DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

SuBMITTED: NOVEMBER 30, 2006
ADVISERS: JYRKI KATAJAINEN AND PER HoGH

MASTER THESIS FOR THE CAND. SCIENT. DEGREE IN COMPUTER SCIENCE

Jacob de Fine Skibsted
Stephan Lynge Herlev Larsen

Distributing usage of bandwidth
for on-demand streaming

Abstract

This thesis seeks to distribute the overall bandwidth consumption in a client-server network
providing video on-demand streaming. This goal is reached by designing and implementing a
protocol which employs methods resembling those used in peer-to-peer networks.

A protocol specification which enables forwarding of data between clients in order to lower
the bandwidth consumption of the server has been developed. The data stream is divided in
in order to enable multiple clients to send a part of the data stream to a single receiver and
at the same time offer the full functionalities of on-demand streaming such as pause and skip.
Finally, the primary functionalities of the protocol specification has been implemented and
used in a set of test applications.

We have succeeded in designing a protocol which can distribute the overall bandwidth in a
logical network offering video on-demand streaming. Thus, the bandwidth usage of the central
server has been lowered. Based on the design a fully operational implementation has been
developed. Calculation of the actual savings is still an open question as this will need a large
scale real life usage of the protocol in order to obtain empirical measurements.

The following section contains a Danish translation of the abstract.

Resumé

Dette speciale forsgger at distribuere det samlede bandbreddeforbrug i et client-server netvaerk,
som tilbyder video on-demand streaming. Maélet opnas ved design og implementering af en
protokol, som benytter metoder, der ligner dem som anvendes i peer-to-peer netveerk.

Der er udviklet en protokolspecifikation, som muligger videresendelse af data mellem klien-
ter med det formal at reducere serverens bandbreddeforbrug. Datastrommen er opdelt for
at muligggre afsendelse af en del af data fra forskellige klienter til den samme modtager og
samtidig tilbyde den fulde funktionalitet ved on-demand streaming sasom pause og skip. Slut-
telig er protokolspecifikationens primaere funktionaliteter implementeret og benyttet i et saet
testapplikationer.

Vi har succesfuldt designet en protokol som kan distribuere det samlede bandbreddeforbrug
i et logisk netveerk, der tilbyder video on-demand streaming. Saledes er den centrale servers
bandbreddeforbrug blevet reduceret. Baseret pa designet er en fuldt funktionsdygtig imple-
mentering udviklet. Beregning af den egentlige besparelse er stadig et abent spgrgsmal idet
dette vil kraeve en egentlig brug af protokollen i stor skala for at opné empiriske malinger.

Formalities

This report is the master thesis for the cand. scient. degree of Stephan Lynge and Jacob de
Fine Skibsted at the Department of Computer Science at the University of Copenhagen. The
thesis was written in the period from the 1st of December 2005 to the 30th of November 2006.

Initially, we would like to thank our advisers Jyrki Katajainen and Per Hggh for their thor-
oughness and commitment.

i

Contents

1 Introduction viii
1.1 Motivation ix

1.2 Objectives ix

1.3 Report layout Lo X

1 Requirements and ideas 1
2 Fundamental requirements Lo 2
2.1 Server bandwidth usage 2

2.2 Efficient scalability oo 2

2.3 Traffic shaping 2

24 Design and implementation 2

2.5 End-user functionality o oo 3

2.6 System security oL 3

2.7 Quality of stream Lo 4

3 Fundamental ideas 5
3.1 Server bandwidth usage)

3.2 Efficient scalability o o 8

3.3 Traffic shapingo 8

3.4 Design and implementation 0L 9

3.5 End-user functionality 10

3.6 System securityo 12

3.7 Quality of stream Lo 13

II Related theory 15
4 Synthesis 16
5 Multimedia coding L 17
5.1 Video codec 17

0.2 Requirementso 17

iii

Contents

5.3 Standards L 18

54 MPEG-2 e 19

2.5 Existing software L Lo 21

0.6 Video samples Lo 21

5.7 Conclusions 22

6 Structure of the Internet L 23
6.1 The elements of the Internet 23

6.2 Connection capacity e 23

6.3 Connection stability o oo 24

6.4 Routing o 26

6.5 The Internet of 2006 27

6.6 Network byte-order 27

7 Logical network topology 29
7.1 Topological models 29

7.2 Client-server relationship oL 33

7.3 Sources of inspiration 34

8 Network protocol design Lo 35
8.1 OSImodel 35

8.2 TCP/IP protocol stack 37

8.3 Connection-oriented versus connectionless transport 40

8.4 Network Address Translation (NAT) 43

8.5 Real-time Transport Protocol (RTP) 43

9 Protocol implementation L oL 45
9.1 Network layers and interfaces 45

9.2 Multithreading oL Lo 45

10 Buffering of data L 48
10.1 Buffering approach o 48

10.2 Physical memory layout oL 49

10.3 Bufferingofdata 49

11 Securityo 51
11.1 Authorization 51

11.2 Dataintegrity o ol

11.3 Datatheft ol

IIT Protocol design 53

v

Contents

12 Fundamentals o4
12.1 System control 54

12.2 Data transport L 54

12.3 Logical topology 56

124 Video identificationo o o o7

12,5 Securityo o7

12.6 Protocol architecture Lo 59

13 Protocol state 61
13.1 Serverstate 61

13.2 Client states e 66

14 Mechanisms oL 69
14.1 Fragmentation of data Lo 70

14.2 Client buffering of data 0oL 73

143 Bandwidth L 86

14.4 Calculation of round-trip time L. 91

14.5 Error detectiono 94

14.6 Selection mechanismo oL 95

15 Underlying protocol usage L 96
16 Protocol phases 97
17 Packet description 99
17.1 Packet typesand flowso o Lo 99

17.2 Connection L 103

17.3 Configuration 108

174 Streaming 112

17,5 Interaction L 118

17.6 Status oL 121

17.7 Round-trip time calculation 124

17.8 Security o e 125

18 Timers e 127
19 Imterface e 128
IV Protocol implementation 129
20 Fundamentalso 130
20.1 Main components 130

20.2 Memory managemento 133

Contents

20.3 Thread design 134

21 Class design L 135
21.1 Packets 135

21.2 Transport handler L 137

21.3 Incoming packet queue oL 137

214 Databank L 138

21.5 Stream engineo 141

21.6 Datacontainer 142

21.7 Application task queue Lo 144

21.8 Client-side logic 145

21.9 Server-side logic 145

22 Selection algorithm 146
22.1 Finding the most anti-social client 148

22.2 Block distribution mechanism 0oL 148

23 Threading 150
23.1 Receiving packages oL Lo 150

23.2 Incoming packet processing, 150

23.3 Bufferand cache 0oL 150

234 Stream engineo 151

23.5 Statusthread 151

23.6 Application threads Lo 151

23.7 Summarizing oL 151

24 Interface L L 153
24.1 Server interface L 153

24.2 Client interface L 157

25 Our implementation 160
25.1 Limitations L 160

V Verification 163
26 Verification of the implementation L oL 164
26.1 Test scenarios 164

26.2 Thetest result 167

27 Discussion of the performance 168
27.1 Parameters 168

27.2 Boundaries of the performance 0. 169

vi

Contents

VI Closure

28 Perspectives L

29 Conclusion

Glossary

Bibliography

A Packet table

B Protocol source files

C Client application source files
D Server application source files
E Screendump of applications

vil

171
172
175

177

183

187

189

323

337

341

1. Introduction

1 Introduction

As computers have become increasingly more powerful the possibility of presenting digital
media to the end-user has become ever more present. Watching video clips or listening to music
through the use of computers is now a part of most end-users everyday usage of computers.

Together with the rapid spreading of the Internet this opens up for opportunities which will
redefine how computers are used in our lives. Listening to radio through the Internet is now
a common way of distributing media and every self-respecting radio station now distributes
content through the Internet and some are even based only on the Internet.

Distributing videos through the Internet has yet to gain the same level of popularity. This is
mainly due to the high requirements to the capacity of the available connection of the end-
users. During recent years this amount has been growing rapidly and is now reaching a level
where watching a video through the Internet is becoming possible. Thus, renting a video is no
longer a question of venturing into the cold, spending time in the rental shop, only to realize
that your favourite video is rented out. In the future the rental video is only a click away
sitting on your sofa and will never be rented out. But it does not end here. TV viewers will
no longer be bound to the TV guide but will be able to decide when to watch their favourite
soap opera.

Distributing multimedia content through the Internet is normally referred to as streaming.
Streaming differs from normal download in the sense that streaming tries to optimize the use
of bandwidth in the regard of only using the exact amount of bandwidth needed to watch
the video. Hence, data will be received at the same speed as it is watched. This has several
advantages; Firstly, it only uses the needed bandwidth at any time freeing the capacity for
other use, thus raising the potential amount of connected users. Secondly, it is possible to
start watching a video immediately avoiding the delay it would impose if the end user would
have to wait for a complete download. Finally, it helps protecting the copyrights of the owner
since only the currently displayed fraction of video needs to be present at the client.

This thesis focuses solely upon streaming of video as streaming of sound is not associated with
the same difficulty as the bandwidth requirements when streaming sound are small enough
not to represent a problem neither to the streaming server nor the client. Thus, streaming of
video at high quality represents a problem which will have to be solved before the video rental
scenario above becomes reality.

Describing the ultimate goal of this thesis calls for a clarification of the different approaches
when streaming video:

Live streaming: This term refers to a method of streaming video "live” to the end-user. The
user receives a stream of video without the ability to fast forward, rewind or pause the
stream. This is analogous to a regular TV-signal transmitting a football match or a
news broadcast. Thus, only one stream of data is transmitted to all end users.

On-demand streaming: This term is applied to an approach which tries to resemble the
functionality of the VCR or DVD player. The user receives a stream of video "on-

viii

1. Introduction

demand” meaning that the user controls the content of the stream. Thus the user
decides when the stream is dispatched and is able to fast forward, rewind, or pause the
stream.

Near on-demand streaming: This term is used for a system using a hybrid of live stream-
ing and on-demand streaming. Using this approach a new copy of the same stream is
dispatched with a certain interval. The user signs up for the stream and waits until
the stream is dispatched. Thus the user is partly in control of when the stream is dis-
patched, and can only fast forward, rewind or pause the stream by jumping to a channel
dispatched with a different time offset.

The focus of this thesis will be on-demand streaming resting upon the above definition com-
bined with the requirement of distributing bandwidth usage. Distribution is referred to as
dispersing the bandwidth usage among several network links, instead of the typical setup
where the link to the main server carries the highest load. The total sum of needed band-
width remains the same, but a more even usage is obtained as the sum is distributed among
many links, reducing the required bandwidth capacity of the server.

1.1 Motivation

During earlier work [7] we have been confronted with the fact that the largest part of the costs
involved when streaming video over the Internet are bandwidth expenses. This is due to the
enormous amounts of data transports incurred when streaming video.

Transporting large amounts of data has always been an issue in computer science. Solving
this type of problem sometimes ends up presenting a distributed system using a peer-to-peer
model. This can be seen in file sharing environments like BitTorrent [1]| or eDonkey [8].

Thus, combining streaming of video with the advantages and ideas taken from peer-to-peer
like networks is the primary motivation for this thesis. Using technologies and ideas of this
type, the wish is to create a system which offers on-demand video streaming with the ability
to reduce the needed bandwidth of the server.

As the required bandwidth for streaming of high quality video is only just starting to become
easily accessible to the average consumer, no real de-facto standard or off-the-shelf product
has yet been developed. Only time will tell which direction this technology will take but by
this thesis we hope to make a small contribution to this development.

1.2 Objectives

The main objective is to create a system which can be used to minimize the bandwidth of the
streaming server when streaming video on-demand.

This thesis is comprised of multiple parts each defining their own objectives:

X

1. Introduction

Design of a protocol: As the system will constitute server and client entities a network
protocol to facilitate communication between these will have to be designed.

Implementation of the protocol: The protocol specification should be implemented with
respect to the specification requirements. Furthermore, the implementation should be
made modularly.

Implementing of applications: One or more applications should be implemented as a proof
of principle possibly a server and a client.

Validation: The design should be validated to create a proof of concept.

The thesis will focus upon the designed and implemented version of the protocol. Thus,
the design and implementation will be documented thoroughly with the result as the main
objective.

1.3 Report layout

This report has been typeset using IXIgX2e. The report has been written using the Oxford
style English language. Thus, synchronize is for instance deliberately spelled using the -ize
ending.

The structure of this report illustrates the chronological work process used during this project.
The report is divided into the following chapters:

I Requirements and solutions: This chapter dives deeper into the subject defining the
formal requirements. We describe the requirements from a less technical perspective
narrowing down the theoretical areas which will have to be examined by the study. We
outline a rough solution to the given problems based on initial ideas and thoughts. These
solutions will be used as reference to the set of problems until the final design is laid
out.

11 Related theory: In this chapter we analyse the found literature. The areas defining this
theory are for the main part computer networks, multimedia coding and application
development. The selection of these areas takes its starting point in the requirements
and solutions found in the latter chapter. The main purpose of this chapter is to examine
important parts of the theory, thus giving a foundation for the design of the system.

IIT Protocol design: This chapter analyses the requirements given in Chapter I and based
upon the theory examined in Chapter II the design of the system is accounted for. This
chapter will be the final result of several iterative passes aiming at clarifying the flaws
and ambiguities of the design.

IV Protocol implementation: This chapter describes the implementation of the protocol
and its components developed during the course of this thesis. This will also include a
schematic view of the components of the implementation.

1. Introduction

V Verification: This chapter seeks to verify the protocol design and the implementation. In
the chapter practical tests will be conducted to validate the protocol implementation.
Furthermore, the chapter includes a discussion of the achieved bandwidth consumption.

VI Closure: This chapter dives into the perspectives of the thesis and concludes upon the
achieved goals.

These chapters illustrate the phases when working with the thesis. All chapters are of course
revisited iteratively after the completion of every phase.
This report is written for students at a similar level as the authors or the like.

The thesis aims at realizing a design of a distributed on-demand streaming network and will
therefore contain a thorough description of this design. Readers can skip to this in Chapter
IIT if the underlying theory is of little or no relevance.

As the report contains a collection of specific technical terms, a glossary is provided on page

177. Throughout the report these terms, whenever appearing for the first time, will be written
in stalics and a description is given in the glossary.

X1

1.

Introduction

xii

CHAPTER [

Requirements and ideas

In this chapter we will present the basic requirements for the system listed by overall areas. For
the reader to get a general idea of how these issues can be solved, this chapter furthermore
contains a section which sketches a solution to each of the listed requirements. Thus this
chapter serves as means of getting the reader acquainted with the fundamental elements of
the system before the theoretical foundation can be accounted for.

I. Requirements and ideas 2. Fundamental requirements

2 Fundamental requirements

This section describes the main requirements to the system. These requirements are a result
of our expectations to a system of this type, our technical knowledge combined with a wish
for creating a usable outcome.

2.1 Server bandwidth usage

As described earlier the primary objective of the system is to lower the bandwidth usage of
the server. Fundamentally, this means that the bandwidth usage at the server must not rise
linearly with the number of connecting clients. For instance, if a server has a capacity of 100
Mbit /s and is streaming a video requiring 2 Mbit /s this would result in a maximum capacity of
50 streams. This is exactly the problem which we wish to solve by raising the above capacity
of 50 streams without increasing the bandwidth capacity of the server of 100 Mbit/s.

2.2 Efficient scalability

The protocol should be scalable to connect a large number of clients. Thus the number of
connected clients should not be limited by the protocol design. The scalability is defined with
respect to the number of connected clients compared to the bandwidth usage of the server.

2.3 Traffic shaping

It should be possible to control and prioritize the individual data streams sent to all parts
of the network. We refer to this as traffic shaping although this may not be in complete
accordance with the traditional definition of the term. For instance, if a service provider
wishes to enforce a minimum usage of a specific network link, it should be possible to satisfy
this wish.

2.4 Design and implementation

The protocol should be designed using a modular approach offering easy extension of future
design. The specification of the protocol should be thoroughly documented.

Furthermore, a server application and a client application should be designed and imple-
mented, which demonstrate the usage of the protocol implementation. This will be part of
our proof of concept verifying that the idea works as intended.

An enclosed implementation of the protocol specification should be created, which offers an

I. Requirements and ideas 2. Fundamental requirements

easy-to-use interface, enabling developers to implement their own applications using the pro-
tocol implementation.

The protocol must be implemented using standard libraries and components and be based on
the TCP/IP stack. This ensures that the implementation is usable on the Internet and will
be portable as required by the objectives.

For the sake of clarification, we stress that our implementation will be developed for a standard
computer with no regard to specialized hardware devices.

2.5 End-user functionality

To fulfill the demands for creating an on-demand video system the end user will need to have
a certain degree of control of the video stream. This involves instant play back, pause and go
backward /forward in the video, as seen on a common VCR. Media interaction can be broken
down into two types [41], continuous and discontinuous functions. The first category comprises
fast forward and rewind known from analogous media. The second one, comprises skipping
from one part to another as known from digital media like DVDs and CDs.

The system should further support that all end users do not necessarily have the same band-
width available both regarding upstream and downstream. This will reflect the current sit-
uation on the Internet as will be seen in Section 6. As many users of the Internet are using
asynchronous bandwidth it is not feasible to exclude clients with an upstream bandwidth not
sufficient enough to forward the stream — this would simply exclude too large a part of
potential users.

2.6 System security

The design of the system should invite implementation of a robust security policy. To obtain
this, different aspects of security must be accounted for. Therefore security issues can be
divided into three main parts:

Authorization: The system should verify and grant or deny access to newly connecting
users.

Data integrity: No end-user should be able to tamper with the data stream and thus influ-
ence the content of the stream sent to other users.

Data theft: No end-user should be able to steal data from the system, e.g. receive a video
stream without being acknowledged by the system. This does not ensure that clients
cannot send the video stream to unacknowledged clients outside the system.

It is unlikely that all of these items will be solved with all security details in mind. The main
goal is to design a version of the protocol enabling future development to benefit from the
design.

I. Requirements and ideas 2. Fundamental requirements

2.7 Quality of stream

To create a usable system, it should deliver a stable stream of data ensuring that the video
is shown without disruptions. Also, partial network disruptions should not affect delivery of
data. Of course, larger network disruptions such as a link breakdown or a system crash at a
central point will have to be accepted as a non-recoverable failure which can potentially affect
other users.

I. Requirements and ideas 3. Fundamental ideas

3 Fundamental ideas

Based upon the requirements described in the previous section we illustrate the solutions and
technical details of the fundamental ideas. For each of the requirements a rough solution will
be outlined. These rough solutions will help identify areas of theory which will be studied
further to create a theoretical foundation for this thesis. We emphasize that the solutions
outlined in this section are only a sketch and will not be finalized until the design phase is
completed.

3.1 Server bandwidth usage

To fulfill the requirements concerning minimization of the server’s bandwidth, it is obvious
that sending a stream of data to every client is not applicable. This approach will result in
a bandwidth consumption increasing linearly compared to the number of connected clients as
illustrated in Figure 1.

|

e e
{-\ Client E -\
. —) . - 0
Cllent F Cllent D
| [E— |
. e— 1 . —]
Client G | Client G
Server A
| "]
e~ o .)
Client H {-\ Client B
. ——)
Cllent A

Figure 1: Star topology.

Another approach is to let the server send data to a number smaller than the total number
of clients in the network. This combined with the clients forwarding data to each other will
create a network with a topology resembling a tree or a mesh as seen in Figure 2. This will
reach a bandwidth usage which may be lower than the simple solution using one stream per
client. This solution will be referred to as bandwidth sharing.

I. Requirements and ideas 3. Fundamental ideas

2 \a

e—o —r
Client A Client B

[| |

e O [X) [B)
Client C Client D Client E

Figure 2: Tree of clients.

However, these two models cannot be directly compared unless we take the following main
issue into account: The first model opens up for the ability to stream any data to any client at
any given time. The other model is limited by the fact that a client receiving data from another
client is restricted to receive data available at the sender. Hence, on-demand streaming is not
directly possible, as it will result in all clients watching the same point of time in the video.
The solution to this problem is to introduce a buffer at the client containing a certain portion
of the video. Thus client A depicted in Figure 2 could watch one portion of the video while
client B and attached clients watch another portion. The clients attached to client B do not
have to watch the exact same point of time in the video but has to lie within the portion of the
video held by the buffer og client B. Client A could even be watching a completely different
video than client B and its subtree, hence each different video or different section of a video
result in its own subtree.

Connecting clients to the network represents two scenarios. One is the newly connecting client
requesting to receive the video from the starting point. The other is the client requesting the
stream from a given point of time in the video. The latter scenario could represent a client
wishing to resume the stream after pausing it earlier on.

Both of these scenarios are solved by the network selecting the optimal entry point to the
connecting client. This “optimal” choice is taken by the server selecting a client which at the
time holds the correct part of the stream requested by the connecting client. If the server
cannot find any suitable client, it can either reject the client or stream the video directly to
the client. Splitting the video into x parts and enabling the clients to buffer an entire part, will
result in the need for, at most, x available streams per movie at the server. All other clients
would receive the stream from a client connected to the server. Introducing this functionality
we can compare the two models.

Furthermore ensuring basic on-demand streaming functionality such as instant start-up, paus-
ing, fast forward and rewind represent a different and more complicated challenge.

I. Requirements and ideas 3. Fundamental ideas

Also client or line break down will have to be handled differently as a client break down in
Figure 1 will not effect more than one user.

3.1.1 Multiple servers

Extending the first model in Figure 1 could be done using multiple servers — a scenario which
has been practiced with commercial success in other areas of computer networks. In spite of
this, the scenario still scales in a linear form based on the number of clients. This solution
should by no means be neglected, but this approach has no value to the specific scenarios
which are treated in this thesis since it would not result in any further bandwidth reduction
in total.

The second model, see Figure 2 could also be replicated to use multiple servers, as shown in
Figure 3.

- (_\ H m

Figure 3: Joined servers.

Adding multiple servers to any of the models does not contribute to a theoretical lowering of
bandwidth usage but due to the structure of the Internet, the use of multiple servers could
contribute to significant savings regarding bandwidth cost and rapid extension of the server’s
capacity. In order to connect multiple servers another protocol is needed which will have a
main task of distributing data among the servers.

This structure permits that transportation of data in the core of a network can be done at a low
cost due to the high capacity connections linking the central network locations. Furthermore,
the structure can also have a single string connection to a geographical point from where on
data are distributed to a number of nodes. This scenario could also benefit from a multiple
server setup avoiding starvation of a single connection.

On the edge of the network, where the end-user is typically situated the connections usually

I. Requirements and ideas 3. Fundamental ideas

have a lower capacity. Taking a closer look at the market! for end-user connections reveals
a palette of different options. Most common are the asynchronous connections for instance
ADSL or Cable. A typical connection has a maximum downstream rate of 2048 Kbit/s and
a maximum upstream rate of 512 Kbit/s. These connections are widely spread and faster are
often seen, as will be elaborated upon in Section 6. Furthermore, the trend is that connections
are getting even faster.

Obviously, we choose a model based upon the second scenario (Figure 2). The model uses a
single server communicating with an arbitrary number of connected clients. Combining the two
scenarios to yield a multiple server setup could be done by implementing the communication
channel between the servers. As the focus of the thesis is upon the client-server communication
the server-to-server communication is left as further work.

3.2 Efficient scalability

As previously stated the maximum number of connected clients in the first model scales linearly
with respect to the maximum bandwidth capacity of the server. The second model obviously
has the ability to scale beyond this point. The theoretical number of connected clients using
the second model may seem infinite as the load upon the bandwidth is taken away from the
server. Of course, this property introduces complicated issues which will be dealt with in the
rest of this thesis.

Thus the demand for scalability is fulfilled solely by choosing the second model.

3.3 Traffic shaping

As described in Section 3.1.1 it can be an advantage if data can be routed by a specific path. It
might be preferred to limit the use of specific links based on different causes, e.g. low capacity,
high carrier price, long delay, or other factors.

An example could be an island with only one link to the mainland with limited capacity.
Should two clients on the island be connected, it would be more efficient to connect these to
each other and only one of these to the mainland. This would distribute the bandwidth usage
away from the server and furthermore take the load off the link to the mainland resulting in
traffic shaping.

Expanding this example, it could be the case that the users on the island are watching a lot
of videos. Hence it could be an advantage to place a server on the island as referred to in
Section 3.1.1.

LAs this thesis does not treat the market or economy for end user connections we concentrate upon the
market in the western world. This is due to the high availability of Internet connections and the massive
presence of the entertainment industry.

I. Requirements and ideas 3. Fundamental ideas

3.4 Design and implementation

The design and implementation of the applications using the protocol will be done with regard
to the previously mentioned requirements given in Section 2. Except for the requirements
regarding the enclosed solution the other requirements do not need further explanation.

