
un i v er s i ty of copenhagen department of computer sc i ence

GPU programming made easier

Jacob Jepsen

6. June 2014

University of Copenhagen

Department of Computer Science

6. June 2014



un i v er s i ty of copenhagen department of computer sc i ence

Introduction

• We created a tool that reduces the development
time of GPU code.

• The input is a loop nest which is parsed into an
internal representation.

• We generate code which makes the loop executable
on a GPU.

• We apply optimizations to the code and perform
benchmarks on CPU and GPU architectures.

• Our code is 2-258X faster than code generated by
an OpenACC compiler, 1-37X faster than optimized
CPU code, and attains up to 25% of peak
performance.

Slide 2/21



un i v er s i ty of copenhagen department of computer sc i ence

Ideas

• We want to reduce errors and the development time,
while ensuring high performance.

• Optimizations on OpenCL code are regular and the
same optimization can be applied to many different
pieces of code.

• A tool with a catalogue of optimizations which can
be performed semi-automatically by the
programmer.

• Move toward fully-automatic optimizations to make
the tool usable for novices in GPU programming.

Slide 3/21



un i v er s i ty of copenhagen department of computer sc i ence

Overview

• Front end and code generation

• OpenCL background

• GPU background

• Transformations

• Pattern-matching rules

• Performance experiments

• Conclusion

Slide 4/21



un i v er s i ty of copenhagen department of computer sc i ence

Front end and code generation
source code source code

Front end Back end

code generationtransformationpattern matchingparserlexer IR

t_PLUS = r’\+’

def p_native_type(p):

""" native_type : VOID

| SIZE_T

| ...

"""

p[0] = p[1]

def p_for_loop(p):

""" for_loop : FOR LPAREN assignment_expression SEMI binop SEMI

increment RPAREN compound

"""

p[0] = ForLoop(p[3], p[5], p[7], p[9])

class ForLoop(Node):

def __init__(self, init, cond, inc, compound):

self.init = init

self.cond = cond

self.inc = inc

self.compound = compound

Slide 5/21



un i v er s i ty of copenhagen department of computer sc i ence

OpenCL background

code section

Computation-

ally-intensive

Start-up

Invoke kernel

Shutdown

Host Kernel
C/C++ C99

• The host code sets up data structures and manages
the GPU execution.

Slide 6/21



un i v er s i ty of copenhagen department of computer sc i ence

GPU (GK110) background

• Warps: 32 threads which execute the same
instructions in a Single Instruction Multiple Threads
(SIMT) fashion.

• Registers: 255 private to each thread. Use as cache
for data with time locality.

• Local memory: scratchpad shared between local work
group. Effective when data is shared/broadcasted.

• Memory coalescing: data accessed by threads with
consecutive thread IDs should be located
consecutively in memory.

Slide 7/21



un i v er s i ty of copenhagen department of computer sc i ence

Transformations

• DefineArg: Similar to constant propagation, we
can compile the values of variables into the kernel
code, in order to allow the compiler to do more
optimizations.

• Transposition: We transpose the data in an
array in order to create coalesced memory access.

Slide 8/21



un i v er s i ty of copenhagen department of computer sc i ence

HoistToReg and HoistToRegLoop

• Read data once, save it in registers, and reread the
data from there, similar to loop-invariant code
motion.

for (unsigned j = 0; j < N; j++) {

float a_x = Pos[0][get_global_id(0)]; Original
float a_y = Pos[1][get_global_id(0)]; code
float a_m = Mas[get_global_id(0)];

...

}

float Mas0_reg = Mas[get_global_id(0)];

float Pos0_reg = Pos[0][get_global_id(0)];

float Pos1_reg = Pos[1][get_global_id(0)];

for (unsigned j = 0; j < N; j++) {

float a_x = Pos0_reg; Transformed
float a_y = Pos1_reg; code
float a_m = Mas0_reg;

...

}

Slide 9/21



un i v er s i ty of copenhagen department of computer sc i ence

TileInLocal

• Load shared data into local memory once and let
each thread read the data they need from local
memory.

Row i

Column jA

43210

0

1

0 1

0

1

2

3

4

A local

B

B local

16

16

C sub += A local B local∗

Slide 10/21



un i v er s i ty of copenhagen department of computer sc i ence

TileInLocal

float C_sub = 0; Original code
for (unsigned k = 0; k < wA; k++) {

C_sub += A[get_global_id(1)][k] * B[k][get_global_id(1)];

}

C[get_global_id(1)][get_global_id(0)] = C_sub;

1 float C_sub = 0; Transformed code
2 for (unsigned k = 0; k < wA; k+=16) {

3 A_local[get_local_id(1)][get_local_id(0)] =

4 A[get_global_id(1)][k + get_local_id(0)];

5 B_local[get_local_id(1)][get_local_id(0)] =

6 B[k + get_local_id(1)][get_global_id(0)];

7 barrier(CLK_LOCAL_MEM_FENCE);

8 for (unsigned kk = 0; kk < 16; kk++) {

9 C_sub += A_local[get_local_id(1)][kk] *

10 B_local[kk][get_local_id(0)];

11 }

12 barrier(CLK_LOCAL_MEM_FENCE);

13 }

14 C[get_global_id(1)][get_global_id(0)] = C_sub;

Slide 11/21



un i v er s i ty of copenhagen department of computer sc i ence

Pattern matching

• We link each transformations to a pattern. The
presence of the pattern in the code, means that the
linked transformation is applicable.

