM, have tried an indirection-based approach. Here, rather than there being a single
canonical object that must be updated at every commit, only a canonical pointer exists,
which points to the instance that is currently the most up-to-date version of the object. Under
this approach, every transaction can create a private copy of each object it modifies, and at
commit-time simply set the pointer to point to this copy, without overwriting or touching the
“old” object. This ensures that other transactions which already have the old version opened
will not be affected by the modification: they will continue to see the same old instance,
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avoiding inconsistencies.

The problem with this approach is mainly one of performance: pointer indirection is not free,
and as objects must be dynamically allocated in order to outlive the transactions creating
them, they will exhibit poor locality.

A hybrid approach

It is clear that each of these approaches have advantages: The indirection-based approach
neatly sidesteps all the problems of ensuring consistency, as object are simply never modified
once they have been committed. Direct in-place updating enables relatively cheap commit
operations, at a cost of only one copy per modified object, but limits concurrency. Deferred in-
place updating allows transactions to read an object while another transaction is modifying
it, enabling more concurrency than direct updating, but makes commits costly at two copies
per object.

Ideally, we would like to design a strategy that exploits the advantages from each of these
approaches. In order to enable transactions to read from an object while another transaction
is modifying it, we must take a leaf from the indirection-based strategy: we do not need an
unbounded number of locations in which the canonical version of objects may be stored,
which is what destroys locality for indirection-based approaches, but we do need at least two
“official” slots into which modifications can be stored: one containing the current canonical
object, and another into which modifications can be written during a commit. Since we have
a fixed number of update “slots” per object, we can ensure that these are allocated to get
maximal locality, eliminating the key disadvantage of indirection-based systems.

When a modification is committed into the backing slot, a flag can be flipped, swapping the
roles of the two slots, so that the previously active or canonical slot is now the backing one
into which modifications may be written, and the slot into which the last update was written
is now the canonical one. Of course, when the active slot is turned into the backing one,
we may have lingering readers still accessing the object written there, and until these have
terminated, further updates cannot be permitted.

In a direct-update strategy, we may still get a lot of contention, as modifications to this
“update-only” slot may happen throughout a transaction, so we would be limited to allowing
only one transaction to open each object for writing. In a deferred-update strategy, however,
modifications are only applied at commit-time, so we can relax this requirement, saying that
only one transaction may commit to each object at a time — a requirement that would have
to be satisfied in any case in order to preserve atomicity. This effectively rules out the direct
update strategy, but we would still like to borrow its one key advantage: that a committing
transaction only requires one copy operation per modified object. In order to achieve this,
we can exploit C++0x move semantics. Unlike copy operations, a move may be destructive,
meaning that it modifies the source object. This is not acceptable when we are first creating
the private copy — the canonical object we are copying from must not be affected — but
when applying our modifications, the private copy is no longer needed can be modified by a
destructive move operation. The commit-time copy can therefore be converted into a move
operation, effectively eliminating the second copy operation on types where copying would
normally be expensive. This hybrid approach is described in detail in Section 3.3.

3.2.6 Commit strategy

Committing can be done using a two-phase locking strategy: rather than locking one object
at a time and immediately modifying it, which would cause problems if a later object cannot
be locked, forcing the entire transaction to roll back, all locks must be acquired first. When
this has been done successfully, all modifications can be applied.
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Objects opened for reading only do not need to be locked during commit: instead, at the
beginning of the commit phase, the transaction must retrieve its commit version, the version
that will be assigned to all modified objects on a successful commit, and which indicates the
atomic time at which the entire commit operation takes place. The system must ensure that
all transactions given lower commit versions are fully committed before the transaction is
allowed to proceed. Once this version has been determined, each read-only object must be
scanned to ensure that it still has a valid version — the object’s version must be lower than or
equal to the transaction’s initial read version. If this scan succeeds on the entire read-set, we
know that while the actual transaction was being executed, the entire read-set was valid. If
the write-set, once locked, is also still valid, we know that no transaction occurring between
the transaction’s initial read version and its commit version has modified any object opened
by the committing transaction, and so it can safely commit.

3.2.7 Starvation, deadlocks and livelocks

While this is not really a question of implementation policy — deadlocks and livelocks are
obviously unacceptable — we must nevertheless ensure that these cannot occur.

Deadlocks are almost trivial to avoid in a STM system: If a transaction fails to lock an object
it wishes to modify, it rolls back, releasing any previously acquired locks. This ensures that a
deadlock can never occur, but creates the potential for livelocks — two transactions could
in principle keep trying to acquire the same set of resources, each time acquiring some, but
failing to acquire others, so that both are forced to roll back and start over, repeating the
same scenario. In order to prevent this scenario, we can ensure that objects are acquired in a
globally consistent order. If all transactions follow the same order when acquiring objects,
no cycles can occur where multiple transactions block each others by each holding an object
needed by the other. In normal lock-based programming, this is difficult to achieve, as locks
are typically taken on the fly, when a specific object is needed and so the order in which they
are taken is implicitly defined by the order in which the objects they protect are needed. In a
STM system, however, locking can be deferred until commit-time®, at which point the full
set of modified objects is known, and so these can be acquired in any order, allowing the
system to impose a consistent global ordering, for example based on the address in memory
of each object.

However, we still have to consider starvation: in a STM system employing an in-place update
strategy, we will see some amount of contention between readers and writers. Writers must
never commit changes to an object while readers have access to it. This may lead to writers
getting starved, being forced to constantly roll back and retry, every time failing to commit
because other transactions are reading the objects that the writer is attempting to commit
changes to.

A fully indirection-based system avoids this problem by never modifying already committed
objects, however the situation is less clear cut in the hybrid scheme sketched out in Section
3.2.5. We know that “lingering readers” may be a problem — assuming that an object’s slot 0
is initially the canonical one, several transactions may have it open for reading when another
transaction commits an update to slot 1. The roles of the two slots are now swapped, so that
slot 1 is the canonical one that new readers must open, and slot 0 is the one into which the
next update should be written, but the reading transactions may still have the object in slot
0 open, and so a second commit cannot be permitted yet. However, while this may limit
the frequency of commits in a heavily contended scenario with both readers and writers, it
is impossible for writers to be starved out completely. Only a finite number of readers can
exist on a slot when that slot is switched from a canonical to a backing role. And from this
point onwards, no new readers can be added: all new readers will access the new canonical
slot. This means that assuming no reading transaction enters an infinite loop, all readers will

6 At least this is the case for deferred-update systems, as described in Section 3.2.5.
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Transaction: action slot 0 slot 1
tro: T a:l (txg) b0

tryi: ¢ a:l (txg) bl (tzq)
try: b:1 (txg) a0

tro: T b:1 (txg) a:1 (txs)

Fig. 3.1: Reader counts for subsequent accesses to the two slots of a shared
object. Transaction 0 first registers as a reader () on the currently
active slot (a:1). Transaction 1 then initiates a commit (cg) by register-
ing on the backing slot (b:1). Transaction 1 completes its commit by
swapping the roles of the two slots and at the same time unregisters
itself on the slot that is now active. Transaction 2 now registers as
a reader by incrementing the active slot. This shows that no new
readers can be added to the backing slot, and so, once transaction 0
terminates, its reader count will reach zero, and the next transaction
can commit.

eventually terminate, and so a writer will be allowed to proceed with the next commit. This
is illustrated in table 3.1.

By placing some limit on the rate of successive commits in scenarios with heavy contention
we may also reduce the risk of reader starvation, as readers could otherwise be forced to
constantly restart as the objects they access could get updated before the reader transaction
had a chance to commit. Detailed benchmarking would be necessary to determine the
performance implications of this strategy, but it does at least guarantee that neither readers
nor writers are completely starved: both types of accesses will be allowed to succeed at
regular intervals.

3.3 Design of the DikuSTM library

In the previous parts of this chapter, we have sketched out a number of requirements and a
possible implementation strategy. This section will describe in detail the strategy chosen for
the DikuSTM library.

As suggested in Section 3.1.2, transactional objects are represented through nonintrusive
composition: A class template shared<T> is defined which stores the object of type T that
should be given transaction semantics. But instead of storing a single instance of this object,
the shared template contains two “slots” into which different versions of the object can
be stored. At any given time, one slot is given the active role, meaning that it contains
the canonical version of the stored object, while the other slot is the backing slot. For
convenience, the two roles can be abbreviated as slots A and B. New transactions opening
the object should always get a reference to slot A, while committing transactions should
store their modifications into slot B. After a successful commit, the two slots switch roles, a
double-buffering strategy as is often used in realtime graphics.