The implementation of the protocol presented in this thesis will focus upon simplicity and will
be implemented for standard computers.

Enclosing the solution refers to a design which encourages an implementation of a simple
interface enclosing the logic in the protocol. This will enable developers using the protocol to
implement applications easily. To give a general idea of the system, Figure 4 illustrates the
main components of the design. The left side illustrates the server side of the protocol, while
the right side illustrates the client side. The middle layer defines the protocol and its general
components. The protocol interfaces downwards with Application Programming Interfaces
(API) provided by the operating system facilitating network communication. Upwards, the
protocol provides an API used by applications. These applications will from this point be
referred to as server applications and client applications. Accordingly, the server side of the
protocol will be referred to as server protocol or just server while the client side will be referred
to as client protocol or just client. The term ’protocol’ will be used when referring to both.
The API provided by the operating system is the lower part of the drawing. The protocol
layer is coloured green, indicating that this part will be designed and implemented in this
thesis. The implementation of the server and client applications will only be done to illustrate
the functionality of the protocol, with no consideration to efficiency or scalability.

I. Requirements and ideas 3. Fundamental ideas

Server Application Client application

Client database Media file disk

access access Video viewer

Protocol encapsulation

N

Operating system network API

Operating system network API

—

Figure 4: Architectural overview of the system

3.5 End-user functionality

The system should offer the-end user functionalities similar to what is expected of on-demand
video regarding display of the video stream. It should be possible to forward/rewind and
pause the stream. Apart from this, the user should have the possibility of stopping the video
altogether without any effect upon other clients dependent on data sent from the client. Hence,
stopping and pausing the stream resembles each other closely, as pausing and stopping the
stream has the same effect upon clients receiving data from the interacting client. Finally,
instant start-up of the stream is an issue to be examined.

3.5.1 Stop

When a client interacts with the system to stop the stream, the system needs to select an-
other client from which all clients receiving data from the interacting client must now receive
data. If the interacting client has no clients connected, it leaves the network without further
complications.

The system should be able to detect a link or client failure. This event is opposite to the user
stopping the video as there will be no interaction from the client. In the event of interaction
the client will notify the server that the user has stopped the video. In the event of a line or

10

I. Requirements and ideas 3. Fundamental ideas

client failure this will have to be detected in another way. Clients receiving data from another
client which is failing will at some point conclude that the sender has stopped transmitting
data.

3.5.2 Pause

Pausing the video could result in a similar behaviour as stopping the movie — attached clients
need to be relocated in the network. When the stream is resumed, the system needs to attach
the resuming client to another client which holds relevant data. Hence, starting and pausing
are closely related, as the only difference is that the resuming client resumes the stream at an
arbitrary point in the video stream.

3.5.3 Fast forward/rewinding the stream

The traditional VCR player offers the user possibilities of fast forwarding or rewinding the
video. To introduce a true video on-demand system it is important to present functionalities
which resemble this.

Advancing the video stream in a speedy manner involves receiving the stream at for example
double rate and likewise playing the video at double rate. This injects a heavy load onto
both the sender of data and the client advancing the video concerning computing power and
bandwidth usage. Alternatively, a scaled down content of the stream could be sent including
only a subset of the frames contained in the stream. This would remove the bandwidth load
from both sender and receiver but the sender would instead have to analyse the stream and
extract a subset of the frames and send these accordingly. This would instead raise other
complications which would have to be handled.

Instead of trying to resemble the VCR player another approach as argued in [45] which suggests
that the perception of interacting with analog media differs from digital. Hence, there is a
need for changing the perception of the end-user. If the system had the ability to skip to
an arbitrary sequence of the movie, this could constitute and replace the fast forward /rewind
functionality of the VCR. Hence, combining the solutions of the ability of the clients to stop
and start the video at any point, we see that the problem of skipping to an arbitrary sequence
of the video is solved.

Thus, the solution to the issue, will be to implement discontinuous interactive functions which

will constitute the functionalities of continuous interaction. The functionality will from here
on be referred to as “skip to another sequence”.

3.5.4 Asynchronous client bandwidth

As required in Section 2.5, clients equipped with an Internet connection using asynchronous
bandwidth should be able to participate in the network. In practice this means that a client can

11

I. Requirements and ideas 3. Fundamental ideas

have a downstream capacity sufficient for receiving a video stream but not enough upstream
capacity to send data to the next client.

This problem can be solved in different ways. A solution to this problem is to let clients with
a low upstream to send only a portion of the data and hence let a client receive data from
several sources. This will also imply that a client with a large upload bandwidth could send
data to multiple clients.

3.6 System security

Creating a system with a security so robust that no one in any way can bypass the system, is
only possible by unplugging the network cable. Realizing that a system can only be secured
to a certain degree is important when designing it. The main goal when designing a security
system is to make it extremely difficult to bypass even for highly skilled individuals with a
firm knowledge of the area.

3.6.1 Authorization

Authorization is a well-known area within computer science. Hence, lots of different ap-
proaches can be used to solve this problem. One way is to let connecting clients receive a
token from the server and use this to access the network. Another solution is to let the server
grant access to new clients and inform all other clients. These are just examples of different
approaches useful when designing an authorization mechanism. Common to both of these
solutions are that they are based upon a central register maintaining information about users
and access rights. Thus, no client can grant others access without going through the server.
This basic principle will be the cornerstone of the design of the authorization mechanism in
this system.

3.6.2 Data integrity

Constructing a network of this type implies that clients have the opportunity to corrupt data
before passing it on to the next client as other clients can be completely dependent upon the
behaviour of other clients in the system. For this reason the client must be able to verify that
data received from other clients are valid. This can, for instance, be done using a checksum.

3.6.3 Data theft

The issues discussed in this section are closely related to authorization. When the client is
authorized, the server cannot know how data are handled by the client. The client could pass
data on to other clients without the knowledge of the server and thus compromise security. The
design should be extendable with security mechanisms ensuring that data are only passed on

12

I. Requirements and ideas 3. Fundamental ideas

to authorized clients. One way of doing this is to encrypt data with certificates sent at intervals
by the server. This solution is more safe but will never safeguard the system completely — the
malicious client will always be able to decrypt the stream and pass data on in unencrypted
form or even exchange certificates. For instance, it will still be possible for the end user to
record the stream using an old-fashion VCR or even a hand-held video recording of the screen.
All of these issues are out of the scope of this thesis. The system will only be responsible for
the security until the stream is delivered to the receiving unit whether being a screen or a
streaming application. From here on, other security mechanisms must be brought into use.

Complete securing of data are out of the scope of this thesis. No matter how tight the
security is it will always be possible to construct malicious code. This is especially true
when working with an open specification available to anyone. Designing the system using an
enclosed specification neither contributes as any piece of software can be reverse engineered.

The solution is therefore to make it troublesome for malicious clients to compromise data
security. This can be done by letting the clients receive vital information about the video
stream from the server at different points in time.

This report will contain theory, which outlines different ways of protecting digital data, but
only a very limited fraction of this will actually be implemented.

3.7 Quality of stream

One of the key points when securing a continuous stream of data is to read data into a buffer
before play back. The size of the buffer should not be larger than necessary but still large
enough to deliver a stable media stream even if the data stream should be delayed in shorter
intervals. If the sending client pauses the stream, the buffer on the receiving client should be
large enough to leave time for the server to elect a new sending client and initiate the transfer.

13

I. Requirements and ideas 3. Fundamental ideas

14

CHAPTER II

Related theory

C
L

In this chapter we will cover the basic theory needed for the design. Some of these sections
may seem unnecessary, but as the topic of this report covers many domains, we find it only
fair to provide a theoretical overview of the areas which are used in this report. Furthermore,
the degree of detail provided in the various sections of the chapter will only be taken to a level
sufficient enough for the design of the system.

15

II. Related theory 4. Synthesis

4 Synthesis

In order to map to different kinds of theory needed in this thesis a synthesis will be outlined
in this section. This synthesis will serve as a tool to determine the different domains which
should be covered in the following sections.

Multimedia encoding: A basic requirement concerning streaming of video is a survey into
theory regarding multimedia encoding. This is needed to determine the nature of mul-
timedia standards and formats, how they work, and which of these should be supported
by the protocol.

The Internet: As the goal is to send multimedia via the Internet a analysis of the possibilities
and weaknesses of the Internet is needed. Streaming the large quantities of data used
in multimedia requires a certain degree of Internet connection stability. Thus, we must
cover the stability of Internet connections, and how to handle the issues arising from the
lack of stability.

Network topology: Building a logical network suitable for streaming multimedia data in-
volves an analysis of different topological models, their advantages, and disadvantages.
This analysis will partly be based upon existing theory and partly upon solutions already
described by various articles.

Protocol design: Clearly, we must cover theory regarding the principles of designing network
protocols. This should cover how protocols are structured and designed, the usage of
underlying protocols, and the advantages and disadvantages of these.

Protocol implementation: Having designed a network protocol, theory regarding the im-
plementation of this should be covered. This will include basic software implementation
issues which can be specifically applied when implementing protocols.

Data buffering: As described in Section 3.1 the need for injecting a buffer in each client is
evident. Therefore we must cover theory regarding buffering of data.

Security: To fulfill the security given in Section 2.6 we need to cover theory and methods
related to this.

16

II. Related theory 5. Multimedia coding

5 Multimedia coding

Streaming of multimedia normally involves encoding and decoding the content. This section
provides the basic theory regarding this subject. The main focal point of this section is to
give an introduction to the area in order for the reader to become familiar with the subject.

5.1 Video codec

The term wvideo standard is used in this thesis referring to the structure of how picture and
sound! is organized. A standard does not explain the process of organizing data or how it is
recreated again. These processes are known as encoding and decoding and are done by the
codec.

Codec is an abbreviation for Coder/Decoder and is basically a piece of software or hardware,
which is both responsible for compressing the raw material and decompressing it again. The
codec is designed to conform with the video standard which it is coder/decoder for. As
previously stated, a standard does not specify how data is converted (encoded and decoded),
hence many varieties of codecs implementing the same video standard are available.

5.2 Requirements

This section describes the minimum features which a usable video standard will need to
support, should it be able to be transported by our protocol. These requirements are no more
than a technical extension of the previous ideas and assumptions found in Section 3.

Streaming: The video standard must be suitable for streaming. A standard which, for
instance, requires that the entire file is available locally before play back, cannot be
transported by the protocol.

Controllability: Since one of the primary goals is to provide the end user with the ability
to interact with the play back of the video, the standard must support pausing and
skipping. A standard needs to support a way to implement these functions.

Splitting and joining the stream: Another goal of this project is the ability to distribute
the stream among several clients. In order to do this, the video standard must be capable
of being transported in smaller entities so that data can be divided and reassembled
again. Thus, an arbitrary part of the data file must be transportable by the protocol
and hereafter delivered to the multimedia player. How this arbitrary part is handled
is completely up to the codec. Thus, the protocol relies upon the codec to be strong
enough to handle this.

'From this point on referred to as frames and audio, which are the expressions normally used in the
literature.

17

II. Related theory 5. Multimedia coding

The last requirement is by far the most important. Furthermore, it is obvious that if this
requirement can be fulfilled, the remaining ones can be neglected. This becomes evident as
skipping can be made by jumping from one part of the video to another. Pausing is just done by
halting the display of the video sequence and restarting it again at the same position. Finally,
streaming is possible if the codec has the ability to play any part of the video independently
of the rest.

Two main issues are important. First, the video standard must support the requirements
given above. But apart from this, the codec used when coding/decoding the material must
not change the ability of the standard to fulfill these requirements. Thus, if a standard supports
controllability, the codec must not be implemented, so that the data stream does not possess
this property any longer. Hence, when using the protocol, measures should be taken to verify
that the codec does not constrain the functionalities of the standard.

5.3 Standards

Due to the existence of the large variety of different video standards, some of which have
become more or less accepted, a brief introduction is in place. The best known group of
standards is the MPEG-standards made by Motion Pictures Expert Group [27]. This group
was begun in 1988 aiming to develop a set of standards regarding multimedia formats. The
rest of this section will mainly involve standards developed by this group, as they have more
or less become a de-facto standard.

The first standard released by the group was called MPEG-1. This was mostly based upon
well-known techniques used in areas of computer science, for instance compression of still
images in the JPEG format. The MPEG-1 standard was designed to use a bit-rate of 1.2
Mbit/s. Thus it had become possible to compress a complete video to a relatively small size
compared to, for instance, a DVD. This high compression rate of course meant losing quite a
bit of quality.

Later came the MPEG-2 standard which is similar to the MPEG-1 standard but designed to
deal with higher resolutions. This was originally designed for broadcasting video at a bit-rate
of 4 to 6 Mbit/s. The MPEG-2 standard is today known as the standard used by DVDs.

Work was also started on an MPEG-3 standard whose primary target was High Definition
Tele Vision (HDTV). It was later discovered that the MPEG-2 standard could be changed to
cover this and therefore the work was incorporated into the MPEG-2 standard and work on
MPEG-3 stopped.

Finally, the MPEG-4 standard was created with Internet multimedia applications as the main
target. The MPEG-4 standard is closely related to the well-known DIVX ;-) [sic/ and DIVX
standards made to resolve licensing issues and patent rights. MPEG-4 is designed for heavy
compression which it does rather successfully. This has made the standard popular together
with the DIVX standards. The technology used to compress data is different from what is used
by MPEG-1 and MPEG-2. Quality is said to be not quite as good in DIVX as in MPEG-2
especially when using large resolutions and with a lot of changing frames in for instance action

18

II. Related theory 5. Multimedia coding

movies. This is due to the method used when compressing frames.

Another standard which deserves mention is Windows Media Video (WMV) — Microsoft’s
attempt to design a specialized version of the MPEG-4 standard. Unfortunately, the latest
versions of this standard are no longer compatible with the original MPEG-4 standard. As a
side remark it should be mentioned that the first DIVX standard (the DIVX ;-)) was a hacked
version of the WMV standard and by today the WMV is still not an open standard.

5.3.1 Choosing a video standard

At this point it should be emphasized that the goal of this project is not to build a system
bound to a specific video standard. The system should rather be used with any standard
as long as it fulfills the requirements as stated in section 5.2. Despite this, an introduction
to MPEG-2 is in place as this standard was our initial target, since it offers high quality
video known from HDTV which we believe will become standard requirements to streaming
of video.

5.4 MPEG-2

The MPEG-1 and MPEG-2 standards have a certain amount of shared structure. This section
contains a quick overview of the two standards and their differences.

Most literature is focused on either coding of frames or audio. Obviously these two are the
main components of multimedia coding but far from the only parts. To give a picture of this,
at the time of writing the MPEG-2 standard contains nine different parts, with more under
way and only a few of them concerning frames and audio. A third very important part is
called system, which acts like the ’glue’ between frames and audio.

The following section will contain a quick overview of frames, audio and system in MPEG-1
and MPEG-2.

5.4.1 Frames

Clearly, one of the main elements in a stream of video are the frames of the video. Video
can be considered as a continual stream of pictures shown at a fixed interval, for instance 25
frames per second (referred to as the frame rate). Hence, another often used name for video
is moving pictures.

A very simple approach for implementing moving pictures is to display a stream of JPEG
pictures?. The only problem is that the compression factor is normally around 10-20 for a
JPEG picture. Therefore the size of the video will be substantial. More important, a large

2This video format is called MJPEG

19

II. Related theory 5. Multimedia coding

amount of the information in the stream would have no relevance as only a small part of the
frames in a typical movie changes from one frame to another. This advantage is used in the
MPEG-1 and MPEG-2 standards. Instead of sending a complete frame every time, the main
idea in MPEG-1 and MPEG-2 is to send a complete frame every now and then and in between
send enough information to maintain an appropriate appearance of the picture.

For example: In a movie sequence, a person might only move his or her head, but the sur-
rounding background stays more or less the same during the sequence. Instead of sending a
series of full frames, each containing only small changes, the idea is to send the first full frame
and then a number of frames correcting the appearance to reflect changes. Every now and
then a complete frame is sent, both to ensure that corrections stay synchronized and because
eventually, a big part of the picture has changed anyway, that it might as well use a complete
picture.

5.4.2 Audio

MPEG-2 audio standard is an extension of the MPEG-1 audio standard which operated only
with mono and stereo. MPEG-2 audio supports a total of five channels used to create surround
sound. The MPEG-2 audio standard is further extended in some cases to support better
sampling rates to improve sound quality. Last but not least the MPEG-2 audio standard is
backward compatible with the MPEG-1 audio standard. Hence, an MPEG-2 video stream
could use MPEG-1 audio.

The main idea in compression of audio data in MPEG-1, and hence also in MPEG-2, is to
cut off all frequencies and parts of the sound which cannot be heard by the human ear. The
MPEG-1 audio format is divided into three different layers sharing the same layout consisting
of a sequence of audio frames with a header and sound data using constant frame rate. One
of the better-known layers of the MPEG-1 standard is MPEG-1 layer 3, also known as MP3.

Finally, a standard called MPEG-2 AAC has been created. This standard is more advanced
and builds upon the same principles as those found in MPEG-1 layer 3 standard but with
some improvements. It is beyond the scope of this project to look further into this standard
and we will for the time being just acknowledge that it exists.

5.4.3 System

This part of the MPEG standards is concerned with combining frames, audio and other data
streams into one or more streams. A typical video sequence contains both images and sound
and could furthermore contain data like subtitles. The system handles the task of putting these
elements together. Synchronizing frames and audio together into one is called multiplezing.
Doing so, one ends up with one continuous file, where the picture and the sound has been
synchronized. The opposite of multiplexing is called demultiplexing.

A typical MPEG-1 or MPEG-2 file has been multiplexed (frames and audio is the same file),

20

II. Related theory 5. Multimedia coding

and when the file is shown using a multimedia player, the data is demultiplexed and handled
separately as described above.

5.5 Existing software

To investigate further, we did a set of experiments to examine different implementations of
multimedia players and codecs. As a key element of the system is to create a protocol which
interfaces with a client embedding a multimedia player, the first focus was set upon different
implementations of players. The three main requirements to a player are that the player
should be available upon a windows platform. Secondly, the player must be able to be used
as a component embedded in a Windows application. Lastly, the player must be able to
play videos using the MPEG standards. Quickly this was narrowed down to either Apple’s
Quicktime or Microsoft’s Windows Media Player.

To choose between these, we conducted a test to see how robust the used multimedia players
were. A number of media files were played seeking to stress the player. These media files were
edited using standard text editors, and random text was inserted at random places. These
media files were played accordingly using the same codecs and the behaviour of the player was
noted. Depending upon the amount of damage inflicted to the media file both players would
in some cases stall for a while, scan forth in the file, until valid data was found. In some cases
the player would just jump to the next valid frame. Both players seemed quite robust, with
the main difference that Apple has chosen a more open source like approach when designing
Quicktime. Contrary to this, Windows Media Player has a more enclosed structure. This
ultimately has led to the choice of using Quicktime as the player.

5.6 Video samples

This section tries to show a few examples of typical videos, their sizes and bit-rate providing
a foundation for further discussion and give the reader some formal numbers to refer to. All
of the shown numbers are based on 90 minutes (5400 seconds) of video.

MPEG1 Low/Medium 200 ~ 38
MPEG4/(DIVX) Medium/High 800 ~ 152
MPEG2 High (DVD) 4000 ~ 760

Table 1: Typical streaming figures for movie types

Table 1 illustrates typical examples of videos and their respective bit-rates. The examples
illustrate only video encoded using constant bit-rate (CBR) as the size of a video encoded
using variable bit-rate (VBR) is dependent on the content of the video stream.

21

II. Related theory 5. Multimedia coding

5.7 Conclusions

We acknowledge that the field of multimedia coding is comprehensive. Thus, we have chosen
only to elaborate upon the MPEG-2 standards as this was the initial target of the protocol.
In addition to this the video stream can be considered as binary data of any type. Because
of this, only limited time will be spent in the rest of this project regarding video coding and
instead focusing upon the main objectives of the project.

Furthermore, using MPEG forces the need for only using files encoded using CBR, as streaming
of data encoded with VBR further complicates the task. Obviously, streaming content encoded
with VBR represents a field in itself, as some parts of the movie suddenly become more time
critical than others.

22

II. Related theory 6. Structure of the Internet

6 Structure of the Internet

The Internet as we know it today has been developed over the last couple of decades. Today
the Internet consists of millions of hosts and an equally large amount of connections between
these hosts.

All of this has developed along the years and has brought life to new standards and technolo-
gies, some of which have become the Internet’s main characteristics.

6.1 The elements of the Internet

The Internet consists of a large amount of nodes, where the term node covers a large variety
of equipment: PCs, servers, routers, switches etc. Equipment like routers and switches are
designed for the purpose of connecting network segments together but in overall the term node
is used for all the mentioned items. Two logically interconnected PCs on the Internet are
denoted hosts while the connection may span across a number of physical hops interconnected
by nodes.

The nodes transport entities called packets which contain the different informations exchanged
between the nodes. These packets include a header containing various control information.

All of these nodes are interconnected by a wide range of different connections. As the type of
connection is of no relevance to this project, no further elaboration will be given on this subject
since it makes no difference to this project what type of media is used for data transport. The
only thing which is worth notice is that these connections have individual capacity, measured
in the amount of data which can be transported per second. Furthermore, sending data across
the connection may involve a delay, typically measured in milliseconds.

6.2 Connection capacity

A node located on the Internet is equipped with some kind of connection. This connection
has different characteristics such as capacity, measured as the amount of data which can be
transmitted per second. This capacity is usually guaranteed by the service provider, but only
from the end user to another point in the network of the service provider. The capacity
obtained between two users on the Internet using different service providers is usually not
guaranteed. Thus, a user cannot always rely upon the capacity advertised by the service
provider, when exchanging data with another segment of the Internet. Other properties, such
as delay, are associated with the same problems, as the delay between two hosts is a result
of the number of hops between the hosts and the bandwidth available at each hop. A more
thorough description of the problems encountered when trying to determine the available
resources of a link, is found in following section.

Throughout the rest of this thesis, we refer to the capacity of an Internet connection as either

23

II. Related theory 6. Structure of the Internet

capacity or bandwidth.

6.3 Connection stability

As mentioned in Section 1 streaming of video is a bandwidth critical subject. Thus, it is
crucial that connection stability is maintained. The fluctuations of the Internet concerning
receival of packages out of order or the occasional dropping of packets during transport will
be examined in Section 8.3. What remains concerning connection stability is to consider the
impact of exchanging time critical data when connection bandwidth is not guaranteed. In
other words: How do we know that a connecting client can receive data, possibly from several
clients, at a speed high enough to satisfy the bit-rate of the video? And how do we ensure
that this client can pass data on to another client, possibly in conjunction with several other
clients?

Bandwidth between hosts is defined as the amount of data, which can be transferred between
two hosts. Observing a set-up with two hosts logically connected to each other, as shown in
Figure 5, indicates that there are three factors which contribute to the determination of the
bandwidth between the clients. These factors are client A’s ability to send data, client B’s
capability to receive data and finally the amount of data which can be transferred through
the connection. As seen in Figure 5 the physical connections between two nodes form a logical
end-to-end connection which determines the available bandwidth between the two clients.

{-\—10 Mbit
t=—"2

Client A

10Mbit—(-\
=2

Client B

Figure 5: Bandwidth between two hosts.

As the network consists of a large number of interconnected nodes any of these can poten-
tially break down, get congested or in other ways prevent data from passing through. This
unfortunate property makes it hard to predict which route a packet will follow, how long time
it will take for a packet to reach its destination and hence the calculated bandwidth available
between two clients.

The large number of end-users and relatively small number of network providers have shaped
the Internet with high bandwidth network connections in the core of the network and thinner
connections to the end user. This means that the connection to the end-user (last mile access)
is often the bottleneck in the network. This observation tells us that under normal conditions

24

II. Related theory 6. Structure of the Internet

it is safe to use the end user’s advertised bandwidth as a forecast to how much data the client
may transmit. This observation is of course only valid, if the other end of the connection
is placed in the ‘thick part of the Internet’ like a server at an Internet Provider. If the
connection, is placed at another end-user, then the capability of that connection has to be
taken into account too.

6.3.1 Guaranteeing connection stability

The Internet’s quality of service (QoS) is simply ’best effort’. This means that a connection
between two hosts tries to send as much as possible as fast as possible. All traffic is treated
identically with no regard as to where and from whom the traffic originates and to whom it
is destined.

Guaranteeing the bandwidth between two arbitrary nodes located upon the Internet is simply
not possible. Hence, an Internet Service Provider cannot sell a specific bandwidth and guar-
antee that it will be available to an end-to-end connection if one part of the connection lies
outside the network of the service provider. This has been one of the Internet’s main issues
during its lifetime and is apparently hard to solve.

