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Abstract

A constraint satisfaction problem involves the assignment of values to vari-
ables subject to a set of constraints. A large variety of problems in artificial
intelligence and other areas of computer science can be viewed as a special
case of the constraint satisfaction problem.

In many applications, one example being product configuration, user
interaction is required to find a solution. The topic of this thesis is algorith-
mic methods for solving constraint satisfaction problems interactively.

A number of fundamental operations, which form the core of an inter-
active constraint solver, are identified and described formally. The deci-
sion version of the constraint satisfaction problem is NP-complete, so a
method of offline compilation is proposed to circumvent this intractability
and achieve short response times for these fundamental operations.

Based on existing methods for tree clustering and solution synthesis, a
compilation method is devised. A new method, based on uniform acyclic
constraint networks, is proposed which results in improved response time of
the fundamental operations.

All methods and algorithms have been implemented and their perfor-
mance evaluated on real-life problem instances arising from the area of
product configuration. The performance study shows that the new meth-
ods presented can achieve response times suitable for interactive process-
ing for most of the problem instances.
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Preface

This Master’s Thesis (Danish: speciale) is submitted to the University of
Copenhagen, Department of Computer Science, as part of the author’s
work towards the M.Sc. (Danish: cand.scient.) degree in computer science.
The thesis was written under the supervision of Jyrki Katajainen.

A major part of the work carried out during this project was the imple-
mentation of the methods described in this thesis. In order to save some
trees, I have chosen to include the source code of this implementation on a
supplemental CD-ROM. The source code can also be downloaded from:

www.diku.dk/forskning/performance-engineering/jeppe/
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The intended audience of this report is computer scientists and computer
science students with a background in algorithmics. I have done my best
not to assume any prior knowledge of constraint satisfaction, but readers
are required to have a basic knowledge of mathematics (especially set the-
ory) and graph theory.

The notation used relies on relational algebra, and while the notation
is defined in the report, some prior exposition to relational algebra may be
useful.
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CHAPTER 1

Introduction

A constraint satisfaction problem (CSP) involves the assignment of values
to variables subject to a set of constraints. A large variety of problems in Ar-
tificial Intelligence (AI) and other areas of computer science can be viewed
as a special case of the constraint satisfaction problem. Examples include
machine vision [Montanari, 1974; Mackworth, 1977a], belief maintenance
[Dechter and Dechter, 1988], scheduling [Sycara et al., 1991], circuit design
[de Kleer and Sussman, 1980], and natural language processing [Menzel,
1998].

The formal study of constraint satisfaction problems was initiated by
Montanari [1974] who used constraint networks to describe combinatorial
problems arising in image processing. A great deal of research in constraint
satisfaction has focused on algorithms which, given a constraint network
as input, automatically find a solution. This is useful in applications where,
once the problem has been formulated as a constraint network, no user in-
teraction is required. One such example is planning and scheduling (e.g.,
find a plan/schedule which satisfies the constraints). However, in many
applications user interaction is required to find a solution. An example is
when the user guides the assignment of values to variables. This interac-
tivity restricts the amount of time that can be used for calculations between
the user’s selections. Constraint satisfaction problems are generally hard
to solve (we will prove that the decision version of a CSP isNP-complete),
so all known solution methods have worst-case exponential time perfor-
mance.

While CSPs are difficult to solve, one could hope for a situation akin to
the results from Linear Programming where the widely used simplex al-
gorithm [Dantzig, 1963] is shown to have exponential worst-case running
time [Klee and Minty, 1972] but the intractable instances are hard to pro-
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CHAPTER 1. INTRODUCTION 2

duce and almost never show up in real life problems. Unfortunately this
does not seem to be the case. It is usually easy to come up with a constraint
network which takes exponential time to solve. To solve a CSP interac-
tively, we therefore have to circumvent this intractability in some way.

The topic of this thesis is algorithmic methods for solving constraint
satisfaction problems interactively. Focus is on methods which are useful
for solving practical problems arising in real life. I restrict the treatment to
cover a subset of CSPs where the problem can be divided into two parts:

1. A static part in which the constraint network does not change be-
tween user interactions.

2. A dynamic part in which the user can influence the solution by adding
additional constraints to the problem.

For problems in which the static part can be reused many times, this for-
mulation allows considerable time to be spent preprocessing the static part
of the network to speed up the dynamic operations where interactivity is
required. As we will see, many problems of practical interest can be formu-
lated using this restricted subset.

1.1 A Tour of Constraint Satisfaction Problems

Any constraint satisfaction problem involves variables. Each variable can
be given a value chosen from a set of possible values called its domain. The
constraints impose limitations on the values a variable, or a combination of
variables, may be assigned. Together, variables, domains, and constraints
form a constraint network. Other terms often used for a constraint network
are (an instance of) a constraint satisfaction problem or a constraint store. A
formal definition of constraint networks is given in Chapter 3 on page 17.

To give an idea of the wide variety of problems that can easily be formu-
lated as a CSP, a number of well-known problems are listed and a possible
constraint network representation is (informally) described. It is important
to note that there is usually more than one way to model a problem. The
choice between different formulations is sometimes arbitrary but can have
great impact on the effort needed to solve the problem. The task of formu-
lating problems using some well defined formalism is know as modeling.

1.1.1 Combinatorial Problems

Many combinatorial problems are NP-complete. In Section 3.2 we prove
that this also holds for the decision version of the constraint satisfaction
problem. It follows from the theory of NP-completeness that (the decision
version of) these problems can be converted (in polynomial time even) to a
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CSP. However, as the following examples show, it is often quite natural to
state combinatorial problems directly as a CSP.

Graph 3-Colorability

We are given an undirected graph G = (V, E) with n vertices. The question
is whether each vertex can be colored either red, green, or blue in such a
way that two vertices connected with an edge have a different color. An
example of different graphs can be seen in Figure 1.1.

To model this as a constraint network, we represent each node vi ∈ V
with a variable xi having the domain {R, G, B}. For each edge {vi, vj} ∈ E
we add the constraint xi 6= xj. If we can find a solution to this network, we
have solved the problem.

v1

v4

v2v3

(a) A graph which can be 3-colored.

v1

v4

v2v3

(b) A graph which cannot be 3-colored.

Figure 1.1: Graph 3-colorability examples.

1.1.2 Logic Puzzles

Much of the research in constraint satisfaction has been carried out by the
AI community, and logic puzzles are often used as examples of problems
which can be formulated as constraint satisfaction problems.

The n-Queen Problem

This is a classical problem from artificial intelligence. The goal is to place n
queens (n ≥ 4) on a chess board of size n× n such that no queen can attack
another.

There are several ways to formulate this as a constraint network. One
is to use a Boolean variable for each of the n× n cells on the chess board. If
a variable is true, it means there is a queen in that cell. Instead I represent
the ith column with an integer variable qi. The value of qi indicates the
row where the ith queen should be placed. Using this representation, we
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implicitly model the constraint (by creating n variables) that there shall be
exactly one queen in each column.

The remaining constraints are:

|qi − qj| 6= i− j, for 1 ≤ i ≤ n, j > i and (1.1)

qi 6= qj, for 1 ≤ i ≤ n, j > i. (1.2)

Constraint (1.1) states that queen i and j cannot be on the same diagonal
and Constraint (1.2) that queen i and j cannot be on the same row.

A solution to the n-queen problem is thus an assignment of values in
the range 1 to n to the variables {q1, q2, . . . , qn} such that the constraints in
(1.1) and (1.2) are satisfied. For n = 8 there are 92 possible solutions to this
network [Erbas et al., 1992]. One such solution is shown in Figure 1.2.

Figure 1.2: A solution to the 8-queen problem.

Who Owns the Zebra?

This problem is a classic example of a logic puzzle originally designed by
the English logician Charles L. Dodgson (aka. Lewis Carroll). There are
five houses, each of a different color and inhabited by people of different
nationalities, with different pets (one is a zebra), drinks (one drink is water),
and cigarettes. We are given the following clues:

1. In each house there lives only one person.
2. Each person has only one favorite drink, one pet, and smokes one

brand of cigarettes.
3. The English person lives in the red house.
4. The Spaniard owns the dog.
5. Coffee is drunk in the green house.
6. The Ukrainian drinks tea.
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7. The green house is immediately to the right (your right) of the ivory
house.

8. The Old Gold smoker owns snails.
9. Kools are smoked in the yellow house.

10. Milk is drunk in the middle house.
11. The Norwegian lives in the first house on the left.
12. The person who smokes Chesterfields lives next to the house with the

fox.
13. The person who smokes Kools lives next to the house with the horse.
14. The Lucky Strike smoker drinks orange juice.
15. The Japanese smokes Parliaments.
16. The Norwegian lives next to the blue house.

Questions: Who owns the zebra? Who drinks water?
To model this as a constraint network, we can assign the houses num-

bers 1 to 5 and use 5 variables for house i, 1 ≤ i ≤ 5:

Ci ∈ {red, green, ivory, yellow, blue}, (1.3)
Ni ∈ {English, Spanish, Ukrainian, Norwegian, Japanese}, (1.4)
Pi ∈ {zebra, dog, snails, fox, horse}, (1.5)

Di ∈ {water, coffee, tea, milk, juice}, and (1.6)
Si ∈ {Old Gold, Kools, Chesterfield, Lucky Strike, Parliaments}. (1.7)

We then have that Ci is the color of the ith house, Ni the nationality of
the person living in the ith house and so on. Because all houses have a
different color, all persons a different nationality, etc., we get the following
constraints:

Ci 6= Cj, Ni 6= Nj, Pi 6= Pj, Di 6= Dj, Si 6= Sj 1 ≤ i ≤ 5, i < j (1.8)

The remaining clues can also be specified as constraints. Take for example
the third clue, which can be expressed as:

Ni = English ⇐⇒ Ci = red 1 ≤ i ≤ 5. (1.9)

Constraint (1.9) states that if the nationality of the person living in the ith
house is English then the ith house is red and vice versa. The remain-
ing clues can be expressed in a similar way. The resulting network has
a single solution in which P5 = zebra, N5 = Japanese, D1 = water, and
N1 = Norwegian. So the answer is “The Japanese owns the zebra” and
“The Norwegian drinks water”.
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1.2 Configuration

Configuration involves selecting combinations of predefined components
subject to a number of problem constraints. The CSP paradigm offers an ad-
equate framework for this task, and interactive configuration will be used
as the working example throughout this thesis.

Configuration problems may involve sales (sales configuration), design,
manufacturing, installation, or maintenance. The components involved
need not be physical but can also be paragraphs of a legal document, fi-
nancial services, actions in a plan, etc.

The possibility to automate the product configuration task using a con-
figuration system1 was recognized in the 1980’s, and is now a rapidly grow-
ing industry. The following quote is from an article in Forbes Magazine
about a large vendor of configuration systems. It illustrates the complexity
of some of the problems solved by configuration systems.

A [Boeing] 747 is made up of over 6 million parts, and a
customer can choose among hundreds of options. How many
seats? What kind of avionics? How many bathrooms? Do you
want carbon composite landing gear or steel? Every option
the customer chooses affects the availability of other options,
and changes the plane’s price. It takes the sales agent days or
weeks working with company engineers to make sure all the
chosen pieces fit together, re-negotiating the price at every step.
[McHugh, 1996]

The preceding quote talks about the configuration of a large and com-
plex product (a Boeing 747 airplane), probably sold to customers by a large
team of salespersons and engineers. The ubiquitous use of the Internet has
enabled individual customers to buy products manufactured to their liking
directly from an online store. But even in a relatively simple product such
as a Personal Computer (PC), there can be many dependencies among the
available components. The picture in Figure 1.3 on the next page is from
an online PC shop by one of the world’s largest PC manufacturers (which
shall remain anonymous). They appear not to be using a configuration sys-
tem, but are instead relying on small textual notes on the screen advising
the user about incompatible selections. The constraints that can be inferred
from the notes are:

1. If you select more than three hard drives, you must select a hard drive
bracket.

1Configuration systems are also known as product configuration systems (when used
to configure products) or sales configuration systems (when used in a sales process). I use
the more general term to emphasize that the usage is not restricted to the configuration of
products nor the usage in a sales process
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Figure 1.3: An example of an online store that could rely on a configuration
system. Note how the incompatible selections are described using textual
notes.

2. If you select an Ultra 320 SCSI Controller Card, you must select at
least one Ultra 320 SCSI Hard Drive.

3. When ordering a RAID controller you must

(a) select only drives which have the same size and speed,
(b) select a 1st drive that is RAID compatible, and
(c) not select any IDE drives.

Considering that the screen shot only shows a subset of the available
options, it seems fairly easy to buy a product which will not function cor-
rectly. For both a customer and a manufacturer, it is very expensive to
handle these types of configuration errors because manual intervention is
required (call technical support, identify why the system does not work,
perhaps return incorrect components, receive and install new necessary
components, etc.). If instead the manufacturer had used a configuration
system, these constraints would have been taken into account automati-
cally and an invalid combination of components could not be shipped to
the customer.
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1.2.1 Elements of a Configuration System

At a high level, a constraint based configuration system is made up of two
parts, as shown in Figure 1.4:

1. A modeling part where a configuration model is created. The model
can be created manually by a user2, automatically by extracting data
from various enterprise systems or by a combination of the two ap-
proaches.

2. A runtime part where the end users of the configuration system inter-
act with the configuration model to determine the configuration that
suit their needs (whether it is a product, a service, or something com-
pletely different). The task of selecting the components is called the
configuration task.

Components

Constraints

Model
creation

Runtime
Services

Model

Internet

Figure 1.4: A high level view of a configuration system.

Creating a model involves specifying the components that are available
and the constraints between these components. There are many possible
ways to capture this knowledge. Constraint networks provide a conve-
nient way to describe the components available as well as the constraints
between them. In Section 4.4 on page 43, I will describe in more detail how
a product model can be represented by a constraint network.

Changes to an already defined model involve changes in components
(because some components are no longer available or new features be-
come available to existing components) and/or changes to the constraints
(because of new or changed components or because market requirements
cause some combinations to be invalid). These changes occur infrequently
relative to the number of configuration tasks carried out. This observation

2This is only a conceptual view. For large models many users may be involved in creat-
ing the model.
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is important from an algorithmic point of view because it allows us to jus-
tify spending some time to preprocess a model to speed up the algorithms
used during the configuration task.

The runtime part can come in many different incarnations depending
on the target users of the system. If used by a company’s customers, it
may be a web application running in a browser and accessed using the
Internet. If used by a company’s salespersons, it may be an application
running on the company’s intranet or on the salesperson’s laptop. If used
by field engineers, it may be an application running on a wireless device
such as a cellphone.

When the user has completed the configuration task, the resulting con-
figuration is usually used in the next step of the business process. This may
involve printing a quote, creating an order or maybe assembling a docu-
ment based on the user’s selections.

There are, of course, many other issues to an actual implementation of a
configuration system (the actual process of capturing product knowledge,
the language used for specifying this knowledge, how the model is dis-
tributed to the salesperson’s laptop, what the model should look like when
presented to the user, how the result of the configuration task should be
stored, etc.). However, these issues are not essential to the contents of this
thesis.

1.3 Contribution

I have identified a number of requirements that must be fulfilled by an in-
teractive constraint solver, in order to provide a good user interface. Driven
by these requirements I have identified three fundamental operations that
form the basis of an interactive constraint solver. They are:

Add-Constraint: Add a new constraint to an existing constraint network.

Remove-Constraint: Remove a previously added constraint from a con-
straint network.

Restoration: Determine a set of constraints that restores satisfiability in a
constraint network when incompatible constraints have been added.

I have proposed algorithms for the fundamental operations, which run
in worst-case polynomial time when the constraint network is restricted to
an acyclic constraint network. By combining existing methods for constraint
network decomposition and solution synthesis, I have proposed a compi-
lation scheme that compiles a general constraint network into an acyclic
constraint network required by the fundamental operations.
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While the algorithms for the fundamental operations are polynomial,
experiments show that the acyclic networks constructed by the compila-
tion scheme are, in many cases, too large to handle if short response times
are required. To overcome this problem, I impose a further restriction
on the structure of the constraint network and propose a transformation
method that transforms an acyclic constraint network into a uniform acyclic
constraint network. If a uniform acyclic network can be constructed, experi-
ments show that the fundamental operations can be carried out in running-
time suitable for interactive use.

All methods and algorithms presented in this thesis have been imple-
mented and their performance evaluated on various constraint networks,
many arising from real-life configuration problems. To my knowledge this
is the first experimental study where performance of interactive constraint
satisfaction methods have been evaluated on more than a single problem
instance.

1.4 Related Work

Methods for solving static constraint satisfaction problems have been ex-
tensively studied. The book by Tsang [1993] covers many of the fundamen-
tal concepts and algorithms.

As noted in the preceding sections, most of the algorithms developed
within the classical CSP framework cannot be used to solve interactive de-
cision support systems. The classical (static) CSP framework have been
extended with concepts that allow constraints to be added dynamically
[Dechter and Dechter, 1988; Mittal and Falkenhainer, 1990]. The solution
methods proposed, however, have not been directed towards interactive
use.

The idea of compiling a constraint network into a form which allows
more efficient processing is not new. Dechter and Pearl [1989] proposed
a tree decomposition heuristic that transforms a constraint network into a
tree structure. Vempaty [1992] introduced the idea of using a finite-state
automaton that represents the set of all solutions to a constraint network.
Amilhastre et al. [2002] continued this idea and described how this automa-
ton could be used to solve constraint satisfaction problems interactively.
Møller [1995] proposed a method for synthesizing all solutions to a con-
straint network and storing them compactly. Weigel and Faltings [1999]
proposed a heuristic method, based on recursive spectral bisection, for
compiling a CSP into a minimal synthesis tree.

A Boolean Decision Diagram [Bryant, 1986] is a canonical representation
of a Boolean function using a directed acyclic graph. BDDs are widely used
within the areas of circuit analysis and formal verification. A CSP can be
viewed as a Boolean function that returns TRUE whenever a valid solution
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is passed as input. Bouquet and Jégou [1997] proposed a method that used
BDDs to solve dynamic constraint satisfaction systems.

Common for all these methods (as well as the methods proposed in this
thesis) is that an initial constraint network is transformed into a form that
allows efficient processing. Once the transformation is complete, efficient
polynomial time algorithms are used subsequently. Unfortunately, the pro-
posed transformations are all exponential in time (and some in space). This
is to be expected since, as we will see, the decision version of the constraint
satisfaction problem is NP-complete. The applicability of the different
methods thus depends on how well they are able to transform the con-
straint networks considered.

1.5 Outline of the Thesis

In Chapter 2 the definitions of general terms are given, the notation used
throughout the thesis is fixed, and the basic definitions from graph the-
ory and relational database theory are recalled. An experienced reader can
skim this chapter.

Chapter 3 contains the formal definition of constraint networks, I prove
that the decision version of a CSP is NP-complete, and survey solutions
methods for the classical CSP. The chapter ends with a discussion of con-
ditions in which a CSP becomes tractable.

In Chapter 4, I identify a list of usability requirements for an interactive
constraint satisfaction system and proceed with an extension of the clas-
sical CSP framework, which can be used to describe interactive constraint
satisfaction problems. From these requirements and definitions, I identify
operations that are fundamental for an interactive constraint satisfaction
system and describe them formally. Polynomial-time algorithms, which
operate on an acyclic constraint network, are then presented for the funda-
mental operations.

In Chapter 5, I describe an existing method for synthesizing solutions
and an existing method for decomposing constraint networks, and show
how they can be combined to transform any constraint network into an
acyclic constraint network

Chapter 6 highlights the important parts of an implementation of the
algorithms described in chapters 4 and 5. This chapter also contains the
experimental results that have been obtained by running the implemented
algorithms on several different constraint networks. The constraint net-
works used in the experiments consist of real life problems that have been
encountered in various customer projects, problems mentioned in other re-
search articles and logic puzzles.

In Chapter 7, I propose to further restrict the structure of an acyclic
constraint network to obtain a uniform acyclic constraint network to improve
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the response time of the fundamental operations. A tree transformation
method is proposed which transforms an acyclic network into a uniform
acyclic network. The chapter is concluded by an experimental evaluation
of the proposed methods.

Chapter 8 concludes the thesis by highlighting the results and by propos-
ing some further areas of research.



CHAPTER 2

Preliminaries

In this chapter the definitions of general terms are given, the notation used
throughout the thesis is fixed and the basic definitions from graph theory
and relational database theory are recalled. An experienced reader can
skim this chapter.

2.1 Graph Theory

Definition 2.1. A graph G = (V, E) is a structure where V is a finite set of
vertices or nodes and E a finite set of edges or arcs1. For an undirected graph
each edge is an unordered pair of vertices, and for a directed graph each edge
is an ordered pair of vertices.

Definition 2.2. A graph G′ = (V ′, E′) is a subgraph of G = (V, E) if V ′ ⊆ V
and E′ ⊆ E.

Definition 2.3. A clique in an undirected graph G = (V, E) is a subset V ′ ⊆
V of vertices, each pair which is connected by an edge in E. A clique is a
maximal clique if it is not a proper subset of any other clique.

Definition 2.4. A hypergraph H = (V, S) is a structure where V is a finite
set of vertices and S a finite set of hyperedges. Each hyperedge E is a subset
of the vertices, i.e. E ⊆ V. A hypergraph is reduced if, and only if, no
hyperedge is a proper subset of another.

1I will frequently use the terms “node” and “arc” instead of “vertex” and “edge” re-
spectively, to keep with the tradition in the AI community. This emphasizes the connection
between the graph representation of constraint networks and some of the fundamental al-
gorithms such as Node Consistency and Arc Consistency.

13
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Definition 2.5. For a hypergraph H = (V, S), the primal graph of H is an
undirected multi-graph (V, E) where every two vertices joined by a hyper-
edge in S is joined by an edge in E.

2.2 Relational Database Theory

As we will see in the following chapter, there is a close relationship between
constraint networks and the relational data model used in database systems
as initially defined by Codd in his seminal article [Codd, 1970]. Both use
relations as the primary notation for representing data or knowledge. A
database is a finite set of relations.

Definition 2.6. A relation consists of a scheme and an instance:

1. A scheme is a finite set of attributes. Each attribute is associated with
a set of values, called its domain.

2. A tuple over a scheme is a mapping, that associates with each attribute
of the scheme a value from its corresponding domain.

3. An instance over a scheme is a finite set of tuples over that scheme.

Since relations are sets, the general set operations apply to relations
with the restriction that both relations must have the same scheme. Given
two relations R and S with the same scheme, the intersection of R and S,
denoted R∩ S, is the relation containing tuples that are in both R and S; the
union R ∪ S is the relation containing the tuples that are in either R or S or
both, and the difference R− S is the relation containing the tuples that are
in R but not in S.

Many additional operations have been defined on relations. These op-
erations are part of the relational algebra [Codd, 1970]. Of these, we will
make use of projection and join which will be defined next.

Definition 2.7. Let R be a relation with scheme Y and Z ⊆ Y a set of at-
tributes. Let r be an instance over Y. The projection of r onto Z, denoted
πZ(r), is a relation with scheme Z and instance {t|Z | t ∈ r} where t|Z de-
notes the tuple formed from t by keeping only those components associated
with the attributes in Z.

Definition 2.8. Let R be a relation with scheme Y and instance r. Let S be a
relation with scheme Z and instance s. The join2 of R and S, denoted R 1 S,

2The operation defined here is sometimes referred to as natural join to distinguish from
the more general theta join. Here we use the short form since it does not give rise to confu-
sion.
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is defined to be the relation with scheme Y ∪ Z and an instance containing
the following set of tuples:

{t | t is a tuple over Y ∪ Z , t|Y ∈ r, t|Z ∈ s}.

Again, t|Z denotes the tuple t restricted to Z.

The projection operator is used to remove certain components of the
tuples in a relation, and the join operator is used to combine two relations
on all their common variables. If there are no common variables, the join
operator behaves as a Cartesian product. Since the results of the operators
are again relations, the operators can be combined.