• We iterate over the array references and search for
patterns. For each found pattern we check a set of
conditions, and if met, we perform the linked
transformation.

• The conditions are not exhaustive, but sufficiently
thorough to make them usable in practice.

• The running time is linear in the number of array
references.

Slide 12/21



un i v er s i ty of copenhagen department of computer sc i ence

DefineArg and Transposition

• For DefineArg we do no pattern matching, and
perform the transformation always.

• For Transposition we divide the
pattern-matching rule into two cases: 1D- and
2D-parallelization.

For 1D:

A[get_global_id(0)][d]

For 2D:

A[get_global_id(0)][get_global_id(1)]

Slide 13/21



un i v er s i ty of copenhagen department of computer sc i ence

HoistToReg and HoistToRegLoop

• For HoistToReg: an array reference that is inside
one or more loops, but contains no loop index.

• For HoistToRegLoop: an array reference that is
inside two loops, and the loop index of the
outermost loop is not in the subscript of the
reference.

• We use at most 20 registers.

• We decide at run-time whether to include the
transformation.

Slide 14/21



un i v er s i ty of copenhagen department of computer sc i ence

For HoistToReg

for (unsigned k = 0; k < N; k++) {

... = A[10];

... = B[get_global_id(0)][l];

for (unsigned g = 0; g < dim; g++) {

... = C[get_global_id(1)];

... = D[l][10];

}

}

For HoistToRegLoop

for (unsigned k = 0; k < N; k++) {

for (unsigned g = 0; g < dim; g++) {

... = A[10][g];

... = B[g][get_global_id(0)];

... = C[get_global_id(1)][g];

... = D[g][l];

}

}

Slide 15/21



un i v er s i ty of copenhagen department of computer sc i ence

TileInLocal

• An array with two subscripts where one contains a
loop index and the other a global thread identifier.

• Additional conditions:
• The loop index must have a stride of one.
• The number of loop iterations must be divisable by

a tiling factor.

• Check last condition at run-time.

for (unsigned k = 0; k < N; k++) {

... = A[get_global_id(1)][k];

... = B[k][get_global_id(0)];

}

Slide 16/21



un i v er s i ty of copenhagen department of computer sc i ence

Performance experiments

We compare the performance against:

1 Frameworks with comparative capabilities

2 The theoretical peak performance of the test
hardware

3 The performance of CPUs

• We found one framework, the OpenACC API, which
has similar capabilities as our tool.

• We extended our tool to generate optimized code
for CPUs.

• The benchmarks were run on an NVIDIA K20 GPU,
and a machine with two Intel Xeon E5-2670 clocked
at 2.6 GHz.

Slide 17/21



un i v er s i ty of copenhagen department of computer sc i ence

Performance experiments (2)

We have a mix of programs: compute/memory bound,
small/high N .

MatMul Squared
Euclid

NBody Laplace Gaussian
kernels

Jacobi

DefineArg x x x x x x
Transposition x x
HoistToReg x
HoistToRegLoop x x
TileInLocal x x
TileInLocalStencil x

Tabel: Applicability of the transformations.

Slide 18/21



un i v er s i ty of copenhagen department of computer sc i ence

Performance experiments (3)

MatMul Jacobi Squared
Euclid

NBody Laplace Gaussian
kernels

GPU Optimized
to GPU Basic

3.1 1 55.7 3.4 3.6 1.7

GPU Basic
to PGI

0.9 1.9 4.6 2.2 – –

GPU Optimized
to PGI

2.8 1.9 257.4 7.5 – –

Tabel: Speedup in the execution time of the code generated
by the different frameworks.

Slide 19/21



un i v er s i ty of copenhagen department of computer sc i ence

Performance experiments (4)
MatMul Jacobi Squared

Euclid
NBody Laplace Gaussian

kernels

Performance
[GFlop/s]

205 4 611 872 245 104

% of peak
performance

6 1 18 25 21 3

MatMul Jacobi Squared
Euclid

NBody Laplace Gaussian
kernels

CPU Optimized
to
CPU Basic

6.8 0.7 1.1 1.1 1.1 15.6

GPU Optimized
to
CPU Optimized

3.3 0.6 36.1 10.9 6.5 1.8

Slide 20/21



un i v er s i ty of copenhagen department of computer sc i ence

Conclusion
• Design of a model of how data can be reused.

• We found pattern-matching rules which allow the
transformations to be performed automatically.

• Conditions pertaining to the applicability of a
transformations needs to be checked at compile time
and at run-time.

• Benchmarks show significant improvements, up to
one order of magnitude, in time-to-solution when
comparing to OpenACC and optimized CPU code.

• For three programs, the generated code attained
close to 25% of peak performance of the GPU. For
the others, further transformations would be needed
to obtain higher performance.

Slide 21/21


