

F A C U L T Y O F S C I E N C E
U N I V E R S I T Y O F C O P E N H A G E N

GPU programming made easier

Master’s thesis
by

Jacob Jepsen

Department of Computer Science

University of Copenhagen

Advisor: Jyrki Katajainen

Submitted: April 2014

Abstract

We present a framework that aids the programmer in the development of
GPU-executable code. We implement a catalogue of common optimizations
specific to the GPU architecture. Through the framework, the program-
mer can semi-automatically apply the optimizations to a computationally-
intensive code section and generate an equivalent GPU-executable code sec-
tion. Based on our experiments, the generated code can be up to one order
of magnitude faster than the code from equivalent frameworks and optimized
CPU code, and it can attain close to 25% of peak performance of the GPU.
We also found that many of the transformations can be performed automati-
cally, which makes our framework usable for both novices and experts in
GPU programming. Finally, we contribute with our experiences in creating
such frameworks.

Contents

Abstract i

1 Introduction 1
1.1 Related work . 4
1.2 Acknowledgements . 5

2 Background 6
2.1 The GPU architecture . 6
2.2 The OpenCL programming model 8
2.3 What does semi-automatic mean? 13
2.4 Our approach to a semi-automatic framework 14

3 Compilation: Front end and code generation 18
3.1 Lexing . 19
3.2 Parsing . 20
3.3 Internal representation . 23
3.4 Code generation . 27

4 Generation of host code and kernel code 28
4.1 Overview of the host code . 28
4.2 Generating the kernel code . 30
4.3 Generating the AllocateBuffers function 32
4.4 Generating the SetArguments function 33
4.5 Generating the InvokeKernel function 33
4.6 Generating the RunMain function 35

5 Transformations 38
5.1 Defining arguments . 39

5.2 Memory coalescing . 39
5.3 Placing reusable data in registers 41
5.4 Placing shared data in local memory 44

6 Pattern-matching rules 50
6.1 The Transposition transformation 51
6.2 The HoistToReg and HoistToRegLoop transformations . 51
6.3 The TileInLocal transformation 52
6.4 Discussion . 52

7 Use of the framework 54

8 Performance experiments 57
8.1 Sample programs . 57
8.2 Systems under investigation 59
8.3 Benchmark results . 60

9 Concluding remarks 64
9.1 Advantages and Disadvantages 64
9.2 Future work . 66
9.3 Summary . 66

References 68

Appendix A: Paper submitted for PSTI 2014 71

C h a p t e r 1

Introduction

We present a framework for speeding up the process of writing high-perform-
ance software for a heterogeneous set of computer architectures. Our focus
will be on reducing the development time, while at the same time ensuring
high performance.

Multi-core central processing units (CPUs) have been common mer-
chandise in desktops since around 2007 and a multi-processing standard,
OpenMP [25], was already established for creating programs that execute in
parallel across the cores of a CPU. Simultaneously, graphical processing units
(GPUs) were made programmable for general-purpose applications, most no-
tably through the CUDA [22] programming model by NVIDIA. In 2009, the
Open Computing Language (OpenCL) [16] appeared which added portabil-
ity, that is, it allowed one to create programs that could execute on both
CPUs and GPUs.

2007 2009
OpenMP
CUDA
OpenCL

Figure 1.1: Timeline of programming models.

The main advantage of the GPU over the CPU in 2007 was the superior
number of floating-point operations per second that one could achieve from a

1

GPU. However, this only applied to single-precision floating-point numbers,
and many applications in high-performance computing use double-precision
floating-point numbers for accuracy reasons. GPUs currently achieve gi-
gaflops in double precision beyond that of CPUs, while keeping energy con-
sumption low. They are also resonably priced and the architecture has be-
come easier to program. In brief, GPUs are the platform of choice for many
high-performance applications.

While OpenMP manages the tedious details of creating a multi-thread-
ed program, programming of GPUs is still explicit: Programs are written in
a low-level C-like language and errors are more the rule than the exception.
Thus, it is time-consuming to rewrite a program to run on the GPU. Recently,
an OpenMP-like standard, OpenACC [24], has been proposed as an option
to make GPU programs easier and faster to write.

The developed standards are good for parallelizing execution of a sec-
tion of code on the CPU or the GPU, but they do not address optimizations
specific to the hardware.

Consider for example an eight-core CPU that uses a 256-bit wide single-
instruction multiple-data (SIMD) instruction set, such as the Advanced Vec-
tor Extensions (AVX) [11], and a two-level cache system. We discuss two
strategies for optimizing an application on such a CPU; we call the first
one parallelization and the second one hardware-specific optimization. When
considering parallelization, the maximum theoretical speedup gained through
parallelizing a program with OpenMP on our CPU is a factor of eight, since
there are eight cores.

Alternatively, one can make efficient use of the hardware components
inside a core. For our example CPU, hardware-specific optimizations in-
clude usage of the SIMD instructions, which for double-precision floating-
point numbers would yield a maximum speedup of four, and better use of
the cache which may yield a maximum speedup of two. These hardware-
specific optimizations are not always applicable, but they are common in
high-performance software. By performing both of these hardware-specific
optimizations, we obtain a factor-of-eight speedup.

Each of the two optimization strategies result in a factor-of-eight speedup.
One strategy does not exclude the other, so we can combine them to get
a factor-of-64 speedup in total. A similar example could be made with
hardware-specific optimizations for the GPU. One important difference is
that, while the CPU hardware-specific optimizations—such as those men-
tioned above—should almost always be performed when applicable, it is not
the case for GPU hardware-specific optimizations. The goal of the framework
presented in this thesis is to make it easy for the programmer to

2

• transform a section of code into a program runnable on GPUs (paral-
lelization).

• perform optimizations specific to the GPU hardware (hardware-specific
optimization).

The outcome is a way of programming that is less time-consuming than hand-
coding the program, and because we focus on using the OpenCL API, the
resulting programs will be portable and highly efficient. Although it is less
time-consuming, we still need an experienced programmer with deep know-
ledge of the GPU hardware to perform the hardware-specific optimizations.

We define a transformation as any rewriting of the source code which
results in semantically-identical source code. Therefore, we also denote op-
timizations as transformations. The framework is based on the idea that a
certain set of transformations, S, can be reused in many of the programs that
a programmer optimizes. Furthermore, many of the transformations can be
performed automatically. For any given program, the programmer will only
perform a subset of the transformations in S.

We have implemented a catalogue of transformations in the frame-
work. The programmer then analyses the source code in order to determine
which transformation from the catalogue should be performed next and then
instructs the framework to perform this transformation, which is done auto-
matically. An example of a sequence of transformations, T = {t1, t2, t3, t4},
could be

t1: Parallelize a section of code on the GPU.

t2: Place one of the arrays in the constant memory segment.

t3: Optimize access to another array using the local memory segment.

t4: Save a reused data element in a register instead of loading it from global
memory.

For a given program it might not be immediately clear which sequence of
transformations will yield the fastest program execution. Determining auto-
matically the optimal sequence has proved itself difficult. Therefore, we leave
this task to the programmer who will have to do experimentation on which
sequence is the fastest. This is where our framework saves the programmer
time, by providing an interactive semi-automatic methodology so that the
programmer does not have to hand-code his way through each iteration of
experimentation.

Our findings are that:

3

• Code generated with our framework are up to one order of magnitude
faster than code generated by similar frameworks and CPU-executable
code.

• For some programs, the code we generate attain close to 25% of the
peak performance of the GPU.

• Many transformations can be performed automatically instead of semi-
automatically which makes the framework usable for both novices and
experts in GPU programming.

Furthermore, we contribute with our experiences in creating such a frame-
work.

The roadmap through this thesis is as follows: In Chapter 2 we cover
relevant parts of the GPU architecture and the OpenCL programming model
as well as our definition of the term semi-automatic. In Chapter 3 we present
the parts of the front end and back end that are needed to parse a piece
of code into our internal representation and a module that handles code
generation from this representation. We explain the construction of the GPU
code in Chapter 4. We go through source-code transformations and pattern
matching rules in Chapters 5 and 6. In Chapter 7 we describe how to use our
framework and in Chapter 8 we evaluate the performance of the generated
code. We conclude the work in Chapter 9. We wrote a paper describing the
tool and its capabilities. The paper, which can be found in Appendix A, was
submitted to the Fifth International Workshop on Parallel Software Tools
and Tool Infrastructures (PSTI 2014).

1.1 Related work
The most desirable approach to utilizing the GPU hardware is a fully-auto-
matic compiler, but this approach is often hindered by unresolvable data
dependences and inadequate analyses, which therefore leads to slow pro-
grams. Another approach is to use high-level domain-specific languages such
as Harlan [10], but this requires us to rewrite the code into this language,
which is a time-consuming task. Then there is the library approach, such
as the Lapack-like MAGMA library [18] which delivers high-performance
matrix-algebra subroutines. This works well if the program uses any of these
subroutines, otherwise it does not help.

Approaches similar to ours include the semi-automatic frameworks de-
veloped in the 90’s which helped the programmer to create parallel applica-
tions for the 90’s multi-core machines. One such framework is the ParaScope

4

Editor [14] which helps the programmer with the transformation of a sequen-
tial program into a parallel program. The ParaScope Editor performs data
dependency analysis and many other analyses on the source code and displays
the results to the programmer. The programmer can then easier determine
the next transformation to perform from a catalogue of transformations which
the framework performs automatically. We found no contemporary frame-
works like this or our own.

The idea of the ParaScope Editor differs from ours on two points: First,
our approach performs no analyses, so the programmer must determine which
transformation to perform next. While analyses would be helpful to the
programmer, we wanted to spend our time elsewhere. Secondly, the aim of
the ParaScope Editor is the transformation of a sequential program into a
parallel program, usually driven by performing transformations that makes
a program free of data dependencies that prohibit parallel execution. In
our approach, we assume that there are no data dependences that prohibit
parallel execution of the program. One could therefore imagine a combination
of the two approaches: Use the ParaScope Editor first to minimize data
dependences, then use our framework to create an efficient GPU program.

1.2 Acknowledgements
I am grateful to Jyrki Katajainen for excellent guidance, Stefan Sommer for
providing a test platform and a sample program, Fabian Gieseke for providing
a sample program, and the Munich Centre of Advanced Computing1 for
providing a test platform.

1http://www.mac.tum.de/wiki/index.php/Home

5

http://www.mac.tum.de/wiki/index.php/Home

C h a p t e r 2

Background

In this chapter we cover GPU architecture, a programming model for the
GPU, and we discuss the term semi-automatic.

2.1 The GPU architecture
In this section we give a brief overview of the GK110 GPU architecture [21].
We only give details on the parts that relate to the transformations that we
perform. Many of the components described is this section can be found in
other GPU architectures, but they may be called something different.

A GPU is composed of several smaller components, one of which is
called a streaming multiprocessor (SMX). This component is where the com-
putations take place. It consists of several cores, a register file, local memory,
and an L1 cache, see Figure 2.1.

The registers of the register file are distributed among the cores, such
that each core can access a set of the registers which are private to that core.
The local memory and L1 cache are shared by the cores. The size of the
register file limits the amount of registers that each core can utilize.

Multiple threads are used when a parallel program is executed on the
GPU. Each of these threads execute in one of the cores. Furthermore, threads
are organized in groups of 32, which are called warps. Each thread in a
warp executes the same instruction. This form of parallelism is called single-
instruction-multiple-threads (SIMT).

The warp size has several implications. First, it is important to orga-
nize the code such that the 32 threads do not execute different instructions.

6

0 1 2 3 4

0

1

2

3

4

5

6

7

8

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

SMX

0 1 2 3 4

0

1

2

3

4

5

6

7

8

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Register File

Interconnect network

Local memory / L1 cache

Figure 2.1: Hardware overview of a streaming multiprocessor.

For example, consider code with divergence where the first five threads and
the last 27 threads execute two different pieces of code. Secondly, program-
ming languages for the GPU often require the programmer to divide the
parallel work into groups and the size of these groups should be a multiple
of the warp size.

The GPU is composed of several SMXs, each of which is connected to

7

a random-access global memory, which functions as the main memory of the
GPU. Data used during the execution of a program must be transferred to
the global memory before the execution begins.

A latency hiding mechanism is used to hide the memory latency to the
global memory. Warps, that are waiting for data from the global memory, are
moved away from the cores and warps that are not waiting start executing.
In this way, each SMX has a set of warps, some of which are executing and
some of which are waiting.

2.2 The OpenCL programming model
We consider the OpenCL standard [16] as an API that augments an existing
programming language, the host language, such as C/C++, with functionality
to express parallel execution on heterogeneous hardware. The OpenCL stan-
dard also defines a language, the device language, which is a subset of C99
with extensions to formulate data parallelism and to specify address spaces.
For more details on OpenCL programming see [8].

The code written in the host language, the host code, always executes
on the CPU, the host, while the code written in the device language is called
the kernel code or simply the kernel. The kernel may execute on any pro-
cessor, called the device, for which there exists an OpenCL implementation.
Such processors include, but not limited to, CPUs from Intel, AMD and IBM,
and GPUs from NVIDIA and AMD. The host code and the kernel constitute
together the OpenCL program, which has the desirable property that it is
portable across any hardware architecture having an OpenCL implementa-
tion.

The idea of the OpenCL programming model is to offload a compu-
tationally-intensive code section to a device that provides faster execution of
the code section than the host. Instead, the host code is responsible for three
phases: a start-up phase, invoking the kernel and then a shutdown phase, as
shown in Fig. 2.2. In the start-up phase we do the following things:
• Allocate a device.

• Allocate memory on the device to hold the data used in the kernel.

• Compile the kernel code.

• Set the arguments for the kernel code.
Then the host enters the phase where it invokes the kernel for execution on
the device. This phase also manages data transfer between the host and the
device.

8

code section

Computation-

ally-intensive

Start-up

Invoke kernel

Shutdown

Host Kernel
C/C++ C99

Figure 2.2: On the left we have the C/C++ host code, which manages the three
phases: start-up, invoking the kernel and shutdown. The kernel, written in the
C99 device language, contains the computationally-intensive code section that is
executed on the device.

When the device finishes execution, we enter the shutdown phase which
handles deallocation of the device memory, kernel and device, essentially we
free all resources that we reserved in the start-up phase.

We now turn to the execution model used in OpenCL. A parallel loop
is a loop where each iteration of the loop can be executed independently such
that the outcome is the same as in the sequential execution of the loop. We
only treat for loops.

A nested loop is a loop that is placed inside the body of another loop.
A nested loop may also contain nested loops which are called doubly-nested
loops. In general, a loop can be nested any number of times. A loop nest is a
loop which contains a set of nested loops. In Listing 2.1 we give two examples
of how nested loops may occur. We use the loop index to distinguish the loops
from each other. In the top example, j-loop is nested inside i-loop, and k-
loop is doubly-nested inside the j- and i-loops. In the bottom example, the
j-loop is nested inside i-loop as is the l-loop. The k-loop is nested inside l-
and i-loops.

A perfect loop nest is a sequence of nested loops where each of the
outer loops may only contain a loop in its body, except for the innermost
loop which may also contain statements other than loops. A perfect loop
nest of size m means that there are m − 1 outer loops plus the innermost

9

for (size_t i = 0; i < NTEST; i++) {
for (size_t j = 0; j < NTRAIN; j++) {

float d = 0.0;
for (size_t k = 0; k < dim; k++) {

float tmp = test_patterns[i][k]
- train_patterns[j][k];

d += tmp * tmp;
}
dist_matrix[j][i] = d;

}
}

for (size_t i = 0; i < NTEST; i++) {
for (size_t j = 0; j < NTRAIN; j++) {

...
}

}
for (size_t l = 0; l < NTRAIN; j++) {

for (size_t k = 0; k < dim; k++) {
...

}
}

}

Listing 2.1: Two examples of loop nests.

loop in the perfect loop nest. The top example in Listing 2.1 shows a perfect
loop nest of size 2 consisting of the i- and j-loops, and the bottom example
shows one of size 1 consisting of i-loop. In the latter example the outermost
and innermost loop of the perfect loop nest is the same.

In OpenCL, a transformation, which assigns threads the task of execut-
ing one of the loop iterations of a parallel loop, takes place. In the following
we define several terms, to be needed later, which are part of the OpenCL
terminology.

A work item is the OpenCL way of describing that which is executed
by a thread. Work items are organized in a grid. Every work item in the
grid is executed in parallel, and hence the size of the grid determines the
amount of parallel work. The grid has one, two, or three dimensions, where
the product of the length of each of the dimensions is the total amount of
parallel work. Each work item has a global thread identifier, which is used
to distinguish them from one another. The global thread identifier is a tuple
which has the same number of elements as the number of dimensions of the
grid. The global thread identifier corresponds to the Cartesian coordinate

10

(0,0) (1,0) (3,0)(2,0)

(0,3) (1,3) (3,3)(2,3)

(0,2) (1,2) (3,2)(2,2)

(0,1) (1,1) (3,1)(2,1)

(0,0) (1,0)

(0,1) (1,1)
Global Grid

Local Grid

First Dimension

Second

Dimension

get_global_id(0)

get_global_id(1)

get_loal_id(0)

get_loal_id(1)

Figure 2.3: An example of a grid, the indexes of the work items in the grid and
the functions that return the index.

of the work item in the grid. Special functions are available in OpenCL for
getting the thread identifiers.

The parallelization of one, two, or three loops translates directly into
using a one-, two- or three-dimensional grid in the execution model. For
example, if we want to execute two loops, each of size 100, in parallel, this
translates into using a 100-by-100 grid with 10000 work items.

Inside the grid, the work items are furthermore divided into local grids
or local work groups, whose size, the local work-group size, has the same
number of dimensions as the grid. The division is needed to partition the
work among the processors of the GPU. If we make it too small, we have
a high degree of parallelism but also high scheduling overhead. If we make
it too large, we have a low degree of parallelism and the latency hiding
mechanism of the GPU will perform poorly.

In Figure 2.3 we show an example of a 4-by-4 grid. Each position in
the grid is identified by a 2-tuple. The first element of the tuple is used as
the thread identifier in the first dimension of the grid and the second element
for the second dimension. We have defined a local work group which has the
size 2-by-2. A important limitation is that the grid size must be divisable by
the local work-group size.

The global thread identifier is a tuple whose elements can be accessed
using the get_global_id(dim) function. The argument dim, which can be
0, 1, or 2, specifies which element of this tuple is returned. The function
get_local_id(dim) does the same but for local thread identifiers. We use

11

Original C code
for (size_t i = 0; i < NTEST; i++) {

for (size_t j = 0; j < NTRAIN; j++) {
float d = 0.0;
for (size_t k = 0; k < dim; k++) {

float tmp = test_patterns[i][k]
- train_patterns[j][k];

d += tmp * tmp;
}
dist_matrix[j][i] = d;

}
}

OpenCL C kernel code
float d = 0.0;
for (unsigned k = 0; k < dim; k++) {

float tmp = test_patterns[get_global_id(1)][k]
- train_patterns[get_global_id(0)][k];

d += tmp * tmp;
}
dist_matrix[get_global_id(0)][get_global_id(1)] = d;

Listing 2.2: An example of how the original loop nest is transformed into
kernel code.

the terms global thread-identifier function and local thread-identifier function
when referring to these functions.

The form of parallelism used in the OpenCL programming model is
called data parallelism, since each thread executes the same code, which in
some sense performs a operation, but each thread performs the operation on
different elements of data. This has some similarities to vector instructions,
but vector instructions can only be performed for a limited set of arithmetical
instructions, whereas a thread in the OpenCL execution model may execute
any C statement defined in the device language specification.

In order to transform a perfect loop nest of size m in C into kernel
code, we remove the two outermost loops if m ≥ 2 and the outermost loop
if m = 1. We replace the loop indices of the removed loops by calls to the
get_global_id(dim) function.

In Listing 2.2 we show such a transformation using the loop nest of a
k-neighbour nearest algorithm. The original code is a perfect loop nest of size
2 and both of the outermost loops are parallelizable. In the kernel code, we
have removed these two loops and replaced the indices of the two loops with
the global thread-identifier function. We replace i with get_global_id(1)

12

and j with get_global_id(0). Note that we display the code with two-
dimensional array references for readability and brevity.