The solution to the problem must account for a range of issues:

Users need to be guaranteed that the advertised bandwidth is always available.

Users need to be guaranteed that latency times will never rise above a certain point.

Users need to be guaranteed that packet loss will not occur.

Service providers need to be able to differentiate traffic.

In a sense the last item must be a consequence of the three first, as the last item will give
the means to solve the first three items. Thus, differentiating traffic is the key-point of the
solution.

A variety of solutions has been proposed. Some of these have never been used in practice
and others are only of limited use. We identify a subset of these to illustrate the variety of
solutions that has been presented over time:

Label switching/MPLS: MPLS is not traditionally used to ensure QoS but can be used to
enforce the route of packets sent between two hosts. Thus MPLS can be used to enforce
the route, but not ensure that packets do not get lost during transport.

Integrated services: Integrated services is a fine grained QoS system aiming at securing
QoS at application level. Integrated services uses the Resource ReSerVation Protocol
(RSVP) which must be implemented in all nodes along the route between two hosts.
All nodes must send a message to its neighbours at a given time interval identifying

25

II. Related theory 6. Structure of the Internet

whether the node is capable of sending QoS data. Thus, the routers in the network will
be able to identify the existence of a path between two hosts, which supports integrated
services.

Differentiated Services: Differentiated services is a coarse grained QoS system designed to
partition the Internet into differentiated service regions grouping differentiated services
domains together. Hence, an ISP could implement differentiated services in its own
domain and have a Service Level Agreement (SLA) with a number of other ISPs which
also implement differentiated services. These ISPs will together form a region which by
the use of SLAs can guarantee differentiated quality of service the domains in between

The domains are in turn implemented using edge nodes which classify all incoming
and outgoing traffic according to the SLAs. Traffic will be directed through a traffic
conditioner which meters and shapes the traffic.

Common to all QoS systems is the need for implementing the systems across the boundaries
of Internet service providers. This restriction has the consequence, that all measures taken by
the protocol to ensure QoS are useless unless provided by all Internet service providers along
the route between two clients. Therefore no further measures will be taken by the protocol to
ensure (QoS.

6.4 Routing

A packet sent from one host to another normally has to pass through several nodes in order to
reach its destination. As the Internet is made up of a large amount of nodes it is evident that
more than one path may exist which can be used to exchange data between the two hosts.
Finding the right path to pass data between the two hosts is known as routing.

Many aspects can be taken into consideration when choosing the route a specific packet should
follow: economy, security and geography are all aspects which can be taken into consideration.
But even though a route has been selected it can be altered quickly if a node detects a problem,
in which case the end-to-end path from one host to another can change from one moment to
another. Routing is performed by the lower network layers as stated in Section 8.

When a packet is sent, it usually reaches its end-point, but in some cases it may be lost
underway. If more packets are sent to a node than it can handle, the node starts to drop
the packets which it is unable to send. If more packets are sent through a network than its
capacity allows, the networks starts to congest. Congestion happens as the network only has
a certain capacity. Once this capacity is exhausted the only option is to drop the packets. In
this situation, the only solution is to send less data through the network as the situation will
only worsen until one or more senders stop sending data for a given period of time.

26

II. Related theory 6. Structure of the Internet

6.5 The Internet of 2006

Today the Internet has reached a level where a typical end-user seldom observes any break-
downs. Often a breakdown will result in the data being routed another way in the network
and therefore the user will not notice anything. The end-user is typically placed in the edge of
the network and hence on the lines with the lowest bandwidth. The capacity is much higher
near the core of service provider and their network providers, called backbone providers. This
structure means that the bottleneck from the end-users perspective is ’the last access mile’
(the users’ own’ connections) both regarding bandwidth and breakdown. If this part of the
network is down, the end-user is cut off from the entire network whereas a breakdown in the
more ’central’ part of the network often is solved temporarily by routing data through another
network connection.

Research [49] indicates that end-to-end connections along an Internet path often remains
stable for a period of time, where period is defined as several minutes. But this period can be
expected to be several hours or even days. This property ensures that the expected bandwidth
of a connection does not vary much over time rendering it possible to test the connection and
discover the bandwidth available.

Commonly available technologies for end-users are DSL, Cable and “Community Shared Net-
work” (CSN).? These provide a different range of bandwidth as shown in Table 2.

ADSL 256 Kbit/s - 8 Mbit/s 128 Kbit/s - 1 Mbit/s
ADSLv2 256 Kbit/s - 24 Mbit/s 128 Kbit/s - 1.5 Mbit/s
Cable 128 Kbit/s - 4 Mbit/s 64 Kbit/s - 1 Mbit/s
“CSN” 10 Mbit/s - 100 Mbit/s 10 Mbit/s - 100 Mbit /s

Table 2: Typical Internet connections and the associated bandwidth.

As the table indicates, the variation of end-user connection is wide, but a typical connection
is ADSL with 2048/512 Kbit/s. As the example shows, the bandwidth is often asynchronous
as is the case with ADSL. There are several reasons for this, but one of them is that the
typical use of the Internet involves far more download than upload and therefore most Internet
Service Providers (ISP) offer a larger range of products which offer a higher downstream than
upstrean.

6.6 Network byte-order

One of the special properties of the Internet is the way bytes are ordered from host-to-host.
Consider a 16 bit integer, which is made up from two bytes. Interpreting the 16 bit number

3In some countries it has become increasingly popular to form communities consisting of several end-users,
which together have the resources to buy Internet connections with larger bandwidth, which then can be shared
among the users.

27

II. Related theory 6. Structure of the Internet

can either be done by viewing the value starting from the high-order address, known as big
endian or starting from the low order address, known as [little endian. This is illustrated in
Figure 6. The terms LSB and MSB is an abbreviation of Least Significant Bit and Most
Significant Bit, respectively.

Decreasing memor
g memory >
addresses

Address A +1 Address A

Little-endian byte order: | High-order byte Low-order byte |

LSB 16 bit value MSB

Big-endian byte order: Low-order byte High-order byte
ress ressA +

Increasing memory
addresses

Figure 6: Byte ordering.

This difference in interpreting numbers goes a long way back, and has been a difference in
architecture. This becomes a problem when data is transmitted over the Internet between
different architectures. Thus, an architecture interpreting numbers using big endian will not
have the same understanding of a number as an architecture using little endian. To remedy
this, the Internet protocols use big endian format as network byte-order. This ensures, that all
multi-byte values must be ordered as big endian. This is done using functionality converting
multi-byte values to and from network byte-order. Using these functions, the ordering of data
is irrelevant, as long as data is converted to network byte-order upon dispatch and to host
byte-order upon receival.

28

II. Related theory 7. Logical network topology

7 Logical network topology

This section tries to summarize the different approaches which can be applied when designing
a network distributing multimedia content. The physical topology defined by the underlying
network layer is predetermined by the structure of the Internet as given in Section 6 and is
therefore not an issue to examine. On top of the network layer a multimedia network defining
its own logical topology can be placed. Before a topology is decided upon a walk through the
different approaches is therefore in place.

The topologies outlined in this section are not defined by their traditional sense but rather
different approaches used when designing a logical network extending the capabilities of the
Internet. These topologies are the focal point of this section. We describe the different
topological models, and in what way our design can benefit from them. We describe the
relationship between the server and clients in a network and their roles.

7.1 Topological models

Building a network consisting of one or possibly more servers connected to a number of clients
involves selecting a reference model depicting the network topology best suited for the purpose.
As stated in Section 3.1 two different approaches can be taken when streaming multimedia
content to a number of clients. Thus, the server can either send data to every client or to
a number less than the total number of clients, referred to as bandwidth sharing as defined
in Section 3.1. Separating the two approaches can be difficult as the cut between these two
approaches is not necessarily well-defined. Therefore this section describes these approaches
and a subset of the variations that have been proposed in the literature. As this literature
has become quite comprehensive within recent years the models described in this section are
a selection which is of relevance and interest to our design thus defining a theoretical basis
upon which the final design of the network topology will rest.

7.1.1 Unicast

Unicasting data to clients is traditionally defined as a simple physical network topology where
all connected clients are attached to a single common point. This point is usually a switch or
a router, possibly exchanging data with another segment of a larger network. This approach
builds a network consisting of one or more interconnected stars. Data exchanged between two
clients will pass through the central point, enabling the network to centralize control with the
clients.

Applying this topology to a logical network structure suitable for streaming multimedia con-
tent could yield a simple set-up where all clients connect to a central server which will distribute
content separately to all clients as seen in Figure 1.

The solution is simple as it requires a one-to-one connection between the server and each of

29

II. Related theory 7. Logical network topology

the clients. If one would distribute a multimedia stream which requires the clients to have a
bandwidth of 4 Mbit/s, the bandwidth requirements for the server would be the number of
connected clients multiplied by the required bandwidth. Deriving from this, the bandwidth
requirements of the server scale linearly as more clients are connecting.

As described this topology can consist of one or possibly more interconnected stars. This can
easily be projected to a network for streaming multimedia content leading to a scenario using
multiple servers as described in Section 3.

The advantage of using a star topology is that user interaction capabilities can be implemented
easily. When the user interacts with the video, e.g. pauses, the server can be directly notified,
and no other clients will be influenced. Opposed to this, the disadvantage is poor scalability
due to the high load injected upon the bandwidth capacity of the server.

7.1.2 The proxy approach

Instead of the naive solution described above, other approaches has been developed aiming to
stream video content to a larger number of clients. The approach partitions the network into
smaller parts, each with a server distributing content to a smaller number of clients. These
proxies will each act as server to the clients but as clients to the main server. This way the
requirements of the bandwidth of the main server is lowered and the proxies can be set up in
strategical places in the network as visualized in Figure 7.

D NS

b A s N

Figure 7: The proxy approach.

Another variant has been proposed in [5], using a hierarchical proxy system aiming to increase
the scalability. In this system the main server distributes content to one level of proxies which

30

II. Related theory 7. Logical network topology

in turn distributes content to the next level of proxies and so forth. This solution resolves the
problem of scaling the system as more levels of proxies can be added as the system grows.

Using proxies has the advantage that the original functionalities of the old VCR player are
maintained as every client has a separate connection to the server which distributes the content.
Thus fast start-up, pausing and fast forward /rewind is easily implementable.

Unfortunately, using proxies involves greater costs as more clients are connecting. Scaling the
network will increase the number of partitions as each proxy is only capable of servicing a
certain number of clients. Thus, the scalability of a system of proxies is better than the simple
approach but the demand for bandwidth is only distributed to a small number of proxies.
The main server’s bandwidth is thus lowered which is the goal of this thesis but the sum of
bandwidth consumed by the set of servers will still rise linearly.

7.1.3 Multicasting

The multicast approach aims at distributing content to a number of clients at the same time
as proposed in [24]|. The main server streams content to a router which duplicates packets and
forwards them to a number of clients. As a result, clients are collected in batches sharing the
same stream of data. Clients are collected until a time-out has been reached and the stream
is dispatched from the server as visualized in Figure 8. In its simplest form, this method
resembles live streaming and is also referred to as "near video on demand” [40], as described
in Section 1.

Router

| N N N |

Figure 8: Multicasting.

31

II. Related theory 7. Logical network topology

7.1.4 Patching

Patching is originally a multicasting technique proposed in [11] where the server tries to pack
as many clients in one multicast stream as possible. New clients connecting will receive data
from the main stream together with data from a ”patch” stream. Data received from the main
stream will point to some point in the video while data received on the "patching” stream
will point to the beginning of the movie. Data from the main stream will be buffered while
data from the "patching” stream will be displayed immediately. When the patching stream
reaches the point where the main stream started, the contents of the buffer will be displayed.
At this point the new client receives data from the multicast stream together with the rest of
the clients and the bandwidth requirements for the server are lowered.

Patching has been further developed [11] to a model, called P2Cast, which is based upon
bandwidth sharing instead of multicasting. P2Cast utilizes a peer-to-peer model to distribute
video content enabling clients to receive content from other clients in conjunction with patch-
ing. Thus, a newly connected client will receive a stream of data from one client, and a patch
from another. When the patch stream reaches the starting point of the main stream the client
switches to the main stream and the patch stream is closed.

Patching is an interesting schema for distributing video content. The model defined by P2Cast
is both scalable, and realizes the goal of distributing the total bandwidth of the system away
from the main server. The idea is based upon assumptions of the clients being able to receive
two concurrent streams of video (the main stream and the patch stream) together with a
possible outgoing stream to the next client. These assumptions put high demands on the
available bandwidth of the clients. Thus, the problem of lowering the bandwidth costs at the
server has been moved to the clients. As this is the main goal of this thesis, P2Cast serves as
a good source of inspiration. Unfortunately, P2Cast only implements instant start-up and no
pausing or skipping.

7.1.5 Bandwidth sharing

Bandwidth sharing uses methodologies from peer-to-peer systems which rely on the resources
of the peers participating in the system. These resources are shared among the peers to the
benefit of everyone. In its most pure form, a peer-to-peer network exists without any form of
central server. Information vital to the survival of the network, such as login information, is
shared among the peers to ensure that no element of the network represents a single point of
failure.

Extending these ideas to the area of multimedia content networks could lead to a scenario
where the clients receive a stream delivered from another client currently watching the same
video instead of receiving the video stream directly from a main server. As a result the overall
bandwidth used in the network is distributed among all clients taking the load away from the
main server.

As stated in Section 7.1.4, bandwidth sharing has already been adopted in theory. Further-

32

II. Related theory 7. Logical network topology

more, systems resembling pure peer-to-peer systems have also been proposed as in [13] with
the construction of PROMISE. PROMISE relies completely upon the resources of the peers
in the network operating without a central server. Thus, there is no way to control what data
is distributed among the client raising problems concerning copyright to the material.

These ideas have already been used in practice. Thus a system called GridMedia [48] has
been developed for live streaming of television. The system builds a network structured as
a mesh where all clients have the ability to receive data from each other. On top of this
a number of satellite clients is chosen to be connected directly to the server. To show the
functionality of the system it has been set up in China where the system reached a peak of
15.239 simultaneous clients using only one central server. The setup had 200 satellite clients
receiving data directly from the server. This shows that the potential of streaming multimedia
using bandwidth sharing technologies is indeed high.

7.2 Client-server relationship

Designing a network consisting of one or possibly more servers and a number of clients involves
defining a precise relationship between client and server entities. This relationship can take
two different approaches but is usually a hybrid between the two.

Decentralized control: Decentralized control between server and client is a loose-coupled
relationship, in which the server interacts as little as possible. New connecting clients can
find the access point in the network by themselves without asking the server. Searching
for other clients containing the multimedia content is done by the clients themselves
without interaction from the server. Retrieving relevant parts of the video is done by
the clients requesting each other for the multimedia content. Thus, the server will only
have the job of keeping the multimedia data in its whole. This scenario can be taken
even further using an off-coupled approach, using no server as employed in pure peer-to-
peer networks. Hence, the server’s role of containing the complete video is distributed
among the clients making sure that no data is lost when clients leave the network.

Centralized control: Using centralized control, the server is tight-coupled to the clients.
The server is in control of where clients are located topologically in the network, and
retains information about the point in the video where all clients are viewing. Request-
ing pieces of the video passes through the server, ensuring that the server maintains
information about the network. In the most extreme cases of centralized control, all
data passes through the server before reaching its destination. Of course, this cannot be
applied to multimedia streaming as the bandwidth requirements for the server would be
too high.

The two extremes can be referred to as router-less networking, and centralized routing net-
works. None of them is applicable in the extreme form, but they can be combined to a routing
scheme suitable for streaming networks using bandwidth sharing.

33

II. Related theory 7. Logical network topology

7.3 Sources of inspiration

As already stated, a pure peer-to-peer network does not have a notion of clients or servers.
Most incarnations of peer-to-peer networks use some form of hybrid between traditional client-
server networks and peer-to-peer networks. This is, for instance, the case with the Napster
[28] file sharing system where searching is done by a server while the data transfer is done
between clients.

Other networks, such as Gnutella [10] use a more pure model, where no central server exists,
but peers can be selected as "servents” to a specific set of peers as defined in [9]. This set of
peers will query the servent for search results which in turn will distribute its information to
other peers selected as servents to another groups of peers.

The obvious difference between the two types of systems is the possibility of centralizing
control and information. In conjunction with this, identification of peers can be difficult when
using a pure peer-to-peer model, as a user’s unique information is at risk of disappearing when
the user disconnects. On the other hand, this can be an advantage in some environments.
The big advantage of the pure peer-to-peer network is the degree of scalability. If the design
is robust enough, the scalability is theoretically infinite.

Some peer-to-peer networks use a bit-for-bit model in which users have to contribute a cer-
tain amount to the community, before utilizing the resources of the community. Due to the
problems incurred by using asynchronous client bandwidth this is not a viable solution, which
is also argued in [17].

34

II. Related theory 8. Network protocol design

8 Network protocol design

Before venturing into the principles of network protocol design, we give an unambiguous
definition of the subject:

A network protocol is a standardized method
for exchanging data between two or more
nodes located upon a shared network.

A network protocol is formally described by a document which specifies this standard and tries
to uncover the ambiguities arising when the network protocol is attempted to be implemented.
In practice, a protocol is a piece of software which has the ability to exchange data with other
entities upon a network and possibly pass this data to some other piece of software which
employs the functionalities of the protocol. Designing a protocol is therefore a matter which
deserves great attention as the strengths and weaknesses are uncovered in the design phase.

Protocols carry packets, which are constructed by a header containing various information
(fields) vital to the functionality of the protocol. These fields could be the sender and receiver
of the packet alongside with other control fields but vary from protocol to protocol. Some
packets have a payload containing user data exchanged between some applications relying
upon the functionality of the protocol.

8.1 OSI model

To build a network system is a complex task, and is therefore often broken up into layers each
with their own well-defined interface to create a modular approach. These layers together
define a protocol stack in which data is exchanged between the layers through the interfaces.
The layers serve as abstractions to the logical entities encountered in the system, hiding the
complexity from the programmer. The interfaces between the layers enable designers of the
protocol stack to easily change vital parts of the system without affecting the others.

Using this approach, each layer in the protocol stack becomes a separate protocol with its own
specifications and standards. The payload of a packet thus becomes user data employed by
the layer one level higher up in the protocol stack.

The construction of a protocol stack has been standardized by the Open Systems Intercon-

nection (OSI) model. This model breaks the network down into a set of logical entities to
construct a well-defined protocol stack. This model is depicted in Figure 9.

35

II. Related theory 8. Network protocol design

Data link layer Data link layer

Physical layer Physical layer

Figure 9: Open Systems Interconnection (OSI) model.

The model defines a common way for computers to communicate through a media link. It
partitions the network in seven layers as illustrated in Figure 9.

Physical layer: This layer abstracts the network hardware dealing with electrical signals.
The layer transmits bits, the most basic entity manipulated by the network. Electrical
signals are converted to bits.

Data link layer: The data link layer collects bits to a stream of data, called frames. The
frames are entities of the media type, e.g. Ethernet, ATM etc. This layer exchanges
frames between directly connected nodes.

Network layer: The network layer transmits packets between two hosts with possibly many
nodes between them. Packets are collected from a number of frames received from the
data link layer.

Transport layer: This layer provides a messaging service for the session layer and hides the
underlying network from the upper layers. It may need to be very complex in order to
deal with a variety of network characteristics and capabilities.

The transport layer can provide a connection-oriented or connectionless service. In a
connection-oriented session, a circuit is established through which packets flow to the
destination. In this arrangement, packets arrive in order and do not require a full
address or other information because the circuit guarantees their delivery to the proper
destination. A connectionless session does not establish circuits or provide reliable data
delivery. Packets are fully addressed and sent out over the network. The transport

36

II. Related theory 8. Network protocol design

layer protocols at the destination can re-order the packets which arrive out of order and
request retransmission of missing or defective packets.

Session layer: This layer manages communication sessions between two processes, namely
session creation and termination.

Presentation layer: The layer provides data translation/conversion enabling end-systems
from heterogenous environments to exchange information. The aim is to ensure that
the messages exchanged between two application processes have a common meaning —
known as shared semantics — to both processes. The presentation layer is also concerned
with data encryption and data security.

Application layer The purpose of this layer is to serve as a window between correspondent
application processes so that they may exchange information on the open environment.
The programs which use the application layer are known as application processes.

8.2 TCP/IP protocol stack

The OSI model only describes that interfaces should be presented between software imple-
menting one or more layers of the protocol stack. How the software implements the layers
internally is not a part of the model. Thus, the OSI model presents a well-defined theoretical
approach when implementing a protocol stack. Unfortunately this approach has never been
widely adopted, as another standard, the T'CP/IP model has become the de-facto standard
upon the Internet. As this standard has come to define the Internet itself, we have no choice
but to base our solution upon this as our protocol will be created for the Internet. Therefore,
the TCP/IP model deserves a closer look, which will be given in this section and the aspects
related to the design of the system at hand will be described.

The basis for the standard is depicted in Figure 10 as it is described in [33], [34] and [32].

37

II. Related theory 8. Network protocol design

Application layer

Transport layer

Internetwork layer

Physical layer [Physical network

Figure 10: TCP/IP protocol stack.

8.2.1 Physical layer

This layer unifies the lower two layers of the OSI model to only one. Thus the physical
properties of the network have been abstracted from. This layer is normally implemented
in hardware and is thus hidden by the Networking Interface Card (NIC). Thus, the type of
physical network employed between the nodes is hidden by the NIC and can vary from high
speed fiber optical interface to a standard Point-to-Point Protocol (PPP) modem connection.
The layer operates on these direct physical links connecting the nodes of the network and
transports frames.

8.2.2 Internetwork layer

This layer connects the different physical networks constituting the Internet into a single
logical internetwork. Thus, the layer abstracts from the physical links between two nodes,
regarding these as logical connections between two hosts on a route with one or possibly more
hops between them.

At the heart of the internetwork layer sits the Internet Protocol (IP) binding all the hosts
together abstracting from the node-to-node connections. This is done using advanced routing
algorithms employed in this layer at the routers of the Internet providing the host-to-host
packet delivery.

IP binds the different hosts on the Internet together using an unreliable delivery service de-
noted as best-effort meaning that the network does not provide any functionality in regard
to lost or corrupt data. Thus IP does not guarantee that data sent from host A to host B is
identical upon reaching B. This has the effect that a connection between two hosts cannot be

38

II. Related theory 8. Network protocol design

expected to be stabile. Finally, packets are prone to be delivered out of order, as the route
between two hosts cannot be expected to be the same all the time. All in all, the internetwork
layer reflects the properties of the Internet as discussed in Section 6.

To identify hosts on the Internet, IP uses an IP-address to distinguish them.

8.2.3 Transport layer

The transport layer enables applications located upon the different hosts to exchange data.
Thus, this layer abstracts from the host-to-host connection to a process-to-process connection.

The transport layer consists of two main protocols, Transport Control Protocol (TCP) and
User Datagram Protocol (UDP) which represent two different ways of exchanging data between
applications. UDP is a mere extension of the Internetwork layer providing only connectionless
best-effort service for the application layer. Thus, UDP provides host-to-host delivery with
all the disadvantages that the Internet possesses. TCP is designed as a reliable byte stream
protocol aiming to abstract the properties of the Internet from the application programmer
delivering a reliable, connection oriented byte-stream.

The TCP and UDP protocols use a port to identify the process transporting data through
the network. Thus, a process located upon a host will be identified by the pair (IP-address,
port). The protocol stack demultiplexes incoming data observing the destination port in the
header, and delivers the data to the relevant process.

8.2.4 Application layer

The top layer is where the applications are located. Applications located upon different hosts
will exchange data through the transport layer using a protocol defined by the applications.
Therefore this layer constitutes networked applications created by application programmers.

How the interface between the transport layer and the application layer is implemented varies
from one Operating System (OS) to another. Data is typically exchanged using message
queues which are filled by the transport layer and emptied by the application layer.

Thus an example with two applications exchanging data is depicted in Figure 11.

39

II. Related theory 8. Network protocol design

Host A Host B

Router A Router B

Physical layer

Physical layer Physical layer

Physical layer

s
e
==

Network A Network B

Figure 11: Two applications exchanging data using TCP/IP. The two hosts are located at
separate subnetworks with routers routing data between the subnetworks.

8.3 Connection-oriented versus connectionless transport

The type of transport chosen for a given task depends on the task at hand, as the properties of
the two transport types are so distinct. Thus, a thorough introduction to these two different
ways of transporting data is in place.

8.3.1 User Datagram Protocol (UDP)

As UDP is a mere extension of the host-to-host delivery service of IP, it contains all the
disadvantages of the Internetwork layer. UDP is connectionless meaning that data is not sent
through a logical connection but rather just sent at request by the application programmer.
If no application is listening at the other end of the communication channel, the sender will
not be notified.