The rest of the shared object is taken up by metadata required by the STM system, and
consists of the following components:

e A version field describes the version number of the shared object. Each successful
commit updates the version number, and when opening the object, the version number
is compared against the transaction’s version. If the object has a higher version, it has
been modified since the transaction started, and so the transaction must restart.

o A flag specifying the roles of the two slots. This can be stored in a single bit: if it is set,
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then slot 1 is active and slot 0 is the backing slot, and if not, the roles are reversed.

e A read counter for each slot: This is necessary to prevent commits to the backing slot
while readers are still accessing it. Any time a transaction opens an object, it must
increment this counter, and when the transaction terminates, it must be decremented
again. A commit can only take place when the read counter for the backing slot is
zZero.

It is worth noting that no explicit locking mechanism exists for the metadata fields: for a
transaction to safely inspect the version number, it must prevent commits from occurring,
which can only be done by incrementing the read counter of the backing slot. As long as
readers exist on the backing slot, no commits can occur, effectively freezing the version
counter and the flag. Further, to ensure that only one commit can occur at any given time,
we introduce a rule that transaction may only commit if the backing slot’s read counter was
zero when the transaction incremented it. If the counter was already nonzero, then the object
is either locked for another transaction to commit, or lingering readers still exist from when
the current backing slot was active. Since these counters are used as the only mechanism for
“locking” an object, access to them must be atomic. This includes both read accesses and the
increment/decrements used to update them.

In this approach, readers are not directly visible, so there is no way for a transaction to see
who else has a given object opened — only the read counters are visible, and these do not
identify readers, they only indicate how many readers currently exist. This limits our options
for conflict resolution somewhat. When a transaction encounters a conflict, we have no
simple way to identify the other transactions causing the conflict and force those to abort.
This gives us a simple LIFO order, where the last transaction to attempt to acquire an object
is aborted when a conflict occurs. This simple conflict resolution strategy is not ideal, but the
alternative of relying on visible writers also carries significant overhead [3].

As mentioned in Section 3.2.7, we are guaranteed that neither readers nor writers get starved
entirely, which lessens the need for a more complex conflict resolution strategy.

This layout of the shared objects means that both slots are located in-place, enhancing
locality. Further, since transaction-local copies of objects are transient and must be deleted
when the transaction ends, these can be placed into a single contiguous transaction buffer
as well so that all objects opened for a transaction are placed sequentially, also ensuring
good locality. A simple indirection-based approach would have placed each object copy at a
pseudo-random location determined by the call to the new operator.

Of course, such a contiguous buffer can only have a fixed size and some mechanism must
exist to acquire more buffer space for large transactions. Since transaction-local objects
cannot be moved (as the transaction code contains references to them), a vector-like data
structure is out of the question. A deque seems a promising alternative, exhibiting good
locality without the need to relocate its contents, but another problem prevents this data
structure from being used: the objects copied into the transaction buffer have variable, and
unbounded, size, and we have no guarantee that each page of the deque will be large enough
to store very large objects. This means that the only real option for a resizable buffer is to rely
on indirection: each object copy must be dynamically allocated, and a single pointer stored
in the transaction buffer. A good hybrid implementation could therefore be to attach a single
fixed-size buffer, in the form of a simple array, to handle all reasonable-sized transactions.
If this buffer runs out of space, either because a transaction attempts to allocate very large
objects, or because too many objects are opened, the transaction can fall back to a linked
list implementation, dynamically allocating storage for each new object added. In the vast
majority of cases, this backing structure should not be necessary and the high-performance
fixed-size buffer is sufficient, but without it, large transactions may fail simply because the
buffer runs out of space.
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In Section 3 we discussed the high-level strategy for the library, but left many implementation
details unspecified. In this chapter, the DikuSTM implementation is described in detail. First,
we will describe the high-level structure of the DikuSTM library in Section 4.1, giving
the reader an overview of the architecture of the system, and the responsibilities of each
component. In Section 4.2, we will walk through the operations performed by a transaction
throughout its lifetime, from when the transaction is created, through the execution of the
user-defined transaction function, and ending with either a commit or a rollback.

We will then examine the most important components in further detail. Section 4.10 and
Section 4.11 contain a precise definition of the interface exposed by the library. This is
intended both for users of the library, and as a contract for alternative STM implementations
to follow — as long as the described interface is supported, the entire STM implementation
can be swapped out for an alternative library, with no changes to user code.

Finally, a number of limitations of the current version of the library are listed in Section 4.12.
These are either features that have not yet been implemented, or dependencies on external
libraries or hardware requirements that could be eliminated in future versions.

4.1 High level library design
The DikuSTM library is divided into three tiers or layers, with distinct roles:

e the user tier contains classes and functions intended to be seen or used directly by the
library user, but contains none of the actual transactional logic or infrastructure,

o the frontend tier contains the first half of the STM system, and handles operations
initiated by the user. The defining characteristic of all frontend components is that
type information is available for the values being manipulated. As such, this tier is
responsible for generating the metadata necessary for the backend to operate correctly
without type information,

o the responsibility of the backend is to maintain the transaction-local buffers, and, when
a transaction commits or otherwise terminates, updating the canonical objects with
the values stored in the local buffer. Since these buffers must store arbitrary types of
objects, they are not inherently type-safe, and store objects simply as byte sequences.
Because type information is not available, the backend relies on metadata explicitly
generated by the frontend in order to carry out type-specific operations such as object
destruction or assignment.

These layers are designed so that the outer layers only have dependencies on the inner one,
in order to keep a clean separation between the components.

In the following, an overview of the main components of each tier is given. For larger and
more complex components, a detailed description is provided in a later section.
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4.1.1 The User tier

This component consists only of the classes and functions described in Section 4.11, and
require little additional explanation. As classes in this tier just make up the interface to the
rest of the system, this tier is largely trivial to understand:

e the shared, shared_detached and transaction class templates are simple for-
warding wrappers for associated shared_internal, shared_detached_internal
and transaction_internal classes defined in the frontend. Their main purpose is
to present a simpler interface than the frontend equivalents, hiding all functionality
that is intended for internal use by the STM system,

o the orelse functionality is implemented entirely in the user tier, using a simple
wrapper template for storing the two transactions to be alternated between, and
providing the same interface as user-defined transaction functions, by defining an
operator () (stm: :transaction&). The only complication is that in order for the
atomic function to know that it is executing within an orelse (in which case the
exception thrown by retry must escape the executing transaction instead of forcing
it to block and retry), atomic is passed a second optional parameter.

4.1.2 The STM frontend

The frontend provides the ability to open transactional objects within a transaction and
controls the lifetime of a transaction, by initializing transactions and initiating commit or
abort operations.

The main components in the frontend are the transaction manager and the internal classes
mirroring the user-tier shared and transaction classes. These frontend counterparts provide
the actual implementation of their user-tier wrappers. The role of the transaction manager
is to provide the primitive operations needed to implement higher level STM functionality,
without enforcing any specific policy. For example, the transaction manager provides
functionality for copying an object into the transaction-local buffer, searching for an object
in the buffer, or validating the objects in the buffer. However, it does not define complex
operations such as commit.

Complex operations are defined by the transaction and shared classes,using the opera-
tions enabled by the transaction manager. For example, when a transaction commits, the
transaction_internal class retrieves a list of objects stored in the local buffer from the
transaction manager, sorts it, and then locks, validates and updates these objects through
the transaction manager. Thus, the policy of how a commit operation should be performed
is defined by the transaction class, simplifying the transaction manager, which only has to
define the building blocks for larger operations, with no concern for how and when they are
called.

The shared classes used to represent transactional objects are part of a class hierarchy
spanning all three tiers. In the user tier, the user-facing class shared simply forwards all
member functions to the frontend-tier shared_internal, which provides access to the
two internal object slots. Replacing this class with shared_detached_internal redefines
these functions to access either the one internal slot, or the external object attached to
the shared object. The remaining frontend functionality, which is common for all shared
implementations, is defined in shared_internal_common from which shared_internal
inherits. The CRTP! pattern is used to enable shared_internal_common to access the

! Curiously Recurring Template Pattern: A pattern in which a derived class is used to specialize its base class,
asinDerived : Base<Derived>. This enables a form of compile-time polymorphism in which the base
class can invoke operations defined by the derived class.
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object slots exposed by shared_internal. Finally shared_internal_common derives
from the backend class shared_base, described in the following. The entire shared class
hierarchy is also described in figure 4.1.

The transaction manager is tied to the executing thread, and has static storage duration,
so that it does not get destroyed between transactions. Since the user may in some cases
have several disjoint “groups” of transactions executing, the version counter is placed in
a transaction group class. A default instance is globally accessible and is used by default
when a transaction is started, but other transaction groups can be created, each with its
own version counter. In this case, new transaction managers are created as well, giving
each thread unique buffers and possibly a different configuration of template parameters for
each group of transactions. But in the common case, only one transaction group exists, and
each thread has just one transaction manager. Th transaction group has two responsibilities:
controlling access to the version counter and retrieving the transaction manager associated
with the active thread.