A clever aspect of the OpenCL programming model is the ability to
compile kernel code at run time. This means that we can optimize the kernel
at run time for any set of program parameters before executing it.

2.3 What does semi-automatic mean?
Compilers perform a series of transformations automatically without inter-
acting with the programmer. The use of a compiler, from the programmer’s
view, can be simplified to the following:

1. The programmer gives the source code as input to the compiler.

2. The compiler performs a series of transformations and generates an
executable.

A semi-automatic compiler-like program performs transformations automati-
cally, but requires interaction with the programmer. Therefore, we refer to
these programs as tools or frameworks. An example of the use of a framework
is the following:

1. Give the source code as input.

2. Instruct the framework to perform a transformation automatically.

3. Give the new source code as input.

4. The compiler performs a series of transformations and generates an
executable.

Steps 2 and 3 can be iterated by the programmer for a number of times. In
this thesis our concern is frameworks that perform source-code transform-
ations that the compiler cannot do.

The term semi-automatic is used in different ways in the literature. For
example, in the creation of a multi-threaded version of Geant4, Dong et al. [4]
first change the parser to insert keywords in front of variables in the source
code. Then they create a tracer to identify shared and read-only variables.
They use this information to automatically transform the sequential code
into multi-threaded code. In short, they interactively apply different tools to
automate the time-consuming aspects of the transformation process.

Zima et al. [29] describe a tool for semi-automatic parallelization based
on a component performing classical analyses such as dependency analy-
sis, and whenever the tool has insufficient information, the programmer is

13

prompted for it. When all the needed information is obtained, the trans-
formations yielding a parallel program are performed automatically. A simi-
lar approach, also based on performing analyses, is used by Vandierendonck
et al. [28]. In this work the programmer is required to help the compiler
by writing annotations to define thread-level parallelism, and to highlight
semantic information that analyses cannot find.

Felber [6] describes a different kind of semi-automatic transformations.
The programmer specifies “rewriting-rules”, i.e. application-specific rules
that decide how the decomposition of the work load is handled. Their ap-
proach then automatically instruments the Java byte-code with constructs
that enable a Java application to execute in parallel across multiple nodes.

Based on the above examples, we summarize a common theme among
frameworks for semi-automatic transformations as follows:

• They are designed for time-consuming transformations that can be au-
tomated.

• They work on existing source code written in a common (sequential)
programming language.

• The programmer works with the framework interactively in order to
decide what to do next.

The above frameworks focus on the process of parallelizing a program by
means of multi-treading or by distribution across multiple nodes. Our aim is
the transformation of programs that are already parallel into programs that
utilize the GPU hardware and do so efficiently. The latter is accomplished
by performing transformations that optimize the code for specific hardware
features of the GPU.

2.4 Our approach to a semi-automatic frame-
work

We focus on applications written in a low-level language such as C/C++.
Although we do not need to restrict ourselves to C/C++, it is a language
that is close to our target language, which makes the transformations less
extensive.

Different classes of code exist. Some code sections have a high degree of
parallelism, but must be executed sequentially because of data dependencies,
see Fig. 2.4. Other code sections also have data dependencies, but these do
not prohibit parallel execution of the program. In the former case, statement

14

reordering transformations such as loop interchange and loop distribution
and transformations to make variables private can be performed to permit
parallel execution.

We leave it to the programmer to choose programs that have no data
dependencies that prohibit parallel execution and enough parallelism to make
GPU execution practical, i.e. faster than CPU execution.

data dependences

Programs without

Programs with

data dependences

Programs with
parallelism

Programs with
no parallelism

Sequential

Parallel

Figure 2.4: We group programs into three groups: programs with no parallelism,
which must be executed sequentially, programs with parallelism but without data
dependencies, which can be executed in parallel, and lastly programs with paral-
lelism and data dependencies, which sometimes can be executed in parallel and at
other times certain transformations must be performed before parallel execution
is possible.

We expect the programmer to perform the following tasks before using
our framework:

1. Find the code section to be executed on the GPU.

2. If necessary, perform transformations on the code section that will allow
for parallel execution of the code section.

When parallel execution of a particular code section is possible, the pro-
grammer starts using our framework. The first transformation that must be
performed is the generation of the host code used in the three phases shown
in Fig. 2.2. This code is referred to as the boilerplate code, and it is the
backbone for executing the code section on the device.

The programmer subsequently analyses the kernel code and decides,
from a catalogue of transformations, which transformation to perform, cf.
Fig. 2.5. The programmer then analyses the newly transformed kernel code
in order to choose another transformation to instruct the framework to apply.

15

The programmer continues like this until no more useful transformations from
the catalogue can be applied.

source code

Programmer

analyses

new source code

Framework

generates

transformation 1
Perform

Perform
transformation 3

generates

Framework

new source codesource code

Programmer

analyses

source code

Programmer

analyses

new source code

Framework

generates

transformation 17
Perform

Source code

Instruction based
on analysis

Figure 2.5: An example of the work-flow in our framework. The programmer
analyses the source code and decides to instruct the framework to perform trans-
formation 1. The programmer then analyses the resulting source code and decides
to perform transformation 3. Finally, the programmer instructs the framework to
perform transformation 17.

At this point the generated source code is available to the program-
mer, so that the programmer can do further transformations by hand. We
summarize below the steps that our approach relies on.

1. Find a computationally-intensive code section

2. Perform the necessary transformations by hand to permit for parallel
execution.

16

3. Generate boilerplate code.

4. Iteratively choose which transformations to perform on the kernel code.

5. Perform further transformations by hand if needed.

6. Finally, compile the code with the host-language compiler of choice to
get an executable.

We choose to leave the first two steps to the programmer, since it has proved
difficult to automate these two steps, and we think that they will not be
too time-consuming for the programmer to do, and because the focus in this
thesis is on steps 3–4.

17

C h a p t e r 3
Compilation: Front end and code

generation

In this chapter we describe the main components of the front-end module:
The lexer, the parser, and the abstract syntax tree (AST). We use this mod-
ule to parse the loop nest that the programmer wants to execute on GPU
hardware. We also present part of the back end namely the code generation.

The module is written using the Python Lex-Yacc (PLY) module [3] to
parse a subset of the C programming language [15]. In order to save time,
we chose to implement the subset of C that we needed in order to parse a
set of example programs. The PLY module allows us to create a context-free
grammar by using LR parsing [1].

The goal of the implemented parsing facilities is to create the abstract
syntax tree that we need to perform source-code transformations. Other
parts of the traditional front end such as type checking is not implemented
and non-C syntax may be parsed, hence the programmer must provide a
program with grammatically correct types and syntax. An overview of the
parts of the typical compiler that we implement in our framework can be seen
in Figure 3.1. We postpone the presentation of transformations and pattern
matching to Chapters 5 and 6.

source code source code
Front end Back end

code generationtransformationpattern matchingparserlexer IR

Figure 3.1: An overview of the compiler phases that we implement in our frame-
work.

18

Keyword tokens
CHAR DOUBLE FLOAT INT LONG SHORT
SIGNED UNSIGNED VOID SIZE_T FOR RETURN

Table 3.1: The lexer tokens for the C keywords that we can parse. The regular
expression for these is the same as the token name in lower case.

In Section 3.1 we present the lexer and the tokens that we use. Section
3.2 explains how we combine these tokens to form parsing rules. We cover the
internal representation of the source code in Section 3.3. Finally, in Section
3.4 we summarize the C code-generation procedure. Parts of the module
were based on the PyCParser [5].

3.1 Lexing
As the first step in creating an internal representation for the source code,
we break the source code down into the smallest possible components that
are still valid C keywords or symbols, known as tokens. We make use of
regular expressions to represent the pieces of C source code that we convert
into tokens.

The lexer tokenizes the source code using the tokens in Tables 3.1 and
3.2. The latter presents a subset of the tokens that the lexer accepts, but
most of the arithmetical, bitwise, logical and equality operations as well as
increments and delimiters are tokenized. Each token has a corresponding
regular expression for the piece of source code that the lexer tokenizes. The
regular expression for each keyword token in Table 3.1 is the keyword in lower
case. Some tokens deviate from the full C syntax, for example, we do not
allow floating-point numbers with e or f, such as 1e-9 and 1.0f, and strings
may only contain a subset of the usual C characters, see line 4 of Table 3.2.

In order to define a token using the PLY module, we create a variable
starting with t_, which signifies that it is a token, and ending with the token
name. Then we set this variable equal to the regular expression corresponding
to the piece of source that the token represents. If we, for example, want to
add the PLUS token to the lexer, we write:
t_PLUS = r’\+’

All the other tokens are created using a similar syntax.
The lexer automatically matches a piece of source code with the longest

token that can represent that piece of source code. For example += is lexed
to the PLUSEQUALS token and not to the two tokens PLUS and EQUALS.

19

Token Regular expression
ID [a-zA-Z_][a-zA-Z0-9_]*

FLOAT ([0-9]*\.[0-9]+)|([0-9]+\.)
INTEGER 0|([1-9][0-9]*)
STRING \"[a-zA-Z0-9_+.,:; \t!=<>"#@$%&/{}()[]?]*\"
PLUS \+
TIMES *
AND &
LOGAND &&
LT <
EQ ==
EQUALS =
PLUSEQUALS \+=
PLUSPLUS \+\+
LPAREN \(
LBRACKET \[
LBRACE \{
COMMA ,
SEMI ;

Table 3.2: A subset of the lexer tokens and the corresponding piece of source
code, given as a regular expression, that they represent.

3.2 Parsing
A single token is usually not valid C syntax. In this section we present how
to combine the tokens using a set of rules that ensure that we are parsing
the C code correctly.

A parsing rule in PLY is an unambiguous grammar specified with a
syntax similar to the Backus-Naur form (BNF). Although the syntax is not
the same as the original BNF, we refer to this syntax as the BNF notation.
A parsing rule starts with a name followed by a colon and a sequence of
terminals and non-terminals signifying what the name may be expanded to.
Adding a vertical bar and another sequence of terminals and non-terminals
defines a choice in the parsing rule between the two sequences.

As we have implemented many parsing rules in the parser, we only
present a few parsing rules at the source code level in order to describe the
overall structure of the parser.

To implement a parsing rule we define a function declaration with a
name starting with p_, signifying that this function is a parsing rule, and

20

def p_native_type(p):
""" native_type : VOID

| SIZE_T
| CHAR
| SHORT
| INT
| LONG
| FLOAT
| DOUBLE
| SIGNED
| UNSIGNED

"""
p[0] = p[1]

def p_type(p):
""" type : native_type

| native_type TIMES """
p[0] = [p[1]] if len(p) == 2 \

else [p[1]] + [p[2]]

def p_identifier(p):
""" identifier : ID """
p[0] = Id(p[1])

class Id(Node):
def __init__(self, name):

self.name = name

Listing 3.1: Three examples of how to define a parsing rule. These rules
are for parsing types and identifiers. A parsing rule is defined using a function
whose name starts with p_. The first comment gives the parsing rule in Backus-
Naur form (BNF). The rest of the function saves the important parts of the
parsed C code in the AST.

ending with the name of the parsing rule that we are creating. See for
example the function p_identifier in Listing 3.1. As the first statement of
the function we place a comment, known as the docstring in Python. The
docstring contains a grammar rule in the BNF as described above. The
p_native_type function is an example of how to write a parsing rule, which
handles the tokens that the lexer has identified as native types. The last part
of the function controls what we do with the components of the grammar
rule. We wish to build the AST.

Each component of the parsing rule can be accessed through the list p
of size n using the following mapping:

""" Comp0 : Comp1 Comp2 ... Compn−1 """
p = [Comp0, Comp1, Comp2, ..., Compn−1]

Assigning p[0] to a value means that the parsing rule may expand, when
used as a terminal in another parsing rule, to that value.

A node in the AST is a class with member data to represent the syntax
consumed by a parsing rule. We do not always want to save the syntax
consumed in a parsing rule as a node in the AST, but instead pass it to
another parsing rule which then save it in a node in the AST. A node class
which just saves the components of a parsing rule as attributes would not be
useful in itself. Therefore the node class must be a subclass of the Node class
which adds extra functionality that enables AST traversal.

21

1 def p_for_loop(p):
2 """ for_loop : FOR LPAREN assignment_expression SEMI binop SEMI
3 increment RPAREN compound
4 """
5 p[0] = ForLoop(p[3], p[5], p[7], p[9])
6

7 class ForLoop(Node):
8 def __init__(self, init, cond, inc, compound):
9 self.init = init

10 self.cond = cond
11 self.inc = inc
12 self.compound = compound

Listing 3.2: The parsing rule and internal representation of a for loop.

In the p_native_type function we are saving the token, since no valid
C syntax consists of just a type. Since a type may additionally be a pointer
we create a list for the type in the p_type function. The p_identifier
function in Listing 3.1 wraps an identifier in an Id node, which holds the
name of the identifier as a string.

In Listing 3.2 we give a more elaborate example. The grammar rule for
a for loop starts with the for keyword followed by a starting parentheses,
a single initialization statement, a semicolon, a binary operation which is
the condition, a semicolon, an increment, such as i++ or j+=4, a closing
parentheses, and finally the compound which is a list of statements to be
executed inside the loop. The ForLoop class wraps the for-loop components
into a node in the AST. While we usually use lower case nouns connected
with underscores as names for the parsing rules, the names of the AST node
classes are constructed by putting together nouns, often abbreviated, with
the first letter in capital.

Unlike a C for loop, we can only parse for loops with a single ini-
tialization statement and a single increment statement. Limitations such as
these are not required by our framework, but it reduces the amount of work
needed in the parser implementation and it is not syntax that we make use
of.

We created parsing rules and classes similar to the for-loop example
for the other C statements. These parsing rules consist of, but not limited
to, comments, function declarations, function calls, assignments, binary and
unary operators, array references, variable declarations, and constants. In
Listing 3.3 we present a subset of the full grammar that we have implemented
in the framework.

Notable constructs for which we did not implement parsing rules in-

22

""" arg_params : typeid COMMA arg_params
| typeid
| identifier
| binop
| empty

"""
""" assignment_expression : typeid assignment_operator expr

| identifier assignment_operator expr
| array_reference assignment_operator expr

"""
""" constant : INT_CONST | FLOAT_CONST | STRING_LITERAL """
""" binop : LPAREN binop_expression RPAREN | binop_expression """
""" array_reference : identifier subscript_list """
""" term : identifier

| constant
| array_reference
| function_call
| unary_expression

"""
""" function_declaration : typeid arglist SEMI

| typeid arglist compound
| function_call SEMI

"""
""" declaration : typeid SEMI"""
""" typeid : type identifier"""

Listing 3.3: A subset of the grammar that we can handle in our framework.

clude structs, if-then statements, qualifiers, and while loops.

3.3 Internal representation
The parser builds an AST which functions as the internal representation
of the source code. The AST has a top node which is a class containing
references to other nodes, children nodes, which again contain references to
other children nodes, or when we reach the leaf level, the nodes contain
terminal symbols. Since each node in the AST is a subclass of the Node
class, it is required to define the children function which returns a list of
children nodes. The implementation of this function is straightforward: We
add the attributes of the node to a list and return the list.

A simple visual representation of such a tree is a nested sequence of lists
or tuples which is not reader-friendly. Therefore, we have defined a printing
function which places each node on a line and indents this line according to
how deep the node is nested in the AST.

23

The names of the nodes should make sense to those familiar with the C
programming language. For example, the BinOp node is the internal represen-
tation of a binary operation of the form lval op rval, while the ArrayRef
node represent a reference to an array such as A[i].

For example, lines 3-6 of the code in Listing 3.4 has the internal rep-
resentation shown in Listing 3.5, where we have excluded the header of the
loop for brevity.

Each node in the internal representation corresponds to one of the
classes that we created in Section 3.2 in order to save the components of a
parsing rule. In Listing 3.5 we can also see the type and value of a variable
of a node. For example, the first assignment in the AST, lines 2-5, has the
operator =, the left-hand side, lval, is a TypeId with the type float and the
identifier of the variable is sum. The right-hand side, rval, is a Constant.
So this corresponds to the statement float sum = 0.0.

The indentation signifies the nesting depth of a node in the AST. Take
for example the assignment that we just discussed. It is contained in the
compound of the second loop. Therefore, it has five parents (not shown) in
our internal representation, so its indentation level is six.

To traverse an AST we make use of the visitor pattern [7]. We define a
generic visitor which performs a pre-order traversal of the AST. A visitor is
a user-defined class with visit functions for one or more nodes of the internal
representation. The visit function, for example for an Assignment node,
defines what should be done when the visitor-pattern traversal encounters
an Assignment node. Depending on what the programmer wants, the visit
function may do a number of different things such as saving values present
in the assignment, changing values in the assignment, or replace parts of the
assignment with another node.

The visitor pattern traverses the AST and when a node is visited for
which the programmer has defined a visitor, then the visit function defined
in this visitor is automatically called. The visitor must be a subclass of the
NodeVisitor class, which contains the visitor pattern, in order to function
in this way. If we want to collect some data with the visitor, then we add
attributes to the visitor class.

In Listing 3.6 we present a visitor that finds all unique identifiers in an
AST. This may be useful for several things such as finding all identifiers in
a loop nest or as a sub-visitor in another visitor. One example of this is to
use this visitor on an AST for an array reference in order to find the unique
identifiers in the subscript of the array reference.

The Ids class has one visitor function which is executed when an Id
node is encountered in the AST. The function accumulates a set of identifier
names.

24

1 for (unsigned i = 0; i < hA; i++) {
2 for (unsigned j = 0; j < wB; j++) {
3 float sum = 0.0;
4 for (unsigned k = 0; k < wA; k++) {
5 sum += A[i * wA + k] * B[j + k * wB];
6 }
7 C[wB * i + j] = sum;
8 }
9 }

Listing 3.4: A loop nest that expresses a matrix-matrix multiplication. The
three matrices, A, B, and C have the dimensions hA × wA, hB × wB, and hC ×
wC.

1 FileAST <top>:
2 Assignment <stmt[0]>: op==
3 TypeId <lval>: type=[’float’]
4 Id <name>: name=sum
5 Constant <rval>: value=0
6 ForLoop <stmt[1]>:
7 Assignment <stmt[0]>: op=+=
8 Id <lval>: name=sum
9 BinOp <rval>: op=*

10 ArrayRef <lval>:
11 Id <name>: name=A
12 BinOp <subscript 0>: op=+
13 BinOp <lval>: op=*
14 Id <lval>: name=i
15 Id <rval>: name=wA
16 Id <rval>: name=k
17 ArrayRef <rval>:
18 Id <name>: name=B
19 BinOp <subscript 0>: op=+
20 Id <lval>: name=j
21 BinOp <rval>: op=*
22 Id <lval>: name=k
23 Id <rval>: name=wB

Listing 3.5: The internal representation of lines 3-6 of the code in Listing
3.4. The loop header of the third loop is excluded for brevity. The names
corresponds to the nodes of the AST. Nesting depth is shown using indentation.

In Listing 3.7 we show a more elaborate example. This visitor is called
on all for loops in the code and it gathers the following data: A list of all
loop indices, a mapping from a loop index to its starting value, a mapping
from a loop index to its ending value, and a mapping from the loop index to

25

1 class Ids(NodeVisitor):
2 """ Finds all unique identifiers"""
3 def __init__(self):
4 self.ids = set()
5

6 def visit_Id(self, node):
7 self.ids.add(node.name)

Listing 3.6: A visitor that finds all unique identifiers. The identifiers can be
read through the member set ids.

the corresponding ForLoop node.
Here, we are using the Ids visitor to find the identifiers in the initial-

ization statement which is the loop index. Lines 9-11 show how to use a
visitor: You initiate the visitor, run the visit function on the AST of choice
and read the return data using dot notation.

1 class LoopIndices(NodeVisitor):
2 def __init__(self):
3 self.index = list()
4 self.end = dict()
5 self.start = dict()
6 self.Loops = dict()
7 def visit_ForLoop(self, node):
8 self.Loops[node.init.lval.name.name] = node
9 IdVis = Ids()

10 IdVis.visit(node.init)
11 ids = list(IdVis.ids)
12 self.index.extend(ids)
13 self.visit(node.compound)
14 self.end[ids[0]] = (node.cond.rval.name)
15 self.start[ids[0]] = (node.init.rval.value)

Listing 3.7: A visitor that finds all loop indices, the start and end values of
the indices and creates a mapping from a loop index to the ForLoop AST node.