As one of the disadvantages of the Internet is that data transport is unreliable, UDP due to
its simple extension of IP suffers from this*. This fact results in a number of drawbacks:

Data corruption: Asthe communication lines of today do not ensure that data is unchanged
at reception, UDP induces the possibility that data can become corrupt during transport.
UDP does include a checksum field in the header but using this is not mandatory.

*In practice UDP has proven to be more reliable than commonly thought, as the Internet has become more
and more reliable during the years.

40

II. Related theory 8. Network protocol design

Therefore the application programmer cannot rely upon the ability of the protocol stack
to correct data.

Data displacement: One of the properties of the Internet is its ability to dynamically reroute
data when a link fails. As a result, data can be received out-of-order meaning that the
order of which a series of packets is sent is not guaranteed to be the same in which the
series of packets is received. Furthermore, data is not equipped with a sequence num-
ber leaving the application programmer to take measures when combining the received
packets to the original series of packets.

Data loss: As the routers upon a route between two nodes on the Internet sometimes drop a
packet due to congestion etc. UDP induces the risk of data loss. Again, the application
programmer must take measures to verify that data is received if this is relevant.

Data duplication: During transport, a node located upon the route between two hosts may
erroneously duplicate a packet. Thus, the receiver will encounter two identical packets.
UDP does not detect this, and applications using UDP must handle this accordingly.

Taking all these drawbacks into account, a simple question can be raised: Why use UDP?
The answer is simply that all these drawbacks become advantages when reliability is not an
issue. Furthermore, when exchanging time critical data, speed can be more important than
data reliability. As UDP does not implement any logic other than the simple demultiplexing
between application processes, it possesses the great advantage of high speed. This is due to
the absence of a time consuming connection setup, and the total absence of data reliability
and most important that no acknowledgment packets are used.

As streaming of multimedia is a time critical subject, UDP has traditionally been used in
this context. In addition, streaming is not subject to high sensitivity as to whether data has
become corrupt during data transport. Furthermore, it is important that data is received at
some point in time, but not too late to be played. Thus, a streaming protocol must be able
to undertake retransmissions when possible but avoid late retransmissions.

In addition, implementations of UDP generally have the advantage that when the application
process initiates a data transfer this is done instantly. Thus the application programmer can
rely on the fact that data is not queued in the protocol stack before being sent. UDP uses a
maximum size of data transmission called MTU of 65 Kbyte. From this must be subtracted
the size of the IP header and the size of the UDP header.

8.3.2 Transport Control Protocol (TCP)

TCP represents another approach when transmitting application data on the Internet. Data
transport using TCP offers a connection oriented reliable byte stream. In other words, TCP
offers a logical extension of the internet protocol.

Where the nodes of the physical layer are directly connected, TCP uses a logical connection
between the hosts of the Internet. To enable this, an algorithm called three-way handshake is

41

II. Related theory 8. Network protocol design

used to establish a shared state among two application processes during connection establish-
ment or termination.

TCP uses a sliding window approach to realize reliable transmission. This type of protocol
implements a buffer between the application process and the underlying network which absorbs
the irregularities encountered on the Internet. This buffer is used as a "window” sliding along
the content of the data stream on both the sending and the receiving side. Data inside the
window of the sender is either sent but not yet acknowledged by the receiver or not sent
yet (and therefore not yet acknowledged). As data is being acknowledged by the receiver
the window slides along the data stream filling up with data which remains to be sent. The
window on the receiving side is filled with data which remains to be received, but may possibly
be sent. As data is received, acknowledgments are returned to the sender and the window
slides along to include new data which can then be transmitted by the sender. If data is lost
during transfer the receiver uses timers to ensure that the lost data will be retransmitted.
When a time-out occurs, the sender will indicate that the packet was not acknowledged. This
time-out will be raised by an adaptive trigger ensuring that the retransmission will occur. For
this to work, sender and receiver have to agree on the size of the window. Furthermore they
must both know the location of the window in the data stream. In addition the window size
can change to reflect the fluctuations of the Internet. An optimal sliding window protocol
will keep the connection between the two hosts saturated without overflowing the receiver
and avoiding congestion on any links between the two hosts. Furthermore TCP uses credit
mechanisms incorporated into the sliding window which modify the sizes of the window of
the sender and receiver to account for the fluctuating amount of data which is regularly sent
through a TCP connection. These properties induce a large overhead, both in terms of data
transmissions, but also in terms of computing power.

Contrary to UDP, TCP does not implement an MTU which has impact on the application
process. Whereas an application using UDP cannot send portions of data larger than the
MTU, TCP itself fragments data into packets of sufficiently small segments. The receiving
host will collect the segments to the originally transmitted data and return it to the receiving
application process. As a result TCP may buffer enough bytes from the sending application
process to fill a segment and send this to the receiving process on the destination host. In
other words, data is split into segments rendering the sending application process incapable
of relying upon TCP to send data immediately as an internal parameter called maximum
segment size (MSS) is used to decide when data is to be sent. When enough data is collected
to fill a segment TCP will send data. In addition some form of time-out is implemented to
ensure that data will eventually be sent even though a full segment cannot be filled. The
size of MSS and this timer is usually calculated from factors such as the the properties of the
underlying network and is therefore unknown to the application process.

Furthermore, TCP uses back-off as part if its congestion control mechanism. Thus, if TCP
detects that the connection is congested, it will incorporate a delay before sending any other
packets.

Concluding upon these two types of transport, it becomes evident that TCP is unsuitable for
transporting multimedia data for streaming. This is furthermore justified in the literature
as performance analytic studies have shown "that TCP generally provides good performance

42

II. Related theory 8. Network protocol design

when the achievable TCP throughput is roughly twice the media bitrate” [43].

8.4 Network Address Translation (NAT)

Due to the format and use of of the IP-address, the maximum number of hosts located on
the Internet is restricted®. This has lead to an address shortage resulting in the need for
technologies which enable several hosts to be connected to the Internet without having to
take up an address each. A newer version of IP, known as IPv6 overcomes this problem, but
has yet to gain acceptance.

Instead a common solution to this problem is Network Address Translation (NAT) sometimes
also called IP masquerading. This technique masquerades a number of hosts behind a NAT-
router directly connected to the Internet. This router has an external interface equipped with
a global public IP address, and an internal interface equipped with a local private IP address.
When a masqueraded host communicates with a host on the Internet, data will go through
the NAT-router which will know that the two hosts are connected. Thus data coming from
the masqueraded hosts will be forwarded to the end hosts, while data from the end hosts will
be forwarded to the masqueraded host. This raises the natural question of how two hosts in
the masqueraded network can be connected to the same host. This is done by the NAT router
operating upon the transport layer de-multiplexing the packets using the port of the transport
protocol.

Using NAT has the disadvantage that hosts located upon the Internet cannot directly open
a connection to hosts masqueraded by a NAT router. Thus, a client initiating a stream of
data to another client may erroneously conclude that the receiving host is malfunctioning due
to the IP masquerading of a router. Most NAT routers provide functionality to permanently
forward data incoming on a specific transport port to a given host masqueraded by the router.
This can be tedious, and many Internet users are unaware of these capabilities.

8.5 Real-time Transport Protocol (RTP)

Specialized protocols for data streaming do already exists. One of the most well-known is
Real-time Transport Protocol (RTP) which was proposed as a standard back in 1995. The
protocols’ main purpose is to transport real-time data like video and audio.

It is divided into two parts a data and a control part. The data part of the protocol is very
thin and provides the possibility to transport continuous data.

The protocol is original targeted to be used with TCP and UDP but efforts have been made to
make the protocol independent of the transport protocol. Although the protocol is normally
implemented into an application the protocol normally goes under the name as a transport

As the IP address field is 32 bit, the maximum number of hosts is 232 = 4,294,967, 296. However, this
number is reduced due to special purposes such as private networks, multicast addresses and early over-
allocation of addresses to some institutions as the number of addresses was thought to be ’infinite’.

43

II. Related theory 8. Network protocol design

protocol. It does not support any mechanisms for re-sending or error correction of data.

The main reason not to investigate this protocol any further is the need for streaming data
from multiple sources and the use of RT'P would not contribute in any way to solve this issue.

44

II. Related theory 9. Protocol implementation

9 Protocol implementation

Protocols are often implemented as part of a protocol stack as described in Section 8. Com-
munication between these individual protocols is carried out using interfaces, defining how the
protocols interact with each other. These interfaces and how the protocols interact will be the
focal point of this section.

9.1 Network layers and interfaces

As described in Section 8.1, networks are implemented as a series of layers on top of each other.
The main reason behind this is to hide the complexity of the lower layer together with easy
extension. The same technology can be used internally in a protocol or in any software as sub-
dividing software into smaller pieces and defining precise interfaces among these components
help keep complexity down and make software more flexible when changing specific elements.

Thus, one of the most important elements of a protocol implementation is to make a sim-
ple, unambiguous, solid, and easy-to-use interface which offers application programmers easy
implementation of software using the protocol.

9.2 Multithreading

Implementing a protocol stack usually implies some form of communication between the layers.
This can be done using multiprogramming where a number of threads in the protocol stack
handles ingoing and outgoing data.

Roughly the main discussion on multithreaded programming can be divided in two main issues:

Number of threads: What number of threads should be used? Is it best to minimize or
maximize the number? Or is there a more balanced approach?

Location of threads: Where should the threads live (in what area of the code/system)?
and hence who should create and destroy them?

The issues will be treated in the listed order in the following sections but these issues have one
thing in common: there exists plenty of theory about the topics, but none of this has lead to
any real conclusion. Hence, a lot of different opinions exists in the area and therefore a large
part of this text will also be based on our personal opinion and experience.

9.2.1 Number of threads

Threads used in a multithreaded application are divided into different categories depending
on the job they are performing:

45

II. Related theory 9. Protocol implementation

e thread(s) used for user interaction,
e thread(s) used for reading/writing data from/to different types of media.

e thread(s) doing background data processing and calculations.

Switching from one thread to another involves an amount of overhead. The more threads an
application is using, the more overhead is generated, which could speak against using many
threads. On the other hand, using a large number of threads, if used correctly, can lead to
better performance, since each individual thread can perform specific tasks.

Regarding protocols, threads are often used to perform background jobs at different intervals.
If the job does not need to communicate and need not be synchronized with other threads,
then the job is perfectly suited for its own thread. A processor intensive task could also benefit
from its own thread. Dividing these tasks among several threads is for example known in a
web-server, where a thread receives incoming requests and delegates the work to one or more
threads.

When communicating between components in application programming such as layers in pro-
tocol stacks, it may be an advantage to use a thread with the sole purpose of retrieving data
from another layer, process it, and enqueue it to the next layer. This is especially advan-
tageous when receiving data from a network, as the underlying network layer may discard
packets if they are not read fast enough. This may happen due to overflowing of the queues
of the network layer which normally have a maximum size limiting how much data it may
contain.

A typical role of thumb as described in [4] is that interaction between threads should be
minimized, as this involves a lot of synchronization which in turn will result in lots of time spent
waiting for other threads. Furthermore, a multithreaded application needs to be analysed
thoroughly to identify the critical regions of the code. A critical region is data accessed by
two or more threads, possibly at the same time. These critical regions must be protected by
semaphores, as an example. Otherwise unpredictable errors may occur as one thread may read
the contents of a variable immediately before being switched out by another thread updating
the variable. How many threads and how many critical regions arise when multi-threading an
application is thus a question to be analysed.

If any conclusion can be drawn from this, it would be that the number of threads should be
held as low as possible with respect to the kind of work that the software should perform.

9.2.2 Location of threads

The next question, is to solve where the threads embedded in the software should reside.
Furthermore this raises the question of where the threads should be created and destroyed.

Most protocol implementations encapsulate the logic of the protocol and offer only a simple
interface. This means that if a program creates an instance of the protocol, it might only

46

II. Related theory 9. Protocol implementation

make a simple call to a function when receiving data. What happens inside the encapsulated
protocol is hidden from the application thread. Thus, if the logic embedded in the protocol
decides to wait for a specific event to occur, it might spawn a new thread waiting for a timer
to run out.

To conclude this subject, the rule of thumb must be that new threads are created and destroyed
by the encapsulated protocol when needed and that the application instantiating the protocol,
only creates one thread running the protocol. From here on, it is up to the protocol to start
new threads.

47

II. Related theory 10. Buffering of data

10 Buffering of data

As explained in Section 3.1, attaining the goal of lowering the bandwidth usage of the server
requires all clients to buffer a certain portion of data. This buffer serves both the purpose of
enabling clients to realize the goal of providing on-demand video streaming, and absorb the
fluctuations encountered upon the Internet. This section will give an introduction to basic
theory on data buffering but with the above specific use in mind.

10.1 Buffering approach

As buffering of data has been used to solve many problems in computer science, the existence
of a large amount of theory on the topic is evident. Fortunately, the the largest part of this
theory is based on buffering data in specific systems and situations. Because of this we have
sought to find literature concerning similar systems and setups but without much success.
Two articles did however stand out, both looking at data buffering for redistribution in video
streaming systems with similar characteristics as the system we are planning, though both of
them only resemble it.

The authors of [35] concludes that a client should buffer at least 25 percent of the video in
order to attain a significant bandwidth reduction. Obviously, the larger an amount of data a
client buffers, the more it can transmit to other clients. This is evidently a simplification as
it raises other issues, such as the need for a large amount of bandwidth, otherwise it would
not be able to retransmit the data to other clients.

On the other hand the authors of [19] conclude that, in order to make a good video-on-demand
system, the amount of memory should be minimized in order to lower user interaction response
time, e.g. fast startup. But this statement is a simplification as well, as it implies a demand
for the buffer to be full, or at least partly filled before responding to user interaction. This
demand can be relieved so only a fraction of the buffer needs to be filled, before responding
to user interaction. This would make sense, as user interaction would imply that all clients
receiving data from the interacting client need to be relocated in the network. Thus, the first
purpose of the buffer can be overlooked, immediately after a user interaction, only leaving
the buffer to resolve the purpose of absorbing network fluctuations. When the buffer is filled,
or partly filled, the buffer could again fulfill the purpose of ensuring on-demand streaming to
other clients.

The two articles clearly show the difficulties in drawing final conclusions based on work which
does not share the exact same prerequisites.

Despite many different types of buffering strategies like; '"FIFO’ and ’use-it and toss-it’. these
can only be used as a source of inspiration. Instead of discussing a lot of different strategies,
we find it more rewarding to define the primary properties needed by the buffer. The main
properties of the buffer ordered by importance should be:

48

II. Related theory 10. Buffering of data

1. Ensure that the client always has the needed data available.
2. Keep as much data in the buffer available to transmit to other clients.

3. Lower the size of the buffer to avoid too high memory requirements.

The first item is a direct consequence of the time critical nature of the subject at hand. The
two last items seem to be inconsistent but put into practice this only means that these two
properties need to be balanced to find a good solution. These properties will be kept in mind
when designing the buffer, in Section 14.2.

10.2 Physical memory layout

Data buffering is usually done in physical memory using two different approaches.

Dynamic allocation: This approach allocates memory when needed and deallocates it again
when the need ends. This way only a minimum amount of memory will be allocated
at any given time. The downside of using dynamic allocation is the overhead spent on
allocating and deallocating memory.

Static allocation: This method means that memory is allocated only once and a fixed
amount of memory is available at all times.

When implementing software applications used in personal computers, dynamic allocation is
often preferred as the software should run alongside a range of other programs. Therefore it
is preferred if each individual application uses a minimum of resources.

Static allocation is typically an advantage when an application has to run on hardware spe-
cially designed with the application in mind. This could be a protocol build into hardware,
manufactured with a limited amount of memory, and the only purpose of streaming a signal
to the television. It also has the advantage that no other application can seize some of the
memory and hence exhaust important resources.

10.3 Buffering of data

Utilizing a buffer, it becomes obvious that data needs to be read at a continuous rate. If this
rate is unable to be satisfied, the buffer will be exhausted resulting in a buffer underflow. This is
indeed important in this context, as the video player will halt until data is available resulting
in bad user experience. Furthermore, all clients receiving data from a client, the buffer of
which underflows, will potentially be affected in the same way. The opposite scenario, when
the buffer overflows is furthermore an important scenario, when designing the system. This
scenario may seem avoidable, as buffer overflow will intuitively be the result of receiving data

49

II. Related theory 10. Buffering of data

at a rate faster than the video player consumes it. Nevertheless, the scenario must not be
neglected and caution should be taken to avoid this.

In order to guard the buffer from under- or overflow it must be possible to increase or decrease
the speed with which the buffer is filled. In the case of buffering data for on-demand video
it is furthermore important that the parts of the movie can be received fast to enable fast
startup.

20

II. Related theory 11. Security

11 Security

As already stated the security of the protocol must cover three different areas, namely au-
thentication, data integrity and data theft.

11.1 Authorization

As described in Section 3.6 validating connection requests will be done by the server performing
the authorization procedure. But the procedure of exchanging the information over a shared
network may compromise data. Thus, a malicious user may be eavesdropping on the line and
read the content of packets containing vital information such as user name and password.

To account for this problem systems does not exchange vital informations in clear text. Instead
it is encoded using some encoding scheme. This could, be Public Key Infrastructure (PKI)
where the client exchanges a public key with the server before sending user name and password.
When the keys have been exchanged the user name and password may be encrypted using the
public key of the server before being sent to the server.

In this way all information flowing between the nodes could encrypt a small amount of data
which would have to be decrypted and be in accordance with some preset value. If the data
differs from this value the sender of data could be regarded as malicious.

11.2 Data integrity

To ensure that data has not been modified by other clients a client needs to have a mechanism
to ensure data integrity. This could easily, although not bulletproof, be done using a checksum
which has to be calculated from a portion of data. If this checksum differs from a precalculated
checksum, data can be regarded as invalid. But the precalculated checksum must further be
received from a trusted source. As no client can trust another client, this checksum has to be
precalculated and distributed by the server.

11.3 Data theft

Data theft may occur on two different levels. Thus, a malicious client may steal data by
eavesdropping on a line or by extracting data from the protocol/client application. In the
first case a node located at a central point may read the contents of the packets flowing in
the network. The only way to cut off the client from this is to encrypt data in some way.
PKI clearly cannot be used in this context as this would involve a client sending data to other
clients to encrypt data using different public keys to all connected clients. This would indeed
inject a substantial load upon the clients as the process of encrypting and decrypting large
amounts of data is processor intensive.

ol

II. Related theory 11. Security

The second case involves a programmer using the protocol to extract data transferred by the
protocol. In this way a user might log on to the network and just read data from the protocol
and save it to disk.

As a remedy to both of these cases some form of Digital Rights Management (DRM) scheme
could be undertaken. DRM is used by media publishers to control access to digital media. The
term DRM covers a wide field but the core is to protect software and hardware. But as data
need to be delivered to a client application in a form readable to the application, the protocol
must not deliver data in a format unreadable to the application. As a result, the server and
client need to have an agreement of how data should be read. But as is the case when dealing
with security the measures these can always be broken. For example the security of Apple’s
Quicktime AAC proprietary DRM format for streaming multimedia has been broken making
it possible to extract the raw multimedia format from the stream.

22

CHAPTER III

Protocol design

D
e

This chapter accounts for the design of the protocol as it is illustrated in Figure 4 in Section
3.4. Thus, the design will account for the client-side but also the server-side. The chapter
should be regarded as a specification for any implementation of the protocol and will therefore
not contain any direct demands as to how the implementation should be made.

23

II1. Protocol design 12. Fundamentals

12 Fundamentals

This section treats the fundamental design issues. These issues define the underlying platform
for the design and will therefore be treated individually in the following sections.

12.1 System control

Following the requirements in Section 2 regarding system security, controlling the network
needs to be located centrally. Thus, the main server will control which clients can be authen-
ticated and where the clients are logically located in the network. Thus, the server controls all
clients at any time, and decides when and from where the client will receive their data stream.
The reason for this choice is to locate all logic centrally opening up for a design allowing
different implementations to co-exist independently of each other in the same network. The
objective is thus to reduce the activity between the nodes to the essential, namely streaming
video data.

This choice does not come without a cost: Centralizing control will inject a high load onto
the server, both concerning bandwidth and processing power. If the server needs to be aware
of the state of all clients at any given time the amount of control information flowing between
the server and all clients will rise. Furthermore, relocating clients logically in the network
can require the server to run complex selection procedures. Essentially this choice constrains
scalability. Thus, there is a trade-off between centralizing control and the security gain this
may result in, and decentralizing control and the possibilities of gaining higher scalability as
seen in more pure peer-to-peer networks.

12.2 Data transport

Evidently it is necessary to transport two main types of data, namely video and control.
Video data includes the content of the data stream, while control data is used by the server
to monitor and control the network, e.g. authenticate clients, relocate clients.

As already stated, control data must be delivered to the main server, to attain the desired
centralized control. Thus, control and video data cannot share the same data channel, as
video data in most cases will be received from another clients. This forces the design and
implementation of two different data transmission channels, one exchanging control data be-
tween server and client, and one exchanging video data between clients. These two channels
will be implemented as two separate protocols due to the diverse characteristics of the two
data channels. However, these two protocols will only be usable together thus in this thesis
they will be referred to as only one. The two protocols will from this point on be referred to
as Data Communication Protocol (DCP) and Control Communication Protocol (CCP).

It is evident that the two protocols do not share all properties. Clearly, delivery of video data
is a time-critical issue, whereas control data does not share this property. Furthermore, the

o4

II1. Protocol design 12. Fundamentals

integrity of the CCP is of high importance, as the contents of messages must not be changed
during transport. Contrarily, if several bits of a DCP message are changed, this would not
have great influence upon the ability of the video player to reproduce the video. Following
this, and the conclusions drawn in Section 8, the DCP will be implemented on top of UDP.
This gives the protocol the speed of UDP, both concerning data transmission and connection
setup/teardown. Conversely, using UDP adds to the complexity as retransmission of lost data
packets must be handled by the DCP. But intuitively, data must not arrive too late to be
played - hence, late retransmissions must be avoided.

Both protocols need to communicate using separate ports. The server will use a static CCP
port which must be known by clients wishing to connect to the server. Which ports the clients
will use are decided by the client and advertised to the server. Thus, no static ports will be
used by the client protocol. Thus, the CCP port will be static on the server and dynamic on
the client, while the DCP will be dynamic on both client and server sides.

12.2.1 Control communication protocol

The CCP will contrary to the DCP be implemented using TCP. Evidently, it is crucial that
control data reach its destination, though not crucial as to when this happens. Of course
information can reach the destination at a point where correcting an error will be too late,
but using UDP would not solve this problem in any case.

It is evident that two communication flows must be established between the server and each
client. Thus, information must flow both ways to obtain the required functionality. The
transmitted messages will in most cases be request-respond oriented, meaning that either the
server or a client will request an action from the other and will accordingly expect a respond.
Every client will therefore have a control connection open to the server at all times using this
when deemed necessary.

This raises the natural question of how much load the CCP will inject upon the server. The
communication with all hosts on the network will require the server and client to set aside a
portion of the available bandwidth to the sole purpose of control communication. Therefore
it is of utmost importance that the use of CCP is lowered as much as possible. The more
bandwidth consumed by the CCP, the higher expenses will be involved at the server and
additionally a fewer number of clients will be using the service, as the bandwidth demands
will be higher.

It becomes evident that the interval at which control information is exchanged together with
the size of synchronization data is the major impact upon the bandwidth of server. Therefore
these parameters must be carefully tuned.

TCP in itself often uses keep-alive packets which periodically probe the other end of the
connection. This functionality can however be altered to change the interval at which this
probing is done. This may offer an advantage to the server which will be notified if TCP
discovers that a host is down.

29

II1. Protocol design 12. Fundamentals

12.2.2 Data communication protocol

As stated in Section 3, clients equipped with asynchronous Internet connections which have
the ability to receive, but not send, the full bit-rate of the video should not be excluded from
the network. This fact implies that a set of clients can share the task of sending the stream
in its entirety to another client. Limiting how many clients can share this task, or rephrased
as, how many different clients a client can receive data from, will be accounted for in Section
14.1.

12.3 Logical topology

The physical network topology of the system is defined by the underlying network and the
routing algorithms applied in the internetwork layer. Upon this topology, a logical topology
defined by the protocol must be constructed.

As already mentioned, the protocol will be able place clients so that they receive data from
multiple sources. This means that small fractions of a video can come from virtually all other
clients watching the same section of the video. This setup clearly leads to a topology which
will take shape as a mesh and not a well-structured shape.

As is the case with routing, selecting a logical topology for the network can either be done using
two approaches, namely centrally or de-centrally. Where the first model applies a central unit
which decides where a client should be placed logically, the second model leaves the decision
to the client itself. Based on information already present in the network the client can find
a proper point in the logical network. Due to the requirements given in Section 2 concerning
system security the first approach is used by the protocol.