A final set of functions defined in the frontend are responsible for encoding the type-
dependant operations for use in the backend. These are functions intended to be invoked
directly on an offset in the untyped transaction buffer, and so are referred to as buffer func-
tions. When a transaction commits, every object being committed must have its assignment
operator invoked in order to be copied out into the canonical locations. This is done using
the assign function. When an object is evicted from the buffer, its destructor must be called,
which is done through the buffer function destroy. The implementation of these functions
is described in Section 4.6. These functions bridge the gap between frontend and backend:
because the functions are strongly typed and operate on objects using their actual types, they
are defined in the frontend, but they are intended to be passed to the backend where they are
stored as metadata along with the object stored as an untyped byte sequence, on which they
are meant to be called.

4.1.3 The STM backend

The backend contains only the few types that have to work without type information: the
buffer intself, iterators for traversing the buffer, the shared base class containing only the
STM metadata with no knowledge of the actual objects stored by derived classes, and a
number of small helper functions for manipulating the metadata stored with each object.

A number of requirements constrain the implementation of the transaction-local buffer.

e The buffer must be dynamically sized and resizable, as the amount of transaction-local
data stored in a transaction is unknown at compile-time, which rules out at least a
simple array implementation.

o The buffer must enable arbitrarily large contiguous allocations. A data structure such
as the standard libary std: :deque cannot work, as it provides fixed-size “pages”
contiguously, but allocates new pages to extend the buffer. A single large object
allocated in the buffer may overflow such a page.

e Objects placed in the buffer must never be moved, since the user’s transaction code
contains references to it, so a dynamic array such as std: : vector is not suitable.

e Performance should not suffer. Access should be efficient, and objects stored in the
buffer should exhibit good locality. This makes a linked list implementation like
std::1list problematic.

No perfect data structure exists which satisfies all our requirements. If a single data structure
is to be used, a linked list is an acceptable solution, but the performance characteristics are not
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Fig. 4.1: The hierarchy of classes implementing transactional objects. Not
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replacing the bottom two classes to provide an implementation that
does not own the protected object.
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ideal. Instead, a pair of buffers can be used: most transactions are expected to be small, and
so a fixed-size array can be used until it fills up, giving us optimal locality and performance,
even avoiding dynamic memory allocations. However, if this array does overflow, a linked
list of pointers to dynamically allocated objects can be used as a fallback.

In the current implementation, the linked list buffer has not been implemented, and only
an array buffer exists. It is set to a default size of 64KB, which is enough to satisfy almost
all transactions, but for a truly general STM system, a resizable secondary buffer must be
implemented.

The backend also contains the base class of the shared hierarchy, shared_base, which,
unlike its derived classes, is not templated and has no knowledge of the type of object being
protected. Instead, its role is solely to provide access to the metadata associated with the
object: the object’s version and reader counters.

4.1.4 Utility code

Outside the three tiers defined so far is a small utility component, which is used by all
three tiers, and contains no dependencies on other parts of the library. This component
contains configuration files, and provides the necessary abstractions for the library to work
on both Windows and POSIX platforms and be compiled for C++03 or C++0x, using either
the Microsoft Visual C++ compiler or GCC.

The component also defines the exception classes used to signal events such as validation
errors or requests to retry or abort transactions.

4.2 The transaction lifecycle

Transactions go through several distinct phases, as they execute, from starting up, to executing
the user-supplied transaction function, to committing or rolling back. These are described in
the following.

4.2.1 Initialization

When the transaction is created, it retrieves the current version from the global version
counter and stores this as its read version. If the transaction is nested inside another, it is
given the parent transaction’s version — since the inner transaction must atomically commit
as part of the outer transaction, it must use the same transaction version as well. The
transaction is also passed information about the number of times it has been restarted so far,
and whether it is part of an orelse statement. The transaction manager is used to store state
that should be remembered across transactions, such as if an outer transaction was part of
an orelse, since this affects the semantics for retry () calls, even in inner transactions.

Finally, iterators pointing to the last read-only and read-write records inserted in the buffer
is recorded. This is used to delimit the range of objects inserted by the current transaction
from those inserted by parent transactions.

4.2.2 The live phase

Once the transaction has been initialized, it enters the user-supplied transaction function. As
long as this is executing, the transaction is said to be in the live phase.

In this phase, mainly user-defined code is executed. The only STM operation available,
other than those that terminate the transaction in one way or another, is that of opening
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transactional objects.

The open operations are implemented in a fairly straightforward manner. If the object is
opened for reading, the shared object containing the object being opened must have its
reader counter incremented. If the object is opened for writing, that object must instead be
copied into the transaction-local buffer.

In both cases, the reader counter for the currently active slot is initially incremented, and
the object’s version is verified to be less than or equal to the transaction’s read version. If
the object is opened for writing, this increment is to ensure that the object does not get
modified while we are copying it, and the counter is decremented again when the copy as
been created.

Whether the object is opened for reading or writing, the transaction-local buffer’s list of
objects opened for writing is now scanned to find existing copies of the same object. From
this point, the workflows for objects opened for reading and writings diverge.

For objects opened for reading, the following operations are performed:

e if a copy of the object was found in the buffer, a pointer to this is simply returned,

e if no copy was found, a new pointer to the object being opened is pushed onto the
buffer’s list of opened read-only objects, and a pointer to the canonical object is opened.

For objects opened for writing, the following is done:

e if no copy was found in the buffer, a copy is inserted, and a pointer to this new copy is
returned,

e if a copy was found, and it was inserted by a “parent” transaction, one that the
current transaction is nested within, this copy cannot be reused directly: closed nesting
semantics require that we are able to roll back the inner transaction, leaving the outer
transaction in the same state as when the inner transaction started. So in this case, we
must create a copy of the copy already found in the buffer, insert that in the buffer,
and return a pointed to this new copy,

o if a copy was found and it was inerted by the current transaction, we can simply return
a pointer to this object,

e finally, the canonical object’s reader counter is decremented to cancel out the increment
performed at the beginning of the open operation, allowing other transactions to lock
and modify the object.

The transaction can leave the live phase in a number of ways:

o validation of an object may fail, forcing a rollback. This can happen either when the
transaction commits, or when an object is opened for reading or writing,

e control may leave the function, either through an exception being thrown, or by
reaching the end of the function or a return statement. When this happens, the
transaction will attempt to commit,

e the user may call abort () or retry(), forcing the transaction to roll back and, if
retry () was called, restart again later. An stm: :abort_exception is thrown from
the atomic function when the rollback completes if the transaction was aborted.
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4.2.3 Rollback

In the case of a rollback, the transaction manager’s release () function is called on every
object opened for reading, to decrement the reader counter indicating that the transaction no
longer requires access to the object.

Objects opened for writing do not have their reader counters incremented, and so they do not
need to be explicitly released. Instead, we must destroy the transaction-local copies stored
in the buffer. The transaction manager’s destroy () function is used for this purpose, and
simply invokes the destroy function pointer stored along with each object, as described in
Section 4.6.

Once this is done, both the read-only and read-write records can be safely removed from the
buffer, which is done with the transaction manager’s pop () function.

All of the transaction manager functions described here operate on a range of objects,
implicitly starting with the last object inserted in the buffer, and ending with an iterator
pointed to the last object inserted by a parent transaction.

4.2.4 The commit phase

When control leaves the transaction function, the system attempts to commit the transaction.
If the transaction is not nested, changes must be made globally visible, and the following
procedure is followed:

1. a write list is created, containing references to every object in the transaction’s write
set, and sorted by the address of the canonical objects they reference. This sorting
ensures that all transactions acquire objects in the same order, preventing livelocks.

2. Every object in the write list is locked, by incrementing both of the reader counters
associated with the canonical object.” If the counter for the backing slot was previously
0, the object has been successfully locked, and no other object will be able to acquire it.
If it was nonzero, another transaction has access to the backing slot, and we cannot
commit into it, so the entire transaction must abort.

3. If all modified objects were locked successfully, we now lock the version counter and
retrieve the transaction’s commit version which is defined as the current value of
the version counter plus one. This is the version that modified objects will be set to
when the transaction commits. By locking the version counter, other transactions are
prevented from committing as they cannot get a commit version.

4. The entire read set of the transaction is validated, by verifying that all objects have
versions less than or equal to the transaction’s read version. If the validation succeeds,
the transaction can no longer be forced to roll back, and the commit is guaranteed to
succeed.

5. If objects have been registered as part of a snapshot to be generated at commit (see
Section 3.1.7), this snapshot is generated, by performing the assignments registered.