We make several assumption on the structure of the for loop, for in-
stance, that the right-hand side of the condition is a variable name. The
visitor could easily be extended to work for other cases as well.

To perform transformations, we needed something that would easily
allow us to read different kinds of data from the AST as well as making
local changes to the AST such as inserting some statements or to replace an
identifier. We found that the visitor pattern was a good fit and we are able
to do the things that we want by writing a few lines of code. We did not try

26

to implement other methods that make changes to the AST.
In addition to the AST, we create several global data structures con-

taining direct access to various data that we use when we generate code and
perform transformations and pattern matching.

3.4 Code generation
Once we have performed a set of transformations on the AST we print the
corresponding C code in order to compile and execute the transformed pro-
gram. To print, we make use of the visitor pattern and for each node in the
internal representation we create a class that generates the string of C code
that the node represent. For most nodes this is a straightforward process
of first getting the strings of the children nodes and then combining these
strings with the appropriate keywords and symbols.

Three example classes are given in Listing 3.8. The C code for an
identifier is simply the variable name. In an array reference, we first get the
array name and add the subscript encapsulated in brackets.

1 def visit_Id(self, n):
2 return n.name
3 def visit_ArrayRef(self, n):
4 s = self.visit(n.name)
5 for arg in n.subscript:
6 s += ’[’ + \
7 self.visit(arg) \
8 + ’]’
9 return s

def visit_ForLoop(self, n):
init = self.visit(n.init)
cond = self.visit(n.cond)
inc = self.visit(n.inc)
self.indent_level += 2
compound = self.visit(n.compound)
self.indent_level -= 2
return ’for (’ + init + ’ ’ + cond \

+ ’; ’ + inc + ’)’ + compound

Listing 3.8: Visitors for the generation of C code corresponding to
the internal representation of an identifier, an array reference and a
for loop.

To turn a for-loop node into a piece of C code, we first get the string for
the initialization, condition and increment statements. We do this through
the use of the visitor pattern as shown in lines 2-4 on the right-hand side of
Listing 3.8. Before we get the string for the compound we add an indentation
to make the code more readable. Finally, we concatenate the strings and add
the for keyword and the appropriate extra symbols.

27

C h a p t e r 4
Generation of host code and

kernel code

To execute a loop nest on the GPU, we need to generate the host code and
the kernel code, cf. Section 2.2. The kernel code is a representation of the
loop nest we wish to execute on the GPU. The host code is responsible for
setting up the data structures that we need in order to execute the kernel
code, as well as setting the arguments for the kernel code and invoking the
kernel code.

In Section 4.1 we give an introduction to the different sections of host
code that we generate. In Section 4.2 we explain how we generate the kernel
code, and in Section 4.3 we cover how the code for allocating buffers is
generated. Then, in Sections 4.4 and 4.5 we present how the code for setting
the kernel arguments and invoking the kernel code is generated. Finally, in
Section 4.6 we go through the function used by the user to start the GPU
execution of a loop nest.

4.1 Overview of the host code
In the host code, we set up a series of data structures that are mandatory
in order to execute kernel code on the GPU. A buffer is a chunk of memory
on the device. In many regards, allocating a buffer is just the OpenCL
equivalent of allocating a chunk of memory in C with the malloc function,
and we need to create these buffers in order to store data on the GPU. We
always allocate two chunks of memory for the same piece of data: one chunk
in the main memory and one chunk in the device memory, where the latter

28

mirrors the former.
The OpenCL API defines several functions which can be used to set

up data structures, manage data transfer and to invoke the kernel code. We
make use of those described below.

• clCreateBuffer: Allocates a buffer. The arguments are a GPU con-
text, a flag denoting the access mode of the buffer, namely, whether it
is write only, read only, or read and write, the size of the buffer, the
host pointer which can be NULL, and a reference to where the error code
is saved. The return value is a buffer object.

• clSetKernelArg: Sets an argument to a kernel function. The argu-
ments are the kernel function, the position of the argument in the kernel
function, the size of the argument, and a reference to the argument.
The return value is an error code.

• clEnqueueNDRangeKernel: Invokes a kernel function. The arguments
are a command queue for the GPU, the kernel function, the number of
dimensions of the grid, an offset signifying where the numbering of the
thread identifiers start, the grid size, the local work-group size, and the
last three arguments which concern the use of OpenCL events, which
we do not make use of in the framework. The return value is an error
code.

• clFinish: Synchronizes the host with the device. The argument is a
command queue for the GPU. The return value is an error code.

• clEnqueueReadBuffer: Reads data from a buffer to a memory chunk
on the host. The arguments are a command queue for the GPU, a
buffer, a boolean flag denoting if the read is blocking, an offset in the
buffer, the size of the data, a pointer to a memory chunk. The last
three arguments concerns the use of OpenCL events. The return value
is an error code.

The host code that we generate is divided into five functions which
have a specific task to perform:

• GetKernelCode: Returns a string representation of the kernel code.

• AllocateBuffers: Calculates the size of the buffers needed by the
kernel code and allocates space for these buffers.

• SetArguments: Sets the arguments for the kernel code. The argu-
ments include the buffers used and the values needed in the kernel
code.

29

• InvokeKernel: Invokes the kernel code on the GPU, and transfers the
data that we need from the GPU.

• RunMain: Allocates the GPU and compiles the kernel code, then calls
the four functions above.

In each function we are using functions from the OpenCL API to ac-
complish the given task. The code for allocating a GPU and compiling kernel
code is general and can be reused across multiple GPU programs. Hence, we
do not generate this code, but keep it in a file which we include in the host
code.

In addition to the aforementioned functions, we create a set of global
variables which contain information about the dimensions of the arrays, the
sizes of the arrays, the pointers to the host-side data, the buffers, and the
kernel code.

The code is generated by creating AST nodes, discussed in Section 3.3,
and putting these nodes together to form an AST. Then we print the AST
to a file using our code-generation module.

In the following we present several visitors used to create the data
structures that we need in order to generate the host code as well as visitors
that rewrite certain parts of the loop nest. We mainly use figures or text
to explain these visitors as we think they are more understandable than the
source code.

4.2 Generating the kernel code
Our framework takes as input a loop nest. We use this loop nest as the
basis for the kernel code and, hence, every statement in this loop nest must
conform to the standard of the device language [16].

The loop nest may have several outer loops which are parallel. As a
first step, we determine how many of the outer loops we parallelize. We
require that at least one loop, namely the outermost loop, can be executed
in parallel. Our framework only support parallelization of either one or two
outer loops. In general we assume that the two outermost loops, if such a pair
exists, can be run in parallel, but we also provide a mechanism for specifying
that only the outermost loop can be run in parallel. If there are two or
more outer loops, then we parallelize the two outermost loops, otherwise we
parallelize the outermost loop.

We create the kernel code by making a copy of the original loop nest
and then removing the loops that we parallelize on the GPU. The kernel code
cannot be given as a loop nest, but must be encapsulated in a function, so

30

Original loop nest
float *A;
float *B;
float *C;
unsigned wA;
unsigned hA;
unsigned wB;
for (unsigned i = 0; i < hA; i++) {

for (unsigned j = 0; j < wB; j++) {
float sum = 0;
for (unsigned k = 0; k < wA; k++) {

sum += A[i][k] * B[j][k];
}
C[i][j] = sum;

}
}

Generated kernel function
__kernel void MatMul(

__global float *A,
__global float *B,
__global float *C,
unsigned wA,
unsigned hst_ptrA_dim1,
unsigned hst_ptrB_dim1,
unsigned hst_ptrC_dim1) {

float sum = 0;
for (unsigned k = 0; k < wA; k++) {

sum += A[get_global_id(1)][k]
* B[get_global_id(0)][k];

}
C[get_global_id(1)][get_global_id(0)] = sum;

}

Listing 4.1: An example of a loop nest and the corresponding kernel function.
The arguments to the kernel function are the variables which are not declared
in the original loop nest as well as the length of the innermost dimension of the
arrays. The types of these variables must be declared before the loop nest.

we find the arguments for this function using the visitor pattern. We refer
to this function as the kernel function, which we use interchangeably with
kernel code.

First, we create a visitor that visits all Id nodes and returns the set
of identifiers. Then we create a visitor which visits all TypeId nodes, which
represents a statement which give the type and the identifier of a variable,
such as the left-hand side of float sum = 0.0. The identifiers in the set
returned by this visitor are considered local to the loop nest. The set of
arguments for the kernel function are the set of all identifiers minus the set
of local identifiers, and the length of the innermost dimension of every two-
dimentional array. We need the latter argument for the calculation of the
array subscripts.

We require the type of each argument, but we cannot identify the types
from the loop nest. Therefore, we require the user to declare the types in
front of the loop nest, see Listing 4.1, in which we show an input loop nest
and the corresponding kernel function. If the type of an identifier is not
given, then we cannot proceed and we raise an error.

For any pointer argument of the kernel function we add a qualifier
which tells the run-time system where on the GPU to place the data pointed
to by the pointer. By default we place all data in the global memory segment
by adding the __global qualifier.

The device language only supports one-dimensional arrays. Therefore,
we create a visitor which rewrites the array subscripts to a one-dimensional

31

subscript (not shown in Listing 4.1). We do this by multiplying the outer
subscript with the innermost dimension of the array and add the inner sub-
script.

Variables in the header of the loops that we parallelize are not added
as arguments since these loops are deleted from the kernel code. Finally, we
create a visitor which replaces the loop indices of the loops, which we deleted,
with the get_global_id function.

We create the GetKernelCode function and hard-code the kernel code
as the return value using the stringstream class [2]. This means that we
first create a stringstream object and then add each line of kernel code
using the << operator.

4.3 Generating the AllocateBuffers function
We start by determining the set of buffers that we need to allocate. We
iterate through the arguments of the kernel function and add each pointer
argument to the set. Before allocating the buffers we calculate their size and
save it in a global variable. We generate statements where the left-hand side
is the identifier of the global variable and the right-hand side is the product
of the dimensions of the array and the size of the data type, see lines 3–4 in
Listing 4.2 for an example.

To allocate a buffer we use the clCreateBuffer function. To find the
flag argument, we examine how the arrays are accessed in the kernel code.
First we create two sets: Arrays that we write to and arrays that we read
from. We create a visitor which adds the identifier of an array reference to
the write set if that array reference is the left-hand side of an assignment, and
to the read set if the array reference appears somewhere on the right-hand
side, for example in a binary operation, in a function argument, or simply
by itself, or possibly inside the subscript of an array reference appearing on
the left-hand side of an assignment. Depending on whether an array is in
both the read and write sets, only the write set, or only the read set, the
corresponding buffer will use the read-and-write flag, the write flag or the
read flag.

For any buffer with a read access mode we add a CL_MEM_USE_HOST_PTR
flag which tells the run-time system to copy the data from the host memory
to the device memory when execution of the kernel code begins.

A portion of the AllocateBuffers function for the matrix-multiplica-
tion loop nest can be seen in Listing 4.2. In addition to allocating a buffer
for each array in the loop nest, we check the error code in order to ensure
that the allocation was successful. The buffer objects are saved in the global

32

1 void AllocateBuffers() {
2 hst_ptrA_mem_size = hst_ptrA_dim2 * (hst_ptrA_dim1 * sizeof(float));
3 hst_ptrC_mem_size = hst_ptrC_dim2 * (hst_ptrC_dim1 * sizeof(float));
4 // More size calculations
5 cl_int oclErrNum = CL_SUCCESS;
6 dev_ptrA = clCreateBuffer(context,
7 CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,
8 hst_ptrA_mem_size, hst_ptrA, &oclErrNum);
9 oclCheckErr(oclErrNum, "clCreateBuffer dev_ptrA");

10 dev_ptrC = clCreateBuffer(context,
11 CL_MEM_WRITE_ONLY,
12 hst_ptrC_mem_size, NULL, &oclErrNum);
13 oclCheckErr(oclErrNum, "clCreateBuffer dev_ptrC");
14 // More buffer allocations
15 }

Listing 4.2: The AllocateBuffers function for the matrix-multiplication
loop nest. In lines 3–4 we calculate the sizes of the buffers before allocating
them in lines 7–12. The memory access mode of each buffer was found using a
visitor on the original loop nest.

variables dev_ptrA and dev_ptrC.

4.4 Generating the SetArguments function
For each argument to the kernel function we generate a corresponding call
to the clSetKernelArg function, see Listing 4.3, which shows a portion of
the SetArguments function for the matrix-multiplication loop nest. At the
end we check that all arguments are set successfully.

4.5 Generating the InvokeKernel function
In order to invoke some kernel code we need to define the grid size. For the
parallelization of two loops, we use a two-dimensional grid where the lengths
of the dimensions are equal to the number of iterations of the two loops.
As the offset argument we use the starting value of the two loops that we
parallelize.

For example, in the matrix-multiplication loop nest (see Listing 4.1) we
parallelize the two outer loops with the loop indices i and j. The number of
iterations of the two loops are hA and wB, so the grid size of the kernel code
is wB-by-hA, where the first dimension is iterated first. We observe that the
offset is zero in both dimensions. The grid size is divided into two-dimensional

33

1 void SetArguments() {
2 cl_int oclErrNum = CL_SUCCESS;
3 int counter = 0;
4 oclErrNum |= clSetKernelArg(MatMulKernel, counter++,
5 sizeof(cl_mem), (void *) &dev_ptrA);
6 oclErrNum |= clSetKernelArg(MatMulKernel, counter++,
7 sizeof(unsigned), (void *) &hst_ptrB_dim1);
8 oclErrNum |= clSetKernelArg(MatMulKernel, counter++,
9 sizeof(unsigned), (void *) &wA);

10 // Set more arguments
11 oclCheckErr(oclErrNum, "clSetKernelArg");
12 }

Listing 4.3: The SetArguments function for the matrix-multiplication loop
nest. Lines 5–6 set the first argument for the kernel function, lines 7–8 set the
second one and so on.

groups, the local work groups, and we give these groups the default size of
16-by-16.

In Listing 4.4, we show an extract of the InvokeKernel function for
the matrix-multiplication loop nest. In lines 3–5 we set the global and local
work sizes before invoking the kernel code. Then we synchronize with the
GPU. Next, we read back data from the buffers which are in the write set,
as described in Section 4.3. This approach may be more conservative than
needed, but we do not know which arrays will be used after the kernel code
has finished executing. Therefore, we assume that all arrays which were
written to will be used, even though it may be that in some programs only
a subset of these arrays is actually used.

After adding something to the command queue of a GPU, it is im-
portant to synchronize the GPU with the host, since the execution would
otherwise continue concurrently. For example, if the kernel code is still exe-
cuting on the GPU, then we want to wait until the code has finished, so that
we transfer back the correct data. As always we check that the calls to the
OpenCL functions are successful. If they are not, we stop the program.

Although one of the goals of the framework is to generate code without
errors, the user is still able to raise certain types of errors, such as transferring
more data to the GPU than what the GPU has memory for. Errors such as
these are checked at run-time and the proper error response is returned to
the user.

34

1 void Exec() {
2 cl_int oclErrNum = CL_SUCCESS;
3 size_t global_offset[] = {0, 0};
4 size_t grid_size[] = {wB, hA};
5 size_t local_worksize[] = {16, 16};
6 oclErrNum = clEnqueueNDRangeKernel(command_queue, MatMulKernel, 2,
7 global_offset, grid_size, local_worksize,
8 0, NULL, NULL);
9 oclCheckErr(oclErrNum, "clEnqueueNDRangeKernel");

10 oclErrNum = clFinish(command_queue);
11 oclCheckErr(oclErrNum, "clFinish");
12 oclErrNum = clEnqueueReadBuffer(command_queue, dev_ptrC, CL_TRUE,
13 0, hst_ptrC_mem_size, hst_ptrC,
14 0, NULL, NULL);
15 oclCheckErr(oclErrNum, "clEnqueueReadBuffer");
16 oclErrNum = clFinish(command_queue);
17 oclCheckErr(oclErrNum, "clFinish");
18 }

Listing 4.4: The InvokeKernel function for the matrix-multiplication loop
nest. Lines 3–5 set the offset, grid size, and local work-group size. The rest of
the code invokes the kernel code and tranfers back the data of the buffers in
the write set.

4.6 Generating the RunMain function
A context is an OpenCL data structure which allows us to invoke a kernel
on the GPU. In the RunMain function we begin by allocating a context for
the GPU on which we wish to execute the kernel code. For this purpose we
have created a general function, StartUpGPU, which we do not generate, but
simply include in the host code from another file. The StartUpGPU function
queries the computer to see if it has any available GPUs, and if it does, it
allocates a context for one of them. Then we set up a command queue which
is an additional structure that we need in order to invoke the kernel code on
the GPU.

Next, we compile the kernel function that we wish to execute on the
GPU. We have created the compileKernel function to do this and it is also
a generic function which we include in the host code. As arguments it takes
the name of the kernel function, the kernel code, and a reference to a kernel
object where the compiled kernel is saved.

Then we call the AllocateBuffers, SetArguments, and InvokeKernel
functions, see Listing 4.5.

The RunMain function takes as arguments the global variables of the

35

1 void RunMain(
2 float * arg_A, size_t arg_hst_ptrA_dim1, size_t arg_hst_ptrA_dim2,
3 float * arg_C, size_t arg_hst_ptrC_dim1, size_t arg_hst_ptrC_dim2,
4 float * arg_B, size_t arg_hst_ptrB_dim1, size_t arg_hst_ptrB_dim2,
5 unsigned arg_wB, unsigned arg_wA, unsigned arg_hA
6) {
7 hst_ptrA = arg_A;
8 hst_ptrA_dim1 = arg_hst_ptrA_dim1;
9 hst_ptrA_dim2 = arg_hst_ptrA_dim2;

10 wB = arg_wB;
11 // Save the rest of the arguments
12 StartUpGPU();
13 CompileKernel("MatMul", GetKernelCode(), &MatMulKernel);
14 AllocateBuffers();
15 SetArguments();
16 InvokeKernel();
17 }

Listing 4.5: The RunMain function for the matrix-multiplication loop nest.
Lines 7–11 save all the arguments in global variables. The rest of the code
allocates a GPU, compiles the kernel code, allocates buffers, sets the kernel
function arguments, and invokes the kernel code.

loop nest that we found in Section 4.1 as well as the dimensions of the arrays.
This is all that we need in order to set up the code for GPU execution. We
have designed the host code in this way, because then the user only needs to
run one function from his code, namely the RunMain function, and the user
is therefore not bothered with the details of allocating a GPU and buffers
and so on.

An example of the RunMain function for the matrix-multiplication loop
nest is shown in Listing 4.5. Lines 7–11 saves all the arguments of the function
in global variables so that they are available in all functions. Then we call
the functions that we have described above.

To initiate the GPU execution of the original loop nest, the user needs
to include the host code and then replace the loop nest in the user’s code with
a call to the RunMain function. While the user might execute the original
loop nest any number of times, the RunMain function can only be called once.
This is not a necessary restriction, but for our purposes we only need to run
the kernel code once. The extra code that we need to allow for multiple calls
to the RunMain function can easily be generated. An important element in
this is that we enable kernel function arguments to be changed in between
two invocations.

In this chapter we explained how we generated the necessary parts of

36

the host code that we need to execute a piece of code on GPU hardware.
There are many ways to set up the host code, for example by using different
functions from the OpenCL API, but above we have explained the set up that
we have chosen. We have split the set up into sections which correspond to
a number of steps that you need to go through in order to carry out GPU
execution of a piece of code. Our goal with the split is to provide good
readability as well as a simple software architecture, which is useful, for
example, if one wants to merge two GPU programs.

37

C h a p t e r 5

Transformations

In this chapter we present the source-code transformations which optimize
the code for the GPU hardware. A profitable transformation speeds up the
code by any factor greater than one. Some programs may not be executed on
a GPU because they, for example, use more memory than what is available
on the GPU, or if the number of iterations of the loops that we parallelize is
not a multiple of the local work-group size. There are other transformations
which are not profitable, but are useful for enabling programs to be executed
on a GPU. We have only focused on profitable transformations.