2.2.1 Representing Relations

In Definition 2.6 on the facing page, schemes and tuples are formally de-
fined in terms of sets. This allows specifying tuples without fixing the at-
tribute order. Consider a relation with scheme {a, b, c} and the domain
of each attribute being the set of integers. A tuple over this scheme is
{b 7→ 2, c 7→ 3, a 7→ 1}, where b 7→ 2 is used to denote that the attribute b
maps to the value 2.

For notational convenience, however, I will express tuples as ordered
sequences, with an implied ordering for the attributes of each relation.
Thus with the attribute ordering (a, b, c) the same tuple is expressed as
(1, 2, 3). A relation is usually depicted using a table with the first row rep-
resenting the attributes, a horizontal line and a row for each tuple in the
instance:

a b c
1 2 3

Similarly, the relation instance is expressed as an ordered sequence of
tuples and R[i] denotes the ith tuple of relation instance R. The number of
tuples in a relation instance is denoted by |R|.

Example 2.1. The result of applying the projection and join operators to
two relations R and S is shown in Figure 2.1 on the next page.

2.3 Model of Computation

The model of computation used is the unit-cost word RAM. For a positive
integer parameter w, called the word length, the memory cells of a word
RAM store w-bit words, viewed as integers in {0, . . . , 2w−1} or as bit vec-
tors in {0, 1}w. Standard operations, including addition, bitwise Boolean
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a b
0 0
0 1
1 0
1 1

(a) Relation R

b c
0 4
1 5
2 6
3 7

(b) Relation S

a
0
1

(c) πa(R)

a b c
0 0 4
1 0 4
0 1 5
1 1 5

(d) R 1 S

Figure 2.1: Applying projection and join operations on relations.

operations, shifts and multiplication, can be carried out on words in con-
stant time. The space requirements of a word-RAM algorithm is measured
in units of w-bit words.

The word RAM is a natural and realistic model of computation and
has been the object of much recent research (see, e.g., [Hagerup, 1998]). A
detailed definition of the model can also be found in [Hagerup, 1998].



CHAPTER 3

Constraint Satisfaction Problems

In the present chapter, the terminology, concepts and definitions relating
to constraint satisfaction problems are introduced and some of the funda-
mental algorithms for solving them are surveyed.

Due to the diversity of research, much of the terminology related to
constraint satisfaction is unfortunately ambiguous. I have chosen the def-
initions to ease the presentation of the subsequent material while keeping
in agreement with most of the existing literature.

3.1 Constraint Networks

An instance of a constraint satisfaction problem can be described by a con-
straint network1.

Definition 3.1 (Constraint Network). A constraint network is a triple R =
(X, D, C) where

1. X is a finite set of variables.

2. D is a function that maps each variable x in X to a finite set of values,
written D(x), which it is allowed to take. The set D(x), called the
domain of x, is also denoted Dx.

3. C is a finite set of constraints. Let S = {xk, . . . , x`} ⊆ X. Each con-
straint CS ∈ C is a relation with scheme S and instance CS. The set

1The term “network” is used to reflect the historical perspective when focus was re-
stricted to constraints whose dependencies can naturally be captured by simple graphs as
well as to emphasize the importance of the constraint dependency structure to the solution
algorithms.

17
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S is the scope of the constraint, and |S| denotes the arity of the con-
straint. Each tuple in the instance CS ⊆ Dxk × · · · × Dx`

specifies a
combination of values which the constraint allows.

In general, domains can be infinite which in turn implies that the constraint
relations can be infinite, but we only consider the case where variables have
finite domains (sometimes called finite domain constraint satisfaction prob-
lems). The constraint representation chosen in Definition 3.1 on the preced-
ing page is extensional, i.e., an explicit enumeration of the tuples that are
allowed by the constraint. Other representations are possible, e.g., an in-
tensional representation where a constraint is represented in symbolic form
such as predicate logic.

Without loss of generality I assume that all constraints have a unique
scope, i.e., for all CS, CR ∈ C, CS 6= CR we have S 6= R. To simplify the nota-
tion, I usually denote the constraint C{x,y,z} as Cx,y,z or even Cxyz, when no
confusion can arise from this simplified notation. A constraint with arity
one is called a unary or domain constraint (since it restricts the possible val-
ues of a variable). A constraint with arity two is called binary. A network
with only binary constraints is called a binary constraint network, otherwise
it is called a general constraint network.

Definition 3.2. Let R = (X, D, C) be a constraint network. An assignment
of the value a ∈ Dx to the variable x ∈ X is denoted 〈x, a〉. An instantiation
of a set of variables {xk, . . . , x`} ⊆ X is a simultaneous assignment of values
to the variables {xk, . . . , x`} and is denoted {〈xk, ak〉, . . . , 〈x`, a`〉}.

For simplicity, we often perceive an instantiation as a tuple (ak, . . . , a`) over
the scope {xk, . . . , x`} and denote the instantiation briefly as ā{xk ,...,x`} or
simply ā if the scope is well defined or unimportant.

Definition 3.3. An instantiation ā satisfies a constraint CS if ā|S ∈ CS. Let
R = (X, D, C) be a constraint network. An instantiation āT, where T ⊆ X,
is consistent relative to R if, and only if, āT satisfies all constraints CS ∈ C
such that S ⊆ T.

Definition 3.4. A solution of the constraint network R = (X, D, C) is an
instantiation of all variables in X which is consistent relative to R. The set
of all solutions to a constraint network R is denoted Sol(R).

A network R is called satisfiable if Sol(R) 6= ∅ and unsatisfiable if Sol(R) =
∅. Two networks defined on the same set of variables are considered equiv-
alent if they have the same set of solutions. A constraint is redundant if
removal of the constraint does not change the set of all solutions. For a
constraint network R = (X, D, C), any subset of variables I ⊆ X induces a
subnetwork ofRwhich has variables I, domains D and the set of constraints
is a subset of C:

{CS | CS ∈ C, S ∩ I 6= ∅}. (3.1)
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Given a constraint networkR, a CSP can be classified into the following
categories:

1. Determine whether the network R is satisfiable.

2. Find a solution to the networkR, with no preference as to which one.

3. Find the set of all solutions Sol(R).

4. Find an optimal solution to the network R, where optimality is de-
fined by a function on the variables in R.

Optimal or approximatively optimal solutions are often required in plan-
ning and scheduling problems where the objective is to, e.g., minimize the
time required to finish a schedule.

3.1.1 Constraint Network Properties

A constraint network can be characterized by various parameters.

n: the number of variables, |X|,

d: the size of the largest domain, maxx∈X|Dx|,

e: the number of constraints, |C|,

r: the size of the largest scope, maxCS∈C|S|, and,

t: the largest number of tuples in any constraint relation, maxCS∈C|CS|.

Definition 3.5. The tightness of a constraint CS is the ratio between the num-
ber of tuples in the constraint relation and the number of possible instanti-
ations of the variables in S

|CS|
∏x∈S|Dx|

. (3.2)

The universal constraint over the variables S, denoted US, allows every in-
stantiation of the variables in the scope S. It is the most relaxed constraint
possible and has tightness 1.

In general, the number of tuples in a constraint with scope S is bounded
by ∏x∈S|Dx|, which is the number of tuples in the universal constraint with
scope S. Frequently, constraints are quite tight. For binary constraints we
have, e.g., the universal constraint with t ≤ d2, but functional constraints
have t ≤ d.
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Definition 3.6. The tightness of a constraint network R = (X, D, C) is mea-
sured by the number of solutions over the number of possible instantiations
for all variables

|Sol(R)|
∏x∈X|Dx|

. (3.3)

Definition 3.7. The size of a CSP described by a constraint network R =
(X, D, C) is defined as

∑
CS∈C

|S||CS| = O(ert). (3.4)

Example 3.1. Let us construct a simple constraint network to illustrate the
definitions. As an example we use the 4-queen problem introduced in Sec-
tion 1.1.2 on page 3. As noted we have 4 integer variables, one for each
queen. So we have X = {q1, q2, q3, q4} and Dx = {1, 2, 3, 4} for each x ∈ X.
The two constraints in Equation (1.1) and Equation (1.2) can be combined
so we get a total of six binary constraints. The constraints are shown in the
following where the notation C12 is used to denote C{q1,q2}:

C12 = {(1, 3), (1, 4), (2, 4), (3, 1), (4, 1), (4, 2)}
C13 = {(1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 4), (4, 1), (4, 3)}
C14 = {(1, 2), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 2), (4, 3)}
C23 = {(1, 3), (1, 4), (2, 4), (3, 1), (4, 1), (4, 2)}
C24 = {(1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 4), (4, 1), (4, 3)}
C34 = {(1, 3), (1, 4), (2, 4), (3, 1), (4, 1), (4, 2)}.

There are only two solutions to the 4-queen problem as shown in Fig-
ure 3.1(a) and Figure 3.1(b). Figure 3.1(c) on the facing page shows a con-
sistent instantiation that cannot be extended to a full solution.

3.1.2 Links with Relational Database Theory

As noted in [Gyssens et al., 1994] the definitions given so far have close
connections to relational database theory. For any constraint network R =
(X, D, C), the following connections can be established:

• The variables in X can be interpreted as attributes.

• The domain associated with an attribute is the domain of the corre-
sponding variable in X.
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(a) Solution corre-
sponding to {3, 1, 4, 2}.

(b) Solution corre-
sponding to {2, 4, 1, 3}.

(c) Consistent instantia-
tion not part of a solu-
tion.

Figure 3.1: Some consistent instantiations of the 4-queen problem. Not all
consistent instantiations can be extended to a full solution.

• The valid combinations of values with scope S ⊆ X is a tuple over the
scheme with the set of attributes S.

This gives rise to two alternative views of a constraint networkR = (X, D, C).

1. The set of all solutions can be represented by the database consisting
of a single relation with scheme X and instance Sol(R).

2. The constraint network can be represented by the database {RCS |
CS ∈ C} where RCS is a relation with scheme S and instance CS.

It follows from these definitions that for a constraint networkR = (X, D, C),
Sol(R) is equal to the relation 1CS∈C CS (the join of all relations in C). Ta-
ble 3.1 summarizes the terminology.

Constraint Terminology Database Terminology
constraint network ≡ database

variable ≡ attribute
domain ≡ attribute domain

constraint ≡ relation
constraint scope ≡ scheme

constraint relation ≡ instance
set of solutions ≡ join of all tables

Table 3.1: Constraint and database terminology. Adapted from [Pearson
and Jeavons, 1997].

3.1.3 Structure of Constraint Networks

The structure, or topology, of a constraint network can be described using
various objects as the following definitions show.
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Definition 3.8 (Primal constraint graph). The constraint graph of a con-
straint network R = (X, D, C) is an undirected graph in which each node
represents a variable in X and there is an arc between any two variables
that are related by a constraint. The constraint graph is also called a primal
constraint graph [Dechter and Pearl, 1989].

The term constraint graph is sometimes used only for graphs represent-
ing binary constraint networks, but in this thesis I will use the general def-
inition which is well defined for both binary and general constraint net-
works. For binary networks, however, there is a direct association between
arcs and constraints. To maintain this association for general constraint
networks, we need a hypergraph representation.

Definition 3.9 (Constraint hypergraph). The constraint hypergraph of a con-
straint network R = (X, D, C) is a hypergraph in which each node repre-
sents a variable in X and for each constraint CS ∈ C there is a hyperedge S
that represents the constraint.

Definitions 3.8 and 3.9 are of course closely related: In the case of a bi-
nary network, both the primal constraint graph and the constraint hyper-
graph reduce to an undirected graph with a node for each variable and an
arc for each constraint. For some problems, such as the graph 3-colorability
problem described in Section 1.1.1 on page 3, there is a direct correspon-
dence between the problem instance and the constraint graph.

Definition 3.10 ([Dechter and Pearl, 1989]). The dual constraint graph of a
constraint network R = (X, D, C) is an undirected graph in which each
node represents a constraint. There is an arc between any two nodes shar-
ing a common variable. The arcs are labeled by the shared variables.

The dual constraint graph can be used to transform any non-binary con-
straint network into a special type of binary constraint network called the
dual network.

Definition 3.11 (Dual Network). Given a constraint networkR = (X, D, C),
the dual network is a binary constraint network Rd = (Xd, Dd, Cd) where

1. Xd is a set of dual variables. There is a dual variable for each constraint
CS ∈ C where each dual variable represents a subset S of variables
from X

Xd = {S | CS ∈ C}. (3.5)

2. Dd is a function that maps each dual variable S ∈ Xd to the dual do-
main Dd

S. The dual domain Dd
S is the set of tuples in the relation of the

original constraint CS ∈ C

Dd
S = {t | t ∈ CS}. (3.6)
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3. Any two dual variables sharing an original variable must obey the re-
striction that their shared original variables must have the same val-
ues. The constraints in Cd are thus

Cd = {Cd
S,T | S, T ∈ Xd, S ∩ T 6= ∅} (3.7)

where Cd
S,T is the binary constraint

Cd
S,T = {(u, v) | u ∈ CS, v ∈ CT, u|S∩T = v|S∩T}. (3.8)

Thus all the constraints in the dual network are in some sense equality con-
straints. It should be clear that if we found a solution to the dual network
we would also, by mapping the solution back to the original variables, find
a solution to the original problem. In this way all general constraint net-
works can be transformed into binary networks and solved using binary
network techniques. This is useful, since many CSP algorithms are defined
only for binary networks. Other encodings exist for transforming a general
network to a binary network. Bacchus et al. [2002] compare some of the
encodings when used in conjunction with search algorithms.

Example 3.2. Consider the following constraint network with five variables
and three constraints:

X = {model, case, ide, scsi, cpu}
Dmodel = {home, office}

Dcase = {desktop, tower}
Dide = {none, 40gb, 80gb}
Dscsi = {none, 18gb, 36gb}
Dcpu = {PIII, PIV, AMD}

C = {C{model,cpu,case}, C{ide,scsi}, C{case,scsi}}

model cpu case
home PIII desktop
home AMD desktop
office PIII desktop
office PIII tower
office PIV desktop
office PIV tower
office AMD desktop
office AMD tower

ide scsi
none 18gb
none 36gb
40gb none
80gb none

case scsi
desktop none
tower none
tower 18gb
tower 36gb

The different graph representations for this constraint network are shown
in Figure 3.2 on page 25. The dual network is a constraint network with
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three variables: one for each constraint in the original problem, and two
binary constraints: one for each edge in the dual constraint graph. The
domains of the dual variables are the tuples of the corresponding original
constraints. Note that if we depicted the primal graph of the dual problem,
the topology would be equivalent to the dual graph of the original problem.

Xd = {{model, cpu, case}, {ide, scsi}, {case, scsi}}
Dd
{model,cpu,case} = C{model,cpu,case}

Dd
{ide,scsi} = C{ide,scsi}

Dd
{case,scsi} = C{case,scsi}

Cd = {Cd
({model,cpu,case},{case,scsi}), Cd

({case,scsi},{case,ide})}

{model, cpu, case} {case, scsi}
(home, PIII, desktop) (desktop, none)

(home, AMD, desktop) (desktop, none)
(office, PIII, desktop) (desktop, none)
(office, PIV, desktop) (desktop, none)

(office, AMD, desktop) (desktop, none)
(office, PIII, tower) (tower, none)
(office, PIV, tower) (tower, none)

(office, AMD, tower) (tower, none)
(office, PIII, tower) (tower, 18gb)
(office, PIV, tower) (tower, 18gb)

(office, AMD, tower) (tower, 18gb)
(office, PIII, tower) (tower, 36gb)
(office, PIV, tower) (tower, 36gb)

(office, AMD, tower) (tower, 36gb)

{case, scsi} {ide, scsi}
(desktop, none) (40gb, none)
(desktop, none) (80gb, none)
(tower, none) (40gb, none)
(tower, none) (80gb, none)
(tower, 18gb) (none, 18gb)
(tower, 36gb) (none, 36gb)

3.2 Complexity of Constraint Satisfaction

Given a CSP, we can derive a corresponding decision problem:

Definition 3.12 (CONSTRAINT SATISFIABILITY). The decision version of a
constraint satisfaction problem has a triple (X, D, C) as an input, where X,
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scsiide

model cpu case

(a) Constraint hypergraph

scsiide

model cpu case

(b) Primal constraint graph

C{model,cpu,case}

C{ide,scsi}

C{case,scsi}

case

scsi

(c) Dual constraint graph

Figure 3.2: Different graph representations of the constraint network in
Example 3.2.

D and C are as in Definition 3.1, and yields “yes” or “no” as an output. The
output is “yes” if the constraint network (X, D, C) has a solution and “no”
otherwise. This decision problem is called the CONSTRAINT SATISFIABIL-
ITY (CS) problem.

Clearly, finding any solution to a constraint network, can be used to
solve the corresponding decision problem, i.e., finding a solution, all solu-
tions or an optimal solution is as difficult as CS. In the following, we will
prove that CS is NP-complete. First we need to introduce a well-known
NP-complete decision problem (see, e.g., Cormen et al. [2001] for more
details):

Definition 3.13 (3-CNF-SAT). An input of 3-CNF-SAT is a Boolean formula
composed of

1. Boolean variables: x1, x2, . . . ;

2. Boolean connectives such as ∧ (AND), ∨ (OR), ¬ (NOT); and

3. parentheses.

A literal in a Boolean formula is an occurrence of a variable or its negation.
A Boolean formula is in conjunctive normal form, or CNF, if it is expressed
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as a logical AND of clauses, each of which is the logical OR of one or more
literals. A Boolean formula is in 3-conjunctive normal form, or 3-CNF, if each
clause has exactly three distinct literals.

In 3-CNF-SAT, we are asked whether a given Boolean formula in 3-CNF
has a satisfying assignment, i.e., a set of values for the variables that causes
the formula to evaluate to true.

Lemma 3.1. 3-CNF-SAT is polynomial-time reducible to CS.

Proof. Let θ = C1∧C2∧ · · ·Ck be a Boolean formula in 3-CNF with k clauses.
From θ we need to create the input (X, D, C) to the decision problem CS,
where X is the variables, D the variable domains and C the constraints. It
is created as follows.

1. For each distinct variable xi in θ, we add xi to X.

2. For each variable xi in X, we let Dxi = {0, 1}.

3. For each clause Cr = (l1 ∨ l2 ∨ l3) in θ, we create a constraint CS. The
scope S contains the (not necessarily distinct) variables appearing in
the literals l1, l2 and l3. The constraint relation CS contains a 3-tuple
for each satisfying assignment to Cr.

This reduction is linear in the number of clauses in θ since there are at most
3k variables, k constraints, and each constraint relation has at most 23 = 8
tuples. It is clear that θ is satisfiable if, and only if, the constraint network
(X, D, C) has a solution.

Theorem 3.2. CS is NP-complete.

Proof. LetR = (X, D, C) be the input of a CSP decision problem where X is
the set of variables, D their domains and C the set of constraints. First we
note that CS is in NP : Given an instantiation ā of all variables in X, verify
a|S ∈ CS for each CS ∈ C. The verification can be done in time polynomial
in the size ofR. By NP-completeness of 3-CNF-SAT and Lemma 3.1, CS is
NP-complete.

3.3 CSP Solution Methods

A CSP can be solved using the generate-and-test method (also know as “the
British Museum Algorithm” according to Hoare [1989]), where each possi-
ble instantiation of the variables is systematically generated and then tested
to see if it satisfies all the constraints. The first such instantiation found is a
solution. The number of instantiations generated in the worst case (which
occurs when the network is unsatisfiable) is O(dn), i.e., exponential in the
number of variables. Figure 3.3(a) on page 28 shows the search tree when
a generate-and-test algorithm is applied to an unsatisfiable problem.
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By using backtracking [Bitner and Reingold, 1975], a potentially more
efficient method can be constructed. During search, variables are instanti-
ated according to some ordering called the instantiation order, and when all
variables in a constraint have been instantiated, the constraint is checked.
Whenever a partial instantiation violates a constraint, backtracking is per-
formed to the most recently instantiated variable with uninstantiated val-
ues left in the domain, thereby eliminating a subspace from the Cartesian
product of the variable domains. A naive backtracking algorithm (usually
called chronological backtracking) is shown in Algorithm 3.1.

BACKTRACK(ā, X, D, C)
1 . ā is the current instantiation
2 if X = ∅
3 return ā
4 else
5 x ← some variable from X
6 repeat
7 v ← some value from Dx
8 Dx ← Dx − {v}
9 if ā ∪ {〈x, v〉} is consistent

10 r̄ ←BACKTRACK(ā ∪ {〈x, v〉}, X − {x}, D, C)
11 if r̄ 6= NIL

12 return r̄
13 until Dx = ∅
14 return NIL

Algorithm 3.1: A simple backtracking solver.

Given a network R = (X, D, C) the call BACKTRACK(∅, X, D, C) re-
turns a solution if the network is satisfiable, otherwise NIL is returned.
While BACKTRACK still generates O(dn) instantiations in the worst case,
the ability to eliminate subspaces of the search tree makes it more efficient
in most cases. Figure 3.3(b) on the next page shows the search tree when
BACKTRACK is applied to an unsatisfiable problem. The left subtree illus-
trates the search space which is eliminated because the first variable assign-
ment is inconsistent. It should be clear from this figure that the ordering in
which variables are instantiated is important. In this example, if the first
assignment was instead last, all instantiations would have to be tested, i.e.
BACKTRACK deteriorates to generate-and-test.

There are two drawbacks in the standard backtracking scheme pre-
sented here. One is trashing [Gaschnig, 1979] where search fails repeatedly
for the same reason. If, for example, the constraint Cxi ,xk specifies that a
particular assignment to xi disallows all potential values for xk then BACK-
TRACK fails when instantiating xk for all values in Dxk , repeating this fail-
ure for all instantiations of variables xj for i < j < k. The other drawback
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(b) Backtracking

Figure 3.3: Search tree example for an unsatisfiable network. Each edge
represents an assignment of a value to a variable, each level in the tree
corresponds to a variable. In (a) all combinations are tested before unsatis-
fiability is detected. In (b) all combinations in the left branch are skipped
since the first assignment to the first variable is found to be inconsistent.

is having to perform redundant work. If, for example during a constraint
check, an instantiation of a subset of variables is found to be consistent and
then deeper in the search tree, the instantiation has not changed; then there
is no need to check these variables again.

Many variations on the naive backtracking scheme have been proposed
to cope with these drawbacks as well as finding a good instantiation order.
While theses methods differ in the number of constraint checks they must
perform, they are all exponential in the worst case. For all but the small-
est problems this makes them unsuitable for use in an interactive setting. I
will therefore not go into more detail about search techniques, but refer in-
terested readers to the papers by Miguel and Shen [2001a,b] which contain
a survey on many of the known search strategies. Kondrak and van Beek
[1997] present a theoretical evaluation of several backtracking algorithms.

3.3.1 Consistency in Binary Networks

Preprocessing a constraint network creates an equivalent network that is
easier to solve, usually using some search algorithm. Algorithms that per-
form preprocessing are often called consistency enforcing, inference or con-
straint propagation algorithms.

The simplification involves removing domain values that can never be
part of a solution, simplifying constraints by removing tuples that can never
be part of a solution or introducing new tighter constraints that can be
inferred by propagating information from existing constraints. The most
widely used levels of consistency in binary networks are called node, arc
and path consistency, and were defined by Mackworth [1977b].
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Node Consistency

Definition 3.14. A variable is node consistent if all values in the domain
satisfy the unary constraint on that variable2. A constraint network is node
consistent if all variables are node consistent.

Achieving node consistency amounts to checking all domain values to see
if they satisfy the unary constraint on the corresponding variable. We can
use relational algebra to specify node consistency, in which case we get

Dx ← Dx ∩ Cx, for all x ∈ X, Cx ∈ C, (3.9)

where we have used the fact that the domain of a variable x can be viewed
as a relation with scope x and instance Dx.

An algorithm for making a network node consistent is shown in Algo-
rithm 3.2. The time complexity of NC is O(dn) if we assume the constraint
check a /∈ Cx takes constant time.