6. Finally, the version counter is unlocked, once all object copies in the buffer have been
written out into their canonical locations and their versions are updated and the flag
flipped, indicating that the backing slot, which was just updated by the transaction, is
now the active slot.

% Technically, only the backing slot’s reader counter has to be incremented, but as the transaction does not
immediately know which slot this is, the simplest and most efficient solution is to simply increment both
counters.
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If the transaction is nested, there is no need to perform validation, as no changes are being
made globally visible. In that case, we only copy objects that were also opened for writing by
outer transactions, into their “parent copies” in the buffer. Then the copied objects have their
destructors called, and they are removed from the buffer. Objects opened for the first time by
the committing transaction are simply left unchanged in the buffer, effectively adding them
to the parent transaction’s write set.

4.3 Ensuring consistency and conflict serializability

The reader counters associated with each slot in a shared object ensure that objects do not
get modified while they are accessed by a transaction. The version counter is locked while a
transaction applies its changes during a commit operation, ensuring modifications are always
applied in order. An update at time ¢ to an object is guaranteed to be visible to transactions
with read versions rv > t. Further, no transaction with a read version rv = 7 can start until
the transaction with commit version cv = 1 has terminated.

This ensures that transactions never see inconsistent state: a transaction with read version
rv can only see versions of objects whose last modification was at time ¢ < rv.

This guarantees conflict serializability: A transaction committing with commit version cv is
given a unique offset cv in a serial schedule of transactions.

4.4 Starvation and prioritization

The system as implemented now has no mechanism for prioritizing transactions or controlling
starvation. As described in Section 3.2.7, objects opened for reading cannot starve out a
transaction attempting to commit modifications. However, multiple transactions attempting
to commit modifications to the same object may in some cases cause starvation. Since
locks are only acquired at the end of the transaction, a long-running transactions ¢; is at a
disadvantage, as a shorter transaction ¢5 which modifies the same object x will most likely
complete and commit before ¢; completes, forcing ¢; to rollback and restart. It is impossible
to say how significant a problem this is — in real-world code, constant contention for the
same objects is unlikely, and we do not know how common longer transactions are going to
be. Most likely, code using STM would be structured to get as short transactions as possible.

However, if starvation does become a problem, several modifications can be made:

e one possibility would be to switch a transaction to a pessimistic concurrency model
once it has been rolled back a fixed number of times: under this model, objects would
be locked immediately when they are opened for writing, preventing other transactions
from committing modifications at all until the locking transaction has finished,

e a transaction priority can be encoded into the object’s metadata, and consulted before
a transaction attempts to lock an object. When an object is opened, a transaction can
write its own priority into the object’s priority field, and when transactions commit,
they check the version field, verifying that no higher-prioritized transaction is using
the object.

4.5 The transaction-local buffer

The buffer held by the transaction manager is meant to be replacable and configurable.
The current implementation includes only a fixed-size array buffer, which provides good
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performance and locality, but may overflow for large transactions. A more complete imple-
mentation should either replace this entirely with a resizable buffer, or use a combination of
both, filling up the fixed-size buffer first, and silently falling back to the resizable one when
an overflow occurs. If both buffer types are implemented, the strategy of using both buffer
types can be implemented through a simple wrapper class using the same public interface.

A buffer class must define the following public members:

struct buffer {
typedef implementation—defined iterator_r;
typedef implementation—defined iterator_rw;

buffer () throw ();
~buffer () throw ();

template <typename T>
T x push_rr.v(shared_base>a< src

, backend::metadata*x outer_open

, T& obj

, void (xdestroy)(backend::metadatax)

, void (*assign)(const backend::metadatax psrc, voids pdst));
bool push_r(shared_basex src) throw ();

void release(iterator_r last
, uint32_t tx_version) throw ();

void destroy(iterator_rw last) throw ();

void pop(iterator_r last) throw ();
void pop(iterator_rw last) throw ();

iterator_r begin_r () throw ();
iterator_r end_r () throw ();

iterator_rw begin_rw() throw ();
iterator_rw end_rw() throw ();

size_t write_count(iterator_rw last = end_rw());
size_t read_count(iterator_r last = end_r());

}i

Conceptually, the buffer consists of two stacks, as both read-only and read-write records
are stored in LIFO order. release, destroy, and pop implicitly work from the top of the
relevant stacks, to the last parameter passed to them. The begin and end functions allow
traversal over the read-only and read-write stacks. The begin functions returns an iterator
to the top of the stack so that traversal from begin to end will iterate in reverse order of
insertion.

push_rw is called when the user calls open_rw on a transactional object, and pushes a copy
of the opened object onto the read-write stack. push_r is called by open_r, and pushes a
pointer to the opened object onto the read-only stack. These functions are both able to return
failure: this is not because the STM system is expected to be able to handle allocation failures,
but because multiple buffer strategies may be combined as described above. If the fixed-size
array overflows, push_r and push_rw can return failure, indicating to the wrapper class
that the secondary buffer should be used instead. In general, the rest of the STM system does
not assume these functions will return failure.

push_rw’s signature is complicated enough to warrant a more detailed explanation. The src
parameter is a pointer to the source shared object. outer_open is a pointer to the previously
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entered copy of the same object, if a parent transaction already opened the same object, and
is set to null if the object is not already open. obj is a reference to the object from which
a copy should be made. This is necessary as src only tells us which shared_base object
owns the object, but not which of the two slots should be copied from, or where the object
itself is located. The final two parameters are function pointers for destroying the buffer
copy, and for performing an assignment from the buffer copy to the destination when the
transaction is committed.

The system is required to track two types of information: pointers to objects opened for
reading, and transaction-local copies of objects opened for writing along with their associated
metadata generated by the frontend. These could be allocated into separate buffers, but this
would prevent us from using allocated memory efficiently. If one of the buffers overflows, an
extension data structure must be allocated, while the other buffer is left partially empty. A
more efficient approach is to reuse the same buffer for both types of data, so that pointers to
read-only objects are placed at one end of the buffer, and transaction-local object copies at
the other, both growing towards the middle.

When writing objects into the buffer, we must be aware of the alignment requirements for the
object. A type may only be allocated on addresses divisible by some integer, typically a power
of two. That number is the type’s required alignment. On most platforms, built-in types
require alignment equal to their size, so that a char can be allocated on any address, an int
only on addresses divisible by four, and a double on addresses divisible by eight. Compound
types, such as classes and structs require alignment equal to their most-aligned member. This
means that objects cannot be written into the buffer at arbitrary offsets: padding must be
inserted when necessary, to ensure the object is placed at a well-aligned offset.

The simplest approach is for read-only pointers to grow from the beginning of the buffer
towards higher addresses, and object copies placed at the end, growing back towards the
beginning of the buffer. These copies have variable size and alignment requirements, and
when placing these, we have to insert additional padding to locate the next properly aligned
address. If these objects grow from the end of the buffer, this can be done in a relatively
simple manner: assuming the last object was placed beginning at offset =, and we now wish
to place a structure of type with size s and alignment requirement a, the offset at which it
should be placed is computed as (x — s)& ~ (a — 1). & — s sets aside the number of bytes
required by the object, but this may yield an unaligned offset. So a further number of bytes
must be subtracted, to find the first location divisible by a. This address will have the lower
lg(a) bits masked out, so we can create a bit mask with all 1’s, except the lower lg(a) bits
— the exact opposite of the mask given us by a — 1. So a bitwise not is applied to this, and
and’ed together with the initial offset. Figure 4.2 illustrates this.

In order to store an object in our buffer, we must start at the offset at which the previous
object ended, subtract the number of bytes required for the object we wish to store (including
its associated metadata), find the next well-aligned offset, and write the object there. Since
C++ does not allow arbitrary integer arithmetics on pointer types, we cannot simply mask out
individual bits of the pointer, in order to find the next aligned address. Instead, the simplest
and most portable solution is to work on byte offsets from the start of the buffer. However,
this requires the buffer itself to be allocated with suitable alignment. A simple char array
only requires the same alignment as a single char object, and so may be allocated at any
address. The C++ standard does guarantee that char arrays allocated with new[] are to
satisfy the most stringent alignment required by any type on the platform?, and so the buffer
could simply be dynamically allocated in this manner.

An alternative solution is to use the class templates for controlling alignment available in
C++0x. In the current version of C++, these are not part of the standard, but are specified
in TR1%. The two relevant templates are alignment_of and aligned_storage. Given a

3 Section 5.3.4, paragraph 10 of the C++ standard [9].
4 Technical Report 1, a collection of library additions not formally part of C++, but approved by the standardiza-
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Fig. 4.2: Determining the offset at which a new object should be inserted into
the transaction-local buffer. x denotes the previous top of the buffer
“stack”, while s and a are the size and alignment requirements of the
buffer entry. The new object is placed at the topmost dashed line

type T, alignment_of<T>:value is an integral constant equal to the required alignment
for T. The aligned_storage template is used to allocate storage into which a type can
be constructed, given its size and alignment requirements. C++0x additionally specifies
amax_align_t type, an implementation-defined type requiring the strictest alignment
possible on the system.