In general, the transformations are aimed at any GPU with a corres-
ponding OpenCL implementation, but the transformations are mostly in-
tended for NVIDIA GPUs, specifically for the Kepler GK110 architecture
[21]. Due to similarities in the architectures, the transformations should in
theory be profitable on a recent AMD GPU architecture, or at least, not
unprofitable.

Some of the transformations involve rewriting both the host code and
the kernel code. Our transformations are applicable to one-dimensional or
two-dimensional arrays. A transformation will not be performed on, for
example, a three-dimensional array even if it would be profitable to do so.

We explain the transformations in text instead of using the source code
and give some examples which show the code before and after the transform-
ation. The implementation of the transformations is carried out by jumping
to the corresponding place of interest in the AST and performing a set of
local changes to existing nodes, or inserting additional statements into the
AST.

38

In Section 5.1 we explain how we define certain kernel function argu-
ments as constants, while we in Section 5.2 describe how we perform array
transposition. Then, in Sections 5.3 and 5.4 we present the transformations
for placing reusable data in registers and shared data in the local memory.
The goal of the transformations in the last two sections is to move data as
close as possible to the processing units, where close means with minimum
latency.

5.1 Defining arguments
To define a variable means that we propagate the value of the variable into the
kernel code at compile time. This is similar to using the #define statement
in C instead of using a constant global variable. The non-pointer arguments
of the kernel function can be defined when we compile the kernel code. This
provides more information to the OpenCL compiler which allows it to perform
more optimizations, such as loop unrolling [20].

We call the transformation DefineArg. To perform it, we iterate over
the kernel function arguments and for each argument which is not a pointer,
we delete it from the list of arguments. Then, we generate host code which
adds a string containing the compiler option to define the argument that was
removed. The string generated for each argument is accumulated in a global
variable, which is passed to the OpenCL compiler.

This transformation is similar to constant propagation [13] which can
be found in many contemporary compilers. These compilers usually perform
the transformation offline. Since we are able to compile the kernel code at
run time, we can also define variables that was initialized from command-line
arguments or files.

For some programs, a kernel function argument can change between
two kernel invocations, which means that we cannot define this argument at
compile time. We provide a function which allows the user to exclude an
argument when this transformation is performed.

The transformation is not specific to any hardware as such, but we
include it as it usually gives a noticable speedup. The running time of this
transformation is linear in the number of kernel function arguments.

5.2 Memory coalescing
Kernel codes exhibit several common memory access patterns. One of them is
for each thread to access a different element of data from the global memory

39

in the same instruction. If these elements are not located consecutively in
the global memory, a performance penalty occurs. The reason for this is
that, on the GPU, a memory access is an instruction which accesses several
consecutive memory locations. In the case of a memory read, a small chunk
of data is read for each instruction, much like when a CPU reads an element
of data, it brings the cache line containing the element to the CPU cache.
If we do not use all the elements of a chunk, then we are essentially wasting
memory bandwidth. The worst case is when none of the data elements that
the threads access are in the same chunk of data. Then each thread will
read one chunk and use only one element from this chunk. This is called
uncoalesced memory access.

Let us look at an example. Say we have four threads in the local work
group and that the memory is accessed in chunks which contain four data
elements, that is, four 32-bit values. These numbers are not from any real
GPU. If the threads execute an instruction, such that each thread accesses
one value and if the values are all in the same chunk, then a single memory
transfer for that chunk is issued. If the values are located in two different
chunks, then two memory transfers are issued. In the worst case the number
of issued memory transfers is equal to the number of threads.

Not only are we wasting bandwidth, but the memory transfers are
performed sequentially resulting in a latency penalty as well.

In order to obtain coalesced memory access we interchange the two
subscripts of a two-dimensional array. The effect of this is a transposition
of the memory access pattern, which means that we must also transpose the
data in the array, much like when one transposes a matrix.

This is related to what is known in litterature as the array of structs
(AoS) to struct of arrays (SoA) transformation. When the data is layed out
as an AoS, the stride between the same member of two consecutive structs
is the size of the struct. To obtain coalesced memory access, we can convert
to the SoA layout where the stride is one. This transformation is usually
performed by the programmer, since it, presumably, is difficult to analyse if
it allowed and if it is profitable in the general case.

The Transposition transformation takes a list of arrays as its argu-
ment. In Chapter 6 we explain how to create this list. For each array in
the list we swap the dimensions of the array. We create, in the host code, a
new array of the same size as the original. Then, if the array is not in the
write-only set, we add code which copies the data from the original array to
a new array in the transposed layout. Finally, we set the new array as the
source to the corresponding kernel function argument.

If the array is in the write set, then after the data is transferred back
from the GPU we transpose it, in order to give the data the layout that the

40

rest of the user’s code expects. The running time of the transformation is
linear in the length of the list given as argument.

This transformation is not a GPU-specific transformation, because it
should also be profitable on the CPU architecture, where it rearranges the
data to enable vectorization and to improve data locality.

This transformation uses extra memory, because we need a chunk of
memory that is of the same size as the original. For some programs this
extra memory usage may be too large to perform this transformation. This
can be avoided by invoking a kernel function on the GPU which transposes
the array in place.

5.3 Placing reusable data in registers
In some situations we are reading the same data from the global memory in
each iteration of a for loop. The transformation to be described is about
reading the data once, before the loop, saving it in a variable, and then read-
ing this variable where we read from the global memory before. This trans-
formation has some similarities to loop hoisting, also called loop-invariant
code motion [20], which moves loop-invariant code, for example a computa-
tion, outside the loop.

The transformation can be performed on the GPU because it, unlike
the CPU, has a large amount of registers per thread. On the Kepler GK110
architecture each thread can use a maximum of 255 registers. Some of these
registers are not being used in the kernel code, so we can utilize them by
performing this transformation. This transformation only changes the kernel
code.

The transformation works when we are reading the same data from the
global memory inside one loop, or inside two loops. If the global memory
reads are inside only one loop, then we perform the HoistToReg trans-
formation. We proceed by creating a variable outside the loop. We assign
to the variable the value which is read from the global memory. Then we
replace the global memory read inside the loop with a read to that variable.

In Listing 5.1 we see a portion of some kernel code from an N-body
simulation. In lines 5–7 of the original kernel code we see that we are reading
the same data, the position and mass of a body, from the global memory in
each iteration of the j-loop. In the transformed kernel code, we start by cre-
ating an assignment where the left-hand side is a temporary variable and as
the right-hand side we use a copy of the array reference to the global memory
location that we read. These assignments are placed at the beginning of the
kernel code before any for loops. We do this for each array reference that

41

Original kernel code
1 __kernel void NBody(
2 __global float *Mas,
3 __global float *Pos,
4 __global float *Forces
5) {
6 for (unsigned j = 0; j < N; j++) {
7 float a_x = Pos[0][get_global_id(0)];
8 float a_y = Pos[1][get_global_id(0)];
9 float a_m = Mas[get_global_id(0)];

10 ...
11 }
12 ...
13 }

Transformed kernel code
__kernel void NBody(

__global float *Mas,
__global float *Pos,
__global float *Forces

) {
float Mas0_reg = Mas[get_global_id(0)];
float Pos0_reg = Pos[0][get_global_id(0)];
float Pos1_reg = Pos[1][get_global_id(0)];
for (unsigned j = 0; j < N; j++) {

float a_x = Pos0_reg;
float a_y = Pos1_reg;
float a_m = Mas0_reg;
...

}
...

}

Listing 5.1: Example of the transformation which saves reusable data in
registers. In lines 7–9 of the original kernel code we read the same data from
the global memory in each iteration of the j-loop. In the transformed kernel
code we read the data from the global memory once in the three lines just
before the beginning of the j-loop. Then we reuse this data inside the j-loop.

Transformation 1 HoistToRegLoop
Input: A list, A, of 2-tuples containing an array reference and a loop.
1: for (ref , loop) in A
2: Allocate a temporary array with length equal to the number of itera-

tions of loop.
3: Copy loop in front of the other loops. Only copy once for every distinct

loop.
4: Create assignment from ref to the temporary array inside the new

loop.
5: Replace ref with reference to the temporary array inside the other

loops.
6: end for

we perform the transformation for. Finally, we replace the right-hand side
of the assignments inside the loop with the temporary variables.

In the case that the global memory reads are inside two loops we per-
form a slightly different transformation, which we call HoistToRegLoop,
see Transformation 1 for a detailed description. First, we allocate a tem-
porary array, inside the kernel code, with a length equal to the number of
iterations of the second loop. Then we copy the second loop in front of the
other loops and place in it an assignment where the left-hand side is a refer-

42

ence to the new array with the loop index of the second loop as the subscript.
The right-hand side of the assignment is a copy of the reference to the global
memory location that we read. The old array references to global memory
inside the two loops are replaced by the corresponding references to the new
arrays.

In Listing 5.2 we show an example of the second type of the transform-
ation. First, in lines 6–8 of the transformed kernel code, we generate the
three allocations of the temporary arrays X_reg, Y_reg, and Z_reg. Then
we copy the d-loop from line 7 of the original kernel code and place it in
front of the other two loops. Inside the new d-loop we read the values from
the global memory and save them in the temporary arrays. Then, in lines
16–18 of the transformed kernel code we replace the right-hand side of the
assignments with a reference to the corresponding temporary array.

This transformation is not profitable when it causes the kernel code to
use more registers than what is available. This can happen for example if the
second loop has a very large number of iterations. In Chapter 6 we present
condition that we check to determine whether we can do the transformation
at all, and if so, if it is profitable.

The transformation is performed on array references. It takes as argu-
ment a dictionary with keys equal to the identifiers of the arrays. We number
each reference to the same array with a number corresponding to the order
in which they appear in the kernel code. The values of the dictionary are
lists of the indices of the references which we perform the transformation on.
For example, when we performed the transformation in Listing 5.2 we gave
the dictionary {’X’ : [0], ’Y’ : [0], ’Z’ : [0]} as the argument. The
loop that we copy in Transformation 1 can easily be found by using this dic-
tionary. In Chapter 6 we describe how to find this dictionary without input
from the user. The running time of this transformation is linear in the sum
of the lengths of the lists in the dictionary.

In this section we have described a transformation which causes reused
data to be moved closer to the processing units once and then reused from
there. On the CPU, the same is accomplished transparently through the
cache design of the CPU, but this has the downside that the data may be
evicted and then it has to be reloaded.

Many contemporary compilers perform loop hoisting, including the
LLVM compiler infrastructure [17] that the NVIDIA OpenCL compiler is
based on. Much, but not all loop-invariant code is performing a computa-
tion, which may be hoisted without using extra registers. We only perform
it on reads from global memory, in which case it uses several extra registers
and the compiler may not be able to analyse if this is profitable.

43

Original kernel code
1 __kernel void Laplace(
2 __global double *X,
3 __global double *Y,
4 __global double *Z,
5 ...) {
6 for (unsigned j = 0; j < storagesize; j++) {
7 for (unsigned d = 0; d < dim; d++) {
8 double X_d = X[d][get_global_id(0)];
9 double Y_d = Y[d][get_global_id(0)];

10 double Z_d = Z[d][get_global_id(0)];
11 ...
12 }
13 ...
14 }
15 }

Transformed kernel code
1 __kernel void Laplace(
2 __global double *X,
3 __global double *Y,
4 __global double *Z,
5 ...) {
6 double X_reg[dim];
7 double Y_reg[dim];
8 double Z_reg[dim];
9 for (unsigned d = 0; d < dim; d++) {

10 X_reg[d] = X[d][get_global_id(0)];
11 Y_reg[d] = Y[d][get_global_id(0)];
12 Z_reg[d] = Z[d][get_global_id(0)];
13 }
14 for (unsigned j = 0; j < storagesize; j++) {
15 for (unsigned d = 0; d < dim; d++) {
16 double X_d = X_reg[d];
17 double Y_d = Y_reg[d];
18 double Z_d = Z_reg[d];
19 ...
20 }
21 ...
22 }
23 }

Listing 5.2: A transformation which enables reuse of data that is read from
the global memory inside a loop. In lines 6–8 we allocate the arrays in which we
subsequently store the data from the global memory in lines 9–13. Then, in lines
16–18 of the transformed kernel code, we replace the global array references
from lines 8–10 of the original kernel code with references to the arrays we
allocated in lines 6–8 of the transformed kernel code.

5.4 Placing shared data in local memory
The GPU has a local memory segment which is shared between all threads
in a local work group. It is useful when the threads need to communicate

44

with each other, or if all threads need to read the same data element, that
is, if we have some data which is shared between the threads. The local
memory is located close to the processing units of the GPU and it is therefore
significantly faster to access than the global memory. This transformation is
similar to loop tiling [13] which is used to optimize the code for the cache of
CPUs.

In the following we present two transformations which exploit the fact
that the value needed by one thread was already read from the global memory
by another thread. The two transformations follow the same overall scheme:
Each thread reads one value from the global memory into local memory,
and then each thread reads from the local memory the values that it needs.
Hence, we are basically replacing multiple reads from the global memory with
one read from the global memory and multiple reads from the local memory.

The first transformation, which we call TileInLocal, takes as argu-
ment a dictionary like the one we described in Section 5.3. Hence, it has the
same running time as well.

Transformation 2 gives an abstract description of how we rewrite the
code. It starts by allocating space in the local memory for an array with a
length equal to the local work-group size and of the same type as the array
given in the argument. We change the increment of the corresponding loop
to the length of the first dimension of the local work group. Then, inside the
loop, we create an inner loop and move the body of the outer loop inside the
inner loop. The iteration count of the inner loop is equal to the length of the
first dimension of the local work group.

At the start of the outer loop, we read data from the global memory
into the local arrays, and add a barrier to synchronize the threads. In the
inner loop, we replace reads to the global memory with reads to the local
memory. After the inner loop we add another barrier. These barriers are
important, otherwise a thread may overwrite some data before it was used
by the thread that needed it.

Since we have changed the increment of the outer loop and added a
new inner loop, some of the subscripts of the other arrays inside the inner
loop may be incorrect. We replace any occurence of the outer loop index
with the outer loop index plus the inner loop index.

In Listing 5.3 we show an example of this transformation in action.
At the top we show a graphical depiction of the execution after the trans-
formation is performed. We perform the transformation on the matrices A
and B, and the local work-group size is 16-by-16. The rows of A is divided
into groups of size 16. Each of these groups are divided into 16-by-16 sized
tiles. The same is done for B, but for the columns. Each of these tiles are
then loaded to the local memory and a matrix multiplication of these tiles is

45

Transformation 2 TileInLocal
Input: A list, A, of 2-tuples containing an array reference and a loop.
Input: The length, len, of the first dimension of the local work-group size.
1: for (ref , loop) in A
2: Allocate an array of size len · len in local memory.
3: Change increment of loop to len.
4: Create an inner loop, whose number of iterations is len and increment

is one, move the body of loop into this loop, and place the inner loop
inside loop. Only create once for every distinct loop.

5: Assign to the local array the data from global memory that will be
used inside the inner loop.

6: Add barriers just before and just after the inner loop.
7: Replace ref with a reference to the local array inside the inner loop.
8: Rewrite other expressions which uses the loop index of loop inside the

inner loop.
9: end for

performed and the result is accumulated in C_sub. When all tiles have been
multiplied we save the C_sub tile in the C matrix.

Code-wise, we proceed as follow: In lines 4–5 of the transformed kernel
code we allocate the corresponding local arrays. In lines 13–15 we add the
inner loop, which has 16 iterations, around the body of the outer loop, that
is, line 6 of the original kernel code.

Next, we add the assignments in lines 8–11 which reads values from
the global memory into the local memory. The right-hand side is a copy of
the reference to global memory found in line 6 of the original kernel code.
Then we add the local thread identifier to the subscript which contains the
loop index k. The argument to the local thread-identifier function is the
dimension which is not used in the other subscript of the array reference.
For example, array A has a global thread-identifier function with 1 as the
argument in its first subscript. Then we must use the local thread-identifier
function with the argument 0 in the second subscript.

The left-hand sides of the assignments are references to the local arrays,
where the first subscript is the local thread-identifier function with the same
argument which is used in the thread-identifier function of the first subscript
of the array reference on the right-hand side of the assignments. The second
subscript is handled in an analogous manner.

Now we turn to line 14 in the transformed code. We replace the global
array references with the local array references, and the global thread identi-
fiers with the local thread identifiers. In the subscripts, we replace the outer

46

Row i

Column jA

43210

0

1

0 1

0

1

2

3

4

A local

B

B local

16

16

C sub += A local B local∗
Original kernel code

1 __kernel void MatMul(
2 __global float *A, __global float *B, __global float *C
3) {
4 float C_sub = 0;
5 for (unsigned k = 0; k < wA; k++) {
6 C_sub += A[get_global_id(1)][k] * B[k][get_global_id(1)];
7 }
8 C[get_global_id(1)][get_global_id(0)] = C_sub;
9 }

Transformed kernel code
1 __kernel void MatMul(
2 __global float *A, __global float *B, __global float *C
3) {
4 __local float A_local[16][16];
5 __local float B_local[16][16];
6 float C_sub = 0;
7 for (unsigned k = 0; k < wA; k+=16) {
8 A_local[get_local_id(1)][get_local_id(0)] =
9 A[get_global_id(1)][k + get_local_id(0)];

10 B_local[get_local_id(1)][get_local_id(0)] =
11 B[k + get_local_id(1)][get_global_id(0)];
12 barrier(CLK_LOCAL_MEM_FENCE);
13 for (unsigned kk = 0; kk < 16; kk++) {
14 C_sub += A_local[get_local_id(1)][kk] * B_local[kk][get_local_id(0)];
15 }
16 barrier(CLK_LOCAL_MEM_FENCE);
17 }
18 C[get_global_id(1)][get_global_id(0)] = C_sub;
19 }

Listing 5.3: An example of a transformation which replaces reads from the
global memory with reads from the local memory. The illustration shows how
we divide the matrices intro 16–by–16 sized tiles. The tiles are moved into
the local memory and a matrix multiplication of the tiles is performed and the
result is accumulated in the C_sub tile. This is reflected in the transformation
of the kernel code.

loop index k with the inner loop index kk.
There are several conditions which need to be met before we can

47

perform this transformation. For example, this transformation only works
for two-dimensional local work groups where each dimension has the same
length. In Chapter 6 we describe what these conditions are, how to check
them, and how to find the arguments for this transformation.

A stencil computation updates each point in a grid based on a weighting
of its neighbours in the grid. The second type of transformation in this section
involves using the local memory to optimize a specific stencil computation,
which, in a two-dimensional grid, updates each point using all its four non-
diagonal neighbours, or possibly a subset thereof, in the grid.

The transformation, which we call TileInLocalStencil, takes as
arguments an array and which of the neighbours in the grid are included in
the stencil. We first allocate space in the local memory for an array with
a length equal to the length of the dimensions of the local work group plus
room for potential neighbours. For each neighbour that we include in the
first dimension of the grid we add one to the length of the first dimension
of the local array and similarly for each neighbour in the second dimension.
This extension of the length of dimensions of the local array is sometimes
called a halo or a ghost boundary.

Next, we add one assignment of data from the global memory into the
local array per neighbour included in the stencil. The data read is the data
needed by the local work group to perform a stencil computation on a tile
of the grid. A barrier follows to synchronize the threads. Lastly, we replace
array references to the global memory in the stencil with array references to
the local memory.

In Listing 5.4 we show the transformation in action on the two-dimen-
sional five-point Jacobi stencil. In lines 4–7 of the transformed kernel code we
add a local memory allocation and we assign the local thread identifiers with
an offset, to account for the halo, to li and lj which now function as the
local thread identifiers. We use the local work-group size, which is 16-by-16,
as the basis for the allocation of the local array, and since the stencil include
two neighbours in each dimension, this is extended to a 18-by-18 sized tile.

We add the assignments in lines 7–10 where the right-hand side is a
copy of the array references found in lines 6–9 of the original kernel code.
The left-hand side is a copy of the right-hand side where we replace the array
identifier with the local array identifier and the global thread identifier with
the local thread identifiers. These changes are reflected in lines 14–17 of the
transformed code.