NC(X, D, C)
1 for each x ∈ X
2 for each a ∈ Dx
3 if a /∈ Cx
4 Dx ← Dx − {a}

Algorithm 3.2: Make network (X, D, C) node consistent.

Arc Consistency

Definition 3.15. LetR = (X, D, C) be a node consistent constraint network
with Cxy ∈ C. A variable x is arc consistent relative to y if, and only if, for
every value a ∈ Dx there exists a value b ∈ Dy such that (a, b) ∈ Cxy. An
arc {x, y} in the constraint graph of R is arc consistent if and only if x is
arc consistent relative to y and y is arc consistent relative to x. A constraint
network is arc consistent if, and only if, all arcs are arc consistent.

Consider an instantiation 〈x, a〉 of some variable x. If there is a constraint
Cxy and there is no value b ∈ Dy such that (a, b) ∈ Cxy, then we can remove
the value a from Dx without affecting any solution.

Arc consistency algorithms have received a great deal of attention in
the CSP literature. As a result, a number of algorithms for achieving arc
consistency have been proposed. They have traditionally been named AC-
n where n increases with each improvement or specialization of previous
algorithms.

2Recall that we assumed that all constraint scopes are unique. This implies that there
can be at most one unary constraint on any given variable.
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Algorithm REVISE shown in Algorithm 3.3, makes a variable x arc con-
sistent relative to a variable y, by removing values from the domain of x
that cannot be part of a solution when considering the constraint Cxy. We
can again use relational algebra to describe the result of REVISE:

Dx ← Dx ∩ πx(Cxy 1 Dy). (3.10)

Algorithm REVISE can be used to create an algorithm for achieving arc
consistency. A naive brute force arc consistency algorithm called AC-1 (first
proposed by Mackworth [1977b]) is shown in Algorithm 3.4.

REVISE(x, y, X, D, C)
1 for each a ∈ Dx
2 for each b ∈ Dy
3 if (a, b) /∈ Cxy
4 Dx ← Dx − {a}

Algorithm 3.3: Make x arc consistent relative to y.

AC-1(X, D, C)
1 repeat
2 for each Cxy ∈ C
3 REVISE(x, y, X, D, C)
4 REVISE(y, x, X, D, C)
5 until no domain is changed

Algorithm 3.4: A naive algorithm for achieving arc consistency.

The time complexity of REVISE is O(d2) if we assume the constraint
check (a, b) /∈ Cxy takes constant time. The calls to REVISE in lines 2–4 thus
take time O(ed2) and may in the worst case delete only one domain value.
There areO(nd) domain values, so the worst-case time complexity of AC-1
is O(ned3).

Several improvements to the naive AC-1 algorithm have been proposed.
When a value is removed from a domain, AC-1 checks all constraints again.
AC-3 [Mackworth, 1977b] improves the running time to O(ed3) by consid-
ering only the constraints which could be affected by a removal of values.
A lower bound for achieving arc consistency is Ω(ed2) since this is the time
required to check arc consistency for all constraints. Mohr and Henderson
[1986] describe an optimal algorithm AC-4 based on the notion of support; a
domain value is supported if there exists a compatible value in the domain
of every adjacent variable. When a value a is removed from the domain
of x, it is not always necessary to examine all binary constraints Cxy. We
can ignore those values in Dy which do not rely on a for support. The
space complexity of AC-4 is O(ed2). This is improved to O(ed) in AC-6 by
Bessière [1994].
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Path Consistency

Definition 3.16. Let R = (X, D, C) be a node consistent constraint net-
work. A path (x0, . . . , xm) of length m in the constraint graph for R is path
consistent if and only if for any consistent instantiation (v0, vm) ∈ Cx0,xm

there is a sequence of values of vj ∈ Dj, 1 ≤ j < m such that (v0, v1) ∈
Cx0,x1 , . . . , (vm−1, vm) ∈ Cxm−1,xm . A constraint network is path consistent if,
and only if, every path in its constraint graph is path consistent.

The following theorem provides a method for achieving path consis-
tency.

Theorem 3.3 ([Montanari, 1974]). A constraint network is path consistent if,
and only if, every path of length 2 of a complete constraint graph is path consistent.

Achieving path consistency thus involves tightening of constraints or, if
no constraints exists between two variables, introducing new binary con-
straints. In analog to REVISE, which deals with two variables for achieving
arc consistency, we define REVISE-3 shown in Algorithm 3.5 that takes a
path (i, j, k) of length 2 and makes it path consistent by modifying the con-
straint Cik (which may be the universal constraint if the original network
does not contain a constraint between i and k) by deleting tuples that can-
not be extended consistently by including values from j.

REVISE-3(i, j, k, X, D, C)
1 for each (vi, vk) ∈ Cik
2 for each vj ∈ Dj
3 if (vi, vj) /∈ Cij or (vj, vk) /∈ Cjk
4 Cik ← Cik − {(vi, vk)}

Algorithm 3.5: Make (i, j, k) path consistent. Removes tuples from con-
straint Cik which cannot be extended consistently to values of j.

We can again use relational algebra to describe the result of REVISE-3:

Cik ← Cik ∩ πik(Cij 1 Dj 1 Cjk). (3.11)

From Theorem 3.3 it follows that path consistency can be achieved by call-
ing REVISE-3 with all possible paths of length 2. Such a naive path consis-
tency algorithm called PC-1 is shown in Algorithm 3.6 on the next page.
Note that achieving path consistency, in general, changes the structure of
the constraint graph of a network by introducing new constraints.

The time complexity of REVISE-3 is O(d3) since there are at most d2 tu-
ples in each constraint and at most d values in each domain. We assume
that both a constraint check and a set modification takes constant time.
There are n variables so there can be at most n2 binary constraints and each
constraint can have at most d2 tuples. In the worst case, the call to REVISE-3



CHAPTER 3. CONSTRAINT SATISFACTION PROBLEMS 32

removes only a single tuple so we get d2n2 iterations of the lines 3–6 in PC-
1. There are n3 different paths of length 2 so the time complexity of PC-1 is
O(n5d5).

The naive path consistency algorithm can be improved in ways sim-
ilar to AC-1. Mackworth [1977b] presented PC-2 with time complexity
of O(n3d5), and Han and Lee [1988] presented an algorithm called PC-4
with time complexity O(n3d3) and space complexity O(n3d3). Singh [1996]
presents PC-5 which improves the space complexity to O(n3d2).

PC-1(X, D, C)
1 repeat
2 for each xk ∈ X
3 for each xi ∈ X
4 for each xj ∈ X
5 REVISE-3(xi, xj, xk, X, D, C)
6 until no constraint is changed

Algorithm 3.6: A naive algorithm for achieving path consistency.

3.3.2 A Note on Complexity

In the preceding complexity analysis, we made some assumptions that cer-
tain constant time operations are available. This was done primarily to get
complexity results matching those found in the literature. It may not al-
ways be possible, or it requires some preprocessing and/or additional stor-
age, to make these operations run in constant time. The following section
will provide some additional details.

Constraint Check

We assumed that a constraint check of the form (a, b) ∈ Cxy takes con-
stant time. For binary networks the maximum constraint arity is a con-
stant, namely 2, but for general networks, a constraint check must use at
least time Ω(r).

If we assume a binary network with constraint represented extension-
ally as relations, a constraint check becomes equivalent to the dictionary
problem: Given a universe U of size d2 and a subset S ⊆ U of size t, is
x ∈ U a member of S?

If d ≤ w/2, we can use the results from [Hagerup et al., 2001] where a
static dictionary with constant lookup time and size O(t) can be computed
in O(t log2 t) worst-case time.

Otherwise, we can resort to standard hashing techniques [Cormen et al.,
2001] where a dictionary, which enables lookup time that takes constant
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time on average and has size O(t), can be computed in O(t) worst-case
time.

Set Modification

All the sets that are modified are subsets of some finite universe, which is
known before the algorithms are executed. By representing the sets as bit
vectors, we can achieve constant time set update at the expense of requir-
ing time linear in the size of the universe for initialization and additional
storage, also linear in the size of the universe, for the bit vectors.

3.4 Tractable Problems

As Theorem 3.2 on page 26 shows, constraint satisfaction problems are gen-
erally hard. There are, however, classes of constraint satisfaction problems
that are tractable. A problem is considered tractable if it can be solved in
time polynomial in the size of the problem representation. For constraint
satisfaction problems we deal mainly with backtracking algorithms, so a
problem is considered tractable if it can be solved without backtracking.

Identification of tractable problem classes is based mainly on two prop-
erties:

• Tractability due to restrictions in the type of constraints allowed.

• Tractability due to the structure of the constraint graph.

For solving arbitrary CSPs limiting the type of constraints allowed (i.e., by
allowing only linear constraints) is usually not an option since this reduces
the ease of which problems can be modeled, thereby loosing one of the
key strengths of CSPs. I will therefore not focus more on tractability due
to properties of the constraint relations but refer interested readers to the
survey by Pearson and Jeavons [1997]. For the same reason it is generally
not an option to limit the structure of the constraint graph since this will
limit the kind of problems that can be modeled. But as we will see, the
structure of the constraint graph can be modified in various ways to yield
a problem that is tractable.

First, some definitions that allow us to identify the tractable problems.

Definition 3.17 ([Freuder, 1978]). Let R = (X, D, C) be a constraint net-
work. The network R is 1-consistent if, and only if, Dx = Cx 6= ∅ for all
x ∈ X. Let 2 ≤ k ≤ n be an integer. The network is k-consistent if, and only
if, for any consistent instantiation of k− 1 variables, we can find a value for
an arbitrary kth variable such that we have a consistent instantiation of k
variables.
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Definition 3.18 ([Freuder, 1982]). A network is strongly k-consistent if it is
j-consistent for all j ≤ k. A network with n variables which is strongly
n-consistent is called globally consistent.

Note that for binary networks, node, arc and path consistency is equivalent
to strong 1-, 2- and 3-consistency respectively.

There are algorithms that can be used to make a network k-consistent
for any k. Unfortunately, while Cooper [1989] describes an optimal algo-
rithm for achieving k-consistency, the running time is exponential in k.
Achieving global consistency is therefore not very useful, but low-order
(i.e., node, arc and path) consistency algorithms are often used as a prepro-
cessing step to create an equivalent network which may be simpler to solve
using a search algorithm.

Definition 3.19 ([Freuder, 1982]). Given a graph (V, E) and a total ordering
≺ on V, the width of vertex v is the size of the set

{w | w ≺ v, {v, w} ∈ E}.

The width of a graph under the ordering ≺ is the maximum width of all ver-
tices. The width of the graph (V, E) is the minimum width over all possible
orderings of V.

Example 3.3. An example of an undirected graph with three vertices (and
thus six orderings) is shown in Figure 3.4. The graph has width one.
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Figure 3.4: A graph ordering example. Nodes are ordered from top to
bottom. Orderings (e) and (f) have width 2, the remaining orderings have
width 1.

The following theorem establishes the relationship between the connec-
tive structure (width) and contextual structure (consistency).

Theorem 3.4 ([Freuder, 1982]). LetR be a binary constraint network, let (V, E)
be the associated constraint graph and let ≺ be a total ordering of V with width
w. If R is strongly (w + 1)-consistent, then a solution to R can be obtained by
performing a backtrack-free search using the variable ordering ≺.

It is easy to see that a graph has width 1 if, and only if, it is a tree.
According to Theorem 3.4, a solution to a binary arc-consistent constraint
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network can therefore be found without backtracking. A width-1 ordering
of a tree can be constructed by a breadth first search from any root node.
Consider a width-1 ordering of the variables d = {x1, . . . , xn} and assume a
consistent instantiation ā of variables {x1, . . . , xi} has been found. We now
need to instantiate xi+1. Since d has width 1, xi+1 has only one parent vari-
able xj, 1 ≤ j ≤ i which can constrain xi+1. Since xj is arc consistent relative
to xi+1, there exists a value b ∈ Dxi+1 such that ā ∪ 〈xi+1, b〉 is consistent.

It is tempting to believe, that finding the width w of the constraint graph
and making the network strongly (w + 1)-consistent is sufficient to ensure
that a solution can be found without backtracking. However, for w > 2
enforcing w-consistency generally means that new constraints are added
(as was the case in path-consistency), thereby changing the width.

There is some debate as to how much consistency is cost effective. Gen-
erally speaking, any search algorithm will benefit from a network having a
high level of consistency. But achieving a high level of consistency comes
at the expense of additional computation, so there is a tradeoff between the
effort spent on preprocessing and the effort spent on search. It was thought
not to be cost effective to apply consistency algorithms as part of a hybrid
search algorithm [Kumar, 1992] however, especially for difficult problems,
it has become clear that this is not the case [Sabin and Freuder, 1994].



CHAPTER 3. CONSTRAINT SATISFACTION PROBLEMS 36



CHAPTER 4

Interactive Constraint
Satisfaction

The CSP definitions and algorithms presented in the previous chapter are
for batch processing where the machine is intended to solve the problem
autonomously. Many real world applications, however, require interactive
decision support rather than automatic problem solving. This is the case
where the initial constraint network admits many possible solutions and
human guidance is needed to select a solution based on some additional
criteria. These criteria cannot be modeled as constraints in the original net-
work since they are not yet known — the user can only identify these crite-
ria when consequences of the initial constraints are revealed.

In this chapter I first define a list of usability requirements for an inter-
active constraint satisfaction system, and proceed with an extension of the
classical CSP framework (presented in Section 3.1) which can be used to
describe interactive constraint satisfaction problems. From these require-
ments and definitions, I identify operations that are fundamental for an
interactive constraint satisfaction system and describe them formally. Ef-
ficient algorithms for the fundamental operations are then presented. To
make the algorithms efficient, they do not operate on a general constraint
network, but on a restricted network called an acyclic network. In the next
chapter, we will see how a general constraint network can be transformed
into an acyclic network by a compilation procedure.

4.1 Usability Requirements

The setup is this: We are given an initial constraint network that models the
problem at hand and this initial constraint network contains some degrees

37
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of freedom, i.e., it allows more than one solution. This initial constraint net-
work cannot be changed by the user but guided by the user’s requirements,
the number of solutions should be reduced until the number of solutions
remaining is manageable or a single solution is found. Note that in the
following, the term “user” denotes the person that is using the initial con-
straint network to find a set of solutions that match the user’s criteria.

Example 4.1. The n-queen problem can be used as a simple example. The
initial constraint network models the problem as described in Section 1.1.2
on page 3. This network cannot be changed by the user, as it would no
longer model the n-queen problem. However, the initial constraint network
does have some degrees of freedom that allow the user to influence the
solution to be found. As an example, for n = 4, the queen in the first
column can be placed in either row 2 or 3 as illustrated in Figure 3.1 on
page 21.

The number of solutions to a constraint satisfaction problem can be re-
duced by repeatedly adding constraints to an initial constraint network
(since the addition of a constraint never extends the set of solutions to the
network). During this process, some users will likely make choices that are
wrong, either due to outright errors but more likely because they gain new
insights as they proceed. These wrong choices result either in a network
with no solutions or with a set of solutions which does not fulfill the cri-
teria established by the user. An interactive constraint satisfaction system
must thus allow for the retraction of already stated constraints.

An initial approach to interactive constraint satisfaction may be to ex-
tend a search algorithm with a method for letting the user decide which
variable to instantiate next and what value to use in the instantiation. This,
however, is of little value to the user since the machine is merely used to
recording the user’s choice and checking if it is consistent with the initial
network and previous choices. If backtracking is needed because a solution
does not exists with the current choices, the user has to change one or more
of the choices made earlier.

A more reasonable approach would be to let the user specify a con-
straint and reveal the consequences of adding this constraint by updating
the domains to include only values that, based on the initial network and
user constraints, can be extended to a full solution.

A number of usability requirements for interactive constraint satisfac-
tion systems can be listed. Frayman [2001] describes many of the require-
ments that one can have to such a system. Many of these requirements per-
tain the design of the user interface (i.e., easy navigation, intuitive graphical
layout etc.) or the system architecture (i.e., client vs. server processing, se-
curity etc.). We will not focus on these requirements here. Instead I list the
requirements that need support from the underlying algorithms and data
structures.
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1. When the decision support task is complete, the resulting instantia-
tion must be consistent. This requirement is the motivation for imple-
menting a constraint-based decision-support system.

2. The user should be able to make a “deselection” stating “this variable
should not have these values”. Often the specific value of a variable is
not interesting, but it is important that it is not assigned a few specific
values.

3. If the user wishes to make a selection, which is inconsistent with pre-
vious selections, the system should provide the user with a list of
previous selections that need to be retracted in order to make the
new selection consistent. In this way, the user is not locked by previ-
ous selections since they can be changed if a specific value of another
variable is deemed more important.

4. The user should be able to make a selection and later retract the selec-
tion. It is a fundamental aspect of a good user interface that the user
is able to undo actions since this allows experimenting with actions
without any risk.

5. The user must be able to make selections in arbitrary order. Again this
is a fundamental aspect of a good user interface that the sequence in
which things are selected is not fixed. Different users may prefer to
do things in different orders.

6. The user should not be able to make selections that lead to a dead-
end, i.e., a situation where a solution cannot be found because of the
selections made earlier in the process. A dead-end in the 4-queen
problem is depicted in Figure 3.1(c) on page 21. Assume the user
has manually selected the position of the three first queens. These
selections are all mutually consistent, however, it is not possible to
make a consistent selection for the last queen, and thereby completing
the decision task, without changing some of the previous selections.

7. The response time for all operations should be short. An operation
should take less than 1 second for the user’s flow of thought to stay
uninterrupted [Nielsen, 1994, Ch. 5]. The limit for keeping the user’s
attention focused on the dialogue is about 10 seconds.

The requirement to the response time should of course be seen in perspec-
tive to the size of the problem one is attempting to solve. If the user is trying
to solve a problem that would have required weeks of manual work, it may
be acceptable to wait a few minutes for the operations to be completed.
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4.2 Extension of the Classical CSP Framework

The preceding concepts are formalized in the following definitions where I
describe an extension of the classical CSP framework, which can be used
to describe interactive constraint satisfaction problems. The notation is
inspired by [Amilhastre et al., 2002], and separates a set of dynamic con-
straints from the initial constraint network.

Definition 4.1 (Dynamic Constraint Network). A dynamic constraint net-
work (DCN) is a 4-tuple ∆ = (X, D, C, H) where (X, D, C) is a satisfiable
constraint network with a static set of variables X, domains D and a static
set of constraints C. The set H is a dynamic set of constraints on the vari-
ables X.

As with the constraints in C, we assume that constraints in H have unique
scopes.

Definition 4.2. An instantiation ā is a solution to a DCN ∆ = (X, D, C, H)
if, and only if, ā is a solution to the constraint network (X, D, C ∪ H). The
set of all solutions to ∆ is denoted Sol(∆). The DCN ∆ is satisfiable (respec-
tively unsatisfiable) if, and only if, the constraint network (X, D, C ∪ H) is
satisfiable (respectively unsatisfiable).

Definition 4.3. Let ∆ = (X, D, C, H) be a DCN, S ⊆ X a set of variables and
CS a constraint on S such that (X, D, C ∪ {CS}) is a satisfiable constraint
network. A restoration of CS on ∆ is a subset E ⊆ H such that (X, D, C ∪
E ∪ {CS}) is a satisfiable constraint network. A restoration E of CS on ∆
is maximal if, and only if, there is no restoration E′ of CS on ∆ such that
E ⊂ E′.

When combining sets of constraints in Definitions 4.2 and 4.3 we take
this to mean that for any two constraints with the same scope, only a single
constraint, which is the intersection between the two constraints, is present
in the combined set. A constraint in H is called a user constraint, user
selection, or just selection.

For the sake of generality, these definitions do not restrict the type of
dynamic constraints in H. I will assume, however, that these constraints
are always unary. As we will see, this restriction enables efficient algo-
rithms for the fundamental operations while being sufficient to fulfill the
requirements stated in Section 4.1 on page 37. Assigning a specific value
to a variable can be expressed by adding a unary constraint, which allows
only that specific value, on the variable.

The goal of interactive constraint satisfaction is, given a dynamic con-
straint network ∆ = (X, D, C, H) where H is initially empty, to repeatedly
add constraints to H until |Sol(∆)| ≤ γ for some constant γ which is the
number of possible solutions the user can cope with. In many applications
γ = 1 meaning that a single unique solution must be found.
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4.2.1 Implications of Usability Requirements

By using the preceding definitions, we can describe the implications of the
usability requirements (described in Section 4.1), on the fundamental op-
erations required in an interactive constraint satisfaction system. We will
use a DCN ∆ = (X, D, C, H) to capture the initial constraint network (as
specified by X, D and C) as well as the user selections (stored in H).

• Requirement 1 implies that we only return consistent instantiations,
i.e., solutions to ∆.

• According to Requirement 2, the values that should not be selected
for a variable x are in a set Nx ⊂ Dx. We can then fulfill the require-
ment by adding the constraint Cx = Dx − Nx to H, which allows all
domain values except the values that are not wanted.

• When the user wishes to add an inconsistent constraint Cx to H, Re-
quirement 3 implies that a restoration E of Cx on ∆ is computed. The
selections that need to be retracted are thus H − E. Note that E is not
required to be maximal.

• Selection and retraction in Requirement 4 can be achieved by adding/
removing a constraint to/from H.

• Requirement 5 is implicit in our choice of representing selections as a
set of constraints. It does imply, however, that we cannot rely on any
fixed variable ordering in our algorithms.

• Requirement 6 implies that global consistency (as defined in Defini-
tion 3.18 on page 34) should be maintained at all times. Having a
globally consistent network means that whenever we have instanti-
ated k− 1 variables, we can always find a consistent value for any of
the remaining variables and this holds for all k < n.

Restoration Computation

As noted, the restoration computed as a result of adding an inconsistent
constraint need not be maximal. Indeed, the trivial restoration ∅ will suf-
fice, but in this case all user selections are retracted which is probably not
the best solution. By changing how the restoration is computed, a number
of different behaviors can be achieved.

• From a usability perspective we can argue that the user probably
makes selections in decreasing order of importance. By storing the
dynamic constraints in H as an ordered list, we can thus compute the
restoration by first removing all constraints from H and then add as
many constraints as possible, starting from the beginning of the list.
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• By defining a valuation function θ : H → N, a degree of impor-
tance can be attached to each dynamic constraint. If we let θ(E) =
∑Cx∈H−E θ(Cx), the restoration E computed should be maximal in the
sense that there is no restoration E′ satisfying θ(E′) < θ(E).

Note that the behavior of the first method can be achieved by using the
second method and defining θ appropriately. It is likely, however, that the
complexity of the two methods is different

4.3 Fundamental Operations

We are now in a position where we can describe the fundamental opera-
tions needed in an interactive constraint satisfaction system. In the follow-
ing, D̃ is a function constructed from the function D such that

D̃(x) ⊆ D(x), for all x ∈ X, (4.1)

and D̃ = ∅ is used to denote the function D̃ where

D̃(x) = ∅, for all x ∈ X. (4.2)

The basic idea is as follows. The initial constraint network is stored in
(X, D, C). Modifications to the domains, due to addition/removal of con-
straints to/from H, are recorded in D̃. By comparing values of D̃ before and
after one of the operations, it is possible to compute the changes caused by
the addition/removal of a constraint.

ADD-CONSTRAINT(∆, Cx) → (D̃, H̃)

Input: ∆ = (X, D, C, H) is a DCN and Cx a unary constraint.
Output: A function D̃, and a set of constraints H̃.
Precondition: There is no Cy ∈ H such that y = x.
Postcondition: If (X, D, C, H∪{Cx}) is unsatisfiable then H̃ = H and

D̃ = ∅. Otherwise, H̃ = H ∪ {Cx}, and D̃ is a function where

D̃(y) = πy(Sol(X, D, C, H̃)), for all y ∈ X. (4.3)

REMOVE-CONSTRAINT(∆, x) → (D̃, H̃)

Input: ∆ = (X, D, C, H) is a DCN and x ∈ X a variable.
Output: A function D̃, and a set of constraints H̃.
Precondition: There exists Cy ∈ H such that y = x.
Postcondition: H̃ = H − {Cx}. D̃ is a function where

D̃(y) = πy(Sol(X, D, C, H̃)), for all y ∈ X. (4.4)

RESTORATION(∆, Cx) → E



4.4. APPLICATION TO CONSTRAINT-BASED CONFIGURATION 43

Input: ∆ = (X, D, C, H) is a DCN and Cx a unary constraint.
Output: E a restoration of Cx on ∆ or ∅.
Precondition: (X, D, C, H ∪ {Cx}) is unsatisfiable.
Postcondition: If (X, D, C, {Cx}) is satisfiable, E is a restoration of Cx

on ∆, otherwise E is ∅.