So to allocate a buffer of size S we can instantiate an object of the following type

aligned_storage<S, alignment_of<max_align_t >::value >::type

4.6 Type erasure

In order to store arbitrary types into the transaction-local buffer, all type information must
be erased, and the object data stored into a simple byte buffer. This type erasure poses some
challenges for us in C++, as the system must still be able to invoke type-specific operations
even after the type information has been lost, so that the object’s destructor and assignment
operator can be called.

When an object is opened for writing, the data written into the buffer must, in addition
to a copy of the object itself, store certain metadata to compensate for the lack of type
information:

e a pointer back to the canonical object is required, so that the copy can be written back
when the transaction commits, and to allow the backend to access the object’s reader
counters and version number.

e A pointer to a function able to destroy the object by invoking its type-specific con-
structor,

e a pointer to a function able to copy the object back into the canonical location,

e a pointer to the previous object allocated in the buffer, in order to enable traversal of
the objects stored in the buffer,

tion committee and supported by major compilers.
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o if the object was opened previously in an outer transaction, a pointer to its previous
entry in the buffer is required, to properly implement closed nesting semantics.

The two function pointers in particular are key to making type erasure work. The functions
pointed to must have a uniform signature, regardless of which type of object they copy or
destroy. This can be achieved by defining template functions which take a common pointer
type, such as simple void pointers, as their parameters, but internally cast these pointers
into the types specified by their template parameters, as in the following simplified example:

template <typename T>
void destroy(voidx object)
// Convert the void pointer into the object’s actual type
T+ ptr = static_cast <Tx>(object);
// manually invoke the object’s destructor
ptr—>T::~T();

}

This allows us to store the same type of function pointer in the buffer metadata, regardless of
the type of object being stored, while still enabling us to call the type-specific assignment
operators and destructors when needed. As in Section 4.5, the aligned_storage class
template is used to set aside suitably aligned storage for the object copy itself next to the
metadata.

4.7 shared object metadata

The shared_base class template contains the metadata required for transactional objects to
be tracked by the STM system, while making no references to the actual objects being stored
by the derived classes. This has been described at a conceptual level in Section 3.3, but the
precise class layout is presented here.

As described previously, the metadata must contain a version counter field, a flag for
indicating the active slot, and two counters which indicate how many readers are accessing
each slot and act as locks ensuring exclusive access to the object.

This should be packed as well as possible to minimize cache usage, while ensuring atomic
and efficient access to each of the counters. We note that the flag is only flipped when the
version counter is updated and both fields are accessed only when the object is locked, so
atomicity is not needed. This means that both can be stored as part of the same word. The
most significant bit of the version counter can be used as the flag, and the remainder used for
the version field. This limits the system to 23! updates before the version counter overflows,
but this does not make a significant difference. The version counter will overflow in realistic
long-running programs whether it uses 31 or 32 bits, but it will happen rarely enough in
both cases that the amortized cost of handling the overflow is negligible. Alternatively, a
64-bit field can be used for the version counter instead, in which case the counter will never
realistically overflow, even if one bit is reserved for use as the flag. This gives us a layout
such as this:

struct shared_base ({
uint32_t version; // msb is used as flag
int16_t lock[2]; // reader counters

}s

As long as 32-bit versions are used, this gives us exactly 64 bits of metadata. We assume
16 bits to be sufficient for each slot’s reader counter, as this enables us, even with signed
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integers®, to track over 32000 transactions opening the same object. If the version field is
extended to 64 bits, 128 bits will be spent on metadata: 96 bits are directly used by the
specified fields, and the remaining is necessary padding, as any C++ object must have a size
equal to some multiple of its alignment requirement — if that was not the case, then an array
of this type would result in some array entries being unaligned. This additional overhead is
unfortunate, but should still be tolerable.

4.8 Version counter overflow

Because a global version counter is used to to generate timestamps for transactions and
transactional objects, we have to handle the case when this counter overflows. As objects
are able to store 31 bit timestamps in the current implementation, the counter is limited
to 23! different values. Assuming a million transactions per second, a figure achievable in
many STM systems, the counter will overflow in just 35 minutes. Even at a much more
conservative thousand transactions per second, the counter will overflow in less than 25 days
— not commonly a problem, but something that will occur in long-lived processes. A simple
way to avoid this problem could be to extend the version counter to a 64-bit value, giving us
203 versions, effectively eliminating the risk of overflows.

Otherwise, a mechanism for ensuring that the counter only wraps around under safe,
controlled conditions would have to be designed, and for handling validation of transactional
objects that are left with a high version after the version counter is reset.

The version counter can be extended to 64 bits with a minimum of difficulty, as operations
on it are not required to be atomic: the version of a transactional object is only accessed
while the object is locked for modifications, ensuring that its version is safe to access, even if
the data type is larger than what can be read atomically by the hardware.

4.9 Optimizations and caching

The iterator types exposed by the buffer are only required to be forward iterators, since
the read-write stack is effectively a singly-linked listed; objects copied into the buffer have
variable size, so there is no way to compute the location of arbitrary objects, making random-
access iterators impossible to implement without a separate data structure caching the offsets
for each object. Bidirectional iterators could be implemented by adding an additional pointer
to the metadata for each record, but there would be little benefit from this.

This buffer interface is intentionally minimal, requiring the weakest possible iterators and
providing no functionality other than what is absolutely necessary. Many operations could
be optimized or cached using additional data structures. For example, whenever an object is
opened, it is necessary to search the buffer to see if the same object was already open. With
the available interface, only a linear scan is possible, which will become expensive for larger
transactions. However, this design decision is to enable different buffer implementations to
be combined as described in Section 4.5. If a wrapper is to be developed which contains both
a fixed-size array buffer and a resizable linked list, these two buffers should not implement
any kind of auxillary data structures for optimizing searching themselves, or those optimized
data structures would get duplicated as well.

Instead, the buffer provides only basic forward iterators, and the transaction manager must
then be extended to contain a separate data structure for caching or providing efficient
indexing of the contents of the buffer. If this is done outside the buffer, there is also the

° Signed integers are used because the intrinsics provided by Microsoft’s Visual C++ compiler for atomic
increment/decrement operations only work on signed values.
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possibility that the same caching data structure can be reused for different buffer types.

While such optimizations have not yet been implemented, they are likely to provide a
significant boost in performance in larger transactions.

4.10 Type Requirements

The library is designed to be non-intrusive, so that it can be used with existing types that
have not been designed specifically for STM use. However, the following requirements still
have to be fulfilled for a type T before it can be transaction-enabled.

In the following, t is some object of type T. u is an object of some type convertible to T.

Expression Exc. Guarantee Notes

T t(u) basic

t = std:move(u) nothrow, basic t = uin C++03
t.Ta~T() nothrow

Detailed description

T t(u)

Notes:

The type T must be copy constructible, as this is the mechanism used for creating
transaction-local copies of the object.

Throws:

The operation must provide the basic exception guarantee. If an exception is thrown, t
must be left in a valid state and no resources leaked.

Postconditions:

t and u is equivalent, the precise meaning of which is unspecified, since no operator==
is required to be defined. However, the transaction semantics depend on t and u to contain
interchangable values.

t = std:move(u)

Notes:

The function std:move only exists in C++0x. In C++03, the expression is replaced by
a simple copy assignment, as in t = u. The effect of std::move is to perform a move
assignment if one is defined, and otherwise fall back to a copy assignment. This operation
is used to assign transaction-local objects into the canonical ones.

Throws:

If this expression provides the nothrow exception guarantee for all types opened by a
transaction, the entire transaction operation also offers the nothrow guarantee. If one or
more types provides the basic or strong guarantees, the transaction only offers the basic
guarantee.

Postconditions:

The value of t is equivalent with the value u held before the expression was evaluated.
The precise definition of equivalence is unspecified, as no operator== is required to be
defined. However, the transaction semantics depend on the values being interchangable.
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t.T:~T()

Throws:

T’s destructor must provide the nothrow exception guarantee.

Additional requirements

No operation invoked on the type T, including both the ones defined above and the ones
invoked explicitly by the user during the transaction, may access data visible to other parts of
the application. Since changes made during a transaction are speculative until the transaction
is committed, these changes must not be visible outside the transaction. To enforce this, any
data modified through this object must be exclusively owned and accessed by the object
itself. Likewise, it is assumed that copy assignment and copy construction is “deep”, in that
it copies all relevant members, instead of pointing back to common instances shared with
other objects.