The transformation works for stencils in a two-dimensional grid which
include any of the non-diagonal neighbours. We do not provide any analysis
for this transformation and the user therefore has to enable this transform-
ation.

48

Original kernel code
1 __kernel void Jacobi(
2 __global float *B, __global float *X2, __global float *X1
3) {
4 X2[get_global_id(1)][get_global_id(0)] = -0.25 *
5 (B[get_global_id(1)][get_global_id(0)]
6 - (X1[get_global_id(1) - 1][get_global_id(0)]
7 + X1[get_global_id(1) + 1][get_global_id(0)])
8 - (X1[get_global_id(1)][get_global_id(0) - 1]
9 + X1[get_global_id(1)][get_global_id(0) + 1]));

10 }

Transformed kernel code
1 __kernel void Jacobi(
2 __global float *B, __global float *X2, __global float *X1
3) {
4 __local float X1_local[18][18];
5 unsigned li = get_local_id(1) + 1;
6 unsigned lj = get_local_id(0) + 1;
7 X1_local[li - 1][lj] = X1[get_global_id(1) - 1][get_global_id(0)];
8 X1_local[li + 1][lj] = X1[get_global_id(1) + 1][get_global_id(0)];
9 X1_local[li][lj - 1] = X1[get_global_id(1)][get_global_id(0) - 1];

10 X1_local[li][lj + 1] = X1[get_global_id(1)][get_global_id(0) + 1];
11 barrier(CLK_LOCAL_MEM_FENCE);
12 X2[get_global_id(1)][get_global_id(0)] = -0.25 *
13 (B[get_global_id(1)][get_global_id(0)]
14 - (X1_local[li - 1][lj]
15 + X1_local[li + 1][lj])
16 - (X1_local[li][lj - 1]
17 + X1_local[li][lj + 1]));
18 }

Listing 5.4: An example of a transformation which utilizes the local memory
in stencil computations. In the transformed code we first allocate a chunk of
the local memory with an added halo. Next, we add an offset to the local
thread identifiers which is due to the halo. In lines 7–10 we read the data from
the global memory into the local memory. We then read the data from that
location in lines 14–17.

Loop tiling could have been used to optimize both of the two situa-
tions that we have described in this section for the CPU. Unfortunately the
transformation is generally not performed by contemporary compilers with
default options, except for maybe some of the FORTRAN compilers.

49

C h a p t e r 6

Pattern-matching rules

In this chapter we present pattern-matching rules that enable the framework
to perform some of the transformations in Chapter 5 automatically. We
search the kernel code for patterns, and for each one that we find, we check
that the conditions of the transformation are met, and perform it if they are.

We do not guarentee that our pattern-matching rules will work for any
given program, but we try to make the rules as thorough as possible. We
think that this will make the pattern-matching rules work well in practice,
which makes it usable for many of the programs that the user may have.

The user is encouraged to skim the resulting code of the transformation
step to look for any obvious errors, or simply check that the code gives the
expected output for a number of inputs. We note that this is not a nice
feature of the framework, in particular for users new to GPU programming.

For each transformation we list the conditions that must be met before
we can perform the transformation. In general, the Tranposition, local
memory, HoistToRegLoop transformations only work on two-dimensional
arrays, and this is something that we check for. The HoistToReg trans-
formation works for an array reference with any number of dimensions, but
the subscript of the reference cannot contain any loop indices. From a bird’s
eye view, the pattern matching works by iterating over the array references
and from the code, we create the arguments that the transformations need
and then the transformations are performed. The running time is linear in
the number of array references found in the code.

In Sections 6.1, 6.2, and 6.3 we present pattern matching for the
Transposition, HoistToReg, HoistToRegLoop, and TileInLocal

50

For 1D:
A[get_global_id(0)][d]

For 2D:
A[get_global_id(0)][get_global_id(1)]

Figure 6.1: Examples of patterns where we would perform Transposition. d
is a constant or a loop index.

transformations which we covered in Chapter 5. In Section 6.4 we sum-
marize our thoughts on the pattern matching required in order to generate
high-performance GPU code.

6.1 The Transposition transformation
We divide the pattern-matching rule into two cases: one where one loop is
parallelized and the other where two loops are parallelized, that is, 1D- and
2D-parallelization. For 1D, the pattern is a two-dimentional array reference
having the global thread identifier in the outermost subscript, and something
that is not in the innermost subscript, see Fig. 6.1 for an example. For 2D,
the pattern is a two-dimentional array reference having the first element of
global thread identifier in the outermost subscript and the second element
in the innermost subscript. We do not check any conditions, because it is
always safe to transpose the data.

6.2 The HoistToReg and HoistToRegLoop trans-
formations

For the purpose of this pattern-matching rule we have created a dictionary
which maps each array reference to a list of the loops that it appears in. We
iterate this dictionary and, if the particular array reference is in the write-
only set, we do nothing. Otherwise, we check the following two conditions:
(a) the reference is inside one loop and its subscripts does not contain the
loop index, and (b) the reference is inside two loops and the loop index of
the outermost loop is not in the subscripts of the reference. If (a) is true,
we perform the HoistToReg transformation. If (b) is true, we perform the
HoistToRegLoop transformation.

We cannot always perform this transformation, because although it is
usually profitable to use some of the GPU registers for this transformation,

51

for (unsigned k = 0; k < N; k++) {
... = A[get_global_id(1)][k];
... = B[k][get_global_id(0)];

}

Figure 6.2: Examples of patterns where we would perform TileInLocal.

it would be unwise to use all of them for it. It would be difficult to estimate
exactly how many registers can be used, as it would require some kind of
cost model.

Instead, we provide a heuristical limit of 20 registers. The number of
registers that we need to perform the transformation can be read from the
kernel code and if this number is below 20 then we perform the transform-
ation. The number of registers used may depend on parameters that are only
known at runtime. If this transformation is applicable, then we generate two
version of the kernel code, one with the transformation and one without it.
We check at runtime if the version with the transformation uses less than 20
registers and use that version if this was true. Otherwise we use the other
version of the kernel code.

6.3 The TileInLocal transformation
The pattern is an array reference with two subscripts where one of them
contain a loop index and the other a global thread identifier, see Fig. 6.2 for
examples. The conditions, that need to be met, are:

• The grid must have two dimensions.

• The loop index must have a stride of one.

• The length of the range of the loop index must be divisable by the
length of the first dimension of the local work-group size.

The last condition is checked at run-time just as we did in the previous
subsection.

6.4 Discussion
We have described pattern-matching rules, which we think will work well in
practice, for the transformations. This makes the framework more automatic

52

and user-friendly. The users can turn off any one of the transformations if
they discover that it is not profitable. We did not provide the analysis for
the TileInLocalStencil transformation, because we did not have enough
programs to test if the pattern matching would work well in practice.

There are still two things that the users can set manually, if they choose
to, in order to get some better performance, namely the local work-group size
and if the grid should be one- or two-dimensional. We provide default values
which we think will give good performance in most cases. How to choose
these values could be automated if we added an automatic tuning module to
our framework.

We have identified three important components needed for generating
high-performance OpenCL code for GPUs, and in general for other devices
as well. First, we analyse the code at compile time. Secondly, we perform
some extra analysis at runtime. Finally, tuning of additional parameters is
needed.

We can think of two reasons why the C compiler and OpenCL compiler
do not perform these analyses, and hence why a framework like ours is needed.
First, the two compilers are separated from each other, and many of the
transformations require changes to the host and kernel code. Secondly, the
OpenCL compiler have detailed information about the architecture that it is
compiling for and how many resources are needed by each thread of execution,
for example how many registers are used. However, it lacks an important
piece of informantion, namely, how many threads will be used to execute the
kernel code. These values are known when we initiate the global and local
work sizes in the host code, and hence the values are unknown at compile
time.

We have been avoiding the last issue by choosing default values which
we know by experience will work well for the GPU architecture. For an
arbitrary architecture we would not know how to choose the default values
and we would have to find them using tuning or choose some values based
on heuristics, but this is arguably not an ideal situation.

53

C h a p t e r 7

Use of the framework

Next, we give a brief overview of how to use the framework in practice. Note
that what we have built is a prototype of a framework and we have therefore
not spent much time on making the framework user friendly.

First, we describe what one needs to do before using the framework.
Then, we present how to parse the code and generate the boilerplate code.
Finally, we go through the commands that perform the transformations and
pattern matching.

The user needs to copy the loop nest of interest to a separate input file,
and add declarations of the types of the variables that are not declared in
the loop nest. If any user-defined functions are used in the loop nest, then
these functions need to be copied to a separate file as well. The user must
then include this file at the top of the input file.

In Listing 7.1 we show an example of what this separate file with the
loop nest looks like for the matrix-multiplication program. In the first six
lines we declare the types of the variables not declared in the loop. The rest
is a copy of the loop nest performing A ∗ B = C from the original program.
We save this code in a file called MatMulFor.cpp.

We now describe the commands that the user needs to run in order to
make use of the framework. We have defined a helper function, LexAndParse,
which parses the loop nest and creates the AST. The DataStructures class
runs a set of visitors on the AST, and generates the global data structures
that we need for the transformations, pattern matching, and code generation.

54

unsigned wA; unsigned hA; unsigned wB;
float * A; float * B; float * C;
for (unsigned i = 0; i < hA; i++) {

for (unsigned j = 0; j < wB; j++) {
float sum = 0;
for (unsigned k = 0; k < wA; k++) {

sum += A[i * wA + k] * B[j + k * wB];
}
C[wB * i + j] = sum;

}
}

Listing 7.1: Example input which gets parsed in the framework. It contains
the types of the variables not declared and a loop nest which calculates A∗B =
C, where each operand is a matrix.

def matmul():
name = ’MatMulFor.cpp’
ast = LexAndParse(name)
ds = DataStructures(ast)

tf = Transformation(ds)
pat = PatternMatching(ds, tf)

pat.Transpose()
pat.DefineArg()
pat.HoistToReg()
pat.TileInLocal()

Generate(pat, ast)

Listing 7.2: Example usage of our framework. First, we parse the loop nest
found in the MatMulFor.cpp file and initiate the needed data structures. Then
we initiate the classes for the transformations and the pattern matching. Lastly,
we perform the pattern matching and generate the code.

We have created two classes, Transformation and PatternMatching
through which the user can call various functions to perform transformations
and pattern matching. Lastly, we have created a helper function, Generate,
which generates the boilerplate and kernel code. An additional member
function of the Transformation class, ParOneLoop(), is available in order
to choose to only parallelize the outermost loop in the loop nest.

In Listing 7.2 we give an example of how to use these functions and
classes. Recall that our framework is written in python, so this function is
also written in python. The code in Listing 7.1 is located in a file named
MatMulFor.cpp. We parse this file, perform transformations on the AST, and
generate the code which is saved in a file named boilerplate.cpp. This file

55

must be included in the user’s original program which allows the user to run
the GPU-executable code via a call to RunMain, cf. Section 4.6.

56

C h a p t e r 8

Performance experiments

In this chapter we evaluate our framework based on the achieved performance
of six real-world sample programs. The evaluation has three parts: We
compare the performance against (a) the theoretical performance of our test
hardware, (b) other frameworks with comparative capabilities, and (c) the
performance of a price-equivalent CPU.

First, we give a description of the sample programs and how they were
benchmarked. Then, we present the hardware platform and the frameworks
that we compare against. Finally, we discuss the benchmark results.

8.1 Sample programs
The sample programs used in the benchmarks are:

MatMul: This program multiplies two N -by-N matrices. In theory, this
program is compute-bound because it performs O(N3) floating-point
operations, and reads O(N2) floating-point values.
Our framework performs two transformations profitable to matrix-matrix
multiplication and we therefore do not expect it to able to compete with
hand-optimized versions from software libraries. Nevertheless, we in-
clude it as it is a typical subroutine in high-performance software. We
benchmark this program with N = 12 544, which was the maximum
we could use before we reached the memory limit of the GPU.

Jacobi: This program performs one iteration of the five-point two-dimen-

57

sional Jacobi stencil computation. This is a so-called smoother used
in computational science, for example when solving partial differential
equations. We use an N -by-N grid. The maximum problem size we
could fit in the memory of the GPU was reached for N = 16 384. This
program is memory-bound.

Squared Euclid: This program calculates the squared Euclidean distance
between all pairs taken from N objects with 16 dimensions each. The
program has many uses, for example as a subroutine in the classical
machine-learning algorithm k-nearest neighbour. We benchmarked the
program using the input size N = 16 384, which was the maximum
problem size we could fit in the memory of the GPU. The program is
memory-bound.

NBody: This program is the force calculation in a simulation N bodies,
where we used the standard all-to-all O(N2) algorithm. This is a classic
method for simulating interactions between objects. We use the input
size N = 1 081 600 and the program is compute-bound.

Laplace: This program is a subroutine in a solver of the Black-Scholes par-
tial differential equation with k underlyings [9]. It has a similar struc-
ture to a matrix-vector multiplication, but instead of multiplying, we
apply a much more compute-heavy operator. Hence, the program is
compute-bound. Its running time is O(N2) and we use the input size
N = 215 296 and k = 5.

Gaussian kernels: This program is used in image registration. It calculates
the first, second, and third order derivatives of Gaussian kernels [26]
in a number of points, N . It has O(N2) running time and appears
to be compute-bound. We benchmarked this program for input size
N = 4 608 which was the maximum we could use.

In general, the algorithms underlying the benchmarked programs are
not important, because our framework performs hardware-specific transform-
ations. We executed each program ten times and computed the average run-
ning time. We only tested each program with one input size which we think
would give the program enough parallelism to saturate the processing units of
the GPU. However, for some of our programs we were limited by the memory
size of the GPU and we could not be sure of full saturation.

The kernel code was compiled with the NVIDIA OpenCL compiler
available in CUDA 5.5 and the Intel OpenCL compiler version 3.0 using the
-cl-relaxed-math flag. The host code was compiled with gcc 4.7 with the

58

-O3 flag. We used the PGI compiler version 14.1 to compile the OpenACC
code.

8.2 Systems under investigation
The GPU-side benchmarks were performed on a NVIDIA K20 GPU which
has a peak performance of 3.52 TFlop/s and 1.17 TFlop/s in single and
double precision, respectively [23]. For the CPU benchmark, we use a ma-
chine with two Intel Xeon E5-2670 processors clocked at 2.6 GHz [12]. To-
gether, they have a peak performance of 664 GFlop/s and 332 GFlop/s in
single and double precision, respectively.

This CPU has the Advanced Vector Extensions (AVX) [11], which
extends the instruction set with so-called single-instruction-multiple-data
(SIMD) instructions. These instructions allow one to execute one arithmeti-
cal operation, such as addition, multiplication, etc., on multiple independent
sets of data, using the same amount of cycles as a normal arithmetical oper-
ation. In case of single-precision floating-point numbers, the SIMD instruc-
tions can operate on eight sets of data, and for double-precision floating point
numbers on four sets. For programs where SIMD instructions are applicable,
we can in theory get a speedup of factor four or eight.

When selecting competitors for our framework, we require that they
should have approximately the same characteristics as ours. That means
that the frameworks should (a) take as input some piece of source code, i.e.
a loop nest, from some common programming language, and (b) generate
GPU-executable code for that piece of code. Point (a) excludes parallel
languages that can generate GPU-executable code. While these languages
are useful to people who are writing new parallel programs, we do not think
that they will be of much use when parallelizing parts of existing programs,
because it is necessary to rewrite the entire program in the parallel language.

We were not able to find many other frameworks, in fact, we only found
one, namely the OpenACC API [24]. We use the implementation by PGI
[27]. One can parallelize a loop nest with OpenACC by adding so-called
pragmas, i.e. directives that provide additional information to the compiler,
before the for-loops in a loop nest. The pragmas contain information about
parallelization of the loop nest and data transfer between the host and the
GPU. The compiler generates GPU-executable code for the loop nest and
incorporates the data-transfer patterns given.

After reading the documentation it is not clear whether the PGI com-
piler performs hardware-specific optimizations. However, it does provide
compiler flags, which we made use of, that enable compilation of the code for

59

a specific GPU architecture. The PGI compiler generates CUDA code, but it
does not allow compilation of the kernel code at run-time. This may prevent
some optimizations, because values of command-line arguments cannot be
propagated into the kernel code.

We also compared the performance of the GPU execution with that
of the CPU execution of the programs. We ran the programs sequentially
on the CPU, but they were 2-3 orders of magnitude slower than the GPU
execution of the code and we do not think that this comparison would be
particularly informative.

We looked for ways to optimize the code for the CPU architecture.
For example, OpenMP has the parallel pragma to distribute the work
across the cores and the simd pragma to use the SIMD capabilities of the
CPU. However, several of our programs would require the Transposition
transformation, before the SIMD capabilities could be used. Instead, we
expand our framework to generate OpenCL code which utilizes the cores
and the SIMD capabilities of the CPU.

8.3 Benchmark results
The code was set up to initialize all data structures pertaining to the GPU
execution before the loop nests were executed on the GPU. Data copy from
the host to the GPU is included in the running time, while data copy from
the GPU to the host is not. For many of the programs, we do not want to
copy the data back, but instead continue with another computation on the
GPU which uses that data. Take for example the N-body simulation which
updates the positions of the bodies in each time step. Instead of copying the
data back and forth in each time step, we keep the data on the GPU and
copy it back when all time steps have completed.

The code generated by the PGI compiler for Laplace and Gaus-
sian kernels calculated the wrong values, and we therefore do not compare
against these two programs in our performance results. The problem seems
to be with privatizing static arrays that are allocated somewhere inside the
loop nest, e.g. through statements such as float temp[3];. Despite our
best efforts to inform the compiler through pragmas that these arrays should
be privatized, we did not get it to work. We have already discussed aspects
of our framework that may cause it to produce incorrect results. In general
we think that there is a certain fragility in these kinds of frameworks, per-
haps because there is just so many things to consider and get right for the
framework creators.

We compiled the code both with and without the transformations from

60

MatMul Jacobi Squared
Euclid

NBody Laplace Gaussian
kernels

GPU Optimized
to GPU Basic

3.1 1 55.7 3.4 3.6 1.7

GPU Basic
to PGI

0.9 1.9 4.6 2.2 – –

GPU Optimized
to PGI

2.8 1.9 257.4 7.5 – –

Table 8.1: Speedup in the execution time of the code generated by the different
frameworks.

our framework, denoted GPU Optimized and GPU Basic, and with the
PGI compiler. In Table 8.1 we give the relative speedup of the running times
of the six sample programs when comparing these three different compila-
tions. In the first row we see that our transformations yield high speedups
for all but Jacobi and Gaussian kernels. This is most likely due to the
already good cache behaviour of Jacobi. We did not expect a high speed up
for Gaussian kernels, since we could only perform the DefineArg trans-
formation. We perform the HoistToRegLoop transformation on Squared
Euclid, which saves much reusable data in registers, and since it is a memory-
bound program, this gives a large speedup.

When we compare GPU Basic to PGI, we see that GPU Basic is
slightly slower forMatMul, but faster for the other programs. This suggests
that the PGI compiler is not performing hardware-specific transformations.
We already now know that GPU Optimized is going to be faster than PGI,
and row three shows exactly how much faster. The speedups are mixed with
some programs having low single-digit speedups, others having high single-
digit speedups and some even with triple-digit speedups.

Next, we compare the achieved performance to the theoretical peak
performance. We counted the number of floating-point operations for each
program and divided that number by the running time. For all but Laplace,
we use the peak performance for single-precision floating-point numbers, be-
cause Laplace uses double-precision floating-point numbers.

