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Introduction

• We created a tool that reduces the development
time of GPU code.

• The input is a loop nest which is parsed into an
internal representation.

• We generate code which makes the loop executable
on a GPU.

• We apply optimizations to the code and perform
benchmarks on CPU and GPU architectures.

• Our code is 2-258X faster than code generated by
an OpenACC compiler, 1-37X faster than optimized
CPU code, and attains up to 25% of peak
performance.
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Ideas

• We want to reduce errors and the development time,
while ensuring high performance.

• Optimizations on OpenCL code are regular and the
same optimization can be applied to many different
pieces of code.

• A tool with a catalogue of optimizations which can
be performed semi-automatically by the
programmer.

• Move toward fully-automatic optimizations to make
the tool usable for novices in GPU programming.
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Overview

• Front end and code generation

• OpenCL background

• GPU background

• Transformations

• Pattern-matching rules

• Performance experiments

• Conclusion
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Front end and code generation
source code source code

Front end Back end

code generationtransformationpattern matchingparserlexer IR

t_PLUS = r’\+’

def p_native_type(p):

""" native_type : VOID

| SIZE_T

| ...

"""

p[0] = p[1]

def p_for_loop(p):

""" for_loop : FOR LPAREN assignment_expression SEMI binop SEMI

increment RPAREN compound

"""

p[0] = ForLoop(p[3], p[5], p[7], p[9])

class ForLoop(Node):

def __init__(self, init, cond, inc, compound):

self.init = init

self.cond = cond

self.inc = inc

self.compound = compound
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OpenCL background

code section

Computation-

ally-intensive

Start-up

Invoke kernel

Shutdown

Host Kernel
C/C++ C99

• The host code sets up data structures and manages
the GPU execution.
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GPU (GK110) background

• Warps: 32 threads which execute the same
instructions in a Single Instruction Multiple Threads
(SIMT) fashion.

• Registers: 255 private to each thread. Use as cache
for data with time locality.

• Local memory: scratchpad shared between local work
group. Effective when data is shared/broadcasted.

• Memory coalescing: data accessed by threads with
consecutive thread IDs should be located
consecutively in memory.
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Transformations

• DefineArg: Similar to constant propagation, we
can compile the values of variables into the kernel
code, in order to allow the compiler to do more
optimizations.

• Transposition: We transpose the data in an
array in order to create coalesced memory access.
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HoistToReg and HoistToRegLoop

• Read data once, save it in registers, and reread the
data from there, similar to loop-invariant code
motion.

for (unsigned j = 0; j < N; j++) {

float a_x = Pos[0][get_global_id(0)]; Original
float a_y = Pos[1][get_global_id(0)]; code
float a_m = Mas[get_global_id(0)];

...

}

float Mas0_reg = Mas[get_global_id(0)];

float Pos0_reg = Pos[0][get_global_id(0)];

float Pos1_reg = Pos[1][get_global_id(0)];

for (unsigned j = 0; j < N; j++) {

float a_x = Pos0_reg; Transformed
float a_y = Pos1_reg; code
float a_m = Mas0_reg;

...

}
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TileInLocal

• Load shared data into local memory once and let
each thread read the data they need from local
memory.
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A local
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B local

16

16

C sub += A local B local∗
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TileInLocal

float C_sub = 0; Original code
for (unsigned k = 0; k < wA; k++) {

C_sub += A[get_global_id(1)][k] * B[k][get_global_id(1)];

}

C[get_global_id(1)][get_global_id(0)] = C_sub;

1 float C_sub = 0; Transformed code
2 for (unsigned k = 0; k < wA; k+=16) {

3 A_local[get_local_id(1)][get_local_id(0)] =

4 A[get_global_id(1)][k + get_local_id(0)];

5 B_local[get_local_id(1)][get_local_id(0)] =

6 B[k + get_local_id(1)][get_global_id(0)];

7 barrier(CLK_LOCAL_MEM_FENCE);

8 for (unsigned kk = 0; kk < 16; kk++) {

9 C_sub += A_local[get_local_id(1)][kk] *

10 B_local[kk][get_local_id(0)];

11 }

12 barrier(CLK_LOCAL_MEM_FENCE);

13 }

14 C[get_global_id(1)][get_global_id(0)] = C_sub;
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Pattern matching

• We link each transformations to a pattern. The
presence of the pattern in the code, means that the
linked transformation is applicable.