4.11 Detailed API reference

The DikuSTM API presents a very small and simple API consisting of only a few classes
and functions all of which is contained in the header file stm.hpp and is enclosed in the
namespace stm. These are described in detail here:

4.11.1 Concepts

As the DikuSTM library relies heavily on templates and generic programming, many opera-
tions are not simply defined for specific pre-defined types or base classes, but can be invoked
on any type, as long as it defines the required functions and members. We say that the type
must implement a specific concept, which is defined by the operations that must be legal on
that type, and by the semantics of these operations.

The concepts that are part of the user-facing API are described in the following. Concept
names are written in CamelCase, to distinguish them from concrete types and functions
which are all lowercase. For example, stm::atomic(TransactionFunction f) can take
any type which implements the TransactionFunction concept as its parameter.

While these descriptions also specify the exceptions that may be thrown by an expression,
only exceptions that the user must be aware of are listed. If an exception can be thrown
by an expression, but the user is required to let it pass through without being caught, that
exception is not listed in the following.

TransactionFunction concept

A type that implements the TransactionFunction concept can be executed as a transaction.
As such, this concept must be implemented every time the user wishes to define a transaction.
It is a function or a function object tx£, for which the following expression is valid:

Expression Returns Throws Notes

txf(tx) Any Any tx has type stm: :transaction. The ex-
pression may be evaluated multiple times
during a transaction.
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Detailed description

txf(tx)

This expression is invoked by the STM system, and executes the transaction defined by txf.
If an exception other than those defined by the STM system is thrown, the system attempts
to commit the transaction, after which it will rethrow the exception for the caller to catch. If
commit fails, the system will revert any changes to transactional objects made within the
transaction, and evaluate the expression again. If the function returns a type other than
void, the return value is passed to the caller if the transaction commits without throwing an
exception.

Shared concept

A type that implements the Shared concept models a transactional type: it exposes the
necessary functions for a transaction to retrieve the contained value, and contains the
metadata necessary for the STM system to track modifications to the object.

Given an object sh of a type that implements the Shared concept and transaction-enables
an object obj of type T, and an object tx of type stm: :transaction, the following
expressions must be valid:

Expression Returns Throws Notes

sh.open_rw(tx) T& std::bad_alloc, tO and tl have type T. T
same as T t0(tl)  may not be const.

sh.open_r(tx) const T& std::bad_alloc sh can be const.

Detailed description

sh.open_rw(tx)

Effects:

Opens obj for reading and writing.
Returns:

A reference to a modifiable instance of type T containing the most recent value of obj.
Preconditions:

No transaction belonging to a different transaction group may access sh concurrently with
the transaction containing this expression.

Postconditions:

The object referenced by the return value of this expression is guaranteed to exist in
isolation from the rest of the system and its lifetime lasts until the transaction leaves the
live phase. No other thread will read or modify the object.

Throws:

std: :bad_alloc if the amount of data stored in the transaction exceeds the capacity of
the transaction-local buffer, and allocation of a new buffer fails. The default size of this
buffer in this implementation is 64 KB, so this exception should not occur unless extremely
large transactions are executed.

Any exception thrown by obj’s copy constructor.
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sh.open_r(tx)

Effects:

Opens obj for reading.
Returns:

A reference to a const instance of type T containing the most recent value of obj.
Preconditions:

No transaction belonging to a different transaction group may access sh concurrently with
the transaction containing this expression.

Postconditions:

The object referenced by the return value of this expression is guaranteed to exist in
isolation from the rest of the system and its lifetime lasts until the transaction leaves the
live phase. No other thread will modify the object.

Throws:

std: :bad_alloc if the amount of data stored in the transaction exceeds the capacity of
the transaction-local buffer, and allocation of a new buffer fails. The default size of this
buffer in this implementation is 64 KB, so this exception should not occur unless extremely
large transactions are executed.

4.11.2 atomic function template

The atomic function template executes a given function as a transaction. The function has
the following signature, where R is the return type of the transaction function f.

R atomic(TransactionFunction f);

Detailed description

R atomic(TransactionFunction f)

Effects:

Executes f with transactional semantics in the default transaction group.
Returns:

The result of calling the transaction function f.
Throws:

stm: :abort_exception if £ terminates by calling tx.abort ().
Any exception thrown by f.

Postconditions:

If £ terminates by calling tx.abort (), the transaction is rolled back.

If £ terminates by calling a non-STM exception, the transaction is committed and the
exception rethrown.

If f terminates normally, the transaction is committed and the return value of £ is returned.

Notes:

If a non-void return type is desired, it must be specified explicitly as a template parameter:



4. The DikuSTM library 47

that is, for a transaction to return an int, atomic<int> must be called.®

4.11.3 shared class template

shared implements the Shared concept, and is the default class for storing a transactional
object. The object stores a single object, and ensures that this object can only be accessed by
transactions. In addition to the operations defined by the Shared concept, the class defines
the following members:

template <typename T>
class shared {
public:

explicit shared(T val);

private:
T obj; // exposition only

b

Detailed description

shared(T val);

Effects:

Constructs an instance of a shared<T> containing an object obj initialized through its
copy constructor, with T obj = val.

Throws:

Any exception thrown by T obj = val.

4.11.4 shared_detached class template

shared_detached implements the Shared concept, but unlike shared<T>, this type does
not own the object it transaction-enables. Instead, it stores only a pointer to the object. This
is to allow for the STM metadata to be located separately from the data it protects, so that
existing data layouts such as raw arrays of data can be transaction-enabled. In addition to the
operations defined by the Shared concept, shared_detached also defines the following
members:

template <typename T>
class shared_detached ({
T+ ptr; // exposition only
public:
shared_detached ();
// see description
explicit shared_detached(non—const T& val);
~shared_detached ();
// see description
void set_source(non—const T& val);

}s

¢ This requirement can be avoided in C++0x using the new decltype keyword, but the current implementation
does not support this.
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Detailed description

shared_detached();

Effects:

Creates a new instance of a shared_detached<T> which does not transaction-enable
any object. The only operation valid on such an object is calling the set _source member
function.

shared_detached(non—const T& val);

Effects:

Creates a new instance of a shared_detached<T> protecting the object referenced by
val. ptr is set to point to &val.

Preconditions:

The object referenced by val must not be protected by another Shared object.
The lifetime of the object referenced by val must be at least as long as the lifetime of
*xthis.

Postconditions:

During the lifetime of *this, the value of the object referenced by val is undefined and
must not be modified.

Calling this —>open_r or this —>open_rw returns val or a reference to a transaction-
local copy of it.

~shared_detached();

Effects:
The object pointed to by ptr is released and made non-transactional again.
Postconditions:

the object pointed to by ptr contains the value assigned to it by the most recent transaction
that opened *this.

void set_source(non—const T& val);

Effects:

If *this was initialized with the default constructor, set_source specifies an object to
transaction-enable.

Preconditions:

*this must not protect another object.

The object referenced by val must not be protected by another Shared object.

The lifetime of the object referenced by val must be at least as long as the lifetime of
*this.

Postconditions:

During the lifetime of *this, the value of the object referenced by val is undefined and
must not be modified.

Calling this —>open_r or this —>open_rw returns val or a reference to a transaction-
local copy of it.
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4.11.5 transaction class template

The transaction class template is the main interface for transaction functions to interact
with the STM system. The transaction function is passed a transaction object as its
parameter, which can be used to open transactional objects, abort the transaction or otherwise
interact with the STM system.

struct transaction
void abort ();
void retry ();
template <typename T>
void snapshot(const Tx src, T& dest);

}s

Detailed description

void abort();

Effects:

Aborts the currently executing transaction, rolling it back and reporting failure to the
caller.

Postconditions:

All modifications to opened transactional objects are reverted. The transaction function
does not retry, but throws an stm::abort_exception.

void retry();

Effects:

Indicates to the STM system that the currently executing transaction should be retried later,
when some of its read set has been modified. The implementation is free to regard this as a
hint only, and the transaction may be restarted spuriously.

Preconditions:
The transaction has opened at least one transactional object.
Postconditions:

All modifications to transactional objects made by the executing transaction are rolled
back. The transaction is restated at some later time.

template <typename T> void snapshot(const T* src, T& dest);

Effects:

Indicates to the STM system that a consistent snapshot of a set of variables as described
in Section 3.1.7 is desired when the transaction commits, and adds src to this set. src
typically points to a previously opened transaction-enabled object owned by a Shared
object.

Throws:

std::bad_alloc if space for storing the source and destination pointers cannot be allo-
cated.

Preconditions:

The lifetime of *src must last at least until the transaction commits.



4. The DikuSTM library 50

Postconditions:

dest contains the value that *src held when the transaction committed.