In Table 8.2 we give the performance in giga floating-point operations
per second (GFlop/s) and what percentage of the peak performance was
reached. We observe that for Squared Euclid, NBody, and Laplace we
achieve 18-25% of peak performance, which we think is reasonably good.
There are many reasons why we cannot reach the peak performance for a
given program. First, programs may contain integer and comparison oper-
ations, which are not floating-point operations. Naturally, these operations

61

MatMul Jacobi Squared
Euclid

NBody Laplace Gaussian
kernels

Performance
[GFlop/s]

205 4 611 872 245 104

% of peak
performance

5.8 0.1 18 25 21 3

Table 8.2: The measured performance of the code generated by our framework
for the six programs.

take time to compute, but they are not included in our GFlop/s calculations.
Secondly, the peak performance calculation is based on the fact that the GPU
can perform an addition and a multiplication in the same instruction, a so-
called fused multiply-add (FMA) instruction. However, many programs do
not have an instruction mix of sheer FMAs, but instead they have a mix of
additions, multiplications, and FMAs. Even when a program has only FMAs,
for example the MatMul, NVIDIA claims that the program can only reach
around 80% of the peak performance [21]. This was for matrix-multiplication
with double-precision numbers. It is hard to say if the same level of efficiency
can be reached with single-precision numbers.

For MatMul, Jacobi, and Gaussian kernels, we observe that their
performance is far from the peak performance. For MatMul and Jacobi,
we think that the programs are memory-bound, despite our transformations
which reduce the amount of data transfers from global memory. Jacobi, in
particular, is very memory-bound and requires non-trivial transformations
to increase the performance. Maruyama et al. [19] hand-optimize a three-
dimensional seven-point stencil for their GPU which has 25% percent more
bandwidth than the ours and they achieve a performance of around 200
GFlop/s.

We are less sure on why Gaussian kernels performs poorly. It does
have some uncoalesced memory accesses that our optimizations could not re-
solve, and it has many operations such as square roots, divisions and powers,
each of which is counted as one floating-point operation, but they take a lot
more cycles to execute than an addition or multiplication. We are not sure
if this justifies the measured performance.

We would like to point out that we, in another context, have created a
hand-optimized version of Laplace which had a performance of 450 GFlop/s,
which shows that we are within a factor of two from the hand-optimized code.

We benchmarked two CPU versions of the programs: one with our
transformations, and one without, denoted CPU Optimized and CPU Ba-
sic respectively. In Table 8.3 we compare CPU Optimized to CPU Basic

62

MatMul Jacobi Squared
Euclid

NBody Laplace Gaussian
kernels

CPU Optimized
to
CPU Basic

6.8 0.7 1.1 1.1 1.1 15.6

GPU Optimized
to
CPU Optimized

3.3 0.6 36.1 10.9 6.5 1.8

Table 8.3: Speedup in the execution time of the code generated by our framework
for the CPU and GPU.

as well as GPU Optimized to CPU Optimized.
For Jacobi, Squared Euclid, NBody, and Laplace, we observe that

our transformations have no impact. In MatMul we are performing the
TileInLocal transformation, which reduces the memory transfers from the
global memory even on CPUs. We also perform the TileInLocal trans-
formation for Jacobi, but here it seems that it is faster to execute the pro-
gram without the transformation and let the cache do its work. InGaussian
kernels the only transformation we perform is to define the kernel function
arguments. To our surprise this give a considerable speedup. Either Hoist-
ToReg or HoistToRegLoop is performed on Squared Euclid, NBody,
and Laplace, and as we expected, this has no effect at all, most likely because
it results in register spilling.

When we compare GPU Optimized to GPU Optimized, we see that
we are slower for Jacobi, which is probably due to better caching behaviour
in the CPU code. We get high speedups for Squared Euclid, NBody and
Laplace which were the programs that were closest to the peak performance
of the GPU.

63

C h a p t e r 9

Concluding remarks

In this final chapter we contemplate the advantages and disadvantages of the
approach taken, we give directions for future work, and we summarize one
more time the main features of the framework.

9.1 Advantages and Disadvantages
In Chapter 8 we saw that a programmer could make use of our framework to
gain significant speedups in the running time of data-parallel programs when
comparing to other frameworks and CPU execution. However, throughout
this work, we discovered several shortcommings of our approach.

It is difficult to make a framework that take any code section as input,
for example because there are many special cases of code structuring to
consider. Our framework and the PGI compiler have limitations on the code
sections that they take as input. Therefore, these frameworks are fragile,
because the user do not know if the framework will work for a given code
section. We saw that the PGI compiler generates incorrect code when it
encounters code structuring that it cannot handle. We think it is better to
let the user know that something is wrong through error messages, and abort
code generation.

Our framework performs transformations that improve the perform-
ance for a single kernel invokation. Often, programs invoke the kernel mul-
tiple times with slightly different arguments. Several transformations exists
that merge two kernel invokations, for example to enable more data reuse.
We could extend the framework to include these types of transformations,

64

but we think it would require more complex pattern matching that what we
presented.

As we added more transformantions to the framework, it got harder
to determine if it is profitable to perform a transformation, because we have
to consider the order in which the transformations could be performed and
if a different subset of transformations would be more profitable. We would
like to highlight the difficulty of determining such things and the reason
for this seems to be that there, for a given program and hardware, exists
no direct mapping to the set of transformations that one needs to perform
to get optimally performing code. One could reflect on ”whose fault this
is”. On the one hand, the hardware manufacturers are adding increasing
complexity to the hardware in order to speed up unoptimized programs. On
the other hand, software manufacturers should create better programming
models for generating code which fits the hardware. In order to generate
truly optimal code, it seems that one needs to manufacture the hardware
and a programming model in conjunction with each other.

Instead, programmers experiment with different transformations to ob-
tain code that is often suboptimal. In our work, as we implemented few
transformations, we performed little experimentation with different sets of
transformations. However, we see some problems with this manual approach.
First, the programmer is required to know the function of each transform-
ation in order to instruct the framework to perform it. Second, even if the
programmer knows each transformation, it may prove difficult to put together
”good” sets of transformations. These two things also puts limitations on the
number of persons that can make use of the semi-automatic capabilities of
our framework, which is not desirable.

If one is content with suboptimal code, and does not know much about
GPU programming, then one could still make use of our framework to gen-
erate the GPU related code and even perform a few transformations auto-
matically. We saw a good example of this in Section 8.3 where most of the
transformations were performed automatically. In general, we think that
there is a nice spread of transformations that can be performed automati-
cally and transformations that can be performed semi-automatically. In this
way, our framework is all-round because it accomodates the needs of novices
as well as experts in GPU programming.

We also considered how many transformations need to be implemented
to obtain high-performance code. In practice, we think that this is in the
range 10–20, depending on how complex and how low-level the included
transformations are. We see at least one problem with just implementating
a fixed set of transformations. Some transformations may not be profitable
for a particular architecture, which is something we saw evidence of in our

65

benchmark results. This means that we need to implement a few architecture-
specific transformations for each architecture that we want our framework to
generate high-performance code for. Hence, we think that one should make
a framework that generates code for only one architecture, but even this may
be hard because some GPUs currently receive small architectural changes in
each new generation. This can be seen, for example, in the Fermi and Kepler
architectures from NVIDIA.

Not only would it be time-consuming for the framework creator to
implement all of these transformations, but sometimes it may be hard to
know which transformations are actually needed to optimize a program for
the complex GPU architecture, a common issue which is almost a research
field in its own right.

9.2 Future work
Since the input to our framework is a parallel piece of code, it would be
easy to extend the framework to generate code which runs in parallel on
multiple GPUs in the same machine and in different machines connected
with a network. We would need to create a mechanism that makes a static
decomposition of the work load.

We could extend our framework with more transformations, and make
it more user friendly. We think that it may be more profitable to design a
model which abstracts what our transformations do. If we look aside from the
DefineArg and Transposition transformations, then, more abstractly,
our transformations are about the reuse of data. With a model of data usage
patterns, we could find data that can be reused and reorder the instructions
to optimize the ratio between the amount of reused data and the amount of
parallel work.

9.3 Summary
We presented a methodology that enables a programmer to take advantage
of the computing resources of a GPU. We created a parser that accepts
as input a loop nest for which the programmer wants to generate GPU-
executable code. We then created an internal representation of the loop nest
which made it easy to perform transformations on the code. We made a
module which generated the boilerplate and kernel code needed to execute
the loop nest on a GPU. Then we implemented several transformations to
speed up the running time of the generated code, and pattern matching rules

66

to perform some of these transformation automatically.
When we benchmarked six sample programs, we observed that signif-

icant improvements in time-to-solution were obtained when comparing to
other frameworks and to CPU-executable code. For some programs the code
ran one order of magnitude faster in both cases. Furthermore, we found that
the generated code could attain close to 25% of the peak performance of the
GPU for some of the programs. For others, we concluded that additional
transformations would be needed to obtain higher performance.

We contributed with our experiences in creating a framework that gen-
erates GPU-executable code. We discovered that transformations can be
grouped into three sets: transformations that can be performed (a) without
checking any conditions, (b) by checking conditions at compile time, and (c)
by checking conditions at compile time and at run time. Also, many of the
transformations could, with little effort, be performed automatically instead
of semi-automatically, which makes our framework usable for both novices
and experts.

67

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-

niques, and Tools, Addison-Wesley, Boston (1986).

[2] cplusplus.com (Editor), C++ stringstream class, Website accessible
at http://www.cplusplus.com/reference/sstream/stringstream/
(Jan. 2014).

[3] D. Beazley (Editor), Python Lex-Yacc (PLY), Website accessible at
http://www.dabeaz.com/ply/ (Dec. 2013).

[4] X. Dong, G. Cooperman, and J. Apostolakis, Multithreaded Geant4:
Semi-automatic transformation into scalable thread-parallel software,
Euro-Par 2010, Lecture Notes in Computer Science 6272, Springer,
Berlin/Heidelberg (2010), 287–303.

[5] E. Bendersky (Editor), Python C parser, Website accessible at https:
//github.com/eliben/pycparser (Dec. 2013).

[6] P. Felber, Semi-automatic parallelization of Java applications, CoopIS/-
DOA/ODBASE, Lecture Notes in Computer Science 2888, Springer,
Berlin/Heidelberg (2003), 1369–1383.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, Boston
(1995).

[8] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa, Heteroge-
neous Computing with OpenCL — Revised OpenCL 1.2 Edition, Morgan
Kaufmann, Waltham (2013).

[9] A. Heinecke, S. Schraufstetter, and H.-J. Bungartz, A highly parallel
Black-Scholes solver based on adaptive sparse grids, IJCM 2012 89(9)
(2012), 1212–1238.

[10] E. Holk, W. E. Byrd, N. Mahajan, J. Willcock, A. Chauhan, and
A. Lumsdaine, Declarative parallel programming for GPUs, PARCO
2011, Advances in Parallel Computing 22, IOS Press, Amsterdam
(2011), 297–304.

[11] Intel (Editor), Introduction to Intel advanced vector extensions,
Website accessible at http://software.intel.com/en-us/articles/
introduction-to-intel-advanced-vector-extensions (Mar. 2014).

68

http://www.cplusplus.com/reference/sstream/stringstream/
http://www.dabeaz.com/ply/
https://github.com/eliben/pycparser
https://github.com/eliben/pycparser
http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions

[12] Intel (Editor), Xeon processor E5-2670 specification, Website accessible
at http://ark.intel.com/products/64595/ (Mar. 2014).

[13] K. Kennedy and J. R. Allen, Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach, Morgan Kaufmann, San Francisco
(2002).

[14] K. Kennedy, K. S. McKinley, and C. W. Tseng, Interactive parallel
programming using the ParaScope editor, IEEE Trans. Parallel Distrib.
Syst. 2, 3 (1991), 329–341.

[15] B. W. Kernighan and D. M. Ritchie, The C Programming Language,
2nd Edition, Prentice-Hall, Englewood Cliffs (1988).

[16] Khronos Group (Editor), OpenCL specification v1.2r19, Website acces-
sible at http://www.khronos.org/registry/cl/ (Nov. 2012).

[17] C. Lattner and V. Adve, LLVM: A compilation framework for lifelong
program analysis and transformation, CGO 2004, IEEE Computer So-
ciety, Washington (2004), 75–88.

[18] MAGMA (Editor), Matrix algebra on GPU and multicore architectures,
Website accessible at http://icl.cs.utk.edu/magma/ (Nov. 2013).

[19] N. Maruyama and T. Aoki, Optimizing stencil computations for
NVIDIA Kepler GPUs, HiStencils 2014 (2014).

[20] S. S. Muchnick, Advanced Compiler Design and Implementation, Mor-
gan Kaufmann, San Francisco (1997).

[21] NVIDIA, NVIDIA’s next generation CUDA compute architec-
ture: Kepler GK110 (Whitepaper), Worldwide Web Document
(2012). Available at http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[22] NVIDIA, Compute unified device architecture C programming guide,
Worldwide Web Document (2013). Available at http://docs.nvidia.
com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

[23] NVIDIA (Editor), Tesla GPUs, Website accessible at http://www.
nvidia.com/object/tesla-servers.html (Feb. 2014).

[24] OpenACC, The OpenACC application programming interface, World-
wide Web Document (2011). Available at http://www.openacc.org/
sites/default/files/OpenACC.1.0_0.pdf.

69

http://ark.intel.com/products/64595/
http://www.khronos.org/registry/cl/
http://icl.cs.utk.edu/magma/
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.nvidia.com/object/tesla-servers.html
http://www.nvidia.com/object/tesla-servers.html
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf

[25] OpenMP (Editor), OpenMP API specification, Website accessible at
http://openmp.org/wp/ (Mar. 2014).

[26] S. Sommer, M. Nielsen, S. Darkner, and X. Pennec, Higher order kernels
and locally affine lddmm registration, SIIMS 2013 6(1) (2013), 341–367.

[27] The Portland Group, inc. (Editor), PGI accelerator compilers with
OpenACC directives, Website accessible at http://www.pgroup.com/
resources/accel.htm (Feb. 2014).

[28] H. Vandierendonck, S. Rul, and K. De Bosschere, The paralax infras-
tructure: Automatic parallelization with a helping hand, PACT 2010,
ACM, New York (2010), 389–400.

[29] H. P. Zima, H.-J. Bast, and M. Gerndt, SUPERB: A tool for semi-
automatic MIMD/SIMD parallelization, Parallel Comput. 6, 1 (1988),
1–18

70

http://openmp.org/wp/
http://www.pgroup.com/resources/accel.htm
http://www.pgroup.com/resources/accel.htm

Appendix A: Paper submitted for
PSTI 2014

I submitted the paper below for the Fifth International Workshop on Par-
allel Software Tools and Tool Infrastructures (PSTI 2014). It is a small
workshop held in connection with the 43rd International Conference on Par-
allel Processing (ICPP 2014), which will be held in Minneapolis, USA, during
September 9-12, 2014.

71

Semi-automatic tool to ease the creation and
optimization of GPU programs

Jacob Jepsen
Department of Computer Science

University of Copenhagen
Universitetsparken 5, Copenhagen, Denmark

jepsen@diku.dk

Abstract—We present a tool that reduces the development
time of GPU-executable code. We implement a catalogue of
common optimizations specific to the GPU architecture. Through
the tool, the programmer can semi-automatically transform a
computationally-intensive code section into GPU-executable form
and apply optimizations thereto. Based on experiments, the code
generated by the tool can be 3-256X faster than code generated
by an OpenACC compiler, 4-37X faster than optimized CPU
code, and attain up to 25% of peak performance of the GPU.
We found that by using pattern-matching rules, many of the
transformations can be performed automatically, which makes
the tool usable for both novices and experts in GPU programming.

I. INTRODUCTION

The high performance and low energy consumption of
graphical processing units (GPUs) make them a preferred
hardware platform for high-performance software. An obstacle
for many GPU software manufacturers is the high development
time, which stems from complicated programming models.
Two similar and well-known models are OpenCL [1] and
NVIDIA’s CUDA [2], which enable the programmer to ex-
press GPU-executable code in a low-level C-like language.
Programming in this language is error-prone, and hence, time-
consuming.

Two important ways of improving the performance of
software is to transform the code to execute in parallel using
multiple processing units, and to perform hardware-specific
optimizations that, for example, make more efficient use of
the memory hierarchy. Parallelization can be done by using
the OpenMP API [3] for CPUs and the similar OpenACC
API [4] for GPUs, but the APIs promise little or no hardware-
specific optimizations. For a given code section, it is difficult to
automatically find out which hardware-specific optimizations
should be applied, and hence, the programmer must analyse
the code to find the optimizations. Consequently, programmers
of GPU software need deep knowlegde of the underlying ex-
ecution model and hardware architecture. We think that many
hardware-specific optimizations are so regular that they can
be performed automatically. Also, several optimizations are
so common that they are used frequently in the optimization
process of many different kinds of computationally-intensive
code.

A GPU-executable program is often divided into two parts:
one part runs on the CPU, the other on the GPU. Two separated
compilers are used to generate the executable. It would be
desirable to incorporate optimizations into these compilers, but

one problem is that many optimizations require changes to both
parts of the program. The other is that information needed
to perform optimizations may be unknown at compile time.
Fortunately, some programming models allow one to compile
the GPU part of the program at run-time. One idea is to develop
a system that performs as many optimizations as possible to
both parts of the code at compile time. If some optimizations
require information unknown at compile time, then the system
inserts statements that read this information at run-time, and
compiles the most optimal GPU code based on that.

We present a tool that takes advantage of the frequency
of use and regularity of hardware-specific optimizations by
implementing a catalogue of optimizations which the pro-
grammer can perform semi-automatically. The tool takes as
input a section of computationally-intensive code and generates
corresponding OpenCL code. Then, the programmer analyses
the code and instructs the tool to perform relevant hardware-
specific optimizations. Such optimizations include memory
coalescing, use of local memory, and hoisting reused data to
registers.

We use the tool to speed up five test programs. We evaluate
the performance and compare it to that of OpenACC code and
optimized CPU code. The main contributions of this paper are:

• A tool that eases GPU programming through a semi-
automatic methodology that reduces the development time
of high-performance software.

• Formalization of pattern-matching rules which enable the
optimizations to be performed automatically. This makes
the tool usable for both novices and experts.

• Experimentation which shows that the generated code can
be 3-256X faster than OpenACC code and 4-37X faster
than optimized CPU code. Three out of five programs
attain close to 25% of the peak performance of the GPU.

The roadmap of the paper is as follows: We review related
work in Section II. In Section III we cover relevant parts of
the GPU architecture and the OpenCL programming model. In
Section IV we explain how to use the tool. We describe source-
code transformations and pattern-matching rules in Sections V
and VI. In Section VII we evaluate the performance of the
generated code. We conclude the work in Section VIII.

II. RELATED WORK

The ParaScope Editor [5] analysed code and displayed
relevant information to the programmer, in order to help him

decide how to make the code parallel. A catalogue of trans-
formations, that are useful for converting sequential programs
to parallel programs, was available. The framework by Lee
et al. [6] automatically transforms an OpenMP program into a
GPU program. In contrast to the former, our tool only works on
programs that are already made parallel. The latter framework
does not focus on making hardware-specific optimizations
which is one of the the main focuses in this work. To our
knowledge, this is the first tool to semi-automatically perform
optimizations specific to the GPU hardware.

III. THE OPENCL PROGRAMMING MODEL

We view the OpenCL standard [1] as an API that extends
an existing programming language, the host language, such
as C/C++, with functionality to express parallel execution on
heterogeneous hardware. The standard defines a language, the
device language, which is a subset of C99 with extensions
to formulate data parallelism and specify address spaces. For
more details on OpenCL programming, see [7].

The code written in the host language, the host code,
executes on the CPU, the host, and the code written in the
device language is called the kernel code. The kernel code may
execute on any processor, called the device, for which there
exists an OpenCL implementation. Such processors include,
but not limited to, CPUs from Intel, AMD and IBM, and GPUs
from NVIDIA and AMD. The host and kernel code constitute
together the OpenCL program, which has the desirable prop-
erty that it is portable across hardware architectures having an
OpenCL implementation.

The idea of the OpenCL programming model is to offload
a section of computationally-intensive code to a device that
provides fast execution. We define three phases that the host
code is responsible for: a start-up phase, a kernel code invo-
cation phase, and a shutdown phase. In the start-up phase we
do the following:

• Allocate a device.
• Allocate memory on the device to hold the data used by

the kernel code.
• Compile the kernel code.
• Set the arguments for the kernel code.

Then the host enters the phase where it invokes the kernel
code for execution on the device. This phase also manages
data transfer between the host and device. When the device
finishes executing, we enter the shutdown phase which handles
deallocation of the device memory and device; essentially we
free all resources that we reserved in the start-up phase.