Equations (4.3) and (4.4) imply that upon return from ADD-CONSTRAINT

and REMOVE-CONSTRAINT, the domain values in D̃ can be used to extend
the current instantiation to a full solution without having to change any
previous selections.

By using these fundamental operations it is possible to create an inter-
active constraint solver. The skeleton of such a solver is shown in Algo-
rithm 4.1 on the following page. Lines 12–18 deal with the selection of an
inconsistent value by computing the restoration, removing the constraints
that cause the inconsistency and finally applying the new selection.

If we assume that line 4 does not involve any complicated rendering of
the variables the response time of the UI is clearly dominated by the run-
ning times of ADD-CONSTRAINT, REMOVE-CONSTRAINT, and RESTORA-
TION. Of these three algorithms, ADD-CONSTRAINT is probably the most
often used, since REMOVE-CONSTRAINT is only called when the user wishes
to remove a previous selection and RESTORATION is called when the user
makes a selection that is inconsistent with the previous selections.

4.4 Application to Constraint-Based Configuration

We have already seen configuration problems in Section 1.2 on page 6. Here
I will briefly describe how an interactive constraint satisfaction system can
be used as a basis for a configuration system.

As noted, a configuration model is used to describe the components that
are available as well as the relations between them. It is therefore natural
to define the configuration model in terms of a constraint network:

Definition 4.4 (Configuration Model). A configuration model is a constraint
network R = (X, D, C). The variables in X list the components available
for selection, the domains in D contain the possible choices for each com-
ponent and the constraints in C contain the constraints between the com-
ponents.

The goal of the configuration task is to solve a configuration problem
described by a configuration model. Starting with a product model with
many possible solutions, the user gradually reduces the number of solu-
tions by choosing consistent values from the variable domains. The con-
figuration system should assist the user by resolving which domain values
lead to consistent assignments.
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SOLVER(X, D, C)
1 (D̃, H) ← (D, ∅)
2 ∆ ← (X, D, C, H)
3 repeat
4 Print available variables and valid domain values from D̃
5 Read user input
6 if input = “quit”
7 return
8 else if input = select value a for variable x
9 Cx ← {a}

10 (D̃, H) ← ADD-CONSTRAINT(∆, Cx)
11 if D̃ = ∅
12 E ← RESTORATION(∆, Cx)
13 if E = ∅
14 error “Invalid selection”
15 else if User accepts retraction of the constraints H − E
16 for each Cy ∈ H − E
17 REMOVE-CONSTRAINT(∆, y)
18 (D̃, H) ← ADD-CONSTRAINT(∆, Cx)
19 else if input = remove selection on variable x
20 (D̃, H) ← REMOVE-CONSTRAINT(∆, x)
21 else
22 error “unknown input”
23 until |Sol(X, D̃, C, H)| < γ

Algorithm 4.1: A skeleton interactive constraint solver using the funda-
mental operations.

An instance of a configuration problem can be represented by a DCN
∆ = (X, D, C, H). The product model is a constraint network (X, D, C) and
the user restrictions are the set of dynamic constraints H. With this defini-
tion each solution to (X, D, C) represents a feasible product1. At any time,
Sol(∆) corresponds to the set of feasible products that satisfy the user’s
requirements. The generic interactive constraint solver shown in Algo-
rithm 4.1 can be used as basis for the runtime services in a configuration
system, as illustrated in Figure 1.4 on page 8.

Example 4.2. Let the product model be defined by the constraint network
in Example 3.2 on page 23. Initially, when H = {}, all domain values
are possible. Now the user decides she wants a desktop model by adding
the constraint Ccase = {desktop}. We update the list of domain values
according to Equation (4.3) on page 42, and keep the domain values that

1And we can generally assume that (X, D, C) is satisfiable with more than one possible
solution. Otherwise we would not need a configuration system.
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are still consistent with the user constraints in H. The changed domains
are

Dide = {40gb, 80gb}
Dscsi = {none}

As can be seen, there are no choices left for the variable scsi. The value
has been completely determined by the user constraint. Now we add the
constraint Cmodel = {home}. The updated domain is:

Dcpu = {PIII, AMD}

Now the user reconsiders, and decides that she really needs a Pentium IV
CPU, i.e., the constraint Ccpu = {PIV}. This is an inconsistent selection
since the value PIV is no longer valid for the variable cpu. We therefore
calculate the restoration {Ccase}. In other words, the user needs to relax the
constraints H − {Ccase} = {Cmodel} in order to satisfy the constraint Ccpu.
The new domains are:

Dmodel = {office}
Dcase = {desktop}
Dide = {40gb, 80gb}
Dscsi = {none}
Dcpu = {PIV}

The only remaining selection is ide.

In this example it is relatively straightforward to determine which of the
previous selections caused the desired selection to become unavailable. But
for models containing thousands of variables it is very difficult to manually
identify the source of an inconsistent selection.

4.4.1 Model Specification

Creating and specifying a product model is often the most complicated task
in implementing a configuration system. Many practical issues arise when
trying to model a company’s products. Many companies have product
families, which contain different products, but share many common com-
ponents. To ease maintenance it is therefore essential that product mod-
els can be created in a modular fashion, with components shared between
models. A lot of research in configuration involves constructing model
description languages [Soininen et al., 2001; Soininen and Niemelä, 1999;
Sabin and Freuder, 1996].
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In this thesis, however, we focus on the configuration task and we there-
fore ignore any details of the modeling task, including how the model is
created. We simply assume the product model is represented by a con-
straint network R = (X, D, C), and the constraints in C are represented
extensionally as relations. In practice, the last assumption is not an issue
since all constraints on finite domains, whether they are specified as propo-
sitional forms, relations or something completely different, can always be
converted into the extensional form used here.

4.4.2 Pros and Cons of Constraint-Based Configuration

Constraint-based methods have many advantages compared to implement-
ing a configuration system using a procedural approach:

• Relations between components are specified in a declarative way, i.e.,
the modeler states what the relations are, not how they should be en-
forced.

• It is usually easy to check if a constraint is correct since there are no
side effects and correctness is not influenced by other constraints in
the model2.

• The configuration system can check if the constraints are in contra-
diction with each other (by ensuring satisfiability of the model). This
is useful when changing a model to ensure that the changes are con-
sistent with the existing constraints.

• Powerful facilities for the end user can be provided (i.e., restorations
and global consistency). This would be very hard to provide if the
configuration system was implemented using a traditional program-
ming language.

Despite all the advantages, there are a number of issues with constraint-
based configuration as presented in this section:

• All domains are finite. In real-world applications we may not know in
advance how large the domains should be, so in order to model these
problems using a finite domain CSP, we have to make the domains
larger than the largest value we think we will need. Since the size
of the domains influence the computation time needed to solve the
problem, this may not be feasible.

• The constraints presented here are “hard” in the sense that a solu-
tion must always satisfy all the constraints. In some applications, soft

2This requires, of course, that the meaning of a single constraint can be easily under-
stood, e.g., by representing it using symbolic logic.
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constraints are needed. Soft constraints are constraints that are not
required to be satisfied, but are satisfied if possible.

Several researchers have proposed extensions to the classical CSP frame-
work in order to cope with these issues (see, e.g., [Mittal and Falkenhainer,
1990; Miguel and Shen, 1999] and [Schiex, 1992; Dechter, 1996]). Still, the
formulation used in this section is applicable to a large number of practi-
cal cases and has been used as the foundation of at least one commercial
configuration product [Yu and Skovgaard, 1998].

4.5 Efficient Fundamental Operations

In the previous sections we ignored the complexity of the fundamental op-
erations. Both ADD-CONSTRAINT and RESTORATION must solve a CON-
STRAINT SATISFIABILITY problem which was provedNP-complete in The-
orem 3.2 on page 26. This makes them unsuitable for interactive use when
applied to general constraint networks.

We will, however, postpone the treatment of general networks to the
next chapter. For now, we assume the initial network has a certain structure
which allows efficient implementation of the fundamental operations. In
the next chapter, we will see how any general constraint network can be
transformed into a network having this structure called an acyclic network.

Definition 4.5 (Acyclic Network). Let R = (X, D, C) be a constraint net-
work. An acyclic network for R is a constraint network R̂ = (X̂, D̂, Ĉ) such
that X ⊆ X̂, D ⊆ D̂ satisfying the following properties:

1. When restricted to the variables in X, the two networks have the same
set of solutions, that is

Sol(R) = πX(Sol(R̂). (4.5)

2. The constraint graph of the dual network of R̂ form a tree if redun-
dant constraints are removed.

This definition allows us to add variables to the network and change the
constraints if we ensure the two properties hold. The first property ensures
that a solution to R̂ is also a solution to the original network R. The sec-
ond property ensures that we can process the network efficiently if we use
the dual network representation of R̂. The dual network is always binary
and a tree has width 1; so according to Theorem 3.4 on page 34, we can
solve the problem without backtracking by enforcing arc consistency (and
using, e.g, the ordering obtained by performing a breadth-first search on
the constraint graph of the dual network).

If we choose to add variables to the problem, they should, of course,
not be visible to the end user who is only interested in the variables of the
original network.
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4.5.1 Fundamental Operations on an Acyclic Network

Having identified the structure which we are working with, we need to
describe how the fundamental operations (which operate on the original
network) map to the acyclic dual network.

In the following, we assume the initial network is R = (X, D, C). The
variables and domains of the acyclic dual network are X̂d and D̂d respec-
tively, both defined as in Definition 3.11 on page 22. Let us first make a few
observations.

Lemma 4.1. Let R̂ be an acyclic network and R̂d = (X̂d, D̂d, Ĉd) the correspond-
ing dual network. If R̂d is arc consistent, then R̂ is satisfiable if, and only if, all
dual domains are non-empty. That is,

|Sol(R̂)| > 0 ⇐⇒ D̂d
R 6= ∅, for all R ∈ X̂d, D̂d

R ∈ D̂d. (4.6)

Proof. First we note that, by definition, R̂ is satisfiable if and only if R̂d is
satisfiable.

If a dual domain is empty then R̂d is clearly unsatisfiable. Assume
therefore that all dual domains are non-empty. A solution to R̂d can be
found as follows. Assign a valid value to an arbitrary dual variable R.
Since R̂d is arc consistent, we can assign a consistent value for all dual vari-
ables adjacent to R. We can repeat this step, yielding a breadth-first search
in the constraint graph of R̂d, until we have assigned valid values for all
dual variables. Since the constraint graph of R̂d is a tree, we never have to
select a value which makes a previous assignment inconsistent.

Note that the reverse implication holds even if R̂d is not arc consistent: If
any dual domain becomes empty, R̂ is unsatisfiable.

Lemma 4.2. Let R̂ be an acyclic network and R̂d = (X̂d, D̂d, Ĉd) the correspond-
ing dual network. If R̂d is arc consistent, then all dual variables X̂d agree on the
values of the original variables in X. That is,

πx(D̂d
R) = πx(D̂d

S), for all R, S ∈ X̂d and x ∈ R ∩ S. (4.7)

Proof. Let R and S be two dual variables sharing at least one original vari-
able. Furthermore, let R and S by connected by a constraint in the con-
straint graph of R̂d. Since R̂d is assumed to be arc consistent, for each tuple
t ∈ D̂d

R, we can find a tuple u ∈ D̂d
S such that t|R∩S = u|R∩S since this is the

only constraint between R and S according to Definition 3.11 on page 22.
We can similarly, for each tuple in u ∈ D̂d

S, find a tuple t ∈ D̂d
R satisfying

the same condition. In other words, we have

πR∩S(D̂d
R) = πR∩S(D̂d

S) (4.8)

in particular R and S agree on every shared original variable x ∈ R ∩ S.
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By Definition 4.5, all dual variables {Sk, . . . , S`} ⊆ X̂d sharing an origi-
nal variable x ∈ X are connected by a path of constraints. By applying the
previous argument to each pair of dual variables we get

πx(D̂d
Sk

) = · · · = πx(D̂d
S`

), (4.9)

which proves the lemma.

Adding a constraint CS to an acyclic network R̂ = (X̂, D̂, Ĉ) will, in
general, change the constraint graph of the dual network, in which case it
may no longer have width 1. In the special case where all variables in S
are covered by constraints, i.e., S ⊆

⋃
CR∈Ĉ R, it is possible to add the con-

straint without changing the constraint graph of the dual network, by re-
moving from the domains in R̂d values that do not satisfy CS. In constraint
networks arising from practical problems, we can usually assume that all
variables are covered by at least one constraint (since otherwise, why is the
variable included in the first place). We will, however, restrict the dynamic
constraints to be unary since this is sufficient to express assignment of val-
ues to variables and they have the following desirable properties:

• Adding a unary constraint Cx to R̂ implies that we should remove
from the domain of all dual variables in R̂d the tuples that do not
satisfy Cx, i.e., from all dual variables, which contain x, the tuples
that contain the values Dx −Cx for the variable x should be removed:

D̂d
S ← D̂d

S 1 Cx, for all D̂d
S such that x ∈ S. (4.10)

If x is not covered by a constraint in Ĉ, we can simply update Dx
directly:

Dx ← Cx. (4.11)

• Adding a unary constraint to R̂ does not change the structure of the
dual constraint graph. This is obvious since we do not introduce any
new dual variables or dual constraints, but merely update the do-
mains of the existing dual variables.

After a constraint has been added, the acyclic dual network may not be
arc consistent so we need to apply an arc-consistency algorithm in order
to restore arc consistency. Lemma 4.2 implies that, after arc consistency
has been restored, the dual variables all agree on the value of the original
variables. Therefore (4.10) can simply be reduced to

D̂d
S ← D̂d

S 1 Cx, for some D̂d
S such that x ∈ S. (4.12)
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The arc consistency algorithm will ensure that the changes will be propa-
gated to the remaining domains. The same reasoning can be used to deter-
mine the valid domain of the original variable x based on the valid domains
in the dual network:

Dx ← πx(D̂d
S), for some D̂d

S such that x ∈ S. (4.13)

In the preceding discussion we ignored the fact that we also need the
ability to remove constraints, which generally implies that we need to rein-
troduce some valid domain values from the initial acyclic dual network.
Therefore, actually removing invalid domain values does not seem like a
good idea. Instead we will mark the values that are valid and remove this
mark if a value becomes invalid. If we, at some later point, need to reintro-
duce a domain value due to removal of a user selection, we simply mark
the value as valid. We never need to introduce more domain values than
are defined in the original network.

4.5.2 Auxiliary Algorithms

The algorithms for the fundamental operations rely on a number of auxil-
iary algorithms, which will be described next. In what follows, the input
network is denoted byR = (X, D, C) and it is assumed that the acyclic net-
work R̂ and the acyclic dual network R̂d are available. Note that for the
DCN ∆ = (X, D, C, H), the constraints in H, which we have assumed are
unary, are implicitly reflected in the valid domains of R.

For the complexity analysis we use n̂, ê, d̂, t̂, n̂d, êd, d̂d, and t̂d to denote
the number of variables, constraints, domain values in the largest domain,
and tuples in the largest constraint respectively, for R̂ and R̂d. In addition,
s will be used to denote the largest number of original variables used by a
dual constraint, i.e.,

s = max
Ĉd

ST∈Ĉd
|S ∩ T|. (4.14)

We can use the following observations to simplify the results:

n ≤ n̂, (4.15)

d ≤ d̂ (4.16)

d̂d = t̂, (4.17)

n̂d = ê (4.18)

êd ≤ ê. (4.19)

Equations (4.15) and (4.16) follow from Definition 4.5, Equations (4.17) and
(4.18) from Definition 3.11, and Equation (4.19) follows from Equation (4.18)
and the fact that the constraint graph of the acyclic dual network is a tree.

From a complexity perspective we can assume the following:
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• For any variable x the initial domain Dx is a non-empty finite set, so
we can view the domain as integers in the range {1, . . . , |Dx|}. Each
domain value thus requires dlog2|Dx|e bits.

• We can augment each domain Dx with an extra data structure Mx,
which is a sequence of |Dx| bits, which is used to mark the valid/in-
valid domain values. Initially M[1..|Dx|] = 1. Access and update
to/of a bit takes time O(1). The storage requirement for Mx is |Dx|
bits.

• Removing a domain value, i.e. D̃x ← D̃x−{j}, j ∈ Dx is implemented
as M[j] = 0 which takes time O(1).

• Reintroducing a domain value, i.e. D̃x ← D̃x ∪ {j}, j ∈ Dx is imple-
mented as M[j] = 1 which takes time O(1).

• The size of a set can be returned in timeO(1) by maintaining counters
appropriately.

• The storage requirement for storing a domain Dx is |Dx|+ dlog2|Dx|e
bits. We will ignore any additional space needed to map the integers
in Dx back to the original values. The initialization time is O(|Dx|) to
initialize Mx.

• The set of variables is finite and static so we can similarly view the
variables as integers in the range {1, . . . , |X|}. The function D from
variables to domains can thus be viewed as an ordered sequence of
|X| sets. Updating the function for variable x ∈ X is implemented as
an update of the set stored at D[x] which takes time O(1).

Revise-Dual

The algorithm REVISE-DUAL, which is shown in Algorithm 4.2 on the fol-
lowing page, takes an acyclic dual network R̂d and a unary constraint Cx
and updates a domain in R̂d to reflect the unary constraint. The domain is
updated according to Equation (4.12) by marking the tuples which do not
agree with Cx on the variable x as invalid. The return value is FALSE if the
domain becomes empty (which means that (X, D, C, H ∪ {Cx}) is unsatis-
fiable), otherwise the return value is TRUE. The acyclic dual network is, in
general, not arc consistent upon return from REVISE-DUAL.

Lemma 4.3. Let D̂d
S ∈ D̂d be the domain of a dual variable S such that x ∈ S.

Then REVISE-DUAL

1. correctly computes D̂d
S ← D̂d

S 1 Cx,

2. returns FALSE if D̂d
S is empty after the computation and TRUE otherwise,

and
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REVISE-DUAL(R̂d, Cx)
1 D̂d

S ← some domain in R̂d such that x ∈ S
2 r ← FALSE

3 for j ← 1 to|D̂d
S|

4 if M̂d
S[j] = 1

5 if D̂d
S[j]|x ∈ Cx

6 r ← TRUE

7 else
8 M̂d

S[j] ← 0
9 return r

Algorithm 4.2: Revise domain of a dual variable in R̂d to reflect unary
constraint Cx.

3. has time complexity O(d + t̂) and space complexity O(d).

Proof. The first part follows from the fact that all valid values in D̂d
S are

checked against Cx and marked invalid if not present. TRUE is returned if,
and only if, there is an index value j such that M̂d

S[j] = 1 and D̂d
S[j]|x ∈ Cx.

This proves the second part. The membership test in line 5 takes time O(1)
if we use O(d) time to create a lookup table for the allowed values in Cx.
The time complexity is thus O(d + d̂d), and by using Equation (4.17) we
have proven the third part.

Valid-Domains

The algorithm VALID-DOMAINS, shown in Algorithm 4.3 on the next page,
takes a DCN ∆ and creates the set of valid domain values from the domain
values in the acyclic dual network R̂d according to Equation (4.13).

Lemma 4.4. Let ∆ = (X, D, C, H) be a dynamic constraint network and R̂ =
(X̂, D̂, Ĉ) the acyclic network corresponding to (X, D, C). Furthermore, let R̂d

be the dual acyclic network obtained from R̂ = (X̂, D̂, Ĉ) by applying REVISE-
DUAL for each unary constraint in H. If R̂d is satisfiable and arc consistent then
VALID-DOMAINS

1. returns a function D̃ such that

D̃(y) = πy(Sol(∆)), for all y ∈ X, and (4.20)

2. has time complexity O(n(d + t̂)) and space complexity O(d).

Proof. We first note that VALID-DOMAINS treats each variable indepen-
dently so it is sufficient to prove the first part for some variable y ∈ X.
Second if y is not covered by any constraint in Ĉ, the first part is trivially
true because of lines 14–15. Otherwise, let D̂d

S be a domain in D̂d such that
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VALID-DOMAINS(∆)
1 D̃ ← ∅
2 for each y ∈ X
3 if there exists some domain D̂d

S in R̂d such that y ∈ S
4 . Compute My
5 My[1..|Dy|] = 0
6 D̃y ← ∅
7 for j ← 1 to|D̂d

S|
8 if M̂d

S[j] = 1
9 v ← D̂d

S[j]|y
10 if My[v] = 0
11 My[v] ← 1
12 D̃y ← D̃y ∪ {v}
13 else
14 if there exists a Cy ∈ H
15 D̃y ← D̃y ∩ Cy
16 D̃[y] ← D̃y
17 return D̃

Algorithm 4.3: Compute valid domains in ∆ from R̂d.

y ∈ S. Lines 5–12 compute D̃y from D̂d
S. By Lemma 4.2 the dual variables

which contain y all agree on the valid values. It is therefore sufficient to
prove that πy(D̂d

S) = πy(Sol(∆)).
If a ∈ πy(Sol(∆)) then clearly a ∈ πy(D̂d

S). Now let b ∈ πy(D̂d
S). Then

b ∈ πy(Sol(∆)), since we can find a solution containing 〈y, b〉 by perform-
ing a breadth-first search in the tree rooted at S. R̂d is arc-consistent and
satisfiable so we can always find a consistent value for each dual variable
encountered during the search. This proves the first part.

Line 5 takes O(d) to initialize My which has size O(d), all the remain-
ing operations take O(1) so the time complexity is O(n(d + d̂d)). Using
Equation (4.17) we have proven the second part.

Arc-Consistency

While the AC-4 arc consistency algorithm has an optimal worst-case time
complexity and thus better than AC-3, AC-3 usually has better average case
time complexity and is therefore often the algorithm of choice in actual im-
plementations [Wallace, 1993]. Bessière and Régin [2001] described a new
arc consistency algorithm called AC-2001, which is a refinement of AC-3
that has the optimal worst-case time complexity. AC-2001 preserves much
of the simplicity in AC-3, which makes it much simpler to implement com-
pared to the other optimal algorithms, AC-4 and AC-6. Bessière and Régin
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[2001] also presented experimental results that showed improved perfor-
mance of AC-2001, for both number of constraint checks and CPU time,
when compared with AC-3 and AC-4. They note however, that for prob-
lem instances which require a lot of constraint propagation3 the much more
complex algorithm AC-6, relying on sophisticated data structures, is more
efficient.

The algorithm ARC-CONSISTENCY, which is shown in Algorithm 4.6 on
the facing page, tries to enforce arc consistency in R̂d by using techniques
similar to those in AC-2001 but is adapted here to work with the implicit
equality constraints present in the dual network.

The algorithm needs an ordering on the domain values. The domain
values in the dual network are tuples in a relation, which provides a natural
ordering (cf., Section 2.2.1 on page 15). The basic idea is as follows. For
each dual constraint Ĉd

S,T the structure Last[S, i, T] contains the index of
the last tuple in D̂d

T which was found as support for the ith tuple in D̂d
S.

Likewise, Last[T, j, S] contains the index of the last tuple in D̂d
S which was

found as support for the jth tuple in D̂d
T. Initially the index is 0 indicating

that no support has been found yet. Whenever we check an arc in the call
REVISE-2001(S, T) we can simply, for each ith tuple in S that is still valid,
check if the tuple at Last[S, i, T] is still valid in T (lines 3–5). If it is valid,
the ith tuple is still valid and we can continue with the next tuple. If it is
not valid, we only need to check the tuples in T that follow Last[S, i, T],
since the tuples before have already been checked (lines 6–12). If we find
a supporting tuple, we update Last and continue. Otherwise we need to
mark the ith tuple of S as invalid since it no longer has support in T.