• We iterate over the array references and search for
patterns. For each found pattern we check a set of
conditions, and if met, we perform the linked
transformation.

• The conditions are not exhaustive, but sufficiently
thorough to make them usable in practice.

• The running time is linear in the number of array
references.
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DefineArg and Transposition

• For DefineArg we do no pattern matching, and
perform the transformation always.

• For Transposition we divide the
pattern-matching rule into two cases: 1D- and
2D-parallelization.

For 1D:

A[get_global_id(0)][d]

For 2D:

A[get_global_id(0)][get_global_id(1)]
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HoistToReg and HoistToRegLoop

• For HoistToReg: an array reference that is inside
one or more loops, but contains no loop index.

• For HoistToRegLoop: an array reference that is
inside two loops, and the loop index of the
outermost loop is not in the subscript of the
reference.

• We use at most 20 registers.

• We decide at run-time whether to include the
transformation.
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For HoistToReg

for (unsigned k = 0; k < N; k++) {

... = A[10];

... = B[get_global_id(0)][l];

for (unsigned g = 0; g < dim; g++) {

... = C[get_global_id(1)];

... = D[l][10];

}

}

For HoistToRegLoop

for (unsigned k = 0; k < N; k++) {

for (unsigned g = 0; g < dim; g++) {

... = A[10][g];

... = B[g][get_global_id(0)];

... = C[get_global_id(1)][g];

... = D[g][l];

}

}
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TileInLocal

• An array with two subscripts where one contains a
loop index and the other a global thread identifier.

• Additional conditions:
• The loop index must have a stride of one.
• The number of loop iterations must be divisable by

a tiling factor.

• Check last condition at run-time.

for (unsigned k = 0; k < N; k++) {

... = A[get_global_id(1)][k];

... = B[k][get_global_id(0)];

}
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Performance experiments

We compare the performance against:

1 Frameworks with comparative capabilities

2 The theoretical peak performance of the test
hardware

3 The performance of CPUs

• We found one framework, the OpenACC API, which
has similar capabilities as our tool.

• We extended our tool to generate optimized code
for CPUs.

• The benchmarks were run on an NVIDIA K20 GPU,
and a machine with two Intel Xeon E5-2670 clocked
at 2.6 GHz.
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Performance experiments (2)

We have a mix of programs: compute/memory bound,
small/high N .

MatMul Squared
Euclid

NBody Laplace Gaussian
kernels

Jacobi

DefineArg x x x x x x
Transposition x x
HoistToReg x
HoistToRegLoop x x
TileInLocal x x
TileInLocalStencil x

Tabel: Applicability of the transformations.
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Performance experiments (3)

MatMul Jacobi Squared
Euclid

NBody Laplace Gaussian
kernels

GPU Optimized
to GPU Basic

3.1 1 55.7 3.4 3.6 1.7

GPU Basic
to PGI

0.9 1.9 4.6 2.2 – –

GPU Optimized
to PGI

2.8 1.9 257.4 7.5 – –

Tabel: Speedup in the execution time of the code generated
by the different frameworks.
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Performance experiments (4)
MatMul Jacobi Squared

Euclid
NBody Laplace Gaussian

kernels

Performance
[GFlop/s]

205 4 611 872 245 104

% of peak
performance

6 1 18 25 21 3

MatMul Jacobi Squared
Euclid

NBody Laplace Gaussian
kernels

CPU Optimized
to
CPU Basic

6.8 0.7 1.1 1.1 1.1 15.6

GPU Optimized
to
CPU Optimized

3.3 0.6 36.1 10.9 6.5 1.8
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Conclusion
• Design of a model of how data can be reused.

• We found pattern-matching rules which allow the
transformations to be performed automatically.

• Conditions pertaining to the applicability of a
transformations needs to be checked at compile time
and at run-time.

• Benchmarks show significant improvements, up to
one order of magnitude, in time-to-solution when
comparing to OpenACC and optimized CPU code.

• For three programs, the generated code attained
close to 25% of peak performance of the GPU. For
the others, further transformations would be needed
to obtain higher performance.
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