4.11.6 orelse function template

The orelse function wraps two TransactionFunction objects in a single compound
transaction, here named OrelseFunction for exposition purposes. This is a refinement of
the TransactionFunction concept, and can be used wherever a TransactionFunction
concept is expected. Additionally, the operator || can be used as a shorthand syntax for
chaining more than two TransactionObjects.

OrelseFunction
orelse(TransactionFunction lhs, TransactionFunction rhs);
OrelseFunction

operator || (TransactionFunction lhs, OrelseFunction rhs);
OrelseFunction
operator || (OrelseFunction lhs, TransactionFunction rhs);

OrelseFunction
orelse(TransactionFunction lhs, TransactionFunction rhs);

Effects:

Constructs a new OrelseFunction as a compound transaction consisting of 1hs and
rhs. When the compound transaction is executed, 1hs is first invoked, and if it calls
tx.retry(), rhs is immediately invoked instead. If rhs also calls tx.retry(), the
effect is as if the compound transaction had called tx.retry().

Returns:
A OrelseFunction compound transaction wrapping lhs and rhs.
Postconditions:

When executed, the returned OrelseFunction invokes lhs.

— If 1hs retries, rhs is invoked.

— If 1hs does not retry, the compound transaction behaves as if the user had simply
invoked 1hs in its place.

— If rhs is invoked and retries, the behavior is as if the compound transaction had
called tx.retry(). The read set of the compound transaction is the union of the
read sets of 1hs and rhs.

- If rhs is invoked and does not retry, the compound transaction behaves as if the user
had simply invoked rhs in its place.

OrelseFunction
operator || (TransactionFunction lhs, OrelseFunction rhs);

Effects:

Syntactic sugar for orelse(lhs, rhs);.

OrelseFunction
operator || (OrelseFunction lhs, TransactionFunction rhs);

Effects:

Syntactic sugar for orelse(lhs, rhs);.
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4.12 Limitations

Certain features were considered, but have not yet been implemented. These are described
here. While we do not generally believe these to be essential, they should be implemented
for the system to be as complete, general and usable as possible.

4.12.1 Implementations of the Shared concept should be copyable

The DikuSTM system relies on transaction-enabled objects being copyable. However, in
some cases, we may also wish to nest different Shared types within each others. If the
outer object is copied, for example because it is opened by a transaction, all its members
must be copied as well. This could be handled on an ad-hoc basis by explicitly defining a
copy constructor for each type that contains a Shared object, but this would be tedious
and error-prone. Instead, the Shared concept should specify that objects implementing this
concept are required to implement a transcationally safe copy constructor and assignment
operator. These operations should create a new transaction, and within it, copy the object
protected by the Shared wrapper.

4.12.2 Convenience access of transactional values

In some cases we may wish to simply retrieve the most recent value from a transactional
object. We could write a transaction function which opens the object and returns a copy of
the retrieved value, but this is needlessly verbose. Instead, this operation could be added to
the Shared objects. For example, operator* could be defined, “dereferencing” the shared
wrapper in order to retrieve the object contained within it. As with the copy constructor,
this would have to be transactionally safe, creating a small transaction to open and copy the
object before returning it to the caller.

4.12.3 Efficient retry implementation

The retry operation is intended to delay the transaction restart until a member of its read set
has been modified by another transaction. In the current version of DikuSTM , this delaying
mechanism is not implemented, so the transaction will continuoulsy restart, execute and
rollback until the condition for proceeding is satisfied.

4.12.4 Portability and dependencies

The DikuSTM system makes use of a number of features and operations not defined by the
C++ standard. Platform-specific atomic operations are used to control access to transactional
objects, and thread-local storage to store each thread’s transaction manager. Currently this
is provided by the Boost libraries, ensuring a high degree of portability. However, these
features are all part of C++0x, so once better C++0x support is available from compilers,
these dependencies can be eliminated. When the library is compiled for C++03 support, the
features defined in TR1 are also used, as these are assumed to be at least as portable as the
equivalent functionality defined in Boost.

The system also uses a small number of utility headers from Boost: noncopyable.hpp,
iterator_facade.hpp, which could be easily redefined by the DikuSTM library itself,
so complete independence of third-party libraries is achievable once full C++0x support is
available from major compilers.



5. EVALUATION

As described in the introduction, good performance is critical for STM systems to gain
mainstream acceptance. However, until we get experience with STM systems in real-world
code, we do not know which scenarios to optimize these systems for.

This chicken-and-egg problem is difficult to solve. Developing comprehensive test cases
using STM for a variety of real-world tasks is beyond the scope of this project, and while
benchmarks of insertion and removal on linked lists or binary trees are used for most STM
systems, we feel that these provide little real value: most STM systems test these operations
against home-made data structure implementations, making direct comparison difficult, but
more importantly, most real-world code is not going to consist of a large number of threads
constantly inserting and removing elements in a binary tree. Even if an application does
need thread-safe manipulation of a binary tree, we do not know the degree of contention
that is going to be typical.

So instead, this chapter will present a number of smaller synthetic benchmarks. These are not
intended to be representative of real-world usage in any way — instead, they are designed to
illuminate very specific aspects of the STM system, allowing us to see how it performs in
specific situations, with as little noise as possible. This means that the following benchmarks
will all consist of “no-op” transactions: the transactions open one or more transactional
objects for reading or writing, and then attempt to commit. Most of the tests are performed
at varying transaction sizes, defined by the number of objects opened by the transaction. A
transaction of size 1 opens only a single object before committing, and one of size 100 opens
100 objects.

The goal of these benchmarks is not to show the system to be “fast enough for real-world
use”, but merely to highlight areas to focus on in further work.

All tests are run 5 times, and unless otherwise noted, the median of these results is used. All
tests are run on an Intel Q9300 Core 2 Quad processor with 4GB of RAM.

5.1 Overhead with zero contention

Before looking at how the STM system performs when multiple threads are accessing
the same data, we will examine the overhead introduced by STM operations under ideal
circumstances, when only a single thread is executing. If this overhead is prohibitive, the
STM system is unlikely to be usable in more complex scenarios where contention may further
constrain performance.

Figure 5.1 shows the time taken to to execute and commit a transaction opening a variable
number of objects, divided by the transaction size. This gives us an estimate of the “per open”
overhead. We expect some fixed overhead from initializing and committing the transaction
itself, and the commit operation itself is linear in the transaction size, so the amortized cost
for an open operation should decrease with larger transactions, as the constant part is shared
between a larger number of opens. However, as described in Section 4.9, a simple linear
search through the transaction buffer is performed on every open, to check if a private copy
of the object already exists. Using an O(n) algorithm for this is extremely inefficient (as
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Fig. 5.1: Average transaction duration per object opened, for varying transac-
tion sizes. Left: objects opened for reading. Right: objects opened for
writing.

this is performed when each object is opened, yielding O(n?) time complexity in total. For
sufficiently large transactions, we therfore expect the amortized cost per open operation to
increase again.

We see that the average cost for open_rw for transactions of size one is 948ns, allowing a
single thread with no contention to commit just over a million transactions per second. As the
transaction grows, the cost per open decreases as expected, so that for transactions opening
32 objects for writing, the average cost is only 172ns, after which the cost starts increasing
again due to the time spent scanning the transaction buffer. At 1024 open operations per
transaction, an average open takes nearly the same time as a transaction opening only one
object. If typical transactions open only a few objects, the performance may be near optimal
already, as implementing a faster lookup mechanism would require an additional data
structure to be maintained, introducing additional overhead. If real-world transactions get
too large, however, implementing such a data structure for efficient lookups would improve
performance significantly.

For open_r, the picture looks somewhat different: because this test performs only open_r
operations, no copies are ever added to the transaction buffer, and so every lookup completes
in constant time, which allows the cost per open to decrease steadily as the amortized
transaction overhead decreases. Because the overhead for opening an object for reading
is also lower than when opening for writing (no copy has to be created in the buffer), the
average cost peaks for transactions with a single open is 877ns, some 10% lower than the
equivalent transaction opening an object for writing. From here, the cost decreases quickly as
the transaction size grows. At 1024 objects opened, the amortized cost is only 49ns, allowing
over 20 million objects to be opened per second by a single-threaded application.

5.2 Read-write contention

A common scenario is that of a single writer, and multiple reader threads accessing the same
data. Here, both reader and writer threads will experience conflicts, although for different
reasons: the writer thread will occasionally be unable to lock the objects that should be
modified during its commit phase. As mentioned in Section 3.2.7, this cannot starve out the
writer thread entirely, but we nevertheless wish to see how much it affects the throughput of
the thread.