In ARC-CONSISTENCY,Q is a set of dual variables which have had their
domains modified (and we thus need to check, for each dual variable S ∈
Q, the domains of the dual variables connected to S with a dual constraint,
cf., Definition 3.15 on page 29). Initially we check all dual constraints and
add to Q the dual variables with modified domains. PROPAGATION is then
called to propagate the changes to the remaining variables.

Lemma 4.5. Let R̂d be an acyclic dual network.

1. If R̂d is unsatisfiable, the return value of ARC-CONSISTENCY is FALSE.

2. If R̂d is satisfiable, R̂d is made arc consistent and the return value of ARC-
CONSISTENCY is TRUE.

3. The time complexity of ARC-CONSISTENCY isO(sêt̂2) and space complex-
ity is O(êt̂).

3These are usually randomly generated problem instances that fall in the phase tran-
sition of arc consistency. See [Gent et al., 1997] for more detail on the phase transition
behaviour of arc consistency.



4.5. EFFICIENT FUNDAMENTAL OPERATIONS 55

REVISE-2001(S, T)
1 changed ← FALSE

2 for i ← 1 to |D̂d
S|

3 if M̂d
S[i] = 1

4 j ← Last[S, i, T]
5 if j = 0 ∨ M̂d

T [j] = 0
6 k ← j + 1
7 while k ≤ |D̂d

T | ∧ Last[S, i, T] = j
8 if M̂d

T [k] = 1 ∧ M̂d
S[i]|S∩T = M̂d

T [k]|S∩T
9 Last[S, i, T] ← k

10 k ← k + 1
11 if Last[S, i, T] = j
12 M̂d

S[i] ← 0
13 changed ← TRUE

14 return changed

Algorithm 4.4: Remove values from Dd
S without support from Dd

T.

PROPAGATION(R̂d,Q)
1 while Q 6= ∅
2 T ← some dual variable from Q
3 Q ← Q− {T}
4 for each S ∈ X̂d such that Ĉd

ST ∈ Ĉd

5 if REVISE-2001(S, T)
6 if D̂d

S = ∅
7 return FALSE

8 Q ← Q∪ {S}
9 return TRUE

Algorithm 4.5: Propagate changes for dual variables in Q.

ARC-CONSISTENCY(R̂d)
1 Q ← ∅
2 Last[x, y, z] ← 0 for all x, y, z
3 for each S ∈ X̂d

4 for each T ∈ X̂d such that Ĉd
ST ∈ Ĉd

5 if REVISE-2001(S, T)
6 if D̂d

S = ∅
7 return FALSE

8 Q ← Q∪ {S}
9 return PROPAGATE(R̂d,Q)

Algorithm 4.6: Enforce arc-consistency in R̂d.
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Proof. We first note that ARC-CONSISTENCY only returns FALSE if a dual
domain becomes empty (lines 6–7 of ARC-CONSISTENCY and PROPAGA-
TION). To prove the two first parts, it is, according to Lemma 4.1 on page 48,
sufficient to prove that R̂d is arc consistent when we reach line 9 of PROP-
AGATION.

We first claim that REVISE-2001 makes S arc consistent relative to T and
returns TRUE if and only if the domain of S has changed. This follows from
the fact that all valid domain values in D̂d

S are checked (lines 2− 3). If the
support for a valid domain value is still valid in D̂d

T nothing happens (line
5). If this is the first call to REVISE-2001 for S and T or if the support has
been marked invalid, a new support value is searched in the valid values
of D̂d

T (lines 6–10). If support is found (line 8) we store the index of the
support value and nothing is changed in D̂d

S for this particular value. If no
support is found (line 11) we mark the domain value in D̂d

S as invalid and
change the return value to TRUE.

For ARC-CONSISTENCY we note that initially all arcs are checked twice
(one check in each direction). During the loop (lines 3–8) a variable S is
added to Q whenever its domain has changed (line 8). In a subsequent
call to PROPAGATION, all variables which rely on S for support are then
checked (lines 4–8). These variables are the only variables that can change
due to changes in the domain of S. It follows from this that Q becomes
empty and the loop terminates when no further domain values can be re-
moved by the call to REVISE-2001, i.e., arc consistency has been achieved.

For the complexity analysis we first note that a variable is placed in
Q whenever its domain has changed. In the worst case, only a single do-
main value is removed in the call to REVISE-2001. For any constraint Ĉd

ST
REVISE-2001(S, T) is therefore called at most d̂d times. For any tuple in
D̂d

S, line 4 of REVISE-2001 is thus executed at most d̂d times. The total time
spent in lines 5–11 for a single tuple during the d̂d calls is O(sd̂d) since we
perform the constraint check in line 9 at most once for each tuple in D̂d

T,
the number of tuples is bounded by d̂d and a constraint check takes time
O(s). Since the number of tuples in D̂d

S is bounded by d̂d and there are êd

constraints, the worst-case time complexity becomes O(sêd(d̂d)2). The size
of the set Q is bounded by n̂d and we need O(d̂d) space to store the Last
array for each dual constraint so the space complexity becomes O(êdd̂d).
By using Equations (4.17) and (4.19) we have proven the third part.

4.5.3 Algorithms for the Fundamental Operations

The following sections present algorithms for the fundamental operations.
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Add-Constraint

The fundamental algorithm ADD-CONSTRAINT, which is shown in Algo-
rithm 4.7, takes a DCN ∆ and a unary constraint Cx and adds the unary
constraint as described in Section 4.3 on page 42.

Theorem 4.6. Let ∆ = (X, D, C, H) be a DCN and Cx and unary constraint on
some variable x ∈ X. Then ADD-CONSTRAINT

1. correctly computes the sets H̃ and D̃ as described in Section 4.3, and

2. has a worst-case time complexity of O(n(d + t̂) + sêt̂2) and space complex-
ity O(êt̂).

Proof. Both parts of the theorem follow from Lemma 4.3, Lemma 4.4 and
Lemma 4.5.

ADD-CONSTRAINT(∆, Cx)
1 if REVISE-DUAL(R̂d, Cx) ∧ ARC-CONSISTENCY(R̂d)
2 D̃ ← VALID-DOMAINS(∆)
3 return (D̃, H ∪ {Cx})
4 else
5 return (∅, H)

Algorithm 4.7: Adding a unary constraint.

Remove-Constraint

The fundamental algorithm REMOVE-CONSTRAINT, which is shown in Al-
gorithm 4.8 on the following page, takes a DCN ∆ and a variable x and re-
moves the constraint on Cx as described in Section 4.3 on page 42. It naively
removes all constraints in H and then adds the constraints H− {Cx}. Lines
2–4 remove the constraints in H by marking all domain values in R̂d as
being valid. Lines 6–10 add the constraints from H − {Cx}.

Theorem 4.7. Let ∆ = (X, D, C, H) be a DCN and x some variable in X such
that there exists a constraint Cx ∈ H. Then REMOVE-CONSTRAINT

1. correctly computes the sets H̃ and D̃ as described in Section 4.3, and

2. has a worst case time complexity ofO(n(d + t̂) + sêt̂2) and space complexity
O(êt̂).

Proof. The fact that all constraints in H are removed in lines 2–7 combined
with Lemma 4.3, Lemma 4.4 and Lemma 4.5 proves both part of the theo-
rem.
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REMOVE-CONSTRAINT(∆, x)
1 . Remove all constraints in H
2 for each S ∈ X̂d

3 for j ← 1 to|D̂d
S|

4 M̂d
S[j] ← 1

5 for each x ∈ X̂
6 for j ← 1 to|D̂x|
7 M̂y[j] ← 1
8 . Add all constraints from H − Cx
9 for each Cy ∈ H

10 if y = x
11 H ← H − {Cy}
12 else
13 REVISE-DUAL(R̂d, Cy)
14 ARC-CONSISTENCY(R̂d)
15 D̃ ← VALID-DOMAINS(∆)
16 return (D̃, H)

Algorithm 4.8: Removing a unary constraint.

Restoration

The fundamental algorithm RESTORATION, shown in Algorithm 4.9 on the
facing page, takes a DCN ∆ and a constraint Cx and computes a restora-
tion of Cx on ∆ as described in Section 4.3 on page 42. It works by naively
removing all constraints in H and thereafter adding Cx. If the resulting net-
work is satisfiable, the constraints from H, which do not make the network
unsatisfiable, are added. Lines 2–4 remove the constraint in H by marking
all domain values in R̂d as being valid. Line 6 adds the constraint Cx and
lines 10–15 add the constraints from H which do not make the network
unsatisfiable.

Theorem 4.8. Let ∆ = (X, D, C, H) be a DCN and Cx a unary constraint on
some variable x ∈ X. Then RESTORATION

1. correctly computes a restoration as described in Section 4.3, and

2. has worst-case time complexity O(|H|(sêt̂2 + n(d + t̂))) and space com-
plexity O(êt̂).

Proof. It follows from lines 2–7 that, if (X, D, C ∪ {Cx}) is unsatisfiable, ∅ is
returned. Otherwise E, which is initially empty, is a restoration of Cx on ∆
since we only add a constraint Cy ∈ H to E, if (X, D, C, E ∪ {Cx} ∪ {Cy}) is
satisfiable (lines 11-15). Both parts of the theorem follow from Lemma 4.3,
This proves the first part.

The last part follows from Lemma 4.4 and Lemma 4.5.
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RESTORATION(∆, Cx)
1 . Remove all constraints in H
2 for each S ∈ X̂d

3 for j ← 1to|D̂d
S|

4 M̂d
S[j] ← 1

5 . Add Cx
6 if ¬REVISE-DUAL-(R̂d, Cx) ∨ ¬ARC-CONSISTENCY(R̂d)
7 return ∅
8 else
9 . Add consistent constraints from H

10 E ← ∅
11 for each Cy ∈ H
12 if REVISE-DUAL(R̂d, Cy) ∧ ARC-CONSISTENCY(R̂d)
13 E ← E ∪ {Cy}
14 else
15 REMOVE-CONSTRAINT(∆, Cy)
16 return E

Algorithm 4.9: Calculate a restoration.

4.5.4 Summary of Results

Table 4.1 summarizes the complexity results for the fundamental opera-
tions. As can be seen, all the fundamental operations can be performed in
time polynomial in the size of the acyclic constraint network. This means
that, given a general constraint network as input, the performance of these
operations can be assessed when the input network has been transformed
into an acyclic constraint network. Note, however, that the time spent con-
structing the acyclic constraint network is, in the worst case, unlikely to
be polynomial in the size of the input network (since otherwise we could
solve CONSTRAINT SATISFIABILITY in polynomial time, which is unlikely
unless P = NP). The best we can hope for is that the networks that arise in
practical applications can be efficiently transformed into acyclic networks,
which have a tractable size.

Function Time Complexity Space Complexity

ADD-CONSTRAINT O(sêt̂2 + n(d + t̂)) O(êt̂)
REMOVE-CONSTRAINT O(sêt̂2 + n(d + t̂)) O(êt̂)
RESTORATION O(|H|(sêt̂2 + n(d + t̂))) O(êt̂)

Table 4.1: Complexity results for the fundamental operations.
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CHAPTER 5

Acyclic Network Construction

In the previous chapter, I presented polynomial algorithms for the funda-
mental operations in an interactive constraint satisfaction system. The al-
gorithms rely on a restricted constraint network called an acyclic constraint
network. Requiring that problems must be stated using acyclic networks
is too restrictive, so we need a method which can transform a general con-
straint network into an acyclic constraint network. This transformation can
be viewed as a compilation of the general network into a form that enables
efficient processing.

Let us first ensure that an acyclic network can be found for any general
constraint network.

Theorem 5.1. For any general constraint network R = (X, D, C) there exists a
corresponding acyclic network.

Proof. Let R̂ = (X̂, D̂, Ĉ) be a constraint network such that X̂ = X, D̂ = D
and Ĉ = {CX} where CX is the constraint

CX = Sol(R). (5.1)

Then R̂ is an acyclic network for R. It is clear that they have the same set
of solutions and since the constraint graph of R̂d is a single node, it is a
tree.

Theorem 5.1 also gives us a method to construct an acyclic network since,
as noted in Section 3.1.2 on page 20, the set of all solutions can be found by
joining all the constraints:

CX =1CS∈C CS. (5.2)

61
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For networks with a small number of solutions, this method may be accept-
able provided that the size of the intermediate results are manageable.

This chapter presents an existing method for synthesizing solutions to
a constraint network and an existing method for decomposing a constraint
network. We end the chapter by proposing a method for acyclic network
construction which combines the two existing methods.

5.1 Array-based Logic

Møller [1995] presented a method for constraint satisfaction based on the
theory of arrays [More, Jr., 1973]. In what follows, the essential parts of
the method, called array-based logic, are presented using the terminology
already established in the preceding chapters.

Array-based logic works by basically building the set of all solutions by
joining all the constraints of the network as described in Equation (5.2) on
the page before. As the following example shows, the order in which the
joins of Equation (5.2) are evaluated is important

Example 5.1. In Figure 5.1 on the facing page the relations R, S and T are
shown. The join operator is commutative so there are three possible ways
in which we can compute the join of these three relations:

(R 1 S) 1 T, (5.3)
(S 1 T) 1 R, and (5.4)
(T 1 R) 1 S. (5.5)

While all three evaluation orders produce the same result, the size of the
intermediate result differs as shown in Figure 5.1. The evaluation order
according to Equation (5.5) produces a larger intermediate result than the
two others, thus it is likely to perform worse.

Møller [1995] used a simple heuristic to select the next pair of con-
straints to be joined. For all pairs of constraints CR, CS ∈ C we define the
connectivity factor as

F(CR, CS) = |CR| × |CS| × |R− S| × |S− R|. (5.6)

The connectivity factor should provide an approximation of the size of the
joined result. The intuition behind Equation (5.6) is as follows. The larger
the two constraints, the larger the joined result. This accounts for the first
two factors. The more variables shared by the two constraints, the smaller
the result. This accounts for the two last factors. The heuristic simply se-
lects the pair of constraints with the smallest connectivity factor as the next
pair to be joined.
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a b
0 0
0 1

(a) Relation R

b c
0 3
0 4
1 5

(b) Relation S

c d
4 6
5 7

(c) Relation T

a b c
0 0 3
0 0 4
0 1 5

(d) R 1 S

b c d
0 4 6
1 5 7

(e) S 1 T

a b c d
0 0 4 6
0 1 4 6
0 0 5 7
0 1 5 7

(f) T 1 R

Figure 5.1: Intermediate results when joining relations.

If we return to Example 5.1, we see that F(R, S) = 6, F(S, T) = 6, and
F(T, R) = 8. The join order selected by the heuristic thus, in this case,
avoids the largest intermediate result, but does not necessarily select the
smallest intermediate result.

As mentioned previously, it is not always feasible to join all the con-
straints. This was recognized in [Møller, 1995, pp. 138] where a pragmatic
solution was presented, that, for a constraint network R = (X, D, C), can
be formulated as follows.

1. If |C| = 1 we are done.

2. Select constraints CR, CS ∈ C such that

F(CR, CS) = min{F(CT, CU) | CT, CU ∈ C}. (5.7)

3. Compute CR∩S = CR 1 CS.

4. If |CR∩S| < k for some constant k, then set C ← C−{CR, CS} ∪ {CR∩S}
and continue with step 1.

If we end up with a single constraint, we are done as we have an acyclic
constraint network. Otherwise, we have a number of constraints whose
dual constraint graph does not in general form a tree. In this case Møller
augments each of the remaining constraints CS with the set of solutions to
the subproblem defined on X − S. The details of this final step are specific
to Møller’s inference algorithms and are not applicable to our case, so we
will not pursue this idea any further.
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5.2 Cartesian Product Representation

Møller [1995] used a compact representation of constraints, based on Carte-
sian products, which was supposed to make the array-based techniques
applicable to real world problems by reducing the storage requirements.

Let the set of valid tuples for a constraint be represented by

{(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)}. (5.8)

An alternative representation is to use, when feasible, a Cartesian product
to generate the set of valid tuples. Thus the same set can be represented as

{(0, 0, 0)} ∪ ({0, 1} × {0, 1} × {1}). (5.9)

The representation in Equation (5.9) is what we refer to as a Cartesian prod-
uct representation (CPR). We will refer to the explicit enumeration of all tu-
ples in Equation (5.8) as the normal representation. In Figure 5.2 a relation
is shown both using the normal and the Cartesian product representation.
When using the tabular notation, a Cartesian product is implied between
the sets on the same row. In addition, we omit the set delimiters {} when
the set is a singleton.

a b c
0 0 0
0 0 1
0 1 1
1 0 1
1 1 1

(a) Relation in the normal representation.

a b c
0 0 0
{0, 1} {0, 1} 1

(b) Relation in CPR.

Figure 5.2: A relation stored using the normal and the Cartesian product
representation.

The intuition behind CPR is to group domain values together that are
interchangeable. Two domain values are interchangeable in some (local or
global) environment if they can be substituted for each other without any
effects to the environment. Freuder [1991] introduced the notion of inter-
changeability and defined several levels of interchangeability. Domain val-
ues a and b for some variable x are fully interchangeable if every solution
containing 〈x, a〉 remains a solution if 〈x, b〉 is substituted for 〈x, a〉 and vice
versa. Values a and b are said to be neighborhood interchangeable if, for ev-
ery constraint involving x and every tuple that admits 〈x, a〉, there is an
otherwise identical tuple which admits 〈x, b〉.

In Møller’s use of interchangeability, the environment is restricted to a
single constraint so domain values a and b are interchangeable for a con-
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straint CS if, for every tuple that admits 〈x, a〉, there is an otherwise identi-
cal tuple which admits 〈x, b〉.

Møller used CPR as a way to handle the combinatorial explosion when
joining constraints, however the use of CPR has also been successfully
applied to traditional CSP backtracking algorithms [Hubbe and Freuder,
1992; Silaghi et al., 1999].

5.2.1 Operations on CPR Relations

The values in a tuple are sets when the constraint is in the CPR and scalars
when the constraint is in the normal representation. The following defini-
tion provides a general way to measure the size of a constraint.

Definition 5.1. The size of a constraint CS with scope S, denoted ‖CS‖, is
the number of scalar values contained in the constraint,

‖CS‖ = ∑
x∈S

|CS |

∑
i=1
|CS[i]|x|. (5.10)

It follows from Definition 5.1 that the size of a constraint CS in the nor-
mal representation is equivalent to |S||CS| as would be expected. For a
constraint network R we will use ‖R‖ to denote the total size of all the
constraints in R.

The main benefit of the CPR is that it potentially saves spaces while still
allowing the usual relational operators such as join, project and select to be
applied without having to generate all the tuples of the original constraint.
The space savings can be seen in Figure 5.2 on the preceding page where
the normal representation has size 15 while the CPR has size 8.

The definition of the join operation must be changed slightly to handle
CPR constraints. The tuples of two relations should be combined when-
ever the intersection between the values of all the common attributes is
nonempty. When two tuples are combined, we should only include the
intersection of the values from the common attributes. All non-common
attribute values are included as before. Figure 5.3 on the following page
illustrates the result of joining two CPR relations.

This leads to a new definition of the join operator which will also work
with CPR relations. For relations in the normal representation, Defini-
tion 5.2 generates the same result as Definition 2.8 on page 14 as would
be expected.

Definition 5.2. Let R be a relation with scheme Y and instance r. Let S be a
relation with scheme Z and instance s. The join of R and S, denoted R 1 S,
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a b c
0 {0, 1} 0
{1, 2} 0 1

4 4 1

(a) Relation R.

b c d
{0, 1} 1 1

2 1 3
{1, 3} 0 2

(b) Relation S.

a b c d
0 1 0 2
{1, 2} 0 1 1

(c) R 1 S

Figure 5.3: Joining relations stored using the Cartesian product representa-
tion. The two tuples in the result are obtained by combining R[1] with S[3]
and R[2] with S[1] respectively.

is defined to be the relation with scheme Y ∪ Z and an instance containing
the following set of tuples:

{t = u t v | t is a tuple over Y ∪ Z, u ∈ r, v ∈ s, |u u v| = |Y ∩ Z|}, (5.11)

where

u t v = u|Y−Z ∪ v|Z−Y

⋃
x∈Y∩X

(u|x ∩ v|x), (5.12)

u u v = {x | x ∈ Y ∩ X, u|x ∩ v|x 6= ∅}. (5.13)

Equation (5.12) specifies that the new tuple should be combined from all the
components of the non-common attributes as well as the intersection of the
values of the common attributes. Equation (5.13) specifies a set containing
common attributes where the intersection is not empty. It is easily seen
that Definition 5.2 on the preceding page is equivalent to Definition 2.8
on page 14 when joining relations in the normal representation: The last
part of Equation (5.12) becomes u|Y∩Z and Equation (5.13) becomes a set
containing the common attributes which have the same value in the two
tuples.

Madsen [2002] presented an algorithm for in-memory join of relations
in the CPR. The worst-case running time for joining two relations R and S
with the same scheme is O(|R|‖S‖).

We will introduce a new relational operator to convert a constraint to
the CPR.

Definition 5.3. Let CS be a constraint. The Cartesian product representation
of CS is obtained by applying the κ operator on CS. The standard represen-
tation is obtained by applying the κ−1 operator. In other words, we have

CS = κ−1(κ(CS)), (5.14)

CS = κ−1(CS). (5.15)
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For a constraint network R we will use κ(R) to denote the network where
all constraints are in the CPR.

Katajainen and Madsen [2002] presented a heuristic utilizing random-
ization for the κ operator. For a constraint CS, the running time of the
heuristic is O(|S|2|CS|+ |S||CS| log2 min{d, |CS|}) in the average case.

5.3 Tree Clustering

Based on results from the theory of relational databases, Dechter and Pearl
[1989] presented a general and systematic method of decomposition called
tree clustering. The main idea is to replace the initial constraints with a new
set of constraints, that allow the same set of solutions, such that the corre-
sponding dual graph forms a tree. This method can thus be used to con-
struct an acyclic network.

We start out with some definitions which are adapted here to the termi-
nology presented in the preceding chapters.

Definition 5.4. Let G = (V, E) be an undirected graph. G is chordal if every
cycle with at least four distinct nodes has an edge joining two non-adjacent
nodes in the cycle. Such an edge is called a chord. A hypergraph is chordal
if the corresponding primal graph is chordal.

Definition 5.5 ([Berge, 1973]). A hypergraph H = (V, S) is conformal if,
for every clique I in the primal graph of H, there is a hyperedge in S that
contains I.

Definition 5.6 ([Beeri et al., 1983]). For a constraint networkR = (X, D, C)
a join tree for R is a tree with a set of nodes C such that

1. each edge {CR, CS} is labeled by the set of variables R ∩ S, and

2. for every pair CR, CS ∈ C and for every x ∈ R ∩ S each edge along the
unique path between CR and CS includes x.

If a join tree exists. it is easy to identify as the following theorem shows.

Theorem 5.2 ([Maier, 1983]). If a constraint network R has a join tree, it is a
maximum spanning tree of the dual graph where the edges are weighted with the
number of shared variables.

Verifying if a constraint network has a join tree can thus be reduced to
finding a maximum spanning tree on the dual graph and verify that this
tree satisfies Definition 5.6. Constraint networks that have a join tree can
also be characterized by properties of the constraint hypergraph. This is
formalized in Theorem 5.3 on the next page.
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Theorem 5.3 ([Beeri et al., 1983]). Let R = (X, D, C) be a constraint network.
A join tree exists for C if and only if the constraint hypergraph ofR is chordal and
conformal.

Identifying conformal constraint hypergraphs can be achieved by finding
the maximal cliques of the corresponding primal graph as the following
theorem states.

Theorem 5.4 ([Beeri et al., 1983]). A hypergraph H is reduced and conformal if
and only if its hyperedges are precisely the maximal cliques of a graph. If there is
such a graph, then the graph is the primal graph of H.