Selecting a logical topology for the network used for on-demand streaming involves a knowledge
of the characteristics of the media which is distributed. One topology might be suitable for
media with little or no interaction while another topology might not. Evidently the more
clients receiving data from an interacting client, the more relocations must be performed.
Thus, selecting a logical topology requires knowledge about the behaviour of the users. The
only universal property applying to the topology is that it will form a directed graph which
in some cases will be disconnected as described in Section 14.2.

This has the consequence that the logical topology of the network is not decided on beforehand
by the design. This will be done by the server whenever an event occurs in the network, e.g.
when client relocation is necessary due to new clients connecting, clients leaving etc. How
this selection procedure is constructed will be described in Section 14.6. However, for this
selection mechanism to function the protocol may need various information when determining
the point where a client can be located. Traditionally, IP routing applies values like round-trip
time and/or numbers of hops between a pair of nodes. Some of these values could be used by
the selection algorithm, as a long delay between two clients exchanging data might give rise to
complications. Yet another parameter to be considered may be the economical cost incurred
when transmitting data across a certain link might be desirable. Lastly, values determined by

26

II1. Protocol design 12. Fundamentals

the functionality of the protocol can be used. These could be values like how many times a
user has interacted with the video stream, e.g. with a pause or a skip or the upload capacity
of the client.

Traditional graph theory uses node and edge weights. This can be transferred to the protocol
in the sense that a given client, its ingoing and outgoing connections can be assigned weights.
The construction and assigning of these values can be done using a scheme combining several
information. Subsequently, these weights can be used by the selection mechanism.

These possibilities in constructing a complicated selection mechanism gives the protocol great
flexibility. Therefore the workings of the selection mechanism is part of an actual implemen-
tation of the design, and no part of the design itself.

12.4 Video identification

A method of identifying this video must be provided for the server protocol to identify a
request for a given video sent from a client. This identification can either come from the
client, or the server can provide the client with a list of videos available at the server.

In the first case, the client might obtain the identification outside the protocol, e.g. from
a home-page. Thus, the distributor of the video might have a home-page containing billing
information and the identification of the videos. In the second case, the client might request
the server of a list of the videos available. In this case, the server protocol would request the
server application for this list and send it to the client, which in turn would select a given video
and request it. Due to reasons of flexibility and simplicity we choose the first solution. Thus,
we assume that the client may identify a video outside the protocol and request this from the
server. This identification will simply be a 64 bit long number containing the identification.

12.5 Security

As mentioned in Section 2.6 a requirement to the protocol is the capability to offer different
elements of security. These elements can roughly be divided into four parts all of which will be
treated in the design of the protocol. A basic design solving the security issues will be made
but not implemented in the protocol. Generally, the security enhancements of the design
are related to issues arising from the functionality of the protocol. Thus, any digital rights
management will be implemented in the applications using the protocol, as described in Figure
12.

12.5.1 Authentication

To verify the authenticity of a sender of a packet a client must be able to be authenticate
the client which has sent the packet. This will ensure that no client can impersonate another.
This is done using a set of keys. Two clients exchanging data share a set of keys identifying

o7

II1. Protocol design 12. Fundamentals

the other. These keys are generated when a client connects. The server will then generate
a unique key identifying the client, and a key identifying the server to the client. Only the
client knows about the server key and hence no other client is capable of sending packets to
the server and pretend it is another client. When two clients need to communicate, the server
will distribute their keys to let the clients know the identification of the other.

These key pairs can further be used to identify a client, in regard to IP-address, communication
ports etc. Hence, when a client connects, the server will store the information and for the rest
of the session the client will be identified by the generated keys. These keys will from this
point be known as a client id. Thus, two clients may know the keys of each other which will
form the key pair described in this section.

This procedure resembles the Kerberos [18] authentication mechanism designed to allow in-
dividuals communicating over an insecure network to prove their identity to one another in a
secure manner. As the focal point of this initial version of the protocol is not secure authen-
tication of clients this simplified authentication mechanism has been chosen.

12.5.2 Authorization

To authorize itself, a client will need to send a connection request to the server containing a
user name and password. This request should furthermore contain identification of the desired
video the client would like to watch. The information should not be validated by the protocol,
but rather handed to the server application allowing this to authorize the client. Hence, it is
not part of the protocol to perform this check. The client and server applications should be
implemented using some form of data encryption before handing user name and password to
the protocol, as the protocol only transports data in clear text.

12.5.3 Data integrity

To avoid clients tampering with data before forwarding it to another client the functionality
of transporting security data is added to the protocol. This is done using CCP by sending
security data from the server to all clients containing data related to some predefined security
mechanism used by the server application. Thus, the CCP will also handle data related to
the security mechanisms of the server application while DCP will handle data related to the
video stream. Client-side, the security data will be delivered to the client application which in
turn will need to verify if the security scheme defined by the server application is respected.
This model is depicted in Figure 12. The reason for this choice of this model is that the
security part of the protocol should not be an integrated part of the protocol. As a result,
the application protocol needs a way of notifying the client protocol if the security check fails.
This notification should be passed on the the server protocol which can take proper actions.

Due to the extra complexity involved in handling and sending security data from the server,

only the packet implementing this functionality will be designed. No attempt will be made
to implement the actual security mechanisms. Thus, the packets will be designed, but not

28

II1. Protocol design 12. Fundamentals

handled.
Server Application Client application
{ A\"\\
%)
S’ :
- ~ - g N
Protocol layer Protocol layer

=

Figure 12: Copyright protection.

12.5.4 Data theft

This issue of ensuring that malicious clients cannot steal data is by far the most important
and difficult one. Many solutions have been suggested but none have solved the problem
of proper protection against copying of copyright protected material, which has also already
been described in Section 11. The solution we have chosen is therefore to make it completely
up to the implementer to choose what to do and hence what level of security the protocol
implementation should offer. The protocol will facilitate that data related to security can
be embedded in the packet facilitating digital rights management. Thus, this packet will
contain all information related to security. The protocol design only defines one rule related
to the security packet, namely that the client receives security data from the server without
requesting it. Thus the server must keep track of what data the client needs and send this
accordingly. How much data the server sends at a time is undefined, meaning that the server
can choose to send all security data related to the video as soon as the client begins receiving
the video.

12.6 Protocol architecture

To give a more precise picture of the design of the protocol a figure extending the contents
of Figure 4 is given in Figure 13. The figure shows how a server operates with two clients all
using the same uniform interface.

29

II1. Protocol design

12.

Fundamentals

Applications

Protocol

Networking API

Server application Client application

Client application

Figure 13: Detailed architecture.

60

I1I. Protocol design 13. Protocol state

13 Protocol state

In order to determine the validity of incoming packets a perception of the state of the two hosts
exchanging data is necessary. An analysis of protocol state reveals that many perceptions of
the state can be found:

A client’s perception of itself: The client itself does not operate with any state enforced
by the protocol. Hence a client is free to define its own state. One could argue that the
client can be in a logged on or logged off state, but this is evidently implicit, as it does
not make sense to send anything but a log on request if the client is not logged on.

A client’s perception of other clients: Again a client has no real interest in which state
another client is in and therefore no state is defined for this purpose either. A client
should however be able to know when to send data to another client. Again a state which
determines whether a client is logged on or not could be used, but communicating with
another client is only possible if a unique id is known, as described in Section 12.5.1.
This unique id is provided by the server, and acts as a validation of the other clients.

A client’s perception of the server: As the server binds the clients together in the logical
topology, a client clearly cannot regard the server as malfunctioning. If this was the
case the topology would be inconsistent. Furthermore, a client must always abide by
the commands of the server. As a result, a client always regards the server as online.
Thus, the server does not have any states from the point of view of the clients.

The server’s perception of itself: The perception of the server of its own state is only
relevant to the server itself. Clearly, the server may either be on-line or not on-line. But
apart from this, the server may also be streaming data to one or more clients. However,
as the server also functions as a client to other clients it may be argued if this can be
considered as the state of the server. As a result we define that the server only has one
state which is on-line.

The server’s perception of clients: As the server controls the topology, the perception of
the server of all clients is clearly the most important. For example, if the server regards
a client as not on-line, the client has only one option, which is to request access.

In the following we examine only the perception of the server of both the clients and its own
state. As all control communication passes through the server, the most important aspect of
the protocol is exactly the perception of the server of the clients and itself.

13.1 Server state

As stated, the perception of the server of its own state is straightforward. Either the server is
on-line or not. This may be simple, but needless to say, the server does perform many actions.
The flow of these actions defines the procedures which should be applied when a certain action
occurs. A diagram depicting the state transitions of the server is found in Figure 14. The

61

I1I. Protocol design 13. Protocol state

diagram, simple as it is, does not say anything of the nature of these actions and how they
should be performed.

Offline

cmd: Startup cmd: Shutdown

Online

Handle action

Figure 14: Server state diagram.

The actions performed by the server all correspond to actions taken by some of the clients
connected to the network. Thus, some action might occur on the basis of a client interaction
which should be handled accordingly. How these actions are performed by the server may
be seen as irrelevant to the design of the protocol, but as these actions might spur topology
changes, the flow of the actions is needed to to defined following in the next sections.

13.1.1 Client connect

Upon connect, the server must initiate the process of authorizing the new client. This process
is depicted in Figure 15. The process initially starts by receiving the connect request. This
will be transferred to the server application which must grant or deny access to the client
requesting a given video. The response from the server application must provide the server
protocol with the measured bandwidth of the client as will be given in Section 14.3. If the
server application grants access to the client, the protocol must seek a spot in the topology
for the client. If this cannot be found, the protocol may seek to relocate other clients to make
room. This relocation may result in disconnecting some other client, if the connecting client
can provide a higher bandwidth than already connected clients. Finally, if a spot has been
found, the internal representation of the topology must be updated, and the set of clients which
are to distribute data to the new client must be informed. The new client must furthermore
be informed from which clients the data stream will come. Obviously, if the set of clients
initiate data transfer before the receiver has been prepared to receive data, the receiver will
begin discarding packets as they will be regarded as invalid. As the receiver is informed by

62

I1I. Protocol design 13. Protocol state

the server that it must prepare for receival, the data received from the set of clients streaming
data suddenly becomes valid. But the first part of the packets has been thrown away and the
receiver will now issue a number of requests for resending of data.

A solution to this problem might be for the server to wait for an acknowledgment from the
receiver indicating that it has now been prepared for receival. Thus, the server will need to
retrieve the set of clients, inform the receiver and wait for an acknowledgment. When this
has been received, the server may inform the distributors that they should start sending data.
However, this solution is not sensible as the nature of streaming, being time critical, may
result in the senders not having data available any longer. Hence, the server retrieves a set of
clients which has data available and informs the receiver. In the interval from this information
is dispatched and to the server receiving the acknowledgment, some or all of the set of clients
may not have data available any longer.

A second solution is to let the receiver and the set of senders set up a mutual agreement
accordingly before initiating the stream. But once again, the receiver could be compelled to
set up an agreement with a potentially high number of clients before the data transfer can
be initialized. This can result in some of the clients not having data available any longer
due to the long waiting time incurred in setting up an agreement with a high number of
senders. Furthermore, the only connection established between the clients a DCP connection
transported by UDP. If some packets were lost using the unreliable transmission some logic
would be needed to ensure that this was remedied, only to extend the possibility of the clients
not having data available any longer.

To simplify matters, the protocol assumes that the receiver of data will always have had
enough time to prepare itself to receive data. The simple assumption is thus, that the time
spent sending packets through the network will always be lower that the time spent preparing
the receiver for data receival.

63

I1I. Protocol design 13. Protocol state

f v

T
Grant client Find senders |

access
Found? i

| Authorize client F<i>

T Respond
Denied Relocation possible? None found

Connection request | .
Deny client access | Relocate l

Granted

clients
Update
Start J topology
Notify client Notify senders to
End of senders to start streaming

)

Figure 15: Connect action.

13.1.2 Client Interaction

Upon client interaction requests, the server protocol must first update the internal represen-
tation of the topology. If the interaction request is a stop action, this is handled identically to
the disconnect request. Thus, the representation of client interaction in Figure 16 only handles
pause and skip. If no relocation is needed, e.g. the client wishes to pause and no other clients
receive data from the pausing client, no further work is done. If, on the other hand, the client
needs to be relocated, the server protocol needs to find a new set of clients which can forward
data to the client. If this is not possible, the protocol checks if relocation of other clients is
possible, or possibly disconnect other clients to make room for the interacting client. If this
is not possible, the client is disconnected. Otherwise, a new set of senders is elected.

64

I1I. Protocol design 13. Protocol state

>

- 7)I Find senders > 7 N
Senders found?\/
TRelocatlon needed? Yes None found
| Update topology | 23V« Found
A . . .?
Interaction Relocation possible? Relocate
No clients
Start Disconnect client | ‘f

Update topology |

1

¥

Notify client Notify senders to
of senders to start streaming

y

Figure 16: Client interaction action.

13.1.3 Client disconnect

When the server receives a disconnect command, it must perform the action depicted in
Figure 17. The server must check if a relocation is needed due to clients receiving data from
the disconnecting client. If this relocation is needed, the server may either relocate the affected
clients or disconnect some or all of the affected clients if another spot cannot be found.

65

I1I. Protocol design 13. Protocol state

Disconnect client

Relocation needed?

Y
| Update topology | es | Relocate

$ clients
Disconnect
No . .
Relocation possible?
Start
Disconnect l f
affected clients | No

End i Yes

Relocate

Update topology |(— affected

clients

Figure 17: Disconnect action.

13.2 Client states

The state of a client is used by the server to identify if some action requested by the client is
allowed. Thus, the action will initiate a transition in the state of the client as it is seen from
the server. This state transition diagram is depicted in Figure 18.

The different states the client can be in are:

Not connected: This state is both the entry and exit state of a client. Thus, a client initiates
the connect phase as not connected and if the server disconnects the client or the client
itself wishes to be disconnected, the state of the client changes to not connected.

Connect pending: When the client has initiated the connect procedure the client must wait
until is has been acknowledged or disconnected by the server. In the interval between the
connect request and the response of the server, the client is in state ’Connect pending’.

Connected, initializing: When acknowledged, the client must wait until the server has
passed vital information about where the video is to be received from before the client
may initiate play-back.

Buffering: Before play-back can be initialized, the client must pre-buffer an amount of data.
How large this amount is will be elaborated upon in Section 14.2.

Playing: When the client has buffered the required amount of data, its state changes to
playing.

66

I1I. Protocol design 13. Protocol state

Paused: When the client pauses the video, its state changes to paused. From here, the client
may only go to playing state.

Skipping: Upon the skip interaction, the client may move to the skipping state. While in
this state, the client still performs play-back of the video, while waiting for the server
to select a new location in the network. When this location has been found, the client
moves to the buffering or playing state, depending on the type of skip performed. This
is elaborated upon in Section 14.2.

Stopping: This state is used either when the client wishes to stop the video or the video
reaches the end.

The state transition diagram found in Figure 18 depicts how the client changes from one state
to another. The diagram is quite straightforward and therefore needs no further explanation.
The key point of the figure is simply that the client should obey to the orders sent from the
server. However, it should be noticed that many of the state transitions should be equipped
with a timeout which should assure that the client cannot be stuck in a state transition from
which it cannot continue.

67

I1I. Protocol design 13. Protocol state

y \

| Not connected |

send: Connection request . .
a recv: Connection denied

Connect
Pending

recv: Connection accept¢

Connected
Initializing
recv: Info about sendersi send: disconnect
P ;I Buffering |

Minimum amount of data received

p I Playing | N

send: skip ‘ User interaction: Stop

r send: resume W
send: pause

[Skipping | i{ | Stopping |/

| Pause |—/

Figure 18: Client state transition diagram.

68

II1. Protocol design 14. Mechanisms

14 Mechanisms

This section describes the mechanisms which define the internal logic of the protocol. These
mechanisms will help identify the different packet types which will be used by the protocol to
exchange information the nodes in between. Implementations of the protocol must conform
to the workings of these mechanisms in order to enable co-operation between heterogenous
implementations. To account for these mechanisms a short description of these is given here.

Fragmenting data: To enable transport of multimedia data, the raw video file must be
parted into smaller bits which can be transmitted piecewise. This mechanism describes
how data is fragmented and how the bits must be transmitted.

Client buffering of data: The solution to the problems concerning user interaction when
using bandwidth sharing is to inject a buffer on each client. How this buffer must work
is therefore an important mechanism of the protocol.

Bandwidth: This mechanism refers to a set of methods applied when calculating and regulat-
ing the bandwidth of a client. This is needed as the protocol must be able to determine
how much bandwidth a client has available and how this is to be utilized.

Round-trip time detection: The protocol must define a mechanism for calculating the
round-trip time between two clients. This must be done to set up test scenarios which
can help the protocol to identify if errors are occurring.

Error detection: For the protocol to identify if errors are occurring, a set of error detection
mechanisms must be present. These mechanisms will be able to detect errors and handle
these accordingly.

Selection mechanism: This central mechanism is used to find the logical position in the net-
work of a new or relocated client. This mechanism is given in its initial state the logical
appearance of the network and terminates with a possibly updated logical appearance
of the network. Thus, it will output a possibly empty list of clients identified to stream
data to the new or relocated client. If this list is empty, no suitable entry point could
be found. The mechanism is not a direct part of the protocol design, as implementors
of the server-side protocol may implement different selection mechanisms. However, the
mechanism, regardless of how it is designed is a vital part of the protocol, which is why
this has been included in the design. We identify this mechanism as important to the
success of the protocol, as it defines a central point where poor design may lead to low
performance.

69

II1. Protocol design 14. Mechanisms

14.1 Fragmentation of data

In order to distribute and stream video as required in Section 2, the data needs to be buffered
as described in Section 10. This involves dividing the video into smaller pieces of data. How
this is done is the subject of this section.

As described in Section 12.2 video data will be transported using UDP which imposes an
upper limit of 65 Kbytes! for the size of data transmitted in one packet. Thus, the upper
limit on the size of a fragment is limited to the size of one UDP packet. It could be argued
that a fragment could be sized to fit more than one UDP packet, as this size could in a high
quality video equal a single frame or even less and therefore this is not much data to operate
with. But from reasons of simplicity, one UDP packet will contain one fragment.

Furthermore the functionalities offered by on-demand streaming force the need to skip between
sequences of the video, as described in Section 3.5. As skipping between fragments sized 65
Kbytes will not be feasible, an entity for grouping fragments is necessary. The size of this
entity has to be substantially larger than a fragment, as this will serve the purpose of skipping
in the video. Thus, the following entities will be used:

Data Block: The smallest fragment the stream needs to be divided into will be referred to
as a Data Block (DB). These blocks will be transmitted piecewise using DCP.

Buffer Block: Grouping of DBs will be done using a Buffer Block (BB). BBs constitute the
pieces of the video between which a skip can occur. Following this, a BB will contain a
number of DBs.

Referring to a specific point in a video is done using the tuple (x,y) indicating DB y inside BB
x. The further use and size of these blocks will be discussed and determined in the following
sections.

14.1.1 Buffer Block

The main purpose of dividing the video into BBs is to define precise points in the video to
skip between. There are several things to consider when deciding how many, and thus how
large blocks, a video should be split into. This decision is taken in the light of the following
properties:

Distance between skips: As BBs enable skips from one block to another, the size of a BB
will determine the distance in time between skips.

!The maximum size of an UDP packet is 65 Kbytes, but this includes the IP header and the UDP header.
Furthermore, some architectures do not support the full size of the UDP packet, which may lower the size
further.

70

II1. Protocol design 14. Mechanisms

Number of streams dispatched from server: Evidently, the more BBs the video is split
into, the more consecutive streams the server will be able to dispatch. Thus, under the
assumption that a client holds at least one BB at a given time it will be able to forward
this BB to another client. Therefore, in theory, if the video has been parted into 100
BBs, then the maximum number of clients the server needs to stream the video to is
100.

14.1.2 Data Block

The DB is the smallest fraction a video will be divided into. As stated above, a DB is meant
to be contained in one packet dispatched by the DCP. The property of dividing each BB into
a number of DBs is a result of the requirements in Section 2, introducing the need for a client
to receive data from several sources. Furthermore the time critical property of multimedia
streaming forces a need for a certain amount of data to be available at the client at all times.
As a result of these two properties, several clients transmitting data to another client will
transmit one BB at a time, as depicted in Figure 19. The figure depicts that a number of
DBs constitute the contents of a single BB. This BB is received from multiple sources, where
several clients each send a subset of the set of DBs contained in the BB. Following this, each
client will transmit a number of DBs of each BB causing a full BB to be received at a time.
This property is of course only approximate, as some clients will transmit data faster than
others, and the receiver may in practice end up receiving data from the next BB before having
received the full contents of the first. But absorbing these fluctuations is exactly one of the
purposes of the buffer.

Sender A Sender B Sender C

H E =

U B~ e —

N\

\}

4

Buffer at receiver

Figure 19: Receiving data from multiple sources.

Determining how many DBs should be contained in a single BB requires an analysis of two
factors, namely:

Physical limitations: As already mentioned the DCP will be implemented using UDP,
which induces a limit of 65 Kbytes upon the size of the DB, assuming that a DB should

71

II1. Protocol design 14. Mechanisms

fit into a DCP packet. This causes a 65 Kbytes DB of a high quality video to contain a
much smaller part (in terms of playing time) than a low quality video.

Number of concurrent streams: The number of DBs in a BB must be at least the number
of clients from which a client can receive data. This property is a direct result of
enabling a set of clients to send a collected BB together. Clearly, the number of data
senders cannot be higher than the number of DBs contained in a single BB as this would
unnecessarily complicate the organization of which clients should send which DBs. As
a result, if the protocol is setup allowing a client to receive data from 10 other clients,
a BB should contain at least 10 DBs. The reason for this demand is merely a design
decision made with the purpose of ensuring that all the clients are sending data to the
same BB, hence one DB is filled one at a time as described above.

Briefly, it becomes clear to the observer that the collected number of DBs contained in a video
file is related to the size of the video. A file occupying 4 Gbytes of space will thus have a
minimum number of 4 Gbyte/65 Kbyte ~ 65.527 DBs. How many DBs contained in a BB thus
becomes a question of how many BBs a video contains as given by the server application. The
relationship between BBs and DBs and how these entities are used in the underlying network
is depicted in Figure 20.

Video file: \ BB x ‘-~BBX+1 DH BEn |
Buffer Block: | DBx pexrt | |{ | \l;l;n |

Data Block:

op st [vy Tromsee W rmss]

Figure 20: Relationship between BBs, DBs and the underlying network.

Based on these assumptions and facts it would be impossible to set accurate numbers on these
parameters and therefore these will be made as variables which can be individually set.

14.1.3 Blocks and buffer size dependency

Logically the buffer will be divided into BBs. As the BB is only a logical entity, it could be
argued that the buffer be divided into DBs, but as the BBs are made up of DBs this is merely
a matter of definition. Furthermore, this graduation enables us to store and delete BBs one
at a time, which will give better control of what data is available and when, as a small block
will be written out of memory much faster then a larger one. Thus, determining which parts
of the video a client holds in its buffer is done based on BBs, hence its name buffer block.

72

II1. Protocol design 14. Mechanisms

It should now be clear that the sizes of the BBs and the DBs are closely related. Hence,
changing one parameter regarding the size of a DB will also affect the size of a BB. With
respect to these dependencies we try to construct a set of equations which in a more formal
way display these dependencies.

sizeof(BB) = sizeof(DB) * numberof (DB in BB) (1)

Equation 1 expresses the relation between the sizes of BBs and DBs. Furthermore, the number
of BBs contained in the video is determined by the server application as a relationship between
the skip distance in the video and the maximum number of streams dispatched by the server.
Thus, the demands for the buffer becomes a function of the BB size and the capacity of the
clients as depicted in Equation 2.

buffer demands = f(sizeof(BB), capacity) (2)

14.2 Client buffering of data

In order to enable redistribution of video content to other clients, a client must buffer a certain
amount of data. This amount of data is limited by the amount of data available at the client.
As mentioned, an earlier study [35] has shown that to render peer-to-peer streaming efficiently,
over 50 percent of the video should be buffered. But there are several reasons why this is not
a preferable solution. Some of the most important reasons are security and the costs incurred
when producing clients implementing the protocol in hardware.

14.2.1 Buffer contents

The buffer is conceived logically as a circular buffer, but in practice it will be implemented
as a static continuous piece of memory. This is implemented by moving a pointer back to the
beginning of the buffer once it reaches the end, as depicted in Figure 21. This scenario shows
how the buffer at time ¢’ wraps around and overwrites the contents of the first buffer block. In
order to illustrate the functionality of the buffer a number of expressions needs to be defined.