The reader threads never need to lock objects, but instead require the object’s version to stay
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Fig. 5.2: Number of transactions committed by the writer and reader threads.
For reader threads, the graph shows total number of commits for all
threads combined. Top: transaction size 1. Bottom: transaction size
500.

the same throughout the transaction’s lifetime. If the writer thread commits a modification,
the reader must abort, either when opening the object, or when committing. Figure 5.2
shows the throughput for the writer thread and for all reader threads combined, with varying
number of reader threads.

With transactions opening only a single shared object, around 490000 write transactions are
committed per second when a single reader thread is running concurrently. As the number
of readers increase, this drops dramatically, and with four reader threads, only around 24000
write transactions can be committed per second. With larger transactions of size 500, the
throughput for the writer thread is in the order of a few thousand transactions per second.
This shows that while read-write contention cannot completely starve out even large writer
transactions, it can dramatically limit the number of modifications that are committed,
especially for larger transactions.

Throughput for the reader threads is less affected. As readers only get aborted if the writer
commits while they are executing, the reader threads experience much better throughput
under contention. However, for small transactions, we also see large variations between test
runs, showing that their throughput is determined by the very nondeterministic interactions
with the writer thread. As well as the median of the test runs, minimum and maximum are
also showed in the figure to illustrate this.

For larger transactions of size 500, this nondeterminism is gone, and we see throughput for
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reader threads increase linearly with the number of threads. As the transaction size mainly
limits throughput of writer threads, the writer spends less time in the commit phase, and so
fewer reader transactions are aborted due to concurrent modifications.

Because the drop in writer throughput as contention increases is so severe, we also examine
how long transactions typically take before they successfully commit (giving us an indication
of whether the system chokes on a few transactions that for some reason keep failing, or
the performance decrease is evenly spread across all the transactions), and if the number
of rollbacks increases as expected or if some other factor is limiting throughput. We could
also have examined the causes for rollback, but since we are mainly interested in the loss in
throughput on the writer thread, which can only abort for one reason (inability to lock an
object because a reader is accessing it), there would be little point in examining this metric.

We measured the duration of transactions with a resolution of 2ms, giving us a rough
indicator of how many transactions stood out as extremely slow. However, it turned out that
when computing the median of the results, it showed every single read and write transaction
to commit within 2ms. Out of the 5 test runs, each running transactions constantly for 4
seconds on 4 threads, just 43 read transactions took more than 2ms, ranging from 2 to 32ms.
For write transactions, the results were similar. When so few transactions show up as taking
longer, it likely due to context switching by the operating system or page fault, rather than
contention in the STM system. We can conclude that as expected, the loss in throughput is
shared between all transactions, and is not due to a few transaction getting “stuck” due to
some unforeseen boundary condition.

Finally, we examine the number of rollbacks per successful commit, shown in figure 5.3.
Surprisingly, while the number of successful commits drops significantly as the level of
contention increases, the number of writer rollbacks is very stable. With two reader threads,
the number of rollbacks does increase to some 20000, from around 8000 with a single reader
thread running concurrently. However, compared to the dramatic decrease in successful
write transaction commits, we would have expected far more rollbacks.

This indicates that validation and object locking conflicts are not the main cause for the
lowered throughput. One possible alternative explanation could be that when a transaction
commits, it locks the global version counter. The high number of committing read transac-
tions could cause contention on this lock. Instead of the write transactions being forced to
roll back because the modified objects cannot be locked, they would then be blocked trying
to lock the version counter.

As predicted in Section 3.2.7, our double-buffered scheme — where modifications are stored
into the backing slot not normally accessed by readers — does seem to prevent write transac-
tions from being starved out. The starvation that does occur seems to be due to other factors:
the global version counter being locked too aggressively, and inefficient algorithms used for
searching the transaction buffer.

Interestingly, for larger transactions, the number of aborted write transactions actually
reaches zero. As discussed above, writer transactions write into the backing slot of modified
objects, and so, only experience a conflict if reader transactions from two commits ago
are still registered on the object. As the transaction size grows, the performance of writer
transactions decreases dramatically, and so this scenario never occurs.

5.3 Write-write contention

We also need to investigate how performance is affected if multiple threads attempt to
modify the same objects. We would expect a high throughput of commits even with the
contention caused by multiple threads running. Figure 5.4 confirms this. With transactions
opening and committing just one shared object, we see the total throughput fall by around
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Fig. 5.3: Number of committed and aborted transactions per second for reader
and writer threads respectively. Top: transaction size 1. Bottom:
transaction size 500.



5. Evaluation 57

10°
T
3,700 - -
8§ 7 1 2 3600f :
i i
g g
5 8 3,500 |- 7
6 | - |
3,400 |- s
! ! ! ! ! !
2 3 4 2 3 4
threads threads

Fig. 5.4: Number of committed writer transactions per second, with varying
number of threads writing concurrently. Left: transaction size 1.
Right: transaction size 500.

28% as the number of thread increases from two to four. Since this is such a tight loop with
maximum contention, this is reasonable: in computationally heavy transactions, we would
have expected the throughput to scale upwards when more threads are running, but since our
transactions in this test are effectively just no-ops which open a shared variable for writing,
and then immediately commits, the contention prevents upwards scalability. Instead, we get
a gradual decrease in throughput, which is acceptable, as long as there are no sharp drops.

For larger transactions, we get a very low throughput of just a few thousand transactions
per second. This must be attributed partly to the inefficient algorithm used for scanning the
transaction buffer when objects are opened and the long period in which the version counter
must be locked for all modifications to be applied, which together make the transactions slow
enough to be very vulnerable to contention.



6. CLOSURE

6.1 Conclusion

In this thesis, the DikuSTM transactional memory library has been developed and presented.
It presents a very clean and usable interface while supporting a large number of operations
beyond the core functionality. The retry and orelse operations first defined in Haskell STM
are implemented, and new functionality for taking consistent snapshots of unbounded sets
of transactional objects is introduced.

The interface is designed to be as generic and easy to use as possible, and is, to our knowledge,
the first C++ implementation to incorporate functors for representing transactional code.
This solves a number of semantic problems by giving transactions a more intuitive scope,
and enables C++0x lambda expressions to be used for defining transactions, resulting in a
clean and concise syntax eliminating many potential sources of user error.

We consider the presented STM interface to be near ideal for a C++ STM system, and suggest
that other STM implementations should be adopted to use it as well. This would encourage
real-world adoption of STM, as different library implementations can be tried out without
requiring changes to user code, but would also be a first step toward producing more and
better benchmark suites.

The DikuSTM system is entirely non-intrusive, requiring no changes to existing types in
order to transaction-enable them, another key to the simplicity of the presented interface.

The underlying implementation of the STM system has explored a new “double-buffered”
deferred-update scheme which can potentially overcome many of the disadvantages of both
direct-update and deferred-update systems. However, crucial optimizations have not yet been
implemented, and so the actual performance of DikuSTM leaves something to be desired:
the overhead for basic STM operations is low under ideal conditions, but larger transactions
currently incur a noticeable performance penalty, and since no mechanism for prioritizing
transactions or performing some kind of contention management is implemented, some
high-contention scenarios cause performance to drop to unacceptable levels.

However, many of these shortcomings can be fixed by applying simple, well-understood
optimizations. Other STM systems have explored a wide range of contention management
policies, and faster lookups in the transaction-local buffer is a simple question of defining an
auxillary data structure such as a hash table allowing faster lookups of buffer entries.

6.2 Future Work

The performance of the system has only been tested with very small synthetic benchmarks,
and while this gives us some clear ideas of the precise areas in which the performance of the
system is lagging, more comprehensive and “realistic” benchmarks should be developed.

To improve the relevance of such benchmarks, other STM systems should also be adapted to
use the interface provided here. This would also simplify mainstream adoption of STM — if
multiple systems use the same interface, they can be swapped out with ease if performance



6. Closure 59

turns out to be unsatisfactory.

Once this is done, we can get a much clearer idea of which aspects of a STM system’s
performance are really critical, and adapt our systems for those. Until then, there are, as
mentioned above, several optimizations that can be applied to the DikuSTM system with
little risk, but many others depend on usage patterns, and as such, should not be applied
until we have a better idea of how STM is going to be used.

One possible optimization that has not be discussed would be to eliminate the global version
counter lock during commit operations. If transactions locked their entire readset during
commit, it may be possible for the commit operation to complete without requiring the
version counter to be locked at any point, while still preserving conflict serializability. While
this would likely increase best-case overhead somewhat, it would also reduce contention for
the shared version counter.

Existing libraries should also be adopted for STM usage — for example, common data
structures should integrate STM to provide high-performance thread-safe access. A STM-
enabled version of the STL would undoubtedly reveal many weaknesses of this and other

STM systems, but would also be a crucial step on the path towards mainstream acceptance
of STM.
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