The preceding theory give us a method for finding a join tree for a set of
constraints. We can simply make the primal graph chordal and identify the
maximal cliques. If we create a constraint for each of the maximal cliques,
then the dual graph will have a join tree that is a maximum spanning tree.
In the following, the conceptual steps of the tree clustering method for a
constraint network R = (X, D, C) are listed in more detail.

1. Make the primal constraint graph (and thus the constraint hyper-
graph) chordal by adding redundant universal binary constraints to
the primal constraint graph.

2. Identify all the maximal cliques {X1, . . . , X`} in the chordal primal
graph.

3. Replace the set of constraints in C with a new set of constraints, one
constraint for each maximal clique. Then we have C = {CX1 , . . . , CX`

}
where each constraint CXi is a constraint with scope Xi such that

CXi = πXi(Sol(R)). (5.16)

4. Find a join tree for R as a maximum spanning tree of the new dual
graph. By definition, the new constraint hypergraph of R is chordal
(because of step 1) and conformal (step 2 and 3 together with Theo-
rem 5.4). Theorem 5.3 ensures that a join tree for R exists.

Example 5.2. The following example illustrates the steps of the tree clus-
tering method. Let R be a constraint network with 7 variables {a, . . . , g}
and 8 constraints {Ca f , Cbc, Cbd, Cbg, Cce, Cde, Ce f , Cabc}. The primal graph of
R is depicted in Figure 5.4(a) on the facing page.

The first step is to make the primal graph chordal by adding redundant
constraints. The resulting chordal primal graph is depicted in Figure 5.4(b)
where the new constraints are drawn using dotted lines. The second step is
to identify the maximal cliques of the chordal primal graph. The maximal
cliques are depicted in Figure 5.4(c). For each clique we compute a new
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constraint with scope equal to the clique’s variables. The dual graph of the
new network is depicted in Figure 5.4(d). Finally, we remove redundant
constraints from the dual network and we end up with a dual network
whose constraint graph is a tree. This is depicted in Figure 5.4(e).
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(a) Primal graph.

f a b
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(b) Chordal primal graph. Dotted lines
are added universal constraints.

f a b

c

de
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(c) 4 maximal cliques are identified.

a, e, f a, b, c, d

a, c, d, e b, g

a

ba, c, da, e

(d) Constraint graph of the new dual net-
work. Each clique is turned into a con-
straint. The constraints are labeled with
the shared variables.

a, e, f a, b, c, d

a, c, d, e b, g

ba, c, da, e

(e) Constraint graph of the dual network
forms a tree when redundant constraints
are removed.

Figure 5.4: Constructing an acyclic network using the tree clustering
method.

Complexity

A graph can be made chordal by triangulating it. Finding a minimal tri-
angulation is NP-complete [Yannakakis, 1981], but a heuristic algorithm
which runs in O(n + e) using a maximal cardinality search was presented by
Tarjan and Yannakakis [1984]. The maximal cliques can be identified in
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time O(e′) where e′ is the number of edges in the chordal graph [Dechter
and Pearl, 1989].

Each constraint CXi can be viewed as the set of solutions to the subnet-
work defined on the variables in Xi and it thus takes time O(d|Xi |) to find
each constraint. If we let w denote the size of the largest clique, the overall
complexity is thus exponential in w.

5.3.1 Relation To Tree Decomposition

The tree clustering method described in the previous section fits the general
graph-theoretic framework of tree decomposition introduced by Robertson
and Seymour [1986].

Definition 5.7. A tree decomposition of an undirected graph G = (V, E) is a
pair (T,B), where T = (J, F) is a tree and B = {Bj | j ∈ J} is a family of
subsets of V such that

1.
⋃

j∈J Bj = V,

2. for all {v, w} ∈ E, there exists a node j ∈ J such that {v, w} ∈ Bj, and

3. for all x, y, z ∈ J, if y is on the path from x to z in T, then Bx ∩ Bz ⊆ By.

The width of a decomposition (T, {Bj | j ∈ J}) is maxj∈J |Bj| − 1, and the
treewidth of an undirected graph G, denoted tw(G), is the smallest width of
any tree decomposition of G.

Many NP-complete graph problems can be solved in polynomial time
on graphs which have bounded treewidth. The problem of computing the
treewidth of a graph is in general NP-hard[Arnborg et al., 1987], however
for fixed k, linear-time algorithms exist that determine whether a graph has
treewidth at most k, and if so, finds a tree decomposition with width at
most k [Bodlaender, 1996]. Their practical use, however, is limited since
the running time contains large constants with k in the exponent.

Tree Clustering as Tree Decomposition

The tree clustering method can be seen as a tree decomposition of the dual
graph: Let {X1, . . . , X`} be the maximal cliques. Then J = {1, . . . , `} and
each subset Bj, j ∈ J corresponds to some maximal clique Xj. Condition 1
is clearly satisfied. Every clique is maximal so condition 2 is satisfied. The
result of tree clustering is a join tree so condition 3 is satisfied. It follows
from this that the size of the largest clique is then bounded by tw(G) + 1
where G denotes the primal graph of the constraint network.

We should note that while the treewidth of a primal constraint graph
is an invariant, the size of the largest clique computed by the tree clus-
tering method is determined by the heuristics used by the triangulation
algorithm.
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Other Decomposition Methods

Other decomposition methods have been proposed. Gyssens et al. [1994]
present a method called hinge decomposition and they show that the cardi-
nality of the largest vertex of any hinge decomposition is an invariant of
the given network. A hinge tree for a constraint network can be computed
in time O(ne2).

Recently, a general hypertree decomposition method has been proposed
in database research [Gottlob et al., 1999a]. It is similar to tree decompo-
sition, but is now defined on hypergraphs instead of regular undirected
graphs. As was the case with a tree decomposition, finding a hypertree de-
composition with minimum hyperwidth is NP-complete. A polynomial
time algorithm exists for determining whether a hypertree decomposition
of hyperwidth at most k exists for any fixed k, and if so, return a hypertree
decomposition of hyperwidth at most k [Gottlob et al., 1999b]. The prac-
tical relevance of this remains to be seen, but as was the case with a tree
decomposition, the worst-case running time of the hypertree decomposi-
tion algorithm is exponential in k.

In [Gottlob et al., 2000] various CSP decomposition methods (including
tree clustering, hinge decomposition, and hypertree decomposition) were
compared. A way of comparing decomposition methods was proposed,
in which a method d1 is more powerful than method d2 in the sense that
whenever d2 guarantees the decomposed problem can be solved in polyno-
mial time, the problem decomposed using d1 is also solvable in polynomial
time, but there are classes that can be solved in polynomial time using d1
but not d2. The conclusion of the paper was that the hypertree decomposi-
tion is the most powerful of the current known methods.

One of the authors of [Gottlob et al., 2000] provides a program1 that can
find a hypertree decomposition of width k if such a decomposition exists
and returns failure otherwise. The program was briefly tested on some of
the constraint network instances used in the performance study presented
in Chapter 6, but due to the memory requirements (k = 3 required 2GB
memory, for k > 3 the program crashed with an overflow error), I did not
succeed in producing any hypertree decompositions.

5.4 A Combined Method for Acyclic Network Con-
struction

Both array-based logic and tree clustering construct acyclic networks. How-
ever the two methods can also be combined: We can utilize array-based

1At the time of writing it was available at http://si.deis.unical.it/~frank/
Hypertrees/ .

http://si.deis.unical.it/~frank/Hypertrees/
http://si.deis.unical.it/~frank/Hypertrees/
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logic to solve the subproblems induced by the cliques found by tree clus-
tering. Another matter that we have not covered yet is how the CPR affect
the algorithms for the fundamental operations described in Chapter 4 on
page 37. Both of these issues are explained in the following.

5.4.1 Solutions to Subproblems

As noted in Section 5.3 on page 67, the first part of the tree clustering
method identifies a number of cliques, each of which induces a subnet-
work for which all solutions must be found. We find these constraints as
follows.

1. Place each original constraint CR in a set SXi such that R ⊆ Xi. Each
original constraint CR forms a clique in the primal graph. If this clique
is not maximal, there exists another clique Xj such that R ⊆ Xj.

2. For each SXi construct a constraint CXi

CXi =

{
UXi if SXi = ∅,
UXi∩ 1CS∈SXi

CS if SXi 6= ∅.
(5.17)

Note that the constraints in Equation (5.17) can be tightened further by con-
sidering all constraints of the original problem sharing a variable with the
clique being processed:

CXi ← CXi ∩ πXi(1CS∈C,S∩Xi 6=∅ CS). (5.18)

5.4.2 Fundamental Operations for CPR Constraints

In a CPR constraint, a single tuple no longer represents a single valid as-
signment but instead a set of valid assignments. A tuple in a CPR constraint
is thus invalid exactly when all the assignments represented by the tuple
are invalid. It is possible to determine the set of tuples in a single CPR con-
straint that become invalid because of unary constraints, as the following
lemma shows.

Lemma 5.5. Let S = {x1, . . . , x`} be a set of variables and let CS be a CPR
constraint on S. Furthermore, let Cxi be a (possibly universal) unary constraint
for each xi ∈ S. The set of tuples that are invalid because of the unary constraints
Cxi are exactly those identified by the set

{t | t ∈ CS, t|xi
∩ Cxi = ∅ for some xi ∈ S}. (5.19)

Proof. If t|x ∩ Cxi 6= ∅ for all xi ∈ X, then t clearly represents at least one
valid assignment, namely t|x1 ∩ Cxi × · · · × t|x`

∩ Cx`
.
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As the following lemma shows, it is also possible to determine the op-
posite: the set of valid domain values can be determined from the set of
valid tuples.

Lemma 5.6. Let S = {x1, . . . , x`} be a set of variables and let CS be a CPR
constraint on S where all invalid tuples have been removed. Furthermore, let Cxi

be a (possibly universal) unary constraint for each xi ∈ S. Let R be the constraint
network (S, D, CS ∪ {x1, . . . , x`}). Then

πxi(Sol(R)) = Cxi ∩
⋃

t∈Cs

t|xi
. (5.20)

Proof. For each ai ∈ πxi(Sol(R)), clearly ai ∈ Cxi and ai ∈ t|xi
for some

t ∈ CS, CS ∈ C. For each bi ∈ Cxi ∩
⋃

t∈Cs
t|xi

we have bi ∈ t|xi
for some

t ∈ CS. The tuple t contains at least one solution, since otherwise it would
have been removed according to Lemma 5.5 on the facing page. Therefore
we also have bi ∈ πxi(Sol(R)).

Note that Lemma 5.5 and 5.6 hold, even for constraints in the normal
representation, if each scalar value in a tuple is viewed as a singleton set.

Lemma 5.5 and 5.6 show that it is possible to implement the fundamen-
tal operations in a CPR network if there is only a single constraint that is
not unary. When a user constraint is added, the tuples of the single CPR
constraint that become invalid are marked according to Lemma 5.5. The
valid domain values of the variables can then be calculated according to
Lemma 5.6. This is illustrated in the following example.

Example 5.3. Let the constraint network R be defined by the single con-
straint, shown in Figure 5.5(a) on the next page, and universal unary con-
straints {Ca, Cb, Cc}. If we replace the universal constraint on b with Cb =
{0}, we see that the last tuple becomes invalid. The resulting constraint is
shown in Figure 5.5(b) on the following page. Using Lemma 5.6 we can
calculate the valid domain values:

Da = {0, 1, 2} (5.21)
Db = {0} (5.22)
Dc = {0, 1} (5.23)

Evidently, if we can use the method of array-based logic, we end up
with a network having a single constraint and the fundamental operations
described in Example 5.3 are applicable. The state operation described by
Møller [1995] basically uses this method to handle the external influences
from the environment and determine the consequences on the system state.

The question is of course: Can we extend this method for networks
containing more than one constraint? In the general case, the answer seems
to be no as the following example illustrates.
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a b c
0 {0, 1} 0
{1, 2} 0 1

4 4 1

(a) Cabc.

a b c
0 {0, 1} 0
{1, 2} 0 1

(b) Invalid tuple removed due to
unary constraint Cb = {0}.

Figure 5.5: Fundamental operations in a CPR network with a single con-
straint.

Example 5.4. Let the constraint networkR be defined by the two CPR con-
straints shown in Figure 5.6. None of the constraints contain invalid tuples
according to Lemma 5.5, and according to Lemma 5.6, the valid domains
for a and b are {1, 2, 3} and {0, 1, 2} respectively. But it is easy to see that
the assignment 〈b, 2〉 can never be part of a solution.

The problem is that we cannot maintain arc consistency in a CPR net-
work. If we return to Example 5.4, we note that arc consistency in the nor-
mal representation would remove the tuples (3, 2, 0) and (2, 0, 1) from the
constraint Cabc and the tuple (2, 2, 1) from the constraint Cabd, and thus cor-
rectly ensure that the assignment 〈b, 2〉 is no longer valid.

In order to enforce arc consistency, we thus still need to verify that each
tuple in a constraint, when viewed in the normal representation, has sup-
port in adjacent constraints.

This means we can store constraints in the CPR and create an acyclic
network using the combined method. However when executing the funda-
mental operations, we must use time proportional to the number of tuples
in the normal representation and not the number of tuples in the CPR.

a b c
3 {0, 2} 0
{1, 2} {0, 1} 1

(a) Cabc.

a b d
{1, 3} {0, 1} 0

2 {1, 2} 1

(b) Cabd.

Figure 5.6: CPR network with a two constraints.



CHAPTER 6

Performance Study

The algorithms for the fundamental operations described in Chapter 4 and
the methods for acyclic network construction described in Chapter 5 have
been implemented and the performance has been tested on various prob-
lem instances. This chapter contains a brief description of the implemen-
tation and the problem instances used, as well as the result of the perfor-
mance study.

6.1 Implementation

The methods for acyclic network construction described in Sections 5.3 and
5.1, as well as algorithms for the fundamental operations described in Sec-
tion 4.5 on page 47, have been implemented and this section contains a
brief overview of the implementation. The complete source (comprising
approximately 7000 lines of non-comment C++ code in 40 files) is available
electronically. See Appendix A on page 109 for details on how to obtain
and compile the code as well as a brief description of the source files.

Preprocessing

For many practical applications, preprocessing techniques can reduce the
size of the combinatorial problem significantly. As an example, Weihe
[1998] reported that preprocessing completely solved many instances of
a problem, equivalent to the NP-complete hitting set problem [Garey and
Johnson, 1979], arising from the German and European train schedules.
The problems not solved by preprocessing were easily solved by hand.

Two preprocessing rules were applied to the constraint networks used
in this performance study:

75
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1. Repeatedly replace two constraints that have the same scope with the
single constraint obtained by joining the two constraints.

2. Repeatedly replace two constraints, where the scope of one constraint
is a subset of the other, with the single constraint obtained by joining
the two constraints.

If constraints are not in the CPR form, these rules will always decrease
the total size of the constraint network since the size of the joined result
will never be larger than any of the two relations. For constraints in the
CPR form, however, this may not be the case since the joined result may be
larger than any of the two relations.

For some networks these rules have no effect, but for many of the net-
works arising from practical applications the effect can be dramatic as the
following example shows.

Example 6.1. The “car” instance (see Section 6.2 on page 81 for more de-
tails) contains 7883 constraints and has size 2071515. Applying the first re-
duction rule took 11 CPU seconds and resulted in a network with 849 con-
straints and size 593403. Applying the second rule took 54 CPU seconds
and resulted in a network with 199 constraints and size 697216. Without
preprocessing, none of the methods for acyclic network construction were
able to complete the compilation.

Array-Based Logic

The implementation of array-based logic is straightforward. All constraints
are compressed and we select a pair of constraints to be joined based on
the connectivity factor (cf., Equation (5.6) on page 62). The joined result is
compressed and we select the next pair of constraints to be joined. When
there is a single constraint left, we are finished.

Tree Clustering

The implementation of the tree clustering method is based on the algo-
rithms described by Tsang [1993]. Triangulation of the primal graph is
done using a naive algorithm having O(n2) worst-case running time. In
all the instances used in the performance study, this turned out not to be a
problem since triangulation was performed in a few seconds.

Tsang [1993] notes that the triangulation heuristic can be used with an
arbitrary node ordering, and suggests the use of the maximum cardinal-
ity ordering which has the nice property that no edges are added if the
graph is already chordal. The nodes are ordered by first selecting an arbi-
trary node and then repeatedly selecting the unordered node adjacent to
the maximum number of already ordered nodes. However, El Fattah and
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Dechter [1996] observed a dramatic difference in the effects of various or-
dering heuristics on the resulting join tree obtained from the tree clustering
method. In all the instances tested, they found that the minimum degree
ordering produced the smallest cliques.

The minimum degree ordering is computed from last to first by repeat-
edly selecting the node having the least number of neighbors in the graph
(hence minimum degree). When a node has been selected, the node and
the incident edges are removed from the graph and the neighbors of the
removed nodes are connected. The process is continued until the graph is
empty.

George and Liu [1989] give a historical survey of the minimum degree
ordering and the improvements made to the basic algorithms. We use the
minimum degree ordering implementation provided by the Boost Graph Li-
brary1 [Siek et al., 2001].

6.1.1 Correctness

It is difficult to determine if an implementation always computes the cor-
rect results. Basically, there are two ways to determine this:

1. Formally prove that the implementation correctly implements the al-
gorithms required. If the algorithms are proved correct, this ensures
the correctness of the implementation.

This is usually not feasible for programs of any significant size and is
even more difficult when the implementation language is C++ where
side effects and pointer aliasing can occur.

2. Construct an exhaustive list of test instances and manually verify that
the correct results are produced.

Constructing the test instances such that all possible combinations of
code paths are tested is very time consuming and difficult without
automated tools for testing code coverage.

A pragmatic solution has been chosen to at least ensure some valid-
ity of the implementation. It is asserted, that the major steps in the meth-
ods compute the correct results (i.e., that the triangulation algorithm in fact
computes a triangulation). All the acyclic networks constructed have been
tested against a commercial CSP solver2 on the belief that this solver has
received thorough testing and use by various customers. It is verified that
the addition of every possible unary constraint has the same effect in both
implementations.

1The version used was 1.29, available at www.boost.org .
2Array Database v5.5 by Array Technology A/S, www.arraytechnology.com .

www.boost.org
www.arraytechnology.com
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6.1.2 Implementation Details

The basic algorithm for compressing constraints is based on that presented
in [Katajainen and Madsen, 2002]. The basic algorithm for joining con-
straints is based on the implementation presented in [Madsen, 2002] but
modified according to the suggestions in [Madsen, 2002, p. 29] so that the
amount of memory required is proportional to the size of the output.

Data structures

There are basically two ways to layout a relation in memory:

Horizontally decomposed: The values of each tuple form a consecutive
byte sequence.

Vertically decomposed: The values of each column form a consecutive byte
sequence.

When joining two relations, we need to compare values for the columns
common to both relations. This is usually not all the values in a tuple,
so the stride, i.e., the offset between two subsequently accessed memory
addresses, will be larger than one. In [Boncz et al., 2000], experiments show
that the stride size is an important parameter for optimizing memory access
patterns in join algorithms. On a simple in-memory scan of a single byte
from 200000 tuples, an increase of a factor of 8 was measured in execution
times when the stride was increased from 1 to 150 bytes.

We therefore choose the vertical decomposition since values of a single
column can then be accessed sequentially. This choice has another benefit:
the tuple width need not be uniform. This means that values in a com-
pressed column can vary in size.

A consequence of this choice is that all algorithms should preferably
work column-wise instead of tuple-wise in order to maximize the locality
of memory access.

Representing columns

As noted earlier, each column in a relation contains values from a finite
domain Dx. Without loss of generality, we therefore encode the domain
values as integers {0, 1, . . . , |Dx| − 1}.

There are several ways to represent the sets in a compressed column of
a CPR relation. We need to be able to efficiently determine

• whether the intersection between two sets is empty,

• the intersection between two sets, and

• whether a given element exists in a set.
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For small domains, a bit vector seems like a natural choice: the intersection
operation can utilize the inherent word-parallelism of the bitwise AND op-
erator and the single element test is simply a bit test. But for large domains,
the memory usage of the bit vector becomes prohibitive since we assume
the sets are sparse. The methods for representing a column are therefore as
follows:

Uncompressed columns: Stored as a sequence of integers. The number of
bits needed for each integer is dlog2 |Dx|e, |Dx| ≥ 1. To minimize the
memory usage, we represent an integer as the smallest native data
type that can hold dlog2 |Dx|e bits. In the current implementation this
is either 8, 16, or 32 bits.

Compressed columns: Stored as a sequence of either fixed-sized bit vec-
tors or (pointers to) sorted integer vectors.

In the current implementation, bit vectors are used when the domain
has no more than 28 = 256 values. This enables encoding the set in at most
8 32-bit words. It is likely that it is beneficial to encode even larger domains
as bit vectors, since we avoid memory allocation for set elements and we
exhibit better cache behavior. The exact size where the encoding should
switch to using a sorted vector, should be determined experimentally.

Using optimal representations

The columns are represented using different classes depending on whether
a column is compressed and on the domain size of the corresponding vari-
able. The creation of the optimal class for any given variable is imple-
mented in a central factory function, which creates new columns. For com-
pressed columns, it looks as follows.
CompressedColumn ∗CompressedColumn : : createNew ( Var iab le & var ,

s i z e _ t rowCount )
{
s i z e _ t max_dom_index = var . getDomainSize ( ) −1;

i f ( max_dom_index < 8 )
return new BitmapCompressedColumn <8>( var , rowCount ) ;

i f ( max_dom_index < 1 6 )
return new BitmapCompressedColumn <16 >( var , rowCount ) ;
. . .

i f ( max_dom_index < 2 5 6 )
return new BitmapCompressedColumn <256 >( var , rowCount ) ;

i f ( max_dom_index ≤ std : : numeric_l imits <unsigned char > : : max ( ) )
return new ConcreteCompressedColumn<unsigned char >( var ,

rowCount ) ;
i f ( max_dom_index ≤ std : : numeric_l imits <unsigned short > : : max ( ) )

return new ConcreteCompressedColumn<unsigned short >( var ,
rowCount ) ;
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i f ( max_dom_index ≤ std : : numeric_l imits <unsigned int > : : max ( ) )
return new ConcreteCompressedColumn<unsigned int >( var ,

rowCount ) ;
return new ConcreteCompressedColumn<unsigned long >( var , rowCount

) ;
}

First we check if we can use a bit vector to represent the column cells. If this
is not possible, we select a sequence of sorted integers using the smallest
possible data type to represent the integers.

Using Traits Classes to Simplify Implementation

The performance critical part of the code is the functions that implement
the compress and join functionality. Since different C++ types are used to
represent the column data (depending on the domain size and whether the
column is compressed), the compress and join functions should potentially
be implemented in several different versions, one for each type of column.
This gives maximum performance since the type of the column we are op-
erating on is known to the compiler which makes full optimization possible
in the inner loops.

An alternative solution is to create a single version of each algorithm
and reference the column data using virtual functions in the column classes.
This has the drawback that many virtual function calls are performed in the
inner loops, and, more importantly, it is not possible for the compiler to in-
line the virtual methods.

By using the concept of traits classes, originally introduced by Meyers
[1995], it is possible to combine the two methods. Here we use the term
traits class to refer to a class that aggregates the basic operations (copy,
intersection, hash value etc.) on a single cell value in a column. The traits
class for a cell containing scalar values has the following signature:
template < typename T> s t r u c t S c a l a r C e l l T r a i t s

{
typedef T value_type ;
s t a t i c std : : s t r i n g t o S t r i n g ( T c e l l V a l u e )
s t a t i c T c l o n e C e l l ( T c e l l V a l u e )
s t a t i c bool in tersect ionEmpty ( T v1 , T v2 )
s t a t i c void expandCell ( T ce l lValue , i d v e c t o r _ t & values )
s t a t i c bool equal ( T ce l lValue1 , T c e l l V a l u e 2 )
s t a t i c void hashCell ( s i z e _ t ∗ hashValue , s i z e _ t index , T

ce l lValue , unsigned char domainBits )
} ;

By supplying different traits classes to the same algorithm (e.g., join), this
algorithm can be applied to different column types. The compiler will gen-
erate an appropriate implementation of the algorithm (using templates),
specialized for the types passed. Since the compiler knows the types at the
time of compilation, full optimization and in-lining can be applied in the
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critical inner loops. In this case, virtual functions are only used to call the
correct (compiler generated) function. We have such created a bridge be-
tween the generic programming paradigm and the object oriented programming
paradigm.