73

II1. Protocol design 14. Mechanisms

(a) Buffer at time t (b) Buffer at time #’

Figure 21: A circular buffer.

First several pointers need to be defined which determine points inside the buffer where a
certain activity takes place:

Play Pointer (PP): This pointer indicates the present position of the client in the video
pointing to the data being displayed on screen. The buffer block containing the PP will
be referred to as the play block.

Receive Pointer (RP): This indicates the point where data is being received from other
client(s). The pointer thus indicates where the next DB received from the sender will
be written. As data can be received from multiple sources, one receive pointer will be

used per sender. The buffer block currently being filled will be referred to as the receive
block.

Stream Pointer (SP): This indicates which DB is currently being sent to another client.
One pointer will be used for each client data is forwarded to.

Apart from these pointers, the buffer is divided into different areas, each with their specific
purpose. As the buffer is visualized as a circular memory segment these pointers and areas
are moved around the buffer all the time. Thus, it makes no sense to depict the position of
these pointers and areas unless it is clear that this can only be viewed at a certain point in
time. As the PP moves into the next block, the areas slide further along the buffer.

Absorption Area (AA): This area lies ahead of the play block and contains data which
must absorb network fluctuations. The size of this area is defined individually by each
client, as network stability varies from client to client. Under optimal conditions, the
buffer block lying immediately after the AA will be the receive block. The buffer is said
to be in a critical state if the amount of valid data in the AA is below the required

74

II1. Protocol design 14. Mechanisms

amount of BBs (AA size). Put in another way there has to be a certain amount of data
to be played in front of the Play Pointer. This amount of data is what under normal
circumstances gives the client enough time to react to a line breakdown etc. and request
the server to solve the problem.

Reserved Area (RA): This area contains data which is not allowed to connect new clients
into. The RA lies immediately ahead of the AA and will under normal circumstances
begin with the receive block. A skip outside the buffer will move the PP into the first
block of the RA, hence the receive block becomes the play block and the RA becomes
the AA. Skipping will therefore result in filling the RA with data from the new point in
the movie where the PP has moved to.

Connect Area (CA): Connecting other clients can only be done in a certain portion of the
buffer. This data has already been played by the media viewer, or is under immediate
play back. Clients can only be connected to contents of the connect areq if data is
sequential. This entails that if a skip has occurred earlier on and some data in the CA
is not sequential in relation to the PP, then clients can only be connected to the part
which is sequential in relation to the PP.

As the CA of the clients’ is used for attaching new or relocated clients into the sizes of the
clients CA constitute the total amount of memory available to the protocol. Evidently,
the smaller the amount of aggregated memory provided by the clients the higher an
amount of clients must be attached to the server. Therefore, the sizes of the clients CA
must be as high as possible. To assure this, the server must have a way of informing
the clients of the desired size of the CA. But as the memory available to the clients may
differ this desire may only be perceived as a guideline by the client. Therefore, clients
which use a CA smaller than what is advertised by the server are regarded as anti-social.
The reason is that the memory of the clients is regarded as a shared resource used for
buffering data and passing this on to other clients. If a client does not contribute with
a portion of memory large enough to satisfy this demand, the client will potentially
starve the data in the system. Being anti-social does not mean that the client cannot
be connected, but it means that it has a higher risk of being disconnected and may
experience poor service.

Send Area (SA): The send area contains the area in which sending data to other clients is
permitted. The area spans the entire buffer. If data contained in the buffer does not lie
sequential with respect to the receive pointer of an attached client, the client will stop
sending data once the send pointer reaches the invalid data. The attached client will
hereafter need to contact the server to be relocated.

To further account for these terms, Figure 22 displays a simple buffer sized 8 BBs. The size
of the AA is set to two which is also the size of the RA. The size of the connect area is thus
4, as no clients can be connected to data placed in either the AA or the RA. As the SA spans
the entire buffer it has size 8.

0]

II1. Protocol design 14. Mechanisms

Connect Area

Figure 22: Visualizing the contents of the buffer.

As will be described in Section 14.3 when clients are relocated to receive data from another
client due to a skip, this will result in speeding up the rate of which the video is sent to fill
the AA of the receiver. Therefore, connecting clients must receive data at a higher speed than
the sending client is viewing the video, possibly resulting in the SP passing the PP. This is
no immediate problem as long as the SP does pass the RP. This can only happen if a client
needs to receive more BBs at extra rate than the sender has in its AA. As the size of the AA
varies from client to client, this could indeed happen if the receiver has an AA of higher size
than the sender. Thus a constraint must be introduced:

A connecting client cannot be attached to a BB
closer to the end of the sender’s AA than the size of its own AA.

This situation is visualized in Figure 23. A client wishing to connect (not displayed in the
figure) to the client depicted in the figure has an AA of only five BBs. From the above
constraint, the connecting client can only connect into buffer blocks 28-35 as connecting outside
this window would result in the need for receiving data at extra speed for a full five blocks,
possibly resulting in the send pointer crossing the receive pointer.

76

II1. Protocol design 14. Mechanisms

<—RP— Receive pointer

. Absorption Area

<—SP— Stream pointer B Reserved Area

<—PP— Play pointer . Connect Area

Figure 23: Connecting clients inside the Connect Area (CA).

14.2.2 Buffer size

As described in Section 10 the buffer serves not only the purpose of absorbing network fluc-
tuation but also forwarding data to other clients. Thus, there is a need for an amount of
data, both ahead of the client’s playing point (to absorb network fluctuations), and behind
the playing point (to forward data to other clients).

The size of the buffer is thus formed by the amount of BBs required, the sizes of the AA,
RA, and the CA. How large these portions of data need to be is inherently hard to determine,
as they are both dependent upon the stability of the network and the amount of memory
available to the client. These three two sizes will therefore be variables at each client. The
collected buffer size will thus be made up by:

sizeof (Buffer) = sizeof(AA) + sizeof(RA) + sizeof(CA) (3)

Deriving from this equation the minimum buffer size must thus be 3 BBs. In this case, the
play block will follow immediately after the receive block, and the play block will be the
only block allowed to attach new clients into. In this scenario the block which is currently
being filled may wrap into the next block, which is in the process of being played possibly
overwriting data which has not been played yet. Thus using a buffer of size 3 BBs is obviously
not preferable, yet possible. Using 4 or more blocks would ensure higher stability and the

77

II1. Protocol design 14. Mechanisms

possibility of connecting clients into another block.

14.2.3 Initiating play back

Upon initiation of data receival, the AA will be completely empty. Therefore, to ensure smooth
play-back, the client could be forced to wait for the area to be filled. Depending on the size of
the AA and the size of a single BB this may sum to a substantial waiting time for the end-user
and may not be considered instant play-back. Thus, there is a need for initiating play-back
before the AA is filled. But as streaming in its nature only sends data with the same speed as
the play-back rate of the video, a client needs to be able to receive data faster than the play
back rate. This will be elaborated upon in Section 14.3.

This involves playing the video before a full BB is present. As shown on Figure 24 a client
has skipped to BB number 51 in a movie, and has received only the first 4 DBs of this BB.
Considering this scenario the client could potentially start displaying the movie starting from
DB 1 in BB 51. But as different clients may posses different properties as to the quality of
the Internet connection the client will have to be in control of this. Thus, controlling how
many DBs the client will have to buffer before play-back can be initiated is up to the client.
Furthermore, there is a need to receive a certain portion of the video, as some video standards
use a header in the beginning of a multimedia file which identifies media bit-rate, frames per
second etc. Thus, the protocol must support a way of identifying how many DBs should be
received before the initial play-back can be done.

50 51 52

Figure 24: Video playback immediately after receival of data.

A visualization of how the buffer is used during initiation of play-back is found in Figure 25.
The scenario shows how the buffer is used during startup with an empty buffer. When the
minimum needed DBs are received, the client starts displaying the video. The data in the play
block lies within the AA until enough data has been received to fill the entire AA. As data
is being filled into the CA other clients can be attached, provided they fulfill the constraint
given in Section 14.2.1 regarding the valid connect area of a client.

78

II1. Protocol design 14. Mechanisms

<—RP— Receive pointer U Absorption Area
<+—SP— Stream pointer . Reserved Area
<—PP— Play pointer U Connect Area

Figure 25: Contents of buffer at startup.

14.2.4 Normal play-back

Normal play-back is the typical state of the buffer during a streaming session. The PP has
made zero or more trips around the buffer and all the data behind the PP is in sequential
order meaning that data contained in the CA is ordered sequentially. The client receives data
from two other clients and forwards data to three other clients. The scenario is visualized in
Figure 26.

79

II1. Protocol design 14. Mechanisms

<RP— Receive pointer . Absorption Area
<—SP— Stream pointer B Reserved Area
<—PP— Play pointer ' Connect Area

Figure 26: Contents of buffer at normal playback.

14.2.5 Skipping

As described in Section 3.5 skipping is handled in identical to initiation of play-back. Thus,
when skipping to another sequence, displaying the video instantly should be possible. A deeper
analysis reveals that three types of skips can occur:

Skip forward inside buffer: As the name implies, this is a forward skip to a block which is
already contained in the buffer. Thus the PP will be moved forth to the buffer containing
valid data. To avoid buffer starvation the AA needs to be filled quickly resulting in the
need for receiving data at a higher speed. This will result in the RP moving faster than
the PP, possibly overwriting data which is needed by attached clients. In this event
the client must inform the attached clients that data is unavailable. If dispatching data
needed by attached clients cannot be satisfied, these will have to be relocated to other
clients by the server.

The scenario is depicted in Figure 27, where the client has skipped to block 19 at time
t'. The result is, that the AA has been reduced, but at the same time the CA has been
enlarged. This calls for the need to receive data at a higher rate to enlarge the AA.

80

II1. Protocol design 14. Mechanisms

<—RP— Receive pointer Absorption Area <—RP— Receive pointer ' Absorption Area

<SP — Stream pointer Reserved Area <SP — Stream pointer ' Reserved Area

<—PP— Play pointer . Connect Area <—PP— Play pointer . Connect Area
(a) Buffer at time ¢ (b) Buffer at time ¢

Figure 27: Skipping forwards inside the contents of the buffer.

Skip backward inside buffer: Skipping backwards inside the buffer can be done until the
receive block. In other works a skip can occur to all data lying between the RP and the
PP. This will result in the PP moving back to the intended block. As the PP moves
closer to the RA, the CA is reduced to fill as little as only the play block. Thus, the play
block will follow immediately after the receive block minimizing the CA. To enlarge the
CA once again receival of data must therefore be throttled down, until the size of the
CA is once again satisfied. When throttling down speed, there is a risk that attached
clients cannot receive data fast enough, possibly resulting in starvation of the buffer of
attached clients. Again this will result in the need for relocating these clients to other
locations in the network by the server.

Skipping backwards inside the buffer is illustrated in Figure 28. The scenario shows
that the client has skipped backwards to block number 13, thus enlarging the AA and
shrinking the CA. To accommodate for the highly enlarged AA, the client will need to
receive data at low rate, to widen the gap between the RA and the PP and thus enlarge
the CA.

81

II1. Protocol design 14. Mechanisms

<—RP— Receive pointer ' Absorption Area <—RP— Receive pointer ' Absorption Area

<-SP— Stream pointer [Reserved Area <«—SP— Stream pointer . Reserved Area

<—PP— Play pointer . Connect Area <—PP— Play pointer . Connect Area
(a) Buffer at time ¢ (b) Buffer at time ¢’

Figure 28: Skipping backwards inside the contents of the buffer.

Skip outside buffer: If the PP is moved further back, i.e to a point where it crosses the RP,
this would no longer be a skip backward inside the buffer as data would not be available.
The same applies to a forward skip where the PP crosses the RP, as this is skipping
forward outside the buffer. These scenarios are handled identically by overwriting the
contents of the receive block with data reflecting the new point in the video form where
content is to be shown. At the same time, the PP is moved to the receive block, thus
the block becomes the play block and the receive block at the same time. This scenario
closely resembles initiation of play-back as no data in the buffer is valid. Therefore
these two scenarios are handled identically, using the same variable which controls how
many DBs should be available before play-back is initiated. Skipping outside the buffer
renders all data in the buffer non-sequential, meaning that data lying in the SA is not
sequential with respect to the data contained in the receive block. This will result in
the need for relocating attached clients elsewhere by the sever. The scenario is depicted
in Figure 29. After the skip, the CA is marked as non-sequential thus resulting in the
server being unable to attach clients into the area until the RP has moved away from
the PP.

82

II1. Protocol design 14. Mechanisms

<—RP— Receive pointer Absorption Area <—RP— Receive pointer . Absorption Area

<—SP— Stream pointer Reserved Area <—SP— Stream pointer . Reserved Area

<—PP— Play pointer . Connect Area <—PP— Play pointer . Connect Area
(a) Buffer at time ¢ (b) Buffer at time ¢’

Figure 29: Skipping outside the contents of the buffer.

14.2.6 Pausing

As described in Section 3.5 one of the goals is is to provide a pause function similar as to what
is seen on a VCR. This should result in the user experiencing a halt in the video stream until
he or she wishes to continue playing. How this is visualized by the client application is of no
concern to the protocol, but the protocol needs to determine what to do.

One of the characteristics of a media pause is that the length of the pause is not determined
on beforehand. One could give an estimate from statistics on the average length of a media
pause, but the type of media distributed by the server might have an impact upon this average.
Thus, one type of video could generally result in shorter pauses than another.

What is interesting about the length of a pause, is that a client attached to a pausing client
might not need to be relocated as data transfer can proceed until sending side does not possess
relevant data any longer. As long as this does not happen, the pausing client could receive
data without displaying it and forward it on to other clients as long as the sender does not
overwrite data not displayed by the video player. On the other hand, it might be desirable to
anticipate events and act as soon as a client pauses by relocating all attached clients.

To sum it up, the protocol can either choose to relocate a client as soon as the sender pauses

83

II1. Protocol design 14. Mechanisms

the stream, or wait until data is unavailable at the sender. Using the first approach, the
protocol might have greater possibility of avoiding stalls in video play-back at the receiver.
On the other hand the second approach exploits the possibility of the sender only pausing
the stream for a short time. After the sender resumes play-back everything will proceed as
normal. How the protocol handles this situation is not part of the protocol design but in the
implementation given in this thesis the second approach is chosen.

Evidently, attaching clients to a client which is paused is not desired. Attaching a new
client will result in the need for receiving data at high rate as playback will need to begin
immediately. Thus, if the paused client suddenly runs out of buffer space as it may overwrite
data not displayed by the player yet, data receival must be brought to a standstill. In this
event the newly attached client might not yet have its AA completely filled but needs to
be relocated. This relocation might take up too much time, resulting in the player stalling.
Hence, there is a need to first inform the server of a pause in order to let the server know that
no clients should be attached before a resume has been performed. Secondly, the client must
be able to inform the server that it has run out of buffer space and cannot hold any more data.
In this event, the server needs to relocate all connected clients and stop transmission to the
paused client from other clients. In a sense, this will result in the client still being a part of
the network, but without any connections. Thus, the network will form a disconnected graph.

Pausing the video is visualized in Figure 30. At time ¢, the client pauses the video and the
server is notified. At time ¢’ the video has been paused for an amount of time, resulting in the
enlargement of the AA. Notice the similarities between skipping backwards inside the buffer
and pausing. From these similarities it can be concluded that pausing and skipping backwards
are closely related as the play pointer moves backwards in time in both cases. This is in fact
consistent with [41] which notes that ’the pause action belongs to the backwards interactions’.

At time ¢” the buffer has wrapped around and the receive block has reached the play block.
At this time all attached clients has been relocated and receival of data has been brought to
a standstill.

84

II1. Protocol design 14. Mechanisms

(b) Buffer at time ¢’

<—RP— Receive pointer Absorption Area
<SP — Stream pointer Reserved Area
<—PP— Play pointer Connect Area

(c) Buffer at time ¢

Figure 30: Pausing the video stream.

85

II1. Protocol design 14. Mechanisms

14.2.7 Resume

Resuming can evidently only be done after a pause has been performed. If the client still
receives data from other clients, the client can play-back the video without further ado. If the
client on the other hand has informed the server that it has run out of buffer space, the client
must be relocated to some point in the network before data transmission can be initiated.

14.3 Bandwidth

As already stated bandwidth is referred to as capacity. Obviously, all clients must be able to
receive data at a rate equal to the bit-rate of the video. Put in another way, a client must be
able to receive data at the same speed as is used when playing back the video plus the amount
bandwidth of needed by the CCP.

Unfortunately the ability to receive data at this rate is not enough. The reason for this is
that, in order to buffer data, a client must be able to fill up a certain amount of its buffer
ahead of the PP in concurrence with displaying the video. Thus, the sender of data will need
to raise the speed at which data is sent. Another approach to this is to let a third client send
the extra amount of data in situations where this may be needed. Hence, a client not using
its upstream bandwidth could be found to deliver the extra amount of data. But this would
not lower the total amount of bandwidth needed, and would greatly add to the complexity.
Therefore the simple approach of demanding that clients can provide an extra amount of
bandwidth is chosen. Furthermore, the client must be able to throttle down the rate in order
to widen the gap between the PP and the RP in the event of a backward skip inside the buffer
as described in Section 14.2.5.

To connect a new client to the network therefore requires a way of figuring out how much
bandwidth the client can provide.

14.3.1 Bandwidth detection

Upon connect the available bandwidth of the client needs to be determined. If the system
is controlled by an Internet Service Provider, the bandwidth of its customers may easily be
available. But if the system is used by a third part with no knowledge of the bandwidth of
the client, other methods must be applied. The simple way is to let the clients advertise their
bandwidth, but as described in Section 6.3 the structure of the Internet causes the advertised
capacity to be very unreliable. Measuring the available bandwidth is a difficult subject. A lot
of research has been done in this area resulting in a large variety of methods and theories as
seen for instance in |22]|. This area is by far large enough to be a topic for a master’s thesis
on its own and since, it does not play an important role to this project, it will be regarded as
out of scope.

The assumption is that some other software located outside the protocol handles this measure-
ment, but even this assumption has its limits. If the bandwidth can be measured one further

86

II1. Protocol design 14. Mechanisms

assumption needs to be made: The capacity from point A to point B is equal to the capacity
from A to another point C provided that the advertised capacity of C is not lower than the
advertised capacity of B. This enables us to trust the measured capacity of a connecting client
and rely upon the fact that wherever the client is logically placed in the network, its speed
will never be lower than the advertised speed. Note that the assumption is not related to the
rule of mathematical transitivity.

This advertised speed has to be provided to the protocol and will include only the upstream
bandwidth. If the downstream bandwidth is too low to receive the bit-rate of the video, the
client should be rejected right away. The provided upstream bandwidth should be the real
upstream bandwidth, meaning that, the clients ability to receive data is not affected by the
amount of data being sent or vice versa. If this is the case, the downstream bandwidth used to
receive the video should be subtracted. A client which cannot provide an upstream bandwidth
high enough to send the complete video will be regarded as anti-social. Thus being anti-social
is not only defined as providing less memory than what is advertised by the server, as stated
in Section 14.2, but also if clients contribute less bandwidth than they consume and hence
add to a potential starvation of the available bandwidth of the network.

14.3.2 Bandwidth calculation

For the system to determine how and when data is to be streamed, the server needs to know
the available bandwidth of all clients. As this information will be supplied from outside of the
protocol, the server application instantiating the protocol must pass these informations to the
protocol. Apart from this, information about the video which is streamed must be available
to the server. This includes, media bit-rate, the duration in milliseconds and size in bytes,
BB size in bytes, and the number of DBs contained in a single BB. These numbers are used
to calculate how much data each client should and can stream.

The main idea in these calculations is to translate the available bandwidth of the clients into
the maximum number of DBs the client is able to send per second. To calculate this number,
the protocol needs to calculate the following units:

First the total number of DBs in the video is calculated:

sizeof(video)

numberof (DBsInVideo) = — £(DB)
sizeo

(4)

This number is used to find the duration of each DB based on the total duration of the video.
This number is measured in milliseconds, as the rate of which DBs are sent is expected to be
finely grained.

duration(video)

duration(DB) =
vration(DB) numberof (DBsInVideo)

87

II1. Protocol design 14. Mechanisms

This number is the time span in seconds in which the client consumes a DB or in other words
a new DB should be sent to the client at this interval. Hence, it is possible to find the number
of DBs which should be sent per second by:

1

DB/sec = —
[sec duration(DB)

(6)

When this number is found we need to look at the maximum upstream bandwidth of the
client. This bandwidth needs to carry more than just the amount of data needed to stream
the video. As already described the client needs to have the ability to transfer extra data in
order to fill the buffer of the connected client. On top of this, the client needs some of the
bandwidth for control data sent using CCP. Hence the upstream bandwidth available to send
the video from a given client is found by solving the following equation:

Bandtotal = Bandavailable - Bandert?“a - Bandcontrol (7)

where Bandy;, denotes the available bandwidth of the client when data is streamed at normal
speed and Bandegzirq is the extra amount of bandwidth needed for throttling up the speed.
This value of this variable is a portion of the bit-rate. If Bandyq is equal to or higher than
the bit-rate of the video, the client will not be regarded as anti-social. If the number is lower,
it means that the client is not capable of streaming the entire video on to another client and
hence is regarded as anti-social.

Based on the above formula the protocol can determine how much bandwidth a client may
contribute. This is calculated as the maximum amount of DBs the client may send per
second. The calculation is found in Equation 8, where Band;,, denotes the value computed
in Equation 7.

B andtotal

DB =
/sec sizeof(DB)

(8)

This variable is stored by the server protocol for each of the connected clients. The numbers
calculated in equations 4, 5 and 6 are precalculated and stored together with other video
information and therefore the only calculations needed during a new client connect is those of
Equations 7 and 8.

14.3.3 An example

To visualize the dependency between the above calculations a short example will be given in
this section. The following data is given on beforehand:

e The video is divided into 1000 BBs each containing 100 DBs.

88

II1. Protocol design 14. Mechanisms

e The total playing time of the video is 5,400,000 msec (90 minutes).
e The size of a DB is 40 Kbytes.

The duration of a BB is therefore:

5,400,000 msec
1000

= 5,400 msec = 5.4 sec (9)

Thus, the duration of a DB is:
5,400 msec

100 = bdmsec (10)

The number of DBs a client needs per second is:

1000 msec

————— =~ 18.52DB 11
54 msec/DB 85 [sec (11)

As given above the size of a DB is 40 Kbytes. Thus the bandwidth used for streaming video
data per second is:

18.52DB/sec x 40 Kbyte ~ 740.7 Kbyte/sec ~ 6.068 Mbit/sec (12)

All of the above are calculated once based on the number of DBs the video is divided into.
This is done when information about a video is received from the server application.

The following is calculated each time a client is connected. The server is provided the client’s
available upstream bandwidth, and on top of this the protocol uses the following variables:

e control data takes 10 Kbyte/s,
e bandwidth maximum should be 20 % extra,

e bandwidth minimum should be 20 % less.

As described above the minimum bandwidth which should be available to a client, if it
should be able to forward the entire video to another client must be: (741 Kbyte/sec * 1.2) +
10 Kbyte/sec = 899.2 Kbyte/sec. If a client can only provide for example a maximum of 300
Kbyte/s, we can calculate the bandwidth which is available to the protocol:

(300 Kbyte/sec — 10 Kbyte/sec) /1.2 = 241.7 Kbyte/sec (13)

This means that the client can send only 241.7 Kbyte/sec of the collected bit rate of the
video. Since this is below the 741 Kbyte/s needed for the entire video, the client is marked as
anti-social with the possibility of experiencing poor service.

89

II1. Protocol design 14. Mechanisms

Now it is interesting to find the number of DBs the client can deliver out of each BB. The
amount of DBs the client can deliver per second is:

241.7 Kbyte/ sec
40 Kbyte/DB

= 6.042DB/sec. (14)

And finally the number of DBs the client can deliver in each BB is found:

6.042DB/sec * 5.4 sec = 32.63 DB. (15)

Meaning that 32.63 DBs out of each BB can be delivered from the client per second. The
number is always rounded down, e.g. 32 DBs per BB containing 100 DBs.

Now the server knows that this client is calculated to be able to assist with 32 DBs in each
BB in normal mode, but it can deliver 32 DB/sec* 0.2 =~ 6 DB/sec extra, should the attached
client(s) need it.

Furthermore, if the client is requested to send e.g. 17 DBs out of each BB, then the client can
calculate how long the interval between sending each packet should be:

1
(%O) * 54 msec ~ 317.64 msec. (16)

which is be rounded down to an interval of 317 msec. From this we can calculate that if the
client is required to send at maximum speed it would be: 317msec/1.2 = 264.17 msec and
with minimum speed it would be: 317 msec x 1.2 ~ 380 msec.