We now turn to the execution model used in OpenCL. A
parallel loop is a loop where each iteration of the loop can be
executed independently such that the outcome is the same as
that of the sequential execution. We only treat for loops.

A nested loop is a loop that is placed inside the body of
another loop. A nested loop may also contain nested loops
which are called doubly-nested loops. In general, a loop can
be nested any number of times. A loop nest is a loop which
contains a set of nested loops. In Fig. 1 we give two examples
of how nested loops may occur. We use the loop index to
distinguish the loops from each other. In the top example, the

for (size_t i = 0; i < NTEST; i++) {
for (size_t j = 0; j < NTRAIN; j++) {

float d = 0.0;
for (size_t k = 0; k < dim; k++) {

float tmp = test_patterns[i][k]
- train_patterns[j][k];

d += tmp * tmp;
}
dist_matrix[j][i] = d;

}
}

for (size_t i = 0; i < NTEST; i++) {
for (size_t j = 0; j < NTRAIN; j++) {

...
}

}
for (size_t l = 0; l < NTRAIN; j++) {

for (size_t k = 0; k < dim; k++) {
...

}
}

}

Fig. 1: Two examples of loop nests.

j-loop is nested inside the i-loop, and the k-loop is doubly-
nested inside the j- and i-loops. In the bottom example, the
j-loop is nested inside the i-loop as is the l-loop. The k-loop
is nested inside the l- and i-loop.

A perfect loop nest is a sequence of nested loops where
each of the outer loops may only contain a loop in its
body, except for the innermost loop which may also contain
statements other than loops. A perfect loop nest of size m has
m − 1 outer loops plus the innermost loop. The top example
in Fig. 1 shows a perfect loop nest of size 2 consisting of the
i- and j-loops, and the bottom example shows one of size 1
consisting of the i-loop. In the latter example the outermost
and innermost loop of the perfect loop nest is the same.

In OpenCL, a transformation, which assigns threads the
task of executing a distinct loop iteration of a parallel loop,
takes place. In the following we present OpenCL terminology
to be needed later.

A work item is the OpenCL way of describing that which
is executed by a thread. Work items are organized in a grid.
The grid has one, two, or three dimensions, where the product
of the length of each of the dimensions is the total amount of
parallel work. Work items are distinguished by a global thread
identifier, a tuple with the same number of elements as the
grid has dimensions. The global thread identifier corresponds
to the Cartesian coordinate of the work item in the grid.
Special functions are available in OpenCL for getting the
thread identifier.

The parallelization of one, two, or three perfectly nested
loops translates directly into using a one-, two- or three-
dimensional grid in the execution model. For example, if we
want to parallelize two loops, each of size 100, this translates
into using a 100-by-100 grid with 10000 work items.

Inside the grid, the work items are further grouped into
local grids or local work groups, which are executed in parallel
on the processing units of the GPU. In Fig. 2 we show an

(0,0) (1,0) (3,0)(2,0)

(0,3) (1,3) (3,3)(2,3)

(0,2) (1,2) (3,2)(2,2)

(0,1) (1,1) (3,1)(2,1)

(0,0) (1,0)

(0,1) (1,1)
Global Grid

Local Grid

First Dimension

Second

Dimension

get_global_id(0)

get_global_id(1)

get_loal_id(0)

get_loal_id(1)

Fig. 2: An example of a grid, the indexes of the work items in the
grid and the functions that return the index.

example of a 4-by-4 grid. Each position in the grid is identified
by a 2-tuple. The first element of the tuple is used as the thread
identifier in the first dimension of the grid and the second
element for the second dimension. We have defined a local
work group of size 2-by-2.

Elements of the global thread identifier can be accessed
using the get_global_id(dim) function. The argument
dim, which can be 0, 1, or 2, specifies which element of the
tuple is returned. The function get_local_id(dim) does
the same but for local thread identifiers. We use the terms
global thread-identifier function and local thread-identifier
function when referring to these functions.

The form of parallelism used in the OpenCL programming
model is called data parallelism, because each thread performs
the same operation, but on different elements of data. This has
similarities to vector instructions, but vector instructions can
only be performed for a limited set of arithmetical instruc-
tions, whereas a thread in the OpenCL programming model
may execute any C statement defined in the device language
specification.

We make use of two important GPU hardware components.
The first one is the local memory which is intended to be
used for shared data. An array can be placed in local memory
by adding the __local qualifier. The second is the register
file which holds private registers used by the threads. A
variable without a memory qualifier is placed in registers
by default. Both are located close to the processing units
of the GPU and they are much faster to access than global
memory. Optimizations that use these components may depend
on information available only at run-time. A clever aspect
of the OpenCL programming model is the ability to compile
kernel code at run-time. This means that we can optimize the
kernel at run-time for any set of program parameters before
executing it.

IV. OVERVIEW OF THE TOOL

The input to the tool is a C/C++ perfect loop nest contain-
ing the computation that one wishes to execute on the GPU.
To make the parsing task easier, the input must be placed in a
separate input file. In front of the loop nest, the programmer
provides the types of the variables not declared in the loop
nest. The tool supports function calls inside the loop nest. The
definition of the functions must be placed in a separate file

source code source code
Front end Back end

code generationtransformationpattern matchingparserlexer IR

Fig. 3: An overview of the compiler phases implemented in the tool.

Original C code
unsigned NTEST; unsigned NTRAIN; unsigned dim;
float *test_patterns; float *train_patterns;
float *dist_matrix;
for (size_t i = 0; i < NTEST; i++) {

for (size_t j = 0; j < NTRAIN; j++) {
float d = 0.0;
for (size_t k = 0; k < dim; k++) {

float tmp = test_patterns[i][k]
- train_patterns[j][k];

d += tmp * tmp;
}
dist_matrix[j][i] = d;

}
}

OpenCL kernel code
__kernel void SquaredEuclid(

__global float *dist_matrix,
__global float *train_patterns,
__global float *test_patterns,
unsigned dim) {

float d = 0.0;
for (unsigned k = 0; k < dim; k++) {

float tmp = test_patterns[get_global_id(1)][k]
- train_patterns[get_global_id(0)][k];

d += tmp * tmp;
}
dist_matrix[get_global_id(0)][get_global_id(1)] = d;
}

Fig. 4: An example of how the original loop nest is transformed into
kernel code.

which is included at the top of the input file. The tool cannot
transform arbitrary loop nests into kernel code, since the loop
nest may contain code not conforming to OpenCL C99. The
programmer is required to rewrite the code until it conforms.
This is probably the most time-consuming task when using the
tool.

We implement a lexer and a parser which generate a
basic abstract syntax tree (AST) that we use as the internal
representation (IR), see Fig. 3 for an overview. From the IR, we
set up additional data structures needed in the transformation
and pattern-matching phases, which we explain in Sections V
and VI.

The tool generates a basic version of the host and kernel
code. The host code does all the things explained in Section
III. To get the kernel code, we parallelize the outermost loop in
a perfect loop nest of size one, and the two outermost loops if
the size is two or greater, unless the programmer specifies that
only the outermost should be parallelized. The programmer is
responsible for checking that data dependencies which prohibit
parallelization do not exist.

In Fig. 4 we show such a transformation using a loop
nest performing a distance calculation. The original code is
a perfect loop nest of size 2 and both of the outermost
loops are parallelizable. In the kernel code, we have removed

these two loops and replaced the indices of the two loops
with the global thread-identifier function. We replace i with
get_global_id(1) and j with get_global_id(0).
Note that we display the code with two-dimensional array
references for readability and brevity.

A pass over the kernel code checks if any pattern-matching
rules apply and, if so, the relevant transformations are per-
formed. A code-generation module converts the AST to source
code and saves it in a file that the programmer includes in his
original code. The programmer can then execute the generated
GPU code with a function call. The tool is written in python.

V. TRANSFORMATIONS

In this section we present source-code transformations
which optimize the code for the GPU hardware. A profitable
transformation speeds up the code by any factor greater than
one. In general, the transformations are aimed at any GPU with
a corresponding OpenCL implementation, but the transforma-
tions are mostly intended for NVIDIA GPUs, specifically for
the Kepler GK110 architecture [8]. Due to similarities in the
architectures, the transformations should in theory be profitable
on a recent AMD GPU architecture, or at least not unprofitable.

In Subsection V-A we explain how to define kernel function
arguments as constants, while we in Subsection V-B describe
how we coalesce memory access. Then, in Subsections V-C
and V-D we present the transformations for placing reusable
data in registers and shared data in local memory. The goal
of the transformations in the last two subsections is to move
data as close as possible to the processing units, where close
means with minimum latency.

A. Defining arguments

To define a variable means that we propagate the value
of the variable into the kernel code at compile time. This is
similar to using the #define statement in C instead of using
a constant global variable. The non-pointer arguments of the
kernel function can be defined when we compile the kernel
code. This provides additional information to the OpenCL
compiler which allows it to perform more optimizations, such
as loop unrolling [9].

We call the transformation DEFINEARG. To perform it,
we iterate over the kernel function arguments and, for each
argument which is not a pointer, we delete it from the list of
arguments. Then, we generate a string containing the compiler
option that define the removed argument. The strings are
concatenated and passed to the OpenCL compiler.

This transformation is similar to constant propagation [10]
which can be found in many contemporary compilers. The
compilers often perform the transformation offline. Since we
are able to compile the kernel code at run-time, we can
also define variables that are initialized from command-line
arguments or files.

The transformation is not specific to any hardware as such,
but we include it as it often gives a noticable speedup. The
running time of this transformation is linear in the number of
kernel function arguments.

B. Memory coalescing

Kernel codes exhibit several common memory access pat-
terns. In one pattern, each thread accesses a distinct data
element from global memory in the same instruction. If these
elements are not located consecutively in the global memory,
a performance penalty occurs. The reason is that, on the GPU,
a memory access is an instruction which accesses several
consecutive memory locations. In the case of a memory read,
a small chunk of data is read, much like when a CPU reads
an element of data, it brings the cache line containing the
element to the CPU cache. If we do not use all the elements
of a chunk, then we are wasting memory bandwidth. The
worst case is when none of the data elements that the threads
access are in the same chunk of data. Then each thread will
read one chunk and use only one element from this chunk.
This is called uncoalesced memory access. Not only are we
wasting bandwidth, but the memory transfers are performed
sequentially resulting in a latency penalty as well.

In order to obtain coalesced memory access we perform
the TRANSPOSITION transformation which interchange the
two subscripts of a two-dimensional array. The change in the
memory access pattern means that we must transpose the data
in the array, much like when one transposes a matrix. Related
is the transformation of an array of structs (AoS) to a struct
of arrays (SoA). When the data is layed out as an AoS, the
stride between the same member of two consecutive structs is
the size of the struct. To obtain coalesced memory access, we
can convert to the SoA layout where the stride is one.

The transformation takes a list of arrays as its argument.
For each array in the list we swap the dimensions of the array.
We create, in the host code, a new array of the same size as
the original. Let the write-only set consist of arrays which are
only written to. If the array is not in the write-only set, we
add code which copies the data from the original array to a
new array in the transposed layout. Finally, we replace the old
array with the new array in the kernel function argument.

If the array is in the write set then, after the data is
transferred back from the GPU, we transpose it in order to
give the data the layout that the rest of the user’s code expects.
The running time of the transformation is linear in the number
of arrays given as arguments.

This transformation is not a GPU-specific transformation,
because it is often profitable on the CPU architecture, where
it rearranges the data to enable vectorization and improve data
locality.

C. Placing reusable data in registers

Sometimes, a thread is reading the same data from the
global memory in each iteration of a for loop. The transfor-
mation to be described is about reading the data once, saving
it in a variable, and then reading this variable where we read
from the global memory before. This transformation has some
similarities to loop hoisting, also called loop-invariant code
motion [9], which moves loop-invariant code, for example a
computation, outside the loop.

The transformation can be performed on the GPU which,
unlike the CPU, has a large amount of registers per thread. In

Original kernel code
1 __kernel void NBody(
2 __global float *Mas,
3 __global float *Pos,
4 __global float *Forces) {
5 for (unsigned j = 0; j < N; j++) {
6 float a_x = Pos[0][get_global_id(0)];
7 float a_y = Pos[1][get_global_id(0)];
8 float a_m = Mas[get_global_id(0)];
9 ...

10 }
11 ...
12 }

Transformed kernel code
1 __kernel void NBody(
2 __global float *Mas,
3 __global float *Pos,
4 __global float *Forces) {
5 float Mas0_reg = Mas[get_global_id(0)];
6 float Pos0_reg = Pos[0][get_global_id(0)];
7 float Pos1_reg = Pos[1][get_global_id(0)];
8 for (unsigned j = 0; j < N; j++) {
9 float a_x = Pos0_reg;

10 float a_y = Pos1_reg;
11 float a_m = Mas0_reg;
12 ...
13 }
14 ...
15 }

Fig. 5: An example of how the HOISTTOREG transformation works.

Algorithm 1 HOISTTOREGLOOP

Input: A list, R, of 2-tuples containing an array reference and
a loop.

1: for (ref , loop) in R do
2: Allocate a temporary array with length equal to the

number of iterations of loop.
3: Copy loop in front of the loop nest it is in.
4: Create assignments from ref to the temporary array

inside the new loop.
5: Replace ref with references to the temporary array

inside loop.
6: end for

the GK110 architecture, each thread can use a maximum of
255 registers.

The transformation applies when a thread is reading the
same data from the global memory inside one loop, or inside
two loops. If the global memory reads are inside one loop,
we perform the HOISTTOREG transformation. We proceed by
creating a variable outside the loop, assign to the variable the
value which is read from the global memory, and then replace
the global memory read inside the loop with a read to that
variable. In Fig. 5 we see part of kernel code from an N-body
simulation. In lines 6–8 of the original kernel code we see that
we are reading the same data, the position and mass of a body,
from the global memory in each iteration of the j-loop. In the
transformed kernel code we start by creating an assignment
where the left-hand side is a temporary variable and the right-
hand side is a copy of the array reference to the global memory
location that we read. These assignments are placed at the

Original kernel code
1 __kernel void Laplace(
2 __global double *X,
3 __global double *Y,
4 __global double *Z,
5 ...) {
6 for (unsigned j = 0; j < storagesize; j++) {
7 for (unsigned d = 0; d < dim; d++) {
8 double X_d = X[d][get_global_id(0)];
9 double Y_d = Y[d][get_global_id(0)];

10 double Z_d = Z[d][get_global_id(0)];
11 ...
12 }
13 ...
14 }
15 }

Transformed kernel code
1 __kernel void Laplace(
2 __global double *X,
3 __global double *Y,
4 __global double *Z,
5 ...) {
6 double X_reg[dim];
7 double Y_reg[dim];
8 double Z_reg[dim];
9 for (unsigned d = 0; d < dim; d++) {

10 X_reg[d] = X[d][get_global_id(0)];
11 Y_reg[d] = Y[d][get_global_id(0)];
12 Z_reg[d] = Z[d][get_global_id(0)];
13 }
14 for (unsigned j = 0; j < storagesize; j++) {
15 for (unsigned d = 0; d < dim; d++) {
16 double X_d = X_reg[d];
17 double Y_d = Y_reg[d];
18 double Z_d = Z_reg[d];
19 ...
20 }
21 ...
22 }
23 }

Fig. 6: An example of how the HOISTTOREGLOOP transformation
works. See text for description.

beginning of the kernel code before any for loops. Finally,
we replace the right-hand side of the assignments inside the
loop with the temporary variables.

If the global memory reads are inside two loops, we
perform a slightly different transformation, which we call
HOISTTOREGLOOP, see Alg. 1 for a detailed description.
First, we allocate a temporary array with a length equal to the
number of iterations of the second loop. Then we read data
from global memory into this array. The old array reference
to global memory inside the two loops are replaced by the
corresponding reference to the temporary array. In Fig. 6 we
show an example of the HOISTTOREGLOOP transformation.
First, in lines 6–8 of the transformed kernel code, we generate
allocations of three temporary arrays X_reg, Y_reg, and
Z_reg. Then we copy the d-loop from line 7 of the original
kernel code and place it in front of the other two loops. Inside
the new d-loop we read the values from the global memory
and save them in the temporary arrays. Then, in lines 16–18
of the transformed kernel code we replace the right-hand sides
of the assignments with references to the temporary arrays.

This transformation is unprofitable when it causes the

kernel code to use more registers than what is available. This
can happen for example if the second loop has a large number
of iterations. In Section VI we present the conditions that we
check to determine whether we can perform the transformation
at all, and if so, if it is profitable. The running time of this
transformation is linear in the number of array references given
as arguments.

Many contemporary compilers perform loop hoisting,
including the LLVM compiler infrastructure [11] that the
NVIDIA OpenCL compiler is based on. Much, but not all loop-
invariant code perform a computation, which may be hoisted
without using extra registers. We only perform it on reads from
global memory, in which case it uses several extra registers and
the compiler may not be able to decide if it is profitable.

D. Placing shared data in local memory

The GPU has a local memory segment which is shared
between all threads in a local work group. The TILEINLOCAL
transformation makes use of the local memory to reduce data
transfer from global memory when shared data exist. The local
memory is located close to the processing units of the GPU
and it is therefore significantly faster to access than global
memory.

The transformation follows the overall scheme: Each thread
reads one value from the global memory into local memory,
then reads from the local memory the values that the thread
needs. Hence, we are replacing multiple reads from the global
memory with one read from the global memory and multiple
reads from the local memory. This transformation is similar to
loop tiling [10] which optimizes cache behaviour in CPUs.

Alg. 2 gives an abstract description of how we rewrite the
code. It starts by allocating an array in local memory. We tile
the loop by a factor equal to the length of the first dimension
of the local work group. At the start of the outer loop, we read
data from the global memory into the local array, and add a
barrier to synchronize the threads. In the inner loop, we replace
reads to the global memory with reads to the local memory.
After the inner loop we add another barrier. These barriers are
important, otherwise a thread may overwrite some data before
it was used by the thread that needed it.

In Fig. 7 we show an example of this transformation
in action. At the top we show a graphical depiction of the
execution after the transformation is performed. We perform
the transformation on the A and B matrices, and the local work-
group size is 16-by-16. The rows of A is divided into groups
of size 16. Each of the groups are divided into 16-by-16 sized
tiles. The same is done for B, but for the columns. Each of the
tiles are loaded to the local memory, a matrix multiplication of
the tiles is performed, and the result is accumulated in C_sub.
When all tiles have been multiplied, we save the C_sub tile
in the C matrix.

Code-wise, we proceed as follow: In lines 3–4 of the
transformed kernel code we allocate the local arrays. In lines
6–17 we tile the k-loop by a factor of 16. Next, we add the
assignments in lines 7–10 which read values from the global
memory into the local memory. Then we add the local thread
identifier to the subscript which contains the loop index k. In
lines 13–14, we replace the global array references with the

Algorithm 2 TILEINLOCAL

Input: A list, R, of 2-tuples containing an array reference and
a loop.

Input: The length, len, of the first dimension of the local
work-group size.

1: for (ref , loop) in R do
2: Allocate an array of size len · len in local memory.
3: Change increment of loop to len.
4: Create an inner loop, whose number of iterations is len

and increment is one, move the body of loop into this
loop, and place the inner loop inside loop.

5: Place in the local array the data needed inside the inner
loop.