6.2 Problem Instances

The problem instances used in the performance study fall in various cate-
gories. The most interesting category is the configuration problems as these
are the problems that require interactivity. The remaining categories are in-
cluded to see how well the compilation methods perform with other types
of networks.

In the following, a number of problem instances, which have been col-
lected from various sources, are described. For all instances, n denotes the
number of variables, e the number of constraints, r the largest arity of a
constraint, d the size of the largest domain, |Dx| the size of the domain for
variable x, ‖R‖ the size of the network, t the largest number of tuples in a
constraint, |κ(R)| the size of the network in compressed form, and finally
tκ the largest number of tuples in a compressed constraint.

The symbol † is used to represent a number larger than 1.7 × 10308,
which is the maximal value representable in an 8 byte floating-point num-
ber.

Configuration Problems

The instances presented in Table 6.1 on page 83 are networks which orig-
inate from real life configuration problems. The “renault” instance is the
test problem described in [Amilhastre et al., 2002] and deals with configu-
ration of a specific family of cars called Renault Megane3. The remaining
instances have been provided by Array Technology A/S and have been
collected during various customer projects. The constraint graphs for the
instance “ns11” are depicted in Figure 6.1 on the following page.

Circuit Verification

The ISCAS ’85 benchmark suite consists of a logical description of 10 elec-
tronic circuits, provided to authors at the 1985 International Symposium on
Circuits and Systems [Brglez and Fujiwara, 1985]. They have subsequently
been used by many researchers as a basis for comparing results in the area

3At the time of writing, the problem instance was available at ftp://ftp.irit.fr/
pub/IRIT/RPDMP/Configuration/ .

ftp://ftp.irit.fr/pub/IRIT/RPDMP/Configuration/
ftp://ftp.irit.fr/pub/IRIT/RPDMP/Configuration/
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(a) Primal constraint graph.

(b) Dual constraint graph.

Figure 6.1: Constraint graphs for instance ns11.
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Name n e r d Πx∈X |Dx| ‖R‖ t ‖κ(R)‖ tκ

renault 101 113 10 42 6.84× 1049 1.29× 106 4.87× 104 29279 104
plan-2-25 417 290 16 3 2.32× 10147 1.51× 105 2.05× 103 10787 192
plan-31 283 394 30 3 2.30× 1088 2.38× 1012 1.56× 1010 62803 118

car 184 7879 17 42 1.58× 1082 1.35× 1016 3.95× 1012 2071511 17
shelf 50 43 3 132 3.12× 1076 1.85× 105 5.15× 103 155850 5151
cf0-td 29 310 7 118 3.70× 1020 4.64× 107 8.04× 105 41123 6
heq 1157 586 6 4 † 5.74× 104 9.00× 101 23709 16
ns11 77 74 11 8 4.25× 1053 8.19× 108 1.24× 107 34403 296

Table 6.1: Characteristics of configuration problem instances.

of test generation and circuit verification. Each circuit4 is described in Ta-
ble 6.2.

From each circuit a constraint network is created. There is a Boolean
variable for each gate’s output and for all the circuit inputs. For each con-
nection in the circuit a corresponding constraint is created which maintains
the relations between a gate’s input and output. The characteristics of the
resulting networks are presented in Table 6.3 on page 85. While these prob-
lems do not require interactivity, they are included here to see how the
compilation methods behave on structured constraint networks. The con-
straint graphs for the instance “c432” are depicted in Figure 6.2 on the next
page.

Circuit Circuit Total Input Output
Name Function Gates Lines Lines

c432 Priority Decoder 160 (18 EXOR) 36 7
c499 ECAT 202 (104 EXOR) 41 32
c880 ALU and Control 383 60 26
c1355 ECAT 546 41 32
c1908 ECAT 880 33 25
c2670 ALU and Control 1193 233 140
c3540 ALU and Control 1669 50 22
c5315 ALU and Selector 2307 178 123
c6288 16-bit Multiplier 2406 32 32
c7552 ALU and Control 3512 207 108

Table 6.2: ISCAS ’85 benchmark circuits.

4At the time of writing, the net-lists for the circuits were available at http://www.cbl.
ncsu.edu/www/CBL_Docs/iscas85.html .

http://www.cbl.ncsu.edu/www/CBL_Docs/iscas85.html
http://www.cbl.ncsu.edu/www/CBL_Docs/iscas85.html
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(a) Primal constraint graph.

(b) Dual constraint graph.

Figure 6.2: Constraint graphs for circuit c432.
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Name n e r d Πx∈X |Dx| ‖R‖ t ‖κ(R)‖ tκ

c432 196 160 10 2 1.00× 1059 2.02× 104 5.12× 102 2176 10
c499 243 202 6 2 1.41× 1073 4.22× 103 3.20× 101 2486 6
c880 443 383 5 2 2.27× 10133 5.29× 103 1.60× 101 3803 5

c1355 587 546 6 2 5.07× 10176 8.10× 103 3.20× 101 5526 6
c1908 913 880 9 2 6.92× 10274 2.85× 104 2.56× 102 8389 9
c2670 1426 1193 6 2 † 1.63× 104 3.20× 101 10865 6
c3540 1719 1669 9 2 † 5.61× 104 2.56× 102 16012 9
c5315 2485 2307 10 2 † 4.86× 104 5.12× 102 24267 10
c6288 2448 2416 3 2 † 2.87× 104 4.00× 1000 23968 3
c7552 3719 3512 6 2 † 5.09× 104 3.20× 101 32228 6

Table 6.3: Characteristics of circuit verification problem instances.

Satisfiability Problems

The instances presented in Table 6.4 are networks which originate from
satisfiability benchmarks. All the networks presented are instances of the
pigeon hole problem. We are asked whether it is possible to place h + 1 pi-
geons in h holes such that no hole contains more than one pigeon. This is
clearly an unsatisfiable problem.

The encoding of this problem is straightforward5. For each pigeon i
we have a variable xij which means that pigeon i is placed in hole j. Then
we have h + 1 clauses which say that a pigeon has to be placed in some
hole. For each hole we have a set of clauses ensuring that only a single
pigeon is placed into that hole. This encoding leads to a total of h(h + 1)
Boolean variables and (h + 1) + h(h(h + 1)/2) constraints. As can be seen
in Figure 6.3 on the next page, both the primal and dual constraint graphs
are highly symmetric, which makes graph-based decomposition difficult.

Name n e r d Πx∈X |Dx| ‖R‖ t ‖κ(R)‖ tκ

hole6 42 133 6 2 4.40× 1012 3.40× 103 6.30× 101 987 6
hole7 56 204 7 2 7.21× 1016 8.29× 103 1.27× 102 1540 7
hole8 72 297 8 2 4.72× 1021 2.01× 104 2.55× 102 2268 8
hole9 90 415 9 2 1.24× 1027 4.84× 104 5.11× 102 3195 9
hole10 110 561 10 2 1.30× 1033 1.16× 105 1.02× 103 4345 10

Table 6.4: Characteristics of satisfiability problem instances.

5At the time of writing, CNF instances were available at http://www.intellektik.
informatik.tu-darmstadt.de/SATLIB/benchm.html .

http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/benchm.html
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/benchm.html
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(a) Primal constraint graph. (b) Dual constraint graph.

Figure 6.3: Constraint graphs for the pigeon hole problem for h = 6.

Puzzles

The instances presented in Table 6.5 are all instances of the n-queen prob-
lem for various values of n. The formulation used is similar to that of Ex-
ample 3.1 on page 20. While the n-queens problem is a popular benchmark,
it has very specific features unlikely for to be found in real-life problems.
First, all constraints are binary. Second, every variable is constrained by
every other variable. This makes graph based decomposition difficult as
both the primal and dual constraint graph are completely symmetric. An
example for n = 8 is shown in Figure 6.4 on the facing page.

Name n e r d Πx∈X |Dx| ‖R‖ t ‖κ(R)‖ tκ

queens8 8 28 2 8 1.68× 107 2.58× 103 5.40× 101 1302 8
queens9 9 36 2 9 3.87× 108 4.37× 103 7.00× 101 2193 9

queens10 10 45 2 10 1.00× 1010 6.96× 103 8.80× 101 3394 10
queens11 11 55 2 11 2.85× 1011 1.06× 104 1.08× 102 5111 11
queens12 12 66 2 12 8.92× 1012 1.54× 104 1.30× 102 7372 12

Table 6.5: Characteristics of puzzle problem instances.
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(a) Primal constraint graph. (b) Dual constraint graph.

Figure 6.4: Constraint graphs for the 8-queen problem.

6.3 Experimental Protocol

Two metrics are interesting when trying to asses the practical value of the
methods described in the preceding sections:

1. The time it takes to construct an acyclic network for a given problem
instance.

2. The worst-case and average-case time it takes to execute one of the
three fundamental operations described in Section 4.3 on page 42.

The first metric is obtained by compiling the instances presented in Sec-
tion 6.2. For each instance, the running time (measured in number of CPU
seconds in user mode) and the memory usage (measured in megabytes) are
reported. A limit of 2 CPU hours and 512MB memory has been set on the
running time and memory usage respectively.

For the second metric, I use the method introduced in [Amilhastre et al.,
2002], where we “simulate” the behavior of a user interacting with the con-
straint solver:

1. Process the variables according to some random ordering.

2. If the number of valid domain values for the variable being processed
is 1, continue with the next variable.

3. Order the valid domain values for the variable being processed. Call
ADD-CONSTRAINT with the selected variable and domain value.
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4. Report the CPU time used in the call to ADD-CONSTRAINT.

The simulation is complete when all variables have a single valid domain
value. For each instance, 20, 000 simulations are performed and the cu-
mulative distribution function of the measured time is reported as well as
the average and worst-case time. We restrict the simulation to test ADD-
CONSTRAINT, since the performance of the other fundamental operations
should be proportional.

All experiments were carried out on a Dell Inspiron 8200 Laptop with
a Pentium 4-M 2GHz CPU, 512MB memory, and running Windows XP.
All code has been compiled with Microsoft Visual C++ 7.0 using the -O2
optimization flag.

6.4 Experimental Results

The compilation results obtained using array-based logic are shown in Ta-
ble 6.6 on the facing page. The symbol 3 in one of the columns ’CPU’
or ’Mem’ indicates that the compilation process could not be completed
within the given limits for that column. If the compilation succeeded, the
characteristics of the resulting acyclic network is reported. Note that for
array-based logic, the acyclic network always contains a single n-ary rela-
tion.

The compilation results obtained using the tree clustering method are
shown in Table 6.7 on page 90. For the tree clustering method, the over-
all complexity is dependent on the size of the largest clique found in the
decomposition phase. This is reported as r, the arity of the largest scope,
in the acyclic network. Similarly, the number of cliques is reported as e,
the number of constraints in the acyclic network. Note that the size of the
cliques found for the circuit verification instances differ from the numbers
reported by El Fattah and Dechter [1996]. This is in all likelihood attributed
to the use of a different implementation of the minimum degree ordering
heuristic.

Simulation Results

The running time of ADD-CONSTRAINT depends quadratically on the num-
ber of uncompressed tuples in the acyclic network. The simulations have
therefore been restricted to the configuration problem instances where the
maximum number of uncompressed tuples is small. The remaining in-
stances all required running times in excess of 1 hour, clearly not feasible
for interactive use. The results of the simulations are shown in Table 6.8 on
page 90. The percentages shown in the table are the cumulative distribu-
tion function of the running times, i.e., for the “car” instance 8% of the calls
completed within 0.01 seconds and 87% completed within 0.05 seconds.
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Name CPU Mem ‖R‖ t ‖κ(R)‖ tκ

renault 3

plan-2-25 3

plan-31 3

car 3

shelf 3

cf0-td 44.6 229 5.98× 1014 2.14× 1013 19625700 135792
heq 3

ns11 3

c432 3

c499 3

c880 3

c1355 3

c1908 3

c2670 3

c3540 3

c5315 3

c6288 3

c7552 3

hole6 2.1 44
hole7 394.4 70
hole8 3

hole9 3

hole10 3

queens8 0.23 14 7.36× 102 9.20× 101 736 92
queens9 1.9 46 3.17× 103 3.52× 102 3168 352
queens10 178.2 75 7.24× 103 7.24× 102 7240 724
queens11 5546 248 2.95× 104 2.68× 103 29480 2680
queens12 3

Table 6.6: Compilation results using array-based logic.

The table shows that most calls complete within a few seconds but for
the “renault” instance some calls take more than 6 seconds, barely tolerable
for interactive use. This pattern is caused by the fact that , initially, many
combinations are valid but as soon as a constraint is added, the number
of valid combinations is reduced and the subsequent calls thus require less
time to execute.

6.5 Discussion of Results

If we look at the characteristics of the different problem instances, we see
that using the CPR for constraints is beneficial, especially for the configu-
ration problems where the domain sizes are large. The extreme case is the
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Name CPU Mem e r ‖R‖ t ‖κ(R)‖ tκ

renault 12.4 10 84 10 1.30× 106 2.83× 104 57222 328
plan-2-25 6.3 8 289 23 6.30× 108 1.03× 107 128718 1560
plan-31 265.3 130 98 44 7.80× 1014 8.80× 1012 251879 478

car 180.4 82 166 16 3.99× 105 1.46× 104 22458 65
shelf 1.8 5 39 6 8.15× 109 2.55× 108 147243 710
cf0-td 9.2 22 21 9 1.31× 109 1.01× 108 239909 897
heq 4.1 7 643 10 3.88× 105 2.59× 103 44157 40
ns11 16.7 13 40 14 4.56× 108 1.92× 107 442034 9265

c432 2.2 5 157 28 1.88× 109 3.41× 107 10949 36
c499 2.6 5 195 25 2.00× 109 3.77× 107 11150 144
c880 3.6 6 357 26 1.86× 109 3.36× 107 11547 18

c1355 4.7 7 435 25 2.01× 109 3.77× 107 15078 144
c1908 58.7 33 719 56 1.96× 1017 2.53× 1015 965458 5340
c2670 17.8 16 1168 38 2.66× 1012 6.87× 1010 37000 36
c3540 166.6 69 1442 122 5.36× 1036 4.15× 1034 196139 384
c5315 105.5 48 2050 74 6.12× 1021 7.38× 1019 173791 256
c6288 133.4 58 1980 59 1.47× 1019 1.37× 1017 347392 1600
c7552 160.8 45 3036 47 1.40× 1015 1.95× 1013 203911 256

hole6 33 12 11 28 2.55× 106 5.15× 104 400179 10000
hole7 35.6 133 13 36 2.48× 108 4.67× 106 5114711 82944
hole8 3 15 46
hole9 3 17 58
hole10 3 19 72

queens8 0.51 45 1 8 7.36× 102 9.20× 101 736 92
queens9 2.3 46 1 9 3.17× 103 3.52× 102 3168 352

queens10 18.5 49 1 10 7.24× 103 7.24× 102 7240 724
queens11 3 1 11
queens12 3 1 12

Table 6.7: Compilation results using the tree clustering method.

%(CPU time ≤ X)
Name 0.001 0.005 0.01 0.05 0.1 5.0 10.0 Avg Max

renault 0% 54% 73% 85% 88% 97% 100% 0.24 6.31
car 0% 0% 8% 87% 89% 100% 100% 0.06 1.09
heq 0% 0% 0% 0% 0% 100% 100% 0.11 0.19

Table 6.8: Results of running simulations of ADD-CONSTRAINT.
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“car” instance where the maximum number of tuples is decreased from
3.95× 1012 to just 17.

The compilation results for array-based logic show, that even if the CPR
is used, this method is only feasible for the smallest problems.

The compilation results for the tree clustering method show that it is
feasible to use this method to construct an acyclic constraint network. All
the configuration problems were compiled in less than 4 minutes, and most
problems compiled in only a few seconds.

We also note that for the n-queen instances, tree clustering does not im-
prove the results. This is not surprising as the primal constraint graph is
complete in thus only a single clique is found, i.e., the method degenerates
to array-based logic. For most real-life problems it is expected, however,
that the constraint graph has a structure that enables smaller cliques to be
found, as was the case with all the real-life instances used in this perfor-
mance study.

Tree clustering alone is not sufficient to detect that the pigeon hole prob-
lems are unsatisfiable. We need to enforce arc consistency on the acyclic
network to detect this.

While the CPR is applicable when constructing the acyclic network, the
usefulness is not obvious when it comes to execution of the fundamental
operations since the running time depends quadratically on the number
of tuples in the uncompressed form. This in turn means that, if we re-
quire response times within a few seconds, the methods described in the
preceding sections are only applicable when the number of tuples in the
uncompressed acyclic network is small.
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CHAPTER 7

Uniform Acyclic Networks

The results from Chapter 6 showed that, while the algorithms for the fun-
damental operations are polynomial in the size of the acyclic network, the
acyclic networks constructed from most of the real-life problem instances
were too large to solve interactively. The main reason is that the running
time of ARC-CONSISTENCY is quadratic in the number of tuples in the un-
compressed acyclic network. If we could somehow avoid working with
the uncompressed acyclic network, we would stand a much better chance
of achieving the desired response time.

In this chapter, I show how we can maintain arc consistency for con-
straints in the compressed form by imposing an additional requirement
on the structure of the acyclic network to get a uniform acyclic network. A
heuristic is then presented which transforms an acyclic network obtained
from the tree clustering method into a uniform acyclic network. The chap-
ter is concluded with experimental results obtained by executing the tree
transformation and running the simulation on the resulting uniform acyclic
network.

In the following sections, I assume that all constraint networks are using
the CPR. All results generalize to networks in the normal representation if
each scalar value is treated as a singleton set.

7.1 Fundamental Operations in Uniform Acyclic Net-
works

It turns out that, if we restrict the acyclic network so that two constraints
share at most a single variable, we can maintain arc consistency in the dual
network of an acyclic CPR network. I call this restricted acyclic network a

93
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uniform acyclic network.

Definition 7.1. A uniform acyclic network is an acyclic network R̂ = (X̂, D̂, Ĉ)
where the constraints share at most a single variable:

|CS ∩ CT | ≤ 1, for all CS, CT ∈ Ĉ. (7.1)

In the following I will show how we can modify the algorithms for
the fundamental operations, described in Section 4.5.3 on page 56, to work
with a uniform acyclic CPR network. We first replace REVISE-DUAL with
REVISE-DUAL-CPR shown in Algorithm 7.1. Whenever we add a unary
constraint Cx, we simply update the domain Dx (by maintaining the marks
Mx).

REVISE-DUAL-CPR(R̂d, Cx)
1 empty ← TRUE

2 for each v ∈ Dx
3 if v ∈ Cx ∧Mx[v] = 1
4 . We have at least one valid domain value
5 empty ← FALSE

6 else
7 Mx[v] ← 0
8 return empty

Algorithm 7.1: Revise domain of a variable in R̂ to reflect unary constraint
Cx.

Arc consistency is defined on individual domain values (cf., Defini-
tion 3.15 on page 29), so we must define how we identify the individual
domain values in the dual network when using the CPR.

Definition 7.2. Let S = {x1, . . . , x`} be a dual variable and let Dd
S be the

corresponding dual domain. The set of valid dual domain values represented
by Dd

S is ⋃
t∈Dd

S

t|x1 ∩ Dxi × · · · × t|x`
∩ Dx`

. (7.2)

Note in particular that if any t|x1 ∩Dxi = ∅ for some tuple t then t does not
represent any valid dual domain values. The main idea is as follows: First
we remove all tuples that do not represent any valid dual domain values.
From the remaining tuples we can now find the valid domain values for
each original variable xi as

Dxi ← Dxi ∩
⋃

t∈Dd
S

t|xi
. (7.3)
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This is formalized in Algorithm 7.2 and we can now prove the following
theorems.

REVISE-CPR(S, T)
1 . Note T is not used, but included to maintain signature compatibility

with REVISE-2001
2 changed ← FALSE

3 . Mark invalid rows
4 for i ← 1 to |D̂d

S|
5 for each x ∈ S
6 if D̂d

S[i]|x ∩ D̂x = ∅
7 M̂d

S[i] ← 0
8 . Update valid domains
9 for each x ∈ S

10 M[1..|D̂x|] ← 0
11 for i ← 1 to |D̂d

S|
12 if M̂d

S[i] = 1
13 for each v ∈ D̂d

S[i]|x
14 M[v] = 1
15 for j ← 1 to|Dx|
16 if M[j] = 0
17 if D̂x[j] = 1
18 changed ← TRUE

19 D̂x[j] ← 0
20 return changed

Algorithm 7.2: Mark invalid tuples and update valid domain values of
original variables.

Theorem 7.1. Let S and T be two dual variables such that S ∩ T = {x}. After
the calls REVISE-CPR(S, T), and REVISE-CPR(T, S) S is arc consistent relative
to T and T is arc consistent relative to S, when we consider the set of valid domain
values, as defined in Definition 7.2 on the preceding page, represented by Dd

S and
Dd

T.

Proof. Lines 4–7 mark the tuples that do not represent any valid domain
values. Lines 10–14 compute the union

⋃
t∈Dd

S
t|xi

and lines 15–19 compute
the set Dxi according to Equation (7.3) on the facing page.

To prove S arc consistent with T, we must prove that for all u ∈ Dd
S

that represents a valid domain value and all a ∈ u|x ∩ Dx, there exists a
tuple v ∈ Dd

T that represents a valid domain value such that a ∈ v|x ∩ Dx.
We know that a ∈ Dx. In the call to REVISE-CPR(T, S) we computed Dx
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according to Equation (7.3) on page 94 so we have

a ∈ Dx ⊆
⋃

u∈Dd
T

u|x. (7.4)

That T is arc consistent with S is proved similarly.

Theorem 7.2. Let R̂ = (X̂, D̂, Ĉ) be a uniform acyclic CPR network. Let R̂d

be the corresponding dual network. If we replace REVISE-2001 with REVISE-
CPR shown in Algorithm 7.2 on the preceding page, ARC-CONSISTENCY (Algo-
rithm 4.6 on page 55) maintains arc consistency in R̂d in worst-case timeO(r̂êd̂t̂2

κ).

Proof. We first note that for each arc {S, T} in the dual network, we call
both REVISE-CPR(S, T) and REVISE-CPR(T, S) in the initial loop of ARC-
CONSISTENCY. Subsequently, according to Theorem 7.1, the only way S can
become arc inconsistent relative to T is if a tuple in Dd

S becomes invalid.
This can only happen if any of the domains of the original variables in S
change, however in this case S is added to Q and REVISE-CPR(T, S) will
be called and arc consistency restored. The same argument applies when T
becomes arc inconsistent relative to S.

For the complexity result, we note that in PROPAGATION, the call to
REVISE-CPR only returns FALSE when a new invalid tuple is found. There
are at most t̂κ tuples in each dual variable and a total of ê dual variables.
The time complexity of REVISE-CPR is O(r̂d̂t̂κ) since we can compute the
intersections in time at most O(d̂). This proves the result.

Replacing REVISE-2001 with REVISE-CPR essentially creates an algo-
rithm resembling AC-3, though now working with CPR constraints in the
dual network. Note, that, in order not to change the algorithms from Chap-
ter 4, Theorem 7.2 did not utilize the fact that the dual network is a tree.
In the case where we call ADD-CONSTRAINT on a original variable x, we
can apply REVISE-CPR from root nodes to leaf nodes and back, in the tree
rooted at some dual variable containing x. In this case we can achieve arc-
consistency in worst-case time O(r̂êd̂t̂κ).