14.3.4 Adjustment of client bandwidth

As stated in Section 14.3.1 the protocol will not implement a method for determining the
bandwidth of a client. But another obstacle remains: Deciding how to adjust the used band-
width of a client when streaming still needs to be taken care of. The question is simply, how
much bandwidth should be consumed by the client? And what if the client fails to contribute
the measured bandwidth? Thus, adjusting the bandwidth will be described in this section.

Several variables are used to store information about the bandwidth of the clients. These
variables will be used to select the right client or clients to whom a new client should be
connected.

MEASURED BANDWIDTH: This parameter is set upon startup when a client’s band-
width is measured and handed to the protocol. The value is given as in the number
of DBs the client is able to send per second. The value could be higher than what is

90

II1. Protocol design 14. Mechanisms

required to send the entire video indicating that the client is capable streaming more
than one full video. Hence, the client cannot be marked as anti-social as the client will
at least contribute the same amount of bandwidth as it consumes. This value is not
changed during the session of a client and is only calculated upon connect.

EXPECTED BANDWIDTH: This parameter denotes the expected bandwidth of a client
and is adjusted during the client’s session. If a client is calculated to contribute with
more bandwidth than required by the video, this parameter is set upon startup to only
what is required to stream the video. As this parameter is also given in DBs, it would
for instance be set to 100 if the rate of the video required is 100 DBs per second, even if
MEASURED BANDWIDTH is higher than 100. Afterwards the value may be adjusted
up if necessary.

Adjusting the value down is done when a receiver of data notifies the server that receival
of data is not done at the advertised speed. The server will then assume that the
expected bandwidth of the client has been set too high and accordingly adjust it down.

Adjusting the value up is done when bandwidth equilibrium cannot be obtained with
the amount of bandwidth available to the network. Thus, if the expected bandwidth
of a client is below the measured bandwidth, the expected bandwidth of the clients is
adjusted up.

The only rule which applies when adjusting the parameter is that it should never be set
higher than the measured bandwidth. If the expected bandwidth falls below the rate of
the video, the client may be marked anti-social.

USED BANDWIDTH: This parameter indicates how much bandwidth is currently being
consumed. The value is adjusted during the client’s session and cannot be raised higher
than expected bandwidth, though it may be lower.

EXPECTED UP: This value is a simple counter used to track how many times the EX-
PECTED BANDWIDTH has been raised. This is done in order for the server to keep
track if it continues to raise and lower the bandwidth of a client.

EXPECTED DOWN: This is the counterpart to EXPECTED _UP.

14.4 Calculation of round-trip time

As the DCP will use the UDP protocol, there is a chance the packets may disappear during
transport. This unfortunate property raises the simple question of what to do, if a packet
gets lost. But answering this question cannot be done, before another question is answered,
namely, how do we detect if a packet is lost? As already accounted for in Section 8.3, UDP
also has the unfortunate property that packets may be received out-of-order. Thus if packet
seven is received before packet six, we cannot rely upon the assumption that packet six has
been lost — it might simply be delayed underway.

The protocol could wait a given time to see if packet six would arrive, and when this time runs
out take some action indicating the assumption that packet six was lost. But how long time
should the protocol wait? As a minimum, it should wait the time it takes for a packet to be

91

II1. Protocol design 14. Mechanisms

dispatched from the sender and until it reaches the receiver. This is known as the round-trip
time (RTT), or actually half the round-trip time, as the round-trip time is the amount of time
it takes for a packet to reach its destination and come back.

Calculating the round-trip time can only be done using some form of synchronization between
the two clients. Thus, a client can send a request, get a response back, and calculate the
round-trip time simply by looking at the time between sending the request and receiving the
response as depicted in Figure 31.

Client A Client B
=
3
(0]
—>
Y S~ .
] Ping
>
@
%.
3 Pong
(0]

Figure 31: Round-trip time.

This value needs to be updated as it may change over time. This may either be done by initi-
ating a new synchronization procedure or updating the value every time a packet is received.
Calculating the round-trip time is therefore straightforward:

1. Upon initialization of data transfer, a ping packet is sent from the data receiver to the
data sender.

2. The ping packet is responded by a pong packet containing a timestamp indicating the
time the packet was sent.

3. The data receiver will then calculate the difference between sending the ping and receiv-
ing the pong.

4. Furthermore, the data receiver will calculate the time difference between the clients by
subtracting the timestamp given in the pong packet and the time of arrival. This value
will correspond to the time difference between the clients and the time spent by the
packet before it has arrived. Note that this variable may be below zero. This is due
to the difference in time between the clients, as their clocks will not be synchronized.
Subtracting the time stamps may therefore return a value below zero.

5. Consecutively, every time a data packet is received, the receiver can calculate the time
difference by looking at the sender’s timestamp given in each data packet. If this dif-
ference has changed from what was originally calculated, the difference will be added to

92

II1. Protocol design 14. Mechanisms

a running round-trip time variable. Thus, the protocol can maintain a round-trip time
for all clients from which it receives data. The procedure is visualized in Figure 32.

Client A Client B
to = 1100
o)
o
c
>
o
= Time = 200
S
5
(0]
t1 = 1200 Time = 250
Calculated RTT:
1200 - 1100 = 100
t2 = 1250 Time = 300
/ Time = 350
ts= 1325
Time =400
ta = 1360 /
ts = 1395 / Time = 450
te = 1450
\ A \
Time Time difference Estimated RTT
to - -
s 100
to 1250 - 250 = 1000 100
ts 1325 - 300 = 1025 125
ta 1360 - 350 = 1010 110
ts 1395 - 400 =995 95
te 1450 - 450 = 1000 100

Figure 32: Calculating the round-trip time.

Finally, the simple question of what to do if packets arrive out-of-order can be answered. We
now have a knowledge indicating how long it should take for the packet to reach its destination
under normal circumstances. If packets do not arrive timely, we may now be able to wait an
amount of time corresponding to a factor of the round-trip time between the clients before
requesting a resend of data. The observant reader will now ask: ’what if the ping, or the
pong packet is lost?’. The simple answer to this question is to let the data receiver start out
by sending a range of ping packets. This will serve not only the purpose of assuring that
eventually one of the ping packets will be responded but also as a remedy to calculate a more
precise round-trip time as an average can be calculated from the range of pong packets.

93

II1. Protocol design 14. Mechanisms

14.5 Error detection

Protocols communicating over a network will eventually encounter situations where an error
has occurred. Protocols located at different clients must therefore have a mutual understanding
of how errors should be handled. As a result, error detection and handling is a central part of
the design of a protocol.

We identify a number of situations which we define as erroneous and how these must be
handled.

Data not available: The sender of data may be asked by the server to distribute data from
a certain point in the video. In the event that the buffer of the client has overwritten the
data which should have been sent, the client cannot send the relevant data. Handling
this, can either be done by notifying the server that data was not available or simply
doing nothing.

Notifying the server would result in a new selection process which would select a new
subset of clients. But if the client suffered from a line failure it would never be able to
notify that data was not available. Furthermore, the request to distribute data might
never have been received. Therefore, the solution to handling the error is simply by
doing nothing. Thus, the receiver would have to notify the server that no data was
received. Additionally, the solution handles the situation identically when the sender of
data experiences a line failure. Thus, if data reception stops, regardless of whether the
receiver has been newly relocated to the spot or whether data distribution has been up
and running the client will send the same notification to the server.

Data loss: As data transport using UDP may result in data loss, resending packets must be
possible. But due to the time critical nature of multimedia streaming late retransmis-
sions must be avoided. A late retransmission occurs when the data consumer receives
retransmitted data at a point in time where the PP has moved to a point beyond the re-
transmitted data. Hence, the data receiver must avoid requesting data if there is chance
that data may be received too late. This can be done using the calculated round-trip
time which determines how long time the procedure of dispatching and receiving the
fulfilling of a resend request takes. But a resend request may also be received too late.
This happens when the buffer of the data sender has overwritten the data requested
by the receiver. In this event the data sender must notify the receiver that requested
data is no longer available. The receiver may in this event either ignore the lack of data
with the problems this may impose on the video player or request data from somewhere
else. This may be done by notifying the server that data receival has been brought to a
standstill, thus requesting a relocation of the client. This may not be preferable if the
needed data may only affect a few data blocks. Therefore, a second solution if offered to
the client, which is to send an emergency request of data to the server. The server may
fulfill this request if possible or ignore it. Thus, the client cannot rely upon the server
to fulfill the request. Hence, the protocol must facilitate this functionality.

Data corruption: If data gets corrupted during transport the data receiver has no means
of identifying this. Therefore the receiver simply delivers the corrupted data to the

94

II1. Protocol design 14. Mechanisms

client application. This works in accordance with other implementations of streaming
applications, as data corruption is seldomly seen even though UDP is an unreliable form
of transport. Furthermore, the amount of corruption which might be seen is normally
so small that the impact on the display of the video is bearable.

Data duplication: Data duplication is simply handled by discarding the duplicate data.
Thus, the packets must have an identification of the contents which will enable the
receiver to decide if the packet has already been received.

Security error: If the data received fails to comply with the security mechanisms used by
the protocol, the client must inform the server that the error has occurred. The server
may hereafter decide how the error should be handled.

Connection error: In the event of a line breakdown, the rate at which packets are received
clearly drops to zero. Furthermore, if the connection suffers from temporary fluctuations
the rate may also drop. Handling these must be done by notifying the server of the error
and what rate the speed has fallen to.

Buffer overflow/underflow In the event of a buffer underflow or overflow the client will
need to request the sender of data to modify the sending speed. Therefore, if the AA of
the client is not completely filled with valid data, the client will need to receive data at
maximum speed to avoid buffer underflow. Furthermore, the client will need to request
the sender of data to lower the speed, if the receive block comes too close to the play
block as can happen in the event of a skip.

14.6 Selection mechanism

This section describes the mechanism which is used to find the set of clients selected to send
data to a newly connected or relocated client. The mechanism returns the set of clients and
the speed used for each of the clients.

As stated in Section 12.3 the construction of the selection mechanism will define the logical
appearance of the network. Intuitively, choosing the entry point for a newly connected client
will shape the logical topology. Thus, the construction of this mechanism is crucial to the
performance of the topology. Selecting the right topology therefore becomes the design of this
mechanism. As written in Section 12.3, selecting the right topology of the network involves
knowledge about the characteristics of the video among others. Thus, selecting a topology
on beforehand might result in poor performance when distributing one kind of video, while
another video might obtain good performance. Hence, the selection mechanism becomes an
issue which must be solved by the implementation of the protocol.

It should be stressed that the mechanisms can be designed in many ways - hence, designing
an optimal solution to these algorithms is not the goal.

95

I1I. Protocol design 15. Underlying protocol usage

15 Underlying protocol usage

This section describes the usage of the underlying transport protocols. Thus, some of the
uncertainties of the underlying protocols will be cleared to avoid ambiguities in the protocol
design.

As the protocol relies upon TCP the question of how and when the underlying TCP connection
should be closed must be answered. Thus, two different events may trigger the down-tearing
of the connection, namely:

1. When the client sends a disconnect request to the server, the client must wait until the
server closes the connection. This will ensure that the server will not end up maintaining
several unused connections due to malfunctioning clients.

2. When the server sends a disconnect request to a client, the server also closes the TCP
connection. The server must ensure that all data pending on the connection is purged
to ensure that the disconnect eventually reaches the client.

As given in Section 8.4 several routers located on the Internet utilizes NAT to masquerade
hosts. Designing a protocol that can handle clients located behind masqueraded routers involve
a lot of quirks as other hosts cannot send data to the client if the client has not connected out
through the router in advance. For these reasons the protocol cannot handle masqueraded
clients. However, the ports used by the client protocol can be selected by the client application
which may, in turn, leave the user to select which ports the protocol should use. Thus, the
user may select the ports, and configure the router to forward these accordingly.

The UDP header includes a checksum field which can be used by the sender of the packet
to specify a checksum for the data contained in the packet. This field could be used in our
protocol to allow for the receiver of the packet to check if data contained in the packet has
been corrupted during transport. However, using this field is by no means mandatory in the
TCP/IP v.4 UDP protocol specification [32]. Therefore the protocol does not rely upon other
senders to specify the checksum.

96

I1I. Protocol design 16. Protocol phases

16 Protocol phases

The different phases of the protocol constitute the stages which are used when communicating
between either the server and a client or two clients in between. Thus, the phases describe
the logical communication flows between the network entities which must be completed in
predefined order.

Connection phase The procedure of connecting clients is done when a new client wishes to
connect to the network. The client must first issue a connection request to the server and
wait for an appropriate answer. This either comes as a connection granted respond, or
a connection denied respond. The connection request needs to contain an identification
of the video which is requested by the client. This is needed by the server application
to determine if a client is to be granted access. Furthermore, the client needs to handle
a timeout if the server does not respond to the request. How long this timeout should
be is not part of the protocol specification as this would require knowledge about the
properties of the physical connection between the server and the client. Furthermore,
the server may be busy doing other tasks, which may result in a long response time.

The connection procedure has the responsibility of allocating a key pair as described in
Section 12.5.1. This key pair is generated and distributed by the server and is contained
in the connection granted packet. Thus, the server only allocates a key pair for the client
if the server authorizes the client.

Configuration phase To maintain control of the connected clients the server needs tools to
configure all clients. This is needed whenever a change in the topology occurs. When a
client has been connected to the network, it must be located at some point resulting in
the need for providing some information to the clients which will need to deliver data
to the new client. Furthermore, the newly connected client will need to be informed of
what data to expect and from which clients.

Streaming phase Once the connect procedure has been successfully completed and the client
has been configured the video data transfer will begin. This is done using a data packet
sent to the stream receiver from the data sender.

Interaction phase Performing interaction in the video is done by sending a request to either
pause, resume or skip in the video. As stated in Section 14.2 pausing the video is done
using two different methods. When the player pauses the video, a pause video player
packet is sent. Next, when the buffer runs full, the client protocol dispatches a pause
stream packet. When the player resumes the video a resume packet, containing the BB
which the client targets for the resume, is dispatched from the client.

Skipping between BBs in the video is done using a skip packet also containing the target
of the client.

Status phase For the server to maintain a routing table describing the topology of the net-
work all clients must pass their status at a desired interval. This information is needed
when the server has to determine the contents of the buffer of a client in the event of a
relocation. Evidently, clients may have to send their status at different intervals. If a

97

I1I. Protocol design 16. Protocol phases

client is well functioning, and the status of the client does not change much over time,
the need for a short interval between status updates disappears. Contrarily a client may
need to send updates often if it has proven unstable.

To minimize the amount of data sent through the CCP, requesting the clients for status
at this interval is not feasible. Instead the client will send a status packet at an interval
given by the server. Still, the server must be able to request a client for status. This
request will contain the interval at which the client must send following status updates.
As a result, the server will need to monitor all clients to determine if they are providing
status at the given interval. If they fail to do this, they will ultimately be dropped by the
server protocol. This will furthermore serve to investigate if a client has broken down —
if the client does not respond, it will eventually be certified as dead.

Round-trip calculation phase Calculating the network round-trip time between two clients
is done using two different packets using the method described in Section 14.4.

For a client to successfully display a video, it must first complete the connection phase. This
must be followed by the configuration phase which must be succeeded by the streaming phase.
At any given time during the streaming phase the server can force the client into the config-
uration phase again if necessary. If the client performs an interaction during the streaming
phase, the interaction phase will have to be completed, possibly succeeded by the configuration
phase. Finally the connection phase will be executed to disconnect the client.

In between these, the status and round-trip calculation phases will be conducted.

98

I1I. Protocol design 17. Packet description

17 Packet description

Based upon the purpose of the two protocols it is possible to point out the packet types needed
by the protocols. These types are again divided into different domains identified by the type
of communication and the direction they handle:

Server-to-client request packets: These packet types are sent from the server to a client
indicating that the client needs to take some kind of action.

Server-to-client respond packets: These packet types act as a respond to a request sent
earlier on by a client. The server needs to respond with a meaningful answer to the
request.

Client-to-server request packet: This packet is sent from a client to the server as a request
to perform some kind of action by the server.

Client-to-server respond packets: A client will reply with this type of packet to satisfy a
request sent from the server to the client.

The different packet types are partitioned into domains representing the different phases of
the protocol as given in Section 16.

17.1 Packet types and flows

The protocol will use a uniform packet header for all packet types. Thus, the header will
only contain data which is shared by all packet types containing a payload which constitutes
data private to the different packet types. Furthermore, a packet may contain a payload data
which can contain a variable length field private to the packet types.

The uniform packet header contains the following fields in the stated order:

99

I1I. Protocol design 17. Packet description

VERSION 1 byte | This field contains a one byte version field, in-
dicating the version of the protocol used by the
sender. The contents of this field should corre-
spond to the design specification of the relevant
protocol version.

OPTIONS 1 byte | This field is reserved for future use — is always
set to zero in this version of the protocol.
PACKET TYPE 1 byte | This field contains the type of the packet. Thus,

the field groups the packets enabling the receiver
to quickly determine if the packet should be ac-
cepted or discarded.

ACTION TYPE 1 byte | Like the PACKET TYPE this field is one byte
and contains the action type of the packet. By
looking at this and the previous field the receiver
can determine whether the packet is usable.
PAYLOAD LENGTH 4 byte | This field contains the length of the trailing pay-
load. The size of the header is not included in
the field.

PAYLOAD DATA LENGTH | 4 byte | This field contains the length of the trailing pay-
load data. The size of the header and payload is
not included in the field.

RESV _ID 8 byte | This field contains the unique ID of the packet
receiver as described in Section 12.5.1.
SND ID 8 byte | Contains the unique ID of the sender which is

matched by the receiver to validate if the packet
is sent from a legal host.

This brings the total size of the header to 28 bytes meaning that the total size of a packet is the
value of the PAYLOAD LENGTH field plus the value of the PAYLOAD DATA LENGTH
field plus 28 bytes.

100

I1I. Protocol design 17. Packet description

0 1 2 3 4 8
version | options | p_type [a_type payload_length
payload_data_length recv_id...
...recv_id snd_id...
...snd_id
payload
——

Figure 33: Protocol header.

The following sections will describe each of the packets used in both the DCP and CCP
protocols. All descriptions will contain the following elements:

Protocol type: This part contains the description of which protocol is used to transport the
packet. This may either be CCP or DCP.

Short name: This part contain the short-name of the packet.

Packet type, action type: This part gives the packet type and the action type of the packet.
Both values are present in the header. The packet type value refers to the type of the
packet, e.g. server request, client respond etc. whereas the action type refers to the
action which should be triggered by the packet. An easy overview of the packet and
action types is given in Appendix A.

Usage: This describes the purpose of the packet.
Payload: This part describes the payload of the packet in a table.
Payload data: This part describes the payload data of the packet.

Logic: This part describes what happens once the packet is received and how the logic em-
bedded in the protocol must react. This part further describes the flow of the packet
which defines which packets this should result in being sent from the receiver. This
is described in words and by a diagram. A specification of the notation used in the
diagrams is given in Section 17.1.1.

17.1.1 Diagram notation

This section contains a description of the notation used by the protocols packet descriptions.
These sections account for the different packet types and contain a number of diagrams illus-
trating the specification of the packet flow which should be initiated by the server and client
upon receiving a specific packet.

101

I1I. Protocol design 17. Packet description

All of the diagrams follow the same structure, illustrating the reception of a packet and how
this should be responded with a range of different packets, if any. The receiver can be either a
client or the server denoted by an upper case S or C. In the case of DCP packets the notation
SR or SS is used, which is short hand for stream sender and stream receiver.

The diagram below illustrates a scenario where the server receives a packet requesting some
action is performed. Subsequently the client sends a packet to the server responding to the
incoming request. The diagram illustrates that the packet received by the server has packet
type z1 and action type y;. The packet is received by a client (upper case C) and is responded
with a packet of packet type xo and action type yo. The star denotes that zero or more packets
of this type can be sent. If no star is present, exactly one packet must be send.

<a:1,y1> @ <332,yz>

The next scenario shows the server receiving a packet of packet type x1 and action type y;.
The server responds with two packets, a packet of packet type zo and action type y». Aside
from this, the server must send either a packet of packet type x3 or xz4. The question mark
indicates that based on different circumstances, only one of the two branches will be followed.

(2, 92)

(T1,91)

©

7 (@3, 43)

(4, y4)

Finally, a diagram can illustrate that the reception of a packet does not result in any further
data flow.

—

(T1,91) @ [vzgd

I
I
L

102

I1I. Protocol design 17. Packet description

17.2 Connection

The packets given in this section correspond to the connection phase, and include a disconnect
packet, which is sent from the client upon disconnect.

17.2.1 Packet: Request connection

Protocol type: CCP
Short name: CONN_REQ
Packet type, action type: (40,10)

Usage: This packet is dispatched from a client to the server with the purpose of connecting
the client to the server. The packet notifies the server that the sender wishes to initiate
receiving a specific video given in the payload.

Payload: A total of 140 bytes:

CCP_PORT 2 bytes | This field indicates the TCP port opened by the client to be
used for the CCP.

DCP_PORT 2 bytes | This field indicates the UDP port opened by the client to be
used for the DCP.

VIDEO _ID 8 bytes | This field indicates the video which the user is requesting access
to.

USERNAME | 64 bytes | A field indicating the user name provided by the client to be
authorized by.

PASSWORD | 64 bytes | A field indicating the password provided by the client to be
authorized by.

Payload data: The payload data field of this packet is empty.

Logic: Once this packet is received, the server must determine if the client can be authorized.
Furthermore, the server must decide whether the client can be given access to watch the
requested video. The actual process of authorizing a client is not done by the protocol
but is passed to the server application which in turn decides whether the client can be
granted access. Passing the result of this to the client must be done by sending either
a connection granted packet (10,10) or a connection denied packet (10,20). Following
this, the server must find the set of clients that will be deployed to stream data to the
client. Selecting these clients will be separated in an encapsulated mechanism as given
in Section 14.6. This mechanism should find and return the clients which should provide
data. This information must both be sent to the client initiating video play-back and to
the clients dispatching the data stream.

103

I1I. Protocol design 17. Packet description

(10, 10) . (20, 30)
*
(10,50) j«—) (20, 20)
(40, 10) (s) ?
(10, 20)

17.2.2 Packet: Connection granted

Protocol type: CCP
Short name: CONN_ GRANTED
Packet type, action type: (10,10)

Usage: This packet is used to respond to a connection request from a client. The server
determines whether the client is allowed connection and responds with this packet if
connection is granted. The packet furthermore contains information specific to the
video requested by the client.

Payload: The payload of the packet contains a total of 310 bytes:

104

I1I. Protocol design 17. Packet description

CLIENT ID 8 bytes | This 8-byte field contains the unique client ID gen-
erated by the server. The client ID must be stored
and will serve as the identification of the client un-
til disconnected.

SERVER _ID 8 bytes | This 8-byte field contains the unique server ID cor-
responding to the id of the client. This server ID
must be stored and will serve as the identification
of the server to the client until it is disconnected.

VIDEO _SIZE 8 bytes | The total size of the video in bytes.
VIDEO _LEN 4 bytes | The duration of the video in milliseconds.
BB TOTAL 2 bytes | Number of BBs in the video.

DB TOTAL 2 bytes | Number of DBs contained in each BB.
DB _SIZE 2 bytes | Size of DBs in the video in bytes.

VIDEO HEADER SIZE 4 bytes | Minimum number of required DBs of the video
before playback can start initially or after a skip
has occurred.

RECOM CA_ SIZE 2 bytes | Number of recommended BBs in the CA; as given
in Section 14.2. If this number is not satisfied, the
client may be tagged as anti-social.

SPEED LOW 2 bytes | This field indicates the rate data should be sent
with, when throttling down the speed. The num-
ber is measured in milliseconds denoting the max-
imum interval at which a data block can be sent.
The higher this number is, the lower the mini-
mum speed is, since the number illustrates how
long time should pass between each packet trans-

mission.

SPEED NORMAL 2 bytes | Denotes the speed data blocks must be sent with
at normal speed.

SPEED HIGH 2 bytes | Denotes the speed data blocks must be sent with
at high speed.

SEC_TYPE 2 bytes | Determines the type of security used.

SEC SIZE 2 bytes | Determines the size of a security data per data
block.

SKIP DISTANCE 4 bytes | The amount of milliseconds in a skip. Equals the
duration of a BB.

VIDEO _TITLE 256 bytes | The title of the video.

Payload data: The payload data field of this packet is empty.