6: Add barriers just before and just after the inner loop.
7: Replace ref with references to the local array.
8: Rewrite other expressions which uses the loop index of

loop.
9: end for

Row i

Column jA

43210

0

1

0 1

0

1

2

3

4

A local

B

B local

16

16

C sub += A local B local∗
Original kernel code

1 __kernel void MatMul(
2 __global float *A, __global float *B, __global float *C) {
3 float C_sub = 0;
4 for (unsigned k = 0; k < wA; k++) {
5 C_sub += A[get_global_id(1)][k] * B[k][get_global_id(1)];
6 }
7 C[get_global_id(1)][get_global_id(0)] = C_sub;
8 }

Transformed kernel code
1 __kernel void MatMul(
2 __global float *A, __global float *B, __global float *C) {
3 __local float A_local[16][16];
4 __local float B_local[16][16];
5 float C_sub = 0;
6 for (unsigned k = 0; k < wA; k+=16) {
7 A_local[get_local_id(1)][get_local_id(0)] =
8 A[get_global_id(1)][k + get_local_id(0)];
9 B_local[get_local_id(1)][get_local_id(0)] =

10 B[k + get_local_id(1)][get_global_id(0)];
11 barrier(CLK_LOCAL_MEM_FENCE);
12 for (unsigned kk = 0; kk < 16; kk++) {
13 C_sub += A_local[get_local_id(1)][kk]
14 * B_local[kk][get_local_id(0)];
15 }
16 barrier(CLK_LOCAL_MEM_FENCE);
17 }
18 C[get_global_id(1)][get_global_id(0)] = C_sub;
19 }

Fig. 7: An example of how the TILEINLOCAL transformation works.
The illustration shows how we divide the matrices into 16-
by-16 sized tiles.

local array references, and global thread identifiers with local
thread identifiers. In the subscripts, we replace the outer loop
index k with the inner loop index kk.

Several conditions need to be met before we can perform
this transformation. For example, this transformation only

For 1D:

A[get_global_id(0)][d]

For 2D:

A[get_global_id(0)][get_global_id(1)]

Fig. 8: Examples of patterns where we would perform TRANSPOSI-
TION. d is a constant or a loop index.

works for two-dimensional local work groups where each
dimension has the same length. In Section VI we describe
what these conditions are. The running time is linear in the
number of array references given as arguments.

VI. PATTERN-MATCHING RULES

In this section we present pattern-matching rules that
enables the tool to perform the presented transformations
automatically. We iterate over the array references, and for
each found pattern, we check a set of conditions. If met,
we create the arguments and perform the respective trans-
formation. The conditions are not exhaustive, but we think
that they are sufficiently thorough to make the tool usable for
many programs. The running time for DEFINEARG is linear
in the number of kernel function arguments, and for the other
transformations, it is linear in the number of array references
in the code.

A. DEFINEARG

We need no pattern-matching rule or conditions to perform
this transformation because it can always be performed. For
some programs though, a kernel function argument can change
between two kernel invocations, which means that we cannot
define this argument at compile time. We provide a function
which allows the user to exclude an argument when this
transformation is performed.

B. TRANSPOSITION

We divide the pattern-matching rule into two cases: one
where one loop is parallelized and the other where two loops
are parallelized, that is, 1D- and 2D-parallelization. For 1D, the
pattern is a two-dimentional array reference having the global
thread identifier in the outermost subscript, and something that
is not in the innermost subscript, see Fig. 8 for an example.
For 2D, the pattern is a two-dimentional array reference having
the first element of global thread identifier in the outermost
subscript and the second element in the innermost subscript.
We do not check any conditions, because it is always safe to
transpose the data.

C. HOISTTOREG and HOISTTOREGLOOP

For HOISTTOREG, the pattern is an array reference that
is inside one or more loops, but contains no loop index, see
Fig. 9 for examples. For HOISTTOREGLOOP, the pattern is
an array reference that is inside two loops, and the loop index
of the outermost loop is not in the subscripts of the reference.

for (unsigned k = 0; k < N; k++) {
... = A[10];
... = B[get_global_id(0)][l];
for (unsigned g = 0; g < dim; g++) {

... = C[get_global_id(1)];

... = D[l][10];
}

}

for (unsigned k = 0; k < N; k++) {
for (unsigned g = 0; g < dim; g++) {

... = A[10][g];

... = B[g][get_global_id(0)];

... = C[get_global_id(1)][g];

... = D[g][l];
}

}

Fig. 9: Examples of patterns. For the top ones, we perform HOIST-
TOREG, for the bottom ones, HOISTTOREGLOOP.

for (unsigned k = 0; k < N; k++) {
... = A[get_global_id(1)][k];
... = B[k][get_global_id(0)];

}

Fig. 10: Examples of patterns where we would perform TILEINLO-
CAL.

We cannot always perform this transformation, because
although it is usually profitable to use some of the GPU
registers for this transformation, it is unwise to use all of them.
It would be difficult to estimate exactly how many registers can
be used. Instead, we make it a condition that the number of
used registers may not exceed a heuristical limit of 20. The
number of registers needed depends on a set of variables and
constants, which we find at compile time. Since the values of
the variables may not be known at compile time, we insert
if-statements into the code which check the condition at run-
time. Hence, if a pattern is matched, we generate two versions
of the kernel code: one with the appropriate transformation
and one without. We decide at run-time which version to use.

D. TILEINLOCAL

The pattern is an array reference with two subscripts where
one of them contain a loop index and the other a global thread
identifier, see Fig. 10 for examples. The conditions, that need
to be met, are:

• The grid must have two dimensions.
• The loop index must have a stride of one.
• The length of the range of the loop index must be

divisable by the length of the first dimension of the local
work-group size.

The last condition is checked at run-time just as we did in the
previous subsection.

VII. PERFORMANCE EXPERIMENTS

In this section we evaluate our tool by testing the per-
formance of the generated code for five real-world sample
programs. The evaluation has three parts: We compare the
performance against (a) frameworks with comparative capa-
bilities, (b) the theoretical performance of the test hardware,
and (c) the performance on a price-equivalent CPU.

First, we give a description of the sample programs and
how they were benchmarked. Then, we present the hardware
platforms and the frameworks that we compare against. Finally,
we discuss the benchmark results.

A. Sample programs

The sample programs used in the benchmarks are:

MatMul:
This program multiplies two N -by-N matrices. In the-
ory, this program is compute-bound because it per-
forms O(N3) floating-point operations, and reads O(N2)
floating-point values. Our tool performs two transforma-
tions profitable to matrix-matrix multiplication and we
therefore do not expect it to able to compete with hand-
optimized versions from software libraries. Nevertheless,
we include it as it is a typical subroutine in high-
performance software. We benchmark the program with
N = 12 544, which was the maximum we could use
before we reached the memory limit of the GPU.

Squared Euclid:
This program calculates the squared Euclidean distance
between all pairs of N objects with 16 dimensions each.
The program has many uses, for example as a subrou-
tine in the classical machine-learning algorithm k-nearest
neighbour. We benchmarked the program using the input
size N = 16 384, which was the maximum problem size
we could fit in the memory of the GPU. The program is
memory-bound.

NBody:
This program is the force calculation in a simulation of N
bodies, where we used the standard all-to-all O(N2) algo-
rithm. This is a classic method for simulating interactions
between objects. We used the input size N = 1081 600.
This program is compute-bound.

Laplace:
This program is a subroutine in a solver of the Black-
Scholes partial differential equation with k underlyings
[12]. It has a similar structure to a matrix-vector multipli-
cation, but instead of multiplying, we apply a much more
compute-heavy operator. Hence, the program is compute-
bound. Its running time is O(N2) and we use the input
size N = 215 296 and k = 5.

Gaussian kernels:
This program is used in image registration. It calculates
the first, second, and third order derivatives of Gaussian
kernels [13] in a number of points, N . It has O(N2)
running time and appears to be compute-bound. We
benchmarked this program for input size N = 4608
which was the maximum we could use.

In general, the algorithms underlying the programs are not
important, since our tool performs hardware-specific transfor-
mations. We executed each program ten times and computed

the average running time. We only tested each program with
one input size which we think would give the program enough
parallelism to saturate the processing units of the GPU. How-
ever, for some of the programs we were limited by the memory
size of the GPU and we could not be sure of full saturation.

The code was compiled with the NVIDIA OpenCL com-
piler available in CUDA 5.5 and the Intel OpenCL compiler
version 3.0 using the -cl-relaxed-math flag. The host
code was compiled with gcc 4.7 with the -O3 flag. We used
the PGI compiler version 14.1 to compile the OpenACC code.

B. Systems under investigation

The GPU-side benchmarks were performed on a NVIDIA
K20 GPU which has a peak performance of 3.52 TFlop/s and
1.17 TFlop/s in single and double precision, respectively [14].
For the CPU benchmark, we use a machine with two Intel
Xeon E5-2670 processors clocked at 2.6 GHz [15]. Together,
they have a peak performance of 664 GFlop/s and 332 GFlop/s
in single and double precision.

When selecting competitors for our tool, we require that
they should have approximately the same characteristics. That
means that the frameworks should (a) take as input some
piece of source code, that is a loop nest, from a common
programming language, and (b) generate GPU-executable code
for that piece of code. Point (a) excludes parallel languages
that generate GPU-executable code. While these languages are
useful to people who are writing new parallel programs, we
do not think that they will be of much use when parallelizing
parts of existing programs, because it is necessary to rewrite
the entire program in the parallel language.

We were not able to find many other frameworks, in fact,
we only found one, namely the OpenACC API [4]. We use
the implementation by PGI [16]. One can parallelize a loop
nest with OpenACC by adding so-called pragmas, which are
directives that provide additional information to the compiler,
before the loop nest. The pragmas contain information about
parallelization of the loop nest and data transfer between the
host and the GPU. The compiler generates GPU-executable
code for the loop nest and incorporates the data-transfer
patterns given.

After reading the documentation it is not clear whether
the PGI compiler performs hardware-specific optimizations.
However, it does provide compiler flags, which we made use
of, that enable compilation of the code for a specific GPU
architecture. The PGI compiler generates CUDA code, but
CUDA does not allow compilation of the kernel code at run-
time. This may prevent some optimizations, because values of
command-line arguments cannot be propagated into the kernel
code.

We also compared the performance of the GPU execution
with that of the CPU execution of the programs. We ran the
programs sequentially on the CPU, but they were 2-3 orders
of magnitude slower than the GPU execution of the code and
we do not think that this comparison would be particularly
informative.

We looked for ways to optimize the code for the CPU
architecture. For example, OpenMP provides the parallel
pragma to distribute the work across the cores and the simd

MatMul Squared
Euclid

NBody Laplace Gaussian
kernels

GPU OPT
to GPU BAS

3.1 55.7 3.4 3.6 1.7

GPU BAS
to PGI

0.9 4.6 2.2 – –

GPU OPT
to PGI

2.8 257.4 7.5 – –

TABLE I: Speedup in the execution time of the code generated by
the different frameworks.

pragma to use the SIMD capabilities of the CPU. However,
several of the programs would require the TRANSPOSITION
transformation, before the SIMD capabilities could be used
efficiently. Instead, we extend our tool to generate OpenCL
code which utilizes the cores and the SIMD capabilities of the
CPU.

C. Benchmark results

The code was set up to initialize all data structures pertain-
ing to GPU execution before the loop nests were executed on
the GPU. Data copy from the host to the GPU is included in
the running time, while data copy from the GPU to the host
is not. For many of the programs, we do not want to copy the
data back, but instead continue with another computation on
the GPU which uses that data. Take for example the N-body
simulation which updates the positions of the bodies in each
time step. Instead of copying the data back and forth in each
time step, we want to keep the data on the GPU and copy it
back when all time steps are completed.

The code generated by the PGI compiler for Laplace and
Gaussian kernels calculated wrong values, and we therefore
do not compare against these two programs. The problem
seems to be with privatizing static arrays that are allocated
somewhere inside the loop nest, e.g. through statements such
as float temp[3];. Despite our best efforts to inform
the compiler through pragmas that these arrays should be
privatized, we did not get it to work. Several things could
go wrong with our tool as well which may cause it to produce
incorrect results. In general we think that there is a certain
fragility in these kinds of frameworks, perhaps because there is
just so many things to consider and get right for the framework
creators.

We compiled the code both with and without the trans-
formations from our tool, denoted GPU OPT and GPU BAS,
and with the PGI compiler. In Table I we give the relative
speedup of the running times of the code generated by the three
different compilations of the five sample programs. In the first
row we see that our transformations yield high speedups for
four programs. We perform the HOISTTOREGLOOP transfor-
mation on Squared Euclid, which saves much reusable data in
registers, and since it is a memory-bound program, this gives a
large speedup. We did not expect a high speed up for Gaussian
kernels, since only the DEFINEARG transformation could be
performed.

When we compare GPU BAS to PGI, we see that GPU
BAS is slightly slower for MatMul, but faster for the other

MatMul Squared
Euclid

NBody Laplace Gaussian
kernels

Performance
[GFlop/s]

205 611 872 245 104

% of peak
performance

6 18 25 21 3

TABLE II: The measured performance of the code generated by our
tool for the five programs.

programs. This suggests that the PGI compiler is not perform-
ing hardware-specific transformations. We already now know
that GPU OPT is going to be faster than PGI, and row three
shows exactly how much faster. The speedups are mixed, but
sizable.

Next, we compare the achieved performance to the theo-
retical peak performance. We counted the number of floating-
point operations for each program and divided that number
by the running time. In Table II we give the performance in
giga floating-point operations per second (GFlop/s) and what
percentage of the peak performance was reached. We observe
that for Squared Euclid, NBody, and Laplace we achieve
18–25% of peak performance, which we think is reasonably
good. There are many reasons why we cannot reach the peak
performance for all programs. First, programs may contain
integer and comparison operations, which we do not include
in the calculation. Second, the theoretical peak performance
calculation assumes that all instructions are fused multiply-
adds (FMAs), which perform an addition and a multiplication
in one instruction. However, many programs do not have
an instruction mix of sheer FMAs, but instead of additions,
multiplications, and FMAs. Even when a program has only
FMAs, such as MatMul, NVIDIA claims that the program
can reach around 80% of the peak performance [8].

We observe that the performance of MatMul and Gaussian
kernels is far from the peak. For MatMul, we think that
the program is memory-bound, despite our transformations
which reduce the amount of data transfers from global memory.
We are less sure on why Gaussian kernels performs poorly.
It does have some uncoalesced memory accesses that our
optimizations could not resolve, and it has many operations
such as square roots, divisions and powers, each of which is
counted as one floating-point operation, but they take more
cycles to execute than an addition or a multiplication.

We would like to point out that we, in another context,
have created a hand-optimized version of Laplace which had
a performance of 450 GFlop/s, which shows that we are within
a factor of two of that hand-optimized code.

We benchmarked two CPU versions of the programs: one
with transformations, and one without, denoted CPU OPT and
CPU BAS. In Table III we compare CPU OPT to CPU BAS
as well as GPU OPT to CPU OPT.

For Squared Euclid, NBody, and Laplace, we observe
that our transformations have no impact. In these three
programs, either HOISTTOREG or HOISTTOREGLOOP was
performed, and as we expected, the transformations have
no effect, most likely because performing them results in
register spilling. In MatMul we perform the TILEINLOCAL

MatMul Squared
Euclid

NBody Laplace Gaussian
kernels

CPU OPT
to
CPU BAS

6.8 1.1 1.1 1.1 15.6

GPU OPT
to
CPU OPT

3.3 36.1 10.9 6.5 1.8

TABLE III: Speedup in the execution time of the code generated by
our tool for the CPU and GPU.

transformation, which reduces the memory transfers from the
global memory even on CPUs. Surprisingly, Gaussian kernels
gains a significant speedup even though only the DEFINEARG
transformation was performed. When comparing GPU OPT to
CPU OPT, we see high speedups for Squared Euclid, NBody,
and Laplace which were the programs that were closest to the
peak performance of the GPU. None of the hardware-specific
transformations were applicable to Gaussian kernels, so we
did not expect a large speedup.

VIII. CONCLUSION

Our future work consists of extending the tool with (a) a
mechanism for decomposing the work load to be executed in
parallel on multiple GPUs, (b) a more user-friendly interface,
and (c) a model which abstracts what our transformations do.
If we look aside from the DEFINEARG and TRANSPOSITION
transformations, then, more abstractly, our transformations
are about the reuse of data. With a model of data usage
patterns, we could find data that can be reused and reorder
the instructions to optimize the ratio between the amount of
reused data and the amount of parallel work.

We presented a methodology that enables a programmer
to take advantage of the computing resources of a GPU. We
created a simple mechanism to parse a loop nest for which the
programmer wants to generate GPU-executable code. Then we
implemented several transformations to speed up the running
time of the generated code and pattern-matching rules to
perform the transformations automatically. We discovered that
transformations can be grouped into three sets: transformations
that can be performed (a) without checking any conditions, (b)
by checking conditions at compile time, and (c) by checking
conditions at compile time and at run-time. Also, many of
the transformations could, with little effort, be performed
automatically instead of semi-automatically, which makes our
tool usable for both novices and experts.

When we benchmarked five sample programs, we observed
that significant improvements in time-to-solution were ob-
tained when comparing to code from an OpenACC compiler
and optimized CPU code. For some programs the code ran one
order of magnitude faster in both cases. Furthermore, we found
that, for three programs, the generated code could attain close
to 25% of the peak performance of the GPU. For the others,
we concluded that further transformations would be needed to
obtain higher performance.

ACKNOWLEDGMENT

I am grateful to Jyrki Katajainen for suggesting improve-
ments on the paper, and Stefan Sommer and the Munich Centre
of Advanced Computing1 for providing benchmark platforms.

REFERENCES

[1] (Nov. 2012) OpenCL specification v1.2r19.
[2] NVIDIA. (2013) Compute unified device architecture C programming

guide.
[3] (Mar. 2014) OpenMP API specification.
[4] OpenACC. (2011) The OpenACC application programming interface.
[5] K. Kennedy, K. S. McKinley, and C. W. Tseng, “Interactive parallel

programming using the ParaScope editor,” IEEE Trans. Parallel Distrib.
Syst., vol. 2, no. 3, pp. 329–341, 1991.

[6] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: A compiler
framework for automatic translation and optimization,” in PPoPP 2009.
New York: ACM, 2009, pp. 101–110.

[7] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa, Hetero-
geneous Computing with OpenCL — Revised OpenCL 1.2 Edition.
Waltham: Morgan Kaufmann, 2013.

[8] NVIDIA. (2012) NVIDIA’s next generation CUDA compute architec-
ture: Kepler GK110 (Whitepaper).

[9] S. S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco: Morgan Kaufmann, 1997.

[10] K. Kennedy and J. R. Allen, Optimizing Compilers for Modern Ar-
chitectures: A Dependence-based Approach. San Francisco: Morgan
Kaufmann, 2002.

[11] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” in CGO 2004. Washington:
IEEE Computer Society, 2004, pp. 75–88.

[12] A. Heinecke, S. Schraufstetter, and H.-J. Bungartz, “A highly parallel
Black-Scholes solver based on adaptive sparse grids,” IJCM 2012, vol.
89(9), pp. 1212–1238, 2012.

[13] S. Sommer, M. Nielsen, S. Darkner, and X. Pennec, “Higher order
kernels and locally affine LDDMM registration,” SIIMS 2013, vol. 6(1),
pp. 341–367, 2013.

[14] (Feb. 2014) NVIDIA Tesla GPUs.
[15] (Mar. 2014) Intel Xeon processor E5-2670 specification.
[16] (Feb. 2014) PGI accelerator compiler with OpenACC directives.

1http://www.mac.tum.de/wiki/index.php/Home

	0pt Abstract
	1 Introduction
	1.1 Related work
	1.2 Acknowledgements

	2 Background
	2.1 The GPU architecture
	2.2 The OpenCL programming model
	2.3 What does semi-automatic mean?
	2.4 Our approach to a semi-automatic framework

	3 Compilation: Front end and code generation
	3.1 Lexing
	3.2 Parsing
	3.3 Internal representation
	3.4 Code generation

	4 Generation of host code and kernel code
	4.1 Overview of the host code
	4.2 Generating the kernel code
	4.3 Generating the AllocateBuffers function
	4.4 Generating the SetArguments function
	4.5 Generating the InvokeKernel function
	4.6 Generating the RunMain function

	5 Transformations
	5.1 Defining arguments
	5.2 Memory coalescing
	5.3 Placing reusable data in registers
	5.4 Placing shared data in local memory

	6 Pattern-matching rules
	6.1 The Transposition transformation
	6.2 The HoistToReg and HoistToRegLoop transformations
	6.3 The TileInLocal transformation
	6.4 Discussion

	7 Use of the framework
	8 Performance experiments
	8.1 Sample programs
	8.2 Systems under investigation
	8.3 Benchmark results

	9 Concluding remarks
	9.1 Advantages and Disadvantages
	9.2 Future work
	9.3 Summary

	-12pt References
	Appendix A: Paper submitted for PSTI 2014