7.1.1 Summary of Results

REVISE-CPR updates the domains of the original variables, so we no longer
need VALID-DOMAINS. By making the changes proposed in the preced-
ing section, we can thus execute the fundamental operations in a uniform
acyclic network containing CPR constraints. The complexity results are
summarized in Table 7.1 on the next page.
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Function Time Complexity Space Complexity

ADD-CONSTRAINT O(r̂êd̂t̂2
κ) O(êt̂κ)

REMOVE-CONSTRAINT O(r̂êd̂t̂2
κ) O(êt̂κ)

RESTORATION O(|H|r̂êd̂t̂2
κ) O(êt̂κ)

Table 7.1: Complexity results for the fundamental operations in a uniform
acyclic network.

7.2 Uniform Acyclic Network Construction

A uniform acyclic network can be constructed by a tree transformation that
transforms the tree generated by the tree clustering method into a uniform
acyclic network.

A new relational operation called split forms the basis of the transfor-
mation. When a constraint is split, we augment the constraint with a new
meta variable which, for each tuple, has the same valid value as the tuple’s
index. The split relation is then the projection of this meta variable on a
given set of variables.

Definition 7.3. Let S be a relation with scheme Y, Z ⊂ Y be a set of at-
tributes, and let λ /∈ Y be a meta attribute. The split of S on (Z, λ), denoted
τZ,λ(S) is a relation with scheme Z ∪ {λ} and instance

{t[i]|Z × {i} | t[i] ∈ S, 1 ≤ i ≤ |S|}. (7.5)

The split operation can be carried out in timeO(|S|). Note that for a relation
S with scheme Y, a set of attributes Z ⊂ Y, we have by definition

S = πY(τZ,λ(S) 1 τY−Z,λ(S)). (7.6)

The effect of the split operator is illustrated in Figure 7.1 on the following
page. It is easy to see that if we join the two split relations, we will get the
original relation from Figure 7.1(a).

The following lemma shows that we can replace a constraint by two
new constraints obtained by splitting the original constraint.

Lemma 7.3. LetR = (X, D, C) be a constraint network and CS ∈ C a constraint.
Let T ⊂ S be a set of variables, and let λ be a meta variable. Furthermore, let
Rλ = (Xλ, Dλ, Cλ) where

Xλ = X ∪ {λ} (7.7)

Dλ(x) =

{
D(x) if x ∈ X
{0, . . . , |CS| − 1} if x = λ

(7.8)

Cλ = C− CS ∪ τT,λ(CS) ∪ τS−T,λ(CS). (7.9)
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a b c
0 0 0
0 0 1
0 1 1
1 0 1
1 1 1

(a) Relation in the normal representation.

a λ

0 0
0 1
0 2
1 3
1 4

(b) τa,λ.

b c λ

0 0 0
0 1 1
1 1 2
0 1 3
1 1 4

(c) τb,c,λ.

Figure 7.1: Splitting the relation in Figure 7.1(a).

Then Sol(R) = πX(Sol(Rλ)).

Proof. Follows from Equation (7.6) on the page before.

At first it would seem that splitting a relation only increases the size of a
network, however if we are using the CPR, we can usually reduce the total
size, as illustrated in Figure 7.2 on the facing page, since removing variables
from a constraint may allow further compression. We also note that, when
a constraint is split, the two new constraints are linked by a single variable
as required in a uniform acyclic network.

For any constraint CS and set of variables Z ⊂ S, if we replace the con-
straint CS with two new constraints τZ,λ(CS) and τS−Z,λ(CS), the meta vari-
able λ represents a subset of valid tuples in the original constraint CS.

Example 7.1. If we look at Figure 7.2 on the next page, we see that the as-
signment 〈λ, 3〉 in the two split constraints in Figure 7.2(e) and Figure 7.2(f)
is equivalent to the following set of assignments in the original constraint:

a b c d
1 1 1 0
1 1 1 1

Let {S1, . . . , Sê} be a width 1 ordering of the dual variables of an acyclic
network (i.e., an ordering obtained by a breadth-first search in the tree
rooted at an arbitrary dual variable). For any dual variable Si and its parent
Sj, let Tij = Si− Sj. By definition, (cf., Definition 5.6 on page 67) the original
variables in Tij are contained only in the dual variable Si and its children,
not in Sj or any other dual variable at higher levels in the tree. If Tij 6= ∅
it is therefore possible to split the constraint CSi and replace the original
variables Tij in CSi with a single meta variable that represents the subset
of valid tuples for Tij. The benefits are twofold: We potentially reduce the
size of CSi and the two new relations are linked by a single meta variable
as required in a uniform acyclic network.
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a b c d
0 0 0 1
0 0 1 0
0 0 1 1
1 1 0 1
1 1 1 0
1 1 1 1

(a) Uncompressed relation.

a b c d
0 0 0 1
0 0 1 {0, 1}
1 1 0 1
1 1 1 {0, 1}

(b) Relation in CPR.

a b λ

0 0 0
0 0 1
1 1 2
1 1 3

(c) τa,b,λ.

c d λ

0 1 0
1 {0, 1} 1
0 1 2
1 {0, 1} 3

(d) τc,d,λ.

a b λ

0 0 {0, 1}
1 1 {2, 3}

(e) τa,b,λ in CPR.

c d λ

0 1 {0, 2}
1 {0, 1} {1, 3}

(f) τc,d,λ in CPR.

Figure 7.2: Splitting a relation stored in the CPR. Note that the size of the
relation in (a) is 24, (b) is 18, (c) and (d) combined is 26, and (e) and (f)
combined is 17.

If the new constraint containing Tij shares more than 1 variable with its
children, they must be joined to a single constraint. But this join operation
is “local” in the sense that the resulting constraint does not influence the
size of any constraint which we need to process afterwards.

We can apply the preceding ideas to construct a uniform acyclic net-
work that correctly propagates information. By processing the edges of
the join tree in a bottom up fashion, we know that, whenever we process
an edge {Si, Sj}, where Si is the child and Sj the parent node, the subtree
rooted at Si is a uniform acyclic network. This is formalized in the algo-
rithm UNIFORM-NETWORK shown in Algorithm 7.3 on the next page.

In line 7 we test if the child constraint CL contains variables that can be
split. If this is the case, lines 8-10 split the child node and add the “local”
part to C and create a new constraint CS which is the join of the parent
constraint CP and the non-local part of the child constraint. If we cannot
split the child constraint, line 12–13 simply join the child with the parent to
get the constraint CS.

We now check if we can split CS. If CS does not share any variables
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with another constraint (i.e., it is a root node) or all the variables in S are
shared with adjacent constraint, we simply replace the parent node CP with
CS (line 18). Otherwise, CS is split on the variables in S that are not used in
adjacent constraints (lines 20–21).

UNIFORM-NETWORK(T, R̂)
1 . T is the join tree for R̂
2 i ← 0
3 . Traverse T bottom up
4 for each unprocessed edge {CL, CP} ∈ T
5 . Assume CL is the lower level node and CP its parent
6 C ← C− {CL}
7 if |L− P| > 0
8 C ← C ∪ τL−P,λi(CL)
9 S ← P ∪ {λi}

10 CS ← τL∩P,λi(CL) 1 CP
11 else
12 S ← L ∪ P
13 CS ← CL 1 CP
14 . J contains variables that CP shares width adjacent vertices
15 J ← {x | x ∈ P ∩Q, Q 6= L, {CP, CQ} ∈ T}
16 K ← S− J
17 if J = ∅ ∨ K = ∅
18 Replace CP with CS
19 else
20 C ← C ∪ τK,λi+1(CS)
21 Replace CP with τJ,λi+1(CS)
22 i ← i + 2
23 Mark edge {CL, CP} as processed

Algorithm 7.3: Transforming an acyclic network into a uniform acyclic net-
work.

Example 7.2. Figure 7.3 on the facing page illustrates how the algorithm
UNIFORM-NETWORK constructs a uniform acyclic network from the acyclic
network shown in Figure 5.4(e) on page 69. The following table shows
the contents of the different sets when each edge is being processed. The
column “New Constraints” contains the constraints that are added in lines
10 and 18.

New
Edge L P S J K constraints

{b} {b, g} {a, b, c, d} {a, b, c, d, λ0} {a, c, d} {b, λ0} {Cg,λ0 , Cb,λ0,λ1
}

{a, e} {a, e, f } {a, c, d, e} {a, c, d, e, λ2} {a, c, d} {e, λ2} {C f ,λ2
, Ce,λ2,λ3}

{a, c, d} {a, c, d, λ3} {a, c, d, λ1} {a, c, d, λ3, λ4} {} {a, c, d, λ3, λ4} {Cλ3,λ4}
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a, e, f

a, b, c, d

a, c, d, e

b, g

(a) Initial acyclic network.

a, e, f

a, c, d, λ1

a, c, d, e

g, λ0

b, λ0, λ1

(b) After edge b has been processed.

f , λ2

a, c, d, λ1

a, c, d, λ3

g, λ0

b, λ0, λ1

e, λ2, λ3

(c) After edge a, e has been processed.

f , λ2

λ1, λ4

a, c, d, λ3 , λ4

g, λ0

b, λ0, λ1

e, λ2, λ3

(d) Final uniform acyclic network ob-
tained after edge a, c, d has been pro-
cessed.

Figure 7.3: Constructing a uniform acyclic network. Dashed lines represent
edges and nodes that have been processed.

7.2.1 Correctness and Complexity

Theorem 7.4. Let R̂ = (X̂, D̂, Ĉ) be an acyclic network. Let R̂u be the network
obtained by running UNIFORM-NETWORK on R̂. Then

1. R̂u is equivalent to R̂, and

2. R̂u is a uniform acyclic network.

Proof. To prove the first part, it is sufficient to prove that, when an edge in
the join tree of R̂ is processed, it does not change πX̂(Sol(R̂u)). We first
note that we have the following invariant in line 14:

Sol(R̂) = πX̂(Sol(X̂, D̂, Ĉ− {CP} ∪ {CS})). (7.10)

If we enter the branch at lines 12-13 this invariant should be clear. If we
enter the branch at lines 8-10 the invariant follows from Lemma 7.3 and the
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fact that L− P = L− L∩ P. If we enter line 18 we have thus proved equiva-
lence. If we enter lines 20–21 the equivalence follows from Lemma 7.3 and
the fact that K = S− J. This proves the first claim.

We note that two constraints CL and CP connected by an edge is re-
placed by at most 3 new constraints (lines 8, 20, and 21). These new con-
straints are connected with the meta variables λi and λi+1 and form a non-
cyclic path. This proves the last claim.

As we approach the top of the tree, the domain size of the meta vari-
ables added in lines 8 and 20 grows, since each domain value represents
a number of valid assignments to the original variables contained in the
subtree rooted at CL. In the worst case, when the constraints in the sub-
trees cannot be compressed, the domain size is exponential in the number
of original variables contained in the subtrees. This follows from the fact
that the number of solutions to the subproblems induced by the subtrees
is exponential in the number of variables and we must be able to address
each solution by using the meta variable, since this is the only connection
to the remaining variables.

The complexity of processing and edge is thus equivalent to finding the
solutions to a network induced by the variables of constraint CP and all
its subtrees. Each subtree contribute with a single meta variable, having
domain size exponential in the number of variables in the subtree. If we let
u denote the number of subtrees, dλ the size of the largest domain in a meta
variable contained in a direct child constraint of CP, the complexity can be
expressed as O(d|S|+u + d|S|+u

λ ).

7.3 Experimental Results

The algorithms for uniform acyclic networks have been implemented and
their performance have been evaluated using the methods described in
Chapter 6.

When an edge must be selected for processing in line 4 of UNIFORM-
NETWORK, there may be several candidate edges available. In the present
implementation, I simply use Equation (5.6) to select the edge connecting a
constraint pair with the smallest connectivity factor.

The compilation results obtained when transforming an acyclic net-
work into a uniform acyclic network are shown in Table 7.2 on the facing
page. The results of running simulations on the uniform acyclic networks
are shown in Table 7.3 on the next page.
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Name Time Memory ‖R‖ t ‖κ(R)‖ tκ

renault 10.6 16 4.61× 105 3.96× 104 117732 3682
plan-2-25 1854 219 6.47× 107 3.00× 106 4529709 166586
plan-31 3

car 1 4 3.10× 104 1.82× 103 16679 486
shelf 767.3 87 2.83× 107 3.30× 106 3011637 49054
cf0-td 326.6 61 2.09× 108 2.27× 107 1648769 34919
heq 2.7 5 1.69× 105 3.07× 103 96968 1306
ns11 2423 172 9.89× 107 8.10× 106 2019483 37209

c432 33.9 39 4.99× 105 2.50× 104 189224 5011
c499 3

c880 3

c1355 3

c1908 3

c2670 3

c3540 3

c5315 3

c6288 3

c7552 3

Table 7.2: Compilation results for creating a uniform acyclic network.

%(CPU time ≤ X)

Name 0.001 0.005 0.01 0.05 0.1 0.5 2.0 Avg Max

renault 72% 88% 92% 99% 100% 100% 100% < 0.01 0.06
plan-2-25 82% 83% 84% 89% 93% 98% 100% 0.03 1.53

car 86% 98% 100% 100% 100% 100% 100% < 0.01 0.01
shelf 20% 36% 36% 59% 82% 98% 100% 0.07 0.64
cf0-td 32% 43% 57% 88% 93% 100% 100% 0.02 0.24
heq 94% 99% 99% 100% 100% 100% 100% < 0.01 0.02
ns11 45% 62% 70% 89% 93% 100% 100% 0.02 0.37

Table 7.3: Results of running simulations of ADD-CONSTRAINT on the uni-
form acyclic network.

7.4 Discussion of Results

The results obtained by simulating a user interacting with the constraint
solver on a uniform acyclic network show, that the running time is less than
a few seconds in the worst case. This should be acceptable for interactive
use.

If we were to simulate the use of RESTORATION (which has running
time proportional to the number of constraints that have been added, cf.,
Table 7.1 on page 97), the worst-case running time would probably be ac-
ceptable. This follows from the fact that very few constraints exhibit the
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worst-case behavior, as can be seen in the cumulative distribution function.
The use of uniform acyclic networks is not without problems. The

time needed for compilation increases, and some instances cannot be trans-
formed due to the memory usage of the transformation algorithm.

An initial investigation reveals at least one source of this problem: The
frequent use of the join, the project, and the compress operator results in
a lot of redundant information in the sense that when we expand a CPR
constraint into the normal representation, many duplicate tuples exist.

To asses the amount of redundant information, a brute force algorithm
was implemented that, for each tuple t in a constraint, removes all tuples
that are completely contained in t. For a constraint CS, a tuple u ∈ CS is
contained in a tuple t ∈ CS if u|x ⊆ t|x for all x ∈ S.

Using this algorithm on the “c499” instance, resulted in the construction
of a uniform acyclic network at the expense of using several CPU days.
It also showed that, in extreme cases, as many as 95% of the tuples in a
CPR constraint could be removed. More realistically, the average amount
of tuples removed was around 45%.



CHAPTER 8

Conclusion

The principal achievements of this work — listed in order of appearance —
have been:

I. In Chapter 3, I surveyed of some of the fundamental definitions, con-
cepts and algorithms relating to the area of classical constraint satis-
faction. The decision version of the constraint satisfaction problem
was proved NP-complete in Section 3.2.

II. In Chapter 4, I identified a number of usability requirements relating
to the construction of an interactive constraint solver.

III. In Section 4.3, I formally defined 3 fundamental operations that form
the basis of an interactive constraint solver. Algorithms with polyno-
mial running time were proposed for these operations in Section 4.5.

IV. Chapter 5 contained a survey of two existing methods for compiling
constraint networks: array-based logic and tree clustering. In Sec-
tion 5.4, I showed how these methods could be combined to create a
new compilation method.

V. All algorithms and methods presented in Chapters 4, 5 and 7 have
been implemented. Chapter 6 contained an overview of the imple-
mentation

VI. In Section 6.4, I presented the results of an experimental evaluation
of the proposed methods. The results showed the new compilation
method to be applicable to most of the networks considered.

The results also showed that the running time of the algorithms for
the fundamental operations was too long for interactive use in all but
the smallest instances.

105
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VII. To improve the response time of the fundamental operations, I de-
fined the uniform acyclic network in Chapter 7 and showed how it en-
abled the fundamental operations to be carried out on constraints
stored using the Cartesian product representation. A tree transfor-
mation heuristic was proposed to transform an acyclic network into
a uniform acyclic network.

VIII. An experimental evaluation, presented in Section 7.3, showed that
the running time of the algorithms for the fundamental operations,
when applied to uniform acyclic networks, was acceptable for inter-
active use in all instances where a uniform acyclic network could be
constructed.

Constructing a uniform acyclic network turned out to be practical for
most networks arising from the area of product configuration. For
networks in other categories, the proposed tree transformation algo-
rithm failed in most cases. The failure was caused by excessive mem-
ory usage.

Creating an implementation can be a two edged sword. At one hand
an implementation provides practical evidence that the proposed methods
work and it enables an experimental evaluation to be carried out. On the
other hand, a lot of time is spent on the implementation, correcting small
bugs etc. Time that could otherwise be spent to further improve the theo-
retical results.

I feel, however, that the benefits in this case have outweighed the draw-
backs. Partly because I favor theoretical results that are useful in practice
but also because experiments can provide new insights. One example is in
the performance of the fundamental operations. From a theoretical point of
view, we are usually content when a polynomial time solution can be found
for a difficult problem. However, experiments showed that while the algo-
rithms for the fundamental operations had polynomial running time on an
acyclic network, the response time achieved for most instances, was not
short enough to be used interactively. We therefore had to impose further
restrictions on the structure of the network for the methods to be useful in
an interactive setting.

In summary, the methods I have proposed can be used to solve many
real-life constraint satisfaction problems interactively.

8.1 Directions for Further Work

There are a number of issues that I have chosen not to pursue within the
scope of this thesis. The following is a list of suggestions for further work
related to the material presented in the preceding sections.
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I. Finding a good decomposition is important for the running time of
the compilation methods. In the present implementation a heuristic
is used for triangulating the primal graph. Bodlaender et al. [2003]
describe a number of pre-processing rules for triangulation of prob-
abilistic networks defined on undirected graphs similar to the pri-
mal graphs of constraint networks. These rules allow a triangula-
tion to be computed in the pre-processed graph and subsequently
mapped back to the original graph without loss of optimality. They
note that, for many instances, an optimal triangulation is found by
pre-processing and, for most remaining instances the pre-processed
graph was small enough to be optimally triangulated using an exact
algorithm.

II. Practical experiments with other decomposition methods, such as
hinge decomposition [Gyssens et al., 1994], should be carried out.

III. The heuristic used for selecting the order in which relations are to be
joined is rather simple. The join ordering problem for finding and op-
timal ordering in which relations should be joined, is a well known
NP-complete problem from the area of database research. It is usu-
ally solved using dynamic programming, but the large number of
constraints present in most real-life constraint networks makes this
intractable. Steinbrunn et al. [1997] analyze heuristic, randomized,
and genetic algorithm solutions to the join ordering problem. It would
be interesting to explore the effects of using more advanced heuristics
in the context of constraint satisfaction.

IV. The memory usage seems to be the limiting factor when creating a
uniform acyclic network. At some point during the bottom up pro-
cessing of the tree, the constraints become too large to join. An in-
teresting property at this point, is that the subtrees that have already
been processed are uniform acyclic networks. We thus have a forest
of uniform acyclic networks.

It may be possible to combine these uniform acyclic networks with-
out having to join all the remaining nodes. If we could thus spend
more time combining the subtrees and in return save memory, we
may broaden the range of constraint networks that can be handled.

V. The use of Cartesian products to represent constraints seems to be
crucial for the practical applicability of the methods presented in this
thesis. But no theoretical results are, to the best of my knowledge,
known about the use of Cartesian products to represent constraints.
It may be possible to strengthen the complexity results for creating
and solving uniform acyclic networks if more knowledge is gained
on the use of Cartesian Products.
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VI. The use of Cartesian products also cause problems with an increas-
ingly amount of redundant information being created when constraints
are repeatedly processed. Finding efficient methods to remove this re-
dundancy, or even better, improving the processing methods to avoid
redundancy, should broaden the range of constraint networks that
can be handled by the methods proposed in this thesis.
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Source Code

All the methods and algorithms described in this thesis have been imple-
mented in C++. For the official version of this thesis, I enclose the source
code, (comprising approximately 7000 lines of non-comment C++ code in
40 files) on a supplemental CD-ROM. For other readers, it is possible to
download the files from:

www.diku.dk/forskning/performance-engineering/jeppe/

The code has been developed using Microsoft Visual C++ .Net. The
solution file all.sln located in the Source/ directory, contain all the sub
projects, which can be compiled by rebuilding the solution.

The code can also be compiled using GCC. The author has successfully
compiled the code with GCC v3.2 running under the Cygwin1 environ-
ment. A makefile is located in the Source/ directory.

In order to compile the code a number of packages2, listed in Table A.1
on the next page, must be installed and the makefile/project file must be
updated to reflect the installation paths. The code used for reading the
binary benchmark instances and verifying the implementation, relies on
proprietary code supplied by Array Technology A/S, so this code is not
included. In order to do something useful with the implementation, con-
straint network instances thus have to be specified directly in the source
code by using the supplied classes. Examples can be seen in the directory
Source/test .

1www.cygwin.com
2CppUnit is only required for performing unit tests.
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Package Version Available from

STLport 4.5.3 www.stlport.org
Boost 1.29.0 www.boost.org

CppUnit 1.8.0 cppunit.sourceforge.net

Table A.1: Packages required for compilation.

A.1 Copyright

All source code is copyright c©2003, Jeppe Nejsum Madsen. It is distributed
under the GNU General Public License3. All files contain the following
copyright statement:

/*
* Copyright (C) 2003 Jeppe Nejsum Madsen, nejsum@diku.dk
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

A.2 Overview

The following table lists the source files available.

Directory csplib

column.hpp Definition of Column base classes
column.cpp Implementation of non-template column

methods
common.hpp Main include file
compress.cpp Implementation of compress/uncompress

algorithms
consistency.cpp Implementation of consistency algorithms
constraint_network.hpp Definition of ConstraintNetwork class
constraint_network.cpp Implementation of ConstraintNetwork class
graph.hpp Definition of primal & dual graph classes

3The full license text is available at http://www.gnu.org/copyleft/gpl.html

www.stlport.org
www.boost.org
cppunit.sourceforge.net
http://www.gnu.org/copyleft/gpl.html
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graph.cpp Algorithms for creating and manipulating
primal/dual graphs

join.cpp Implementation of join algorithm
relation.hpp Definition of Relation class
relation.cpp Implementation of Relation class
uniquerows.hpp Definition of complement columns
uniquerows.cpp Implementation of complement columns
variable.hpp Definition of variable classes
variable.cpp Implementation of non-template variable

methods
Directory csplib/detail

column_base.hpp Base class for implementation of templated
column classes

column_bitset.hpp Column methods specific for compressed
column as bit vector

column_compressed.hpp Column methods specific for compressed
column as vector

column_impl.hpp Main include file for column implementa-
tion

column_traits.hpp Traits classes for all column cell types
column_uncompressed.hpp Column methods specific for uncompressed

columns
Directory csplib/utility

formatter.hpp Definition of class for formatted progress
output

formatter.cpp Implementation of class for formatted
progress output

hashfunction.hpp Definition of STL compatible strongly uni-
versal hash function

hashfunction.cpp Implementation of strongly universal hash
function

newbitset.hpp Implementation of bit vector
Directory compilecsp

build.cpp Implementation of preprocessing and array-
based logic algorithms

compilecsp.cpp Source file for main executable of the com-
pile methods

csp.hpp Definition of CSP class
csp.cpp Implementation of CSP methods
treeclustering.cpp Implementation of tree clustering and uni-

form network algorithms
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Directory cspruntime

cspruntime.cpp Source for main executable of the runtime
methods

runtime_network.hpp Definition of class RuntimeNetwork
runtime_network.cpp Implementation of fundamental operations
simulatorui.hpp Definition of simple console based interac-

tive constraint solver
simulatorui.cpp Implementation of simple console based in-

teractive constraint solver
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