Logic: When a client receives a connection granted packet it may regard itself as logged
on successfully to the server. The client must store the contents of the payload in
an appropriate way. When the client starts receiving video data the protocol must
not provide the client application with data until the number of data blocks given in

105

I1I. Protocol design 17. Packet description

VIDEO HEADER _SIZE is available. This restriction is enforced since many multime-
dia formats demand that the start of the video is available as it contains vital information
about the format which must be present before play-back can be initiated. The contents
of RECOM CA SIZE should be taken into consideration when determining the size
of the buffer. If this recommended size is not available, the client will be tagged as
anti-social and therefore has a higher risk of being disconnected. The pair of identifica-
tion keys which are contained in the payload must be available whenever messages are
exchanged with the server.

—_—— =

(10,10) (©) "void

17.2.3 Packet: Connection denied

Protocol type: CCP
Short name: CONN_DENIED
Packet type, action type: (10,20)

Usage: This packet is used as a counterpart to the connection granted packet (10,10). The
packet indicates that the client could not be connected by the server.

Payload: The payload contains a single field.

DESCRIPTION | 256 bytes | Description with an indication of why the client was not
allowed to connect.

Payload data: The payload data field of this packet is empty.

Logic: The server must respond with the connection denied if a client is to be denied access.
The server may include a textual response indicating why this has happened. The only
option the client has in this situation is to retry connect, which will be regarded as
another session.

—_—— =

(10, 20) (©) "void

106

I1I. Protocol design 17. Packet description

17.2.4 Packet: Connection closed

Protocol type: CCP
Short name: CONN_CLOSED
Packet type, action type: (10,30)

Usage: This packet is sent from the server to a client, if the server decides to disconnect
the client. The client is not offered any possibility to respond, but is immediately
disconnected from the network.

Payload: The payload contains a single field.

DESCRIPTION | 256 bytes | Description with an indication of why the client has been
disconnected.

Payload data: The payload data field of this packet is empty.

Logic: Once this packet is received from the server, the client has definitively been discon-
nected from the network. The client should update its own state to disconnected. The
packet can be sent at any given time and is therefore not necessarily a respond to a
request packet. Any respond from the client must be ignored by the server as the client
is no longer considered connected. The only option for the client is to reconnect, but
this will be handled as a new session.

—_—— =

(10, 30) (©) Cvoid |

17.2.5 Packet: Disconnect

Protocol type: CCP
Short name: DISCONN
Packet type, action type: (40,70)

Usage: This packet is used when the client wishes to stop viewing the movie. Once a stop
has been issued the client gets disconnected from the network and hence if it wants to
start playing the movie again, it has to login again.

Payload: The payload of this packet is empty.

Payload data: The payload data field of this packet is empty.

107

I1I. Protocol design 17. Packet description

Logic: Upon reception of this packet the server needs to relocate all clients receiving data
from the sender of the packet. Furthermore, all clients sending data to the client must
be informed to stop sending data. The server must hereafter regard the client as discon-
nected and purge all information concerning the client.

(40, 70)

©
y .
—~
[\)
=
[\)
(=)
e

17.3 Configuration

The configuration phase configures the client in regard to where it will receive data from and
to whom it must send data to. Some of the packet types used by the configuration phase will
in their payload data transport a number of elements called STREAM INFO. These elements
are used as information sent from the server to notify clients about the properties of a data
stream. Thus, a client will be notified by the server using a STREAM INFO entity that the
client should send data to another client. The STREAM INFO contains the nature of that
data stream, such as which DBs. The client which will receive the data stream will be sent
the same information using the STREAM INFO entity. Clearly, the length of this entity is
variable as some clients will send/receive more DBs than others. This leads to the following
fields:

108

I1I. Protocol design 17. Packet description

CLIENT ID 8 bytes | The client ID field is used differently, depending on the type
of packet the STREAM INFO is embedded in. If the packet
is used to inform a client that it must send a data stream
to another client, the client ID identifies the receiver of the
stream. If the packet is used to inform a client of the nature
of the data stream it should receive, the field indicates the
sender of the stream.

CLIENT IP 16 bytes | This field contains the [P-address. As with the CLIENT ID
the field either contains the IP-address from where it receives
data or to where it must send data, depending on which
packet the STREAM INFO is used in. The field has room
for further extension to enable use of IPv6.

CLIENT PORT | 2 bytes | This field contains the port number to which data must
be sent to the receiver. The field is only used, when the
STREAM INFO is used in packet 17.3.2.

START BB 2 bytes | This field contains the BB starting point in the video from
where the data stream should begin.

START DB 2 bytes | This 2-byte field contains the DB starting point in the video
from where the data stream should begin.

DB NO 2 bytes | This field indicates the number of DBs from each BB, the
data stream must contain.

DB RANGE x bytes | This variable length field specifies each DB number the

stream will contain. Thus, this field is repeated for each of
the number of DBs given in the field DB NO. This collection
of fields takes up 2 bytes for each of the specified DBs. The
DBs must be transmitted in the order listed in the entity,
starting with the first DB given in the START DB field.

Visually, a STREAM INFO is presented in Figure 34.

0 8 24 26 28 30 32 oo
client_id IP address portjsBB|sDB| len [DB1 \53 ele) O\ DBn

Figure 34: The STREAM INFO entity.

17.3.1 Packet: Receive data stream

Protocol type: CCP

Short name: RECV_DATA STREAM

109

I1I. Protocol design 17. Packet description

Packet type, action type: (10,50)

Usage: This packet contains information about the stream of data a client is to receive.
Whether this stream will come from the server, a client, or a number of clients in
conjunction with each other will be indicated by this packet. Thus, this packet informs
a client about what data it can expect and from whom it can expect it. This packet
is counterpart to the distribute data packet in the sense that this is sent to the client
providing the data stream.

Payload: The length of the payload of this packet is variable, as the number of clients stream-
ing data is variable.

CLIENT NO 2 bytes | Indicating the length of trailing data containing information
about each of the clients which will send data.

CLIENT RANGE | z bytes | This variable length field contains a STREAM INFO en-
tity for each of the clients given in the field CLIENT NO
in the payload.

Payload data: The payload data of this packet is empty.

Logic: When a client receives a RECV_DATA STREAM, it must prepare itself to receive
data from the clients indicated in the packet. The received client IDs should be stored
in a proper way with that in mind that the IDs must be accessed every time a packet
is received in order to validate the sender. The client does not respond to this kind of
packet.

The sending speed of each sending client is implicitly received in this packet as the
number of DBs received from a client indicates together with the full length of the video
and the total number of BBs, the rate at which DBs should be received. Upon reception,
a mechanism monitoring the speed at which it receives data from the clients needs to
be set up.

- —— =

(10, 50) (©) Cvoid)

17.3.2 Packet: Distribute data

Protocol type: CCP
Short name: SND DATA STREAM

Packet type, action type: (20,20)

110

I1I. Protocol design 17. Packet description

Usage: This packet is sent to a client in order for the client to initiate the video stream to
another client.

Payload: The payload contains information concerning what to stream, with what speed and
to whom. More formally this is:

STREAM INFO | z bytes | This field contains a STREAM INFO entity indicating what
and to whom data must be sent.

Payload data: The payload data of this packet is empty.

Logic: Upon receiving a distribute data packet the client must immediately begin distributing
data to the client at the speed specified in the payload. This is done using the data packet
transported by the DCP.

(20, 20) (©) (50,10)

17.3.3 Packet: Stop data distribution

Protocol type: CCP
Short name: STOP STREAM
Packet type, action type: (20,30)

Usage: This packet is sent from the server to a client with information signifying that the
client must stop streaming data to a specific client. Information about why the stream
should be stopped has no relevance and is hence not given in the packet.

Payload: The payload contains a total of 12 bytes.

CLIENT ID 8 bytes | The field specifies the client ID of which the receiver must
stop streaming data to.

STOP POINT BB | 2 bytes | This field indicates the stop point in form of a BB. The
client must stop sending data once it reaches this point.
The field may be empty which entails that the client must
stop streaming at once.

STOP POINT DB | 2 bytes | A 2 byte field indicating the stop point in form of a DB,
the field is used together with the field above.

111

I1I. Protocol design 17. Packet description

Payload data: The payload data of this packet is empty.

Logic: Once this packet is received by a client it must stop streaming data to the specified
client. If no stop point is defined, the client must stop streaming data immediately.
Otherwise, the client must send data until the given stop point is reached. The reception
of this packet does not trigger any respond, but it may stop transmission of data packets.

©

(20, 30)

17.4 Streaming

17.4.1 Packet: Data

Protocol type: DCP

Short name: DATA

Packet type, action type: (50,10)

Usage: This packet is used to send a DB to a client.

Payload: The payload of this packet contains a total of 5 bytes:

BLOCK BB 2 byte | The field indicates the BB from which the current DB is con-
tained.
BLOCK_ DB 2 byte | The field indicates the DB of the BB given in the field

BLOCK BB contained in the packet.

SPEED LEVEL | 1 byte | The 1 byte field indicates the speed at which the data stream
is sent from the client. The value 10 denotes low, 20 denotes
normal and 30 denotes high.

Payload data: The payload data of this packet contains the video data embedded in the
packet:

DATA | x byte | This field denotes the data contained in the fragment of the video given
in the fields BLOCK BB and BLOCK DB in the payload.

112

I1I. Protocol design 17. Packet description

Logic: Upon receival of this packet, the receiver must check if it needs the data contained in
the packet. If the packet is received too late, e.g. the play pointer has moved beyond the
point in the video where the data belongs it should be discarded. Likewise if the client
is already in possession of the data or it does not need it, the data should be discarded.
Otherwise the data should be stored in the buffer.

Upon receival, the receiver may send a packet indicating that data was received out-
of-order. Thus, the sender assumes that a packet was lost underway and dispatches a
request for resending the lost packet.

- —— =

lvoid |

? (60, 10)

(50, 10)

®

? y——1 (60, 20)

- ==

| void |

17.4.2 Packet: Data not available

Protocol type: DCP
Short name: NO_ DATA
Packet type, action type: (50,20)

Usage: This packet is sent by the stream sender to inform the stream receiver that the stream
sender does not possess a certain DB requested by the stream receiver.

Payload: A total of 8 bytes.

113

I1I. Protocol design 17. Packet description

REQ BLOCK BB 2 bytes | The field indicates the BB which cannot be found at the
sender.

REQ BLOCK DB 2 bytes | The field indicates the DB which cannot be found at the
sender.

NEXT BLOCK BB | 2 bytes | This field indicates the next BB available following the
block given in the field REQQ BLOCK BB.

NEXT BLOCK DB | 2 bytes | This field indicates the next BB available following the
block given in the field REQ BLOCK DB.

Payload data: The payload data of this packet is empty.

Logic: If a client receives this packet it must decide if data contained between the requested
block and the next block can be dispensed with. If this is not the case, data must either
be retrieved from the server by requesting emergency resending of the data by sending
a request backup data packet.

(50, 20) (s) (10, 100)

17.4.3 Packet: End of data

Protocol type: DCP
Short name: NO MORE DATA
Packet type, action type: (50,30)

Usage: This packet is used by the stream sender to inform the stream receiver that it does
not have any more of the data which it have been asked to send.

Payload: The payload of this packet is empty.
Payload data: The payload data of this packet is empty.

Logic: When this packet is received the client knows that it no longer can receive the data
that it needs from the data sender. The receiver hereafter informs the server by sending
an error packet indicating that data receival has been brough to a standstill.

(50,30) (sr) (10, 80)

114

I1I. Protocol design 17. Packet description

17.4.4 Packet: Request data resend

Protocol type: DCP
Short name: RESEND DATA
Packet type, action type: (60,10)

Usage: This packet is used by the receiver of video data to ask the sender to resend a packet
which was lost during transport.

Payload: A total of 4 bytes.

BLOCK_ BB | 2 byte | This field indicates the BB of the block being requested for re-
transmission.

BLOCK_ DB | 2 byte | This field indicates the DB of the block being requested for re-
transmission.

Payload data: The payload data of this packet is empty.

Logic: Upon reception of this packet the client must send the contents of the data block
contained in the packet. The client should send this packet as the next in line, be-
fore resuming the data stream. Furthermore, the sending speed should be increased to
maximum rate to ensure that the buffer of the receiver is not starved.

(50, 10)

(60, 10) @ ?

(50, 20)

17.4.5 Packet: Adjust speed

Protocol type: DCP
Short name: ADJUST SPEED

Packet type, action type: (60,20)

115

I1I. Protocol design 17. Packet description

Usage: This packet is used by the receiver of video data to request the sender to adjust the
stream according to the request.

Payload: A total of 1 byte.

SPEED LEVEL | 1 byte | The field contains the value of 10, 20 or 30 which indicates 10
for low, 20 for normal and 30 for high speed.

Payload data: The payload data of this packet is empty.

Logic: Upon reception of this packet the sending speed of consecutive data packets should
be increased/decreased to the value contained in the SPEED LEVEL field.

——— -

(60, 20) @ void |

17.4.6 Packet: Error receiving data

Protocol type: CCP
Short name: STREAM ERROR
Packet type, action type: (40,80)

Usage: This packet is used to notify the server of a speed failure when data is received at
a different speed than what is advertised. Thus, if a client is not receiving data from
another client at the advertised speed, the client must dispatch this packet to the server.

Payload: A total of 12 bytes:

CLIENT ID | 8 bytes | This field contains the client ID of the failing client.

RATE 2 bytes | A rate calculated by the client indicating the speed of which data
is being received from the failing client. This is calculated as the
average speed between receival of each data block. 0 indicates
that no data is being received as the sender of data could not
satisfy the request. Values above are treated as the number of
milliseconds between consecutive data receival.

BLOCK_ NO | 2 bytes | This field contains information about the BB in the video where
the error has occurred.

116

II1. Protocol design

17. Packet description

Payload data: The payload data of this packet is empty.

Logic: Upon reception of this packet the server needs to determine whether the client sending
the packet or the client reported in the packet is causing the error. Accordingly the server
may choose to relocate or drop any or all of the affected clients.

(20, 30)

*

(40, 80)

() { (20, 20)

(10, 50)

17.4.7 Packet: Request backup data

Protocol type: CCP

Short name: REQ BACKUP_ DATA

Packet type, action type: (40,100)

Usage: This packet is used by a client to inform the server that it needs a specific part of
the video stream.

Payload: The number of bytes contained in the payload of this packet is variable:

BLOCK BB 2 bytes | This field indicates the BB from which the client is request-
ing data.

NUMBER DB 2 bytes | This field contains the number of DBs requested from the
given BB.

DBS n * 2 bytes | The field contains the DBs which the client wishes to re-
ceive.

Payload data: The payload data of this packet is empty.

Logic: Upon reception it is purely up to the server how the request is handled. Firstly, the
server may ignore the request. This may not be a good solution but it can be necessary
if the server is very busy. Secondly, the server may send one or more of the requested
DBs to the client. A third solution is to find a new client which should send data to the
client. This option could be used if a client continues to ask for data which should have

117

I1I. Protocol design 17. Packet description

been received from another client. If the client keeps asking for data, the server may in
the end disconnect the client.

(50, 10) (20,20) (10, 30)

@
<O

(40, 100) : w

(20, 30) (10, 50) Tvoid |

17.5 Interaction
17.5.1 Packet: Pause video player

Protocol type: CCP
Short name: INTERACT PAUSE
Packet type, action type: (40,30)

Usage: This packet is sent when the client wishes to pause the video. Data distribution
from/to other clients continues except no data is returned to the client application.
Once the buffer is full, the client notifies the server that packets will now be dropped
and sends a pause stream packet.

Payload: The payload contains 1 field.

‘ PP ‘ 2 bytes ‘ Indicating the current play pointer of the client. ‘

Payload data: The payload data of this packet is empty.

Logic: Upon receiving this packet, the server must flag the client as paused. Furthermore, the
server stops connecting more clients to the pausing client. Thus, the clients connected
to the pausing client will continue to receive data until the client’s buffer runs full.
Sending this packet must only be done if the server regards the client as in running
state. Otherwise the packet will be discarded by the server.

118

I1I. Protocol design 17. Packet description

- —— =

(40, 30) woid

©

17.5.2 Packet: Pause stream

Protocol type: CCP
Short name: INTERACT PAUSE STREAM

Packet type, action type: (40,40)

Usage: This packet indicates to the server that the client has run out of buffer space while
collecting data in paused state. If this occurs, the client must send this packet to stop
other clients from sending data which will otherwise be discarded.

Payload: The payload of this packet is empty.
Payload data: The payload data of this packet is empty.

Logic: Upon reception of this packet the server needs to relocate all clients receiving data
from the sender of the packet. Furthermore, all clients sending data to the client must
be informed to stop sending data. Sending this packet must not be done unless the client
has previously sent a pause video player packet to set the client in paused state. If this
has not been done, the server discards the packet as invalid. This packet then informs
the server that the client has been paused long enough to fill its buffer and all clients
should stop sending data to the client. Apart from this, the client may soon run out of
data which should be sent to other clients, and these clients (if any) may be relocated.

(40, 40)

©
y .
—~
[\
p
[\
(=)
=

17.5.3 Packet: Resume stream

Protocol type: CCP

119

I1I. Protocol design 17. Packet description

Short name: INTERACT RESUME
Packet type, action type: (40,50)

Usage: This packet identifies that a client wishes to resume the video after a pause has been
carried out.

Payload: A total of 2 bytes:

‘ TARGET BLOCK ‘ 2 bytes ‘ Indicating from which BB the client wishes to receive data. ‘

Payload data: The payload data of this packet is empty.

Logic: Upon receiving this packet, the server must determine whether the client needs to
be relocated. This will only be necessary if the buffer of the client has run full and a
following INTERACT PAUSE STREAM packet has been transmitted. In this event,
the client will have stopped receiving data and needs to be relocated to a new spot in
the network from where it can receive data. In this event the client will provide the
next block which needs to be filled in the payload of the packet to identify what data
the client needs to receive. If no INTERACT PAUSE STREAM has been transmitted
this field must be empty as the client still receives data and has no need for relocation.
Thus, the server only needs to update its internal representation of the client and mark
it as playing.

il [@E]
*
(40, 50) () & < ?
(10, 50) (10, 30)

17.5.4 Packet: Skip

Protocol type: CCP
Short name: INTERACT SKIP
Packet type, action type: (40,60)

Usage: This packet is used when the client performs a skip.

120

II1. Protocol design

17. Packet description

Payload: A total of 2 bytes:

TARGET BLOCK | 2 bytes | A field containing the BB to which the client wishes to
skip.
SKIP TYPE 1 byte | This field indicates whether the skip moves the PP outside

the buffer. Thus, zero indicates a skip inside the buffer.
All other values are treated as a skip outside the buffer.

Payload data: The payload data of this packet is empty.

Logic: As described in Section 14.2 three different kinds of skips can be performed. This can
either be a skip forward inside the buffer, a skip backwards inside the buffer, or a skip
outside the buffer.

If an INTERACT SKIP packet is received from a client that is not in playing state,
the packet must be discarded. Sending this packet will result in the server either doing
nothing or forcing the client to be relocated.

(40, 60)

void | (20, 20)

17.6 Status

(10, 50)

<\v
A

(20, 30)

17.6.1 Packet: Request status

Protocol type: CCP

Short name: STATUS REQ

Packet type, action type: (20,10)

Usage: This packet is sent from the server to request a client of its current status. The packet
is furthermore used as an ’i am alive’ request to which the client must respond.

Payload: The payload contains a single field:

121

I1I. Protocol design 17. Packet description

STATUS RESP INTERVAL | 4 bytes | Indicating the interval at which the client must
transmit the STATUS RESP packet. The field

denotes this interval in milliseconds.

Payload data: The payload data of this packet is empty.

Logic: A status request packet can be sent from the server at any time. It is completely up
to the server to probe the client for its status. Upon receival of this packet, the client
must update its relevant timers to reflect the interval given in the packet. If a status
response packet is not transmitted according to this interval, the client may eventually
be disconnected by the server.

There is no limit in terms of how many or with what interval this packet can be received.
Neither are there any specific number of attempts which the server should ask the client
for an answer before it is disconnected. Because of this it is very important for the client
to respond rapidly in order to ensure its connection.

(20, 10) ©) (30,10)

17.6.2 Packet: Status respond

Protocol type: CCP
Short name: STATUS RESP
Packet type, action type: (30,10)

Usage: This packet is used to notify the server of the present status of a client. Thus, it is
both used as a respond to a status request packet, dispatched by the server, but also as
a packet sent from the client at any time.

Payload: The payload of this packet contains a number of fields of a variable length:

122

I1I. Protocol design 17. Packet description

PLAY BLOCK 2 bytes | This field contains the BB holding the PP of the client
at the time of transmission.

CA_ SIZE 2 bytes | A field containing the size of the client’s present Con-
nect Area measured in BBs as described in Section 14.2.
AA SIZE 2 bytes | A field containing the size of the client’s present Ab-
sorption Area measured in BBs as described in Section
14.2.

RA _SIZE 2 bytes | A field containing the size of the client’s present Re-
served Area measured in BBs as described in Section
14.2.

RECV_BLOCK_ BB 2 bytes | This field contains the last received BB which lies far-
thest off the play block.

RECV_BLOCK DB | 2 bytes | This field contains the last received DB which lies far-
thest off the play block.

BUFFER CONTENT | z bytes | This variable length field contains the buffer numbers
contained in the buffer of the clients starting at the
play block. Each BB is represented by a 2-byte field
indicating the video BB number contained in the field.
Thus, the total size of the field is 2 times the total buffer
size in BBs.

Payload data: The payload data of this packet is empty.

Logic: Once the server receives this packet it must store these data. The contents of the
packet enables the client to alter the size and distribution of its buffer during play-back
if necessary. In this initial version of the protocol the server will however assume that
the client does not alter this.

Upon receival of a status response packet the server must update its internal data-
structures to represent the current state of the client. The server can calculate the total
buffer size of the client by adding the fields CA_SIZE, AA SIZE and RA_SIZE. From
these values the server must calculate the portion of the client’s CA which may be used
for attaching clients to, as described in Section 14.2. This will be calculated to the lowest
and the highest BB number contained in the buffer which are valid for connection.

- —— =

(30, 10) () (void |

123

I1I. Protocol design 17. Packet description

17.7 Round-trip time calculation
17.7.1 Packet: Ping

Protocol type: DCP

Short name: PING

Packet type, action type: (60,30)

Usage: This packet is used to initiate the round-trip time calculation procedure.

Payload: The payload of this packet contains 8 byte.

SEND TIME | 8 bytes | Indicates the time at which the packet has been sent. This num-
ber must be given in milliseconds since some predefined starting
point. Whether this is given in uniz #ime or the beginning of
the session has no relevance. However, it is important that this
same starting point is used whenever packets are timestamped.

Payload data: The payload data of this packet is empty.

Logic: Upon receival of this packet the receiver must respond with a pong packet.

(60, 30) (s9) (50, 40)

17.7.2 Packet: Pong

Protocol type: DCP

Short name: PONG

Packet type, action type: (50,40)

Usage: This packet is used as respond in the round-trip time calculation procedure.

Payload: A total of 16 bytes:

124

I1I. Protocol design 17. Packet description

SEND TIME 8 bytes | This field contains the time which was given in the ping
packet for which the pong packet is a respond to.
RECEIVE TIME | 8 bytes | This field contains a timestamp given in milliseconds indi-
cating the time of receival of the corresponding ping packet.
The starting point of this timestamp does not need to be
in concordance with the starting point used by the sender
of the ping packet which the pong packet at hand is a re-
spond to. However, care should be taken to ensure that
the same starting point is used to timestamp all consecutive
data packets.

Payload data: The payload data of this packet is empty.

Logic: Upon receival of this packet, the round-trip time between the two clients should be
calculated. Hereafter a round trip time should be maintained using the method described
in Section 14.4.

—_—— =

(50, 40) @ | void |

17.8 Security
17.8.1 Packet: Security data

Protocol type: CCP

Short name: SEC DATA

Packet type, action type: (10,60)

Usage: This packet is used by the server to send security data to a client.

Payload: The payload contains one field:

‘ BB ‘ 2 bytes ‘ A number indicating which BB the contents of the packet is related to. ‘

Payload data: The payload data contains the data related to the security mechanisms used
by the server and client applications.

125

I1I. Protocol design 17. Packet description

‘ DATA ‘ x bytes ‘ Contains the security data. ‘

Logic: Upon receival of this packet the client must store the info given in the packet. The
data contained in the payload data must be stored until the client application requests
these.

—_——

(10, 60) (©) Cvoid

126

I1I. Protocol design 18. Timers

18 Timers

An analysis of the protocol reveals that several situations may occur where the use of timers
are important. These timers are used to enable a form of synchronization the server and
clients in between.

e The functionality of the server clearly relies upon the ability of the client to send status
updates at a regular interval. As already described in Section 16 the server decides
an interval at which the clients must send a new status update. Whether this interval
is maintained needs to be monitored by the server. This may be done using a timer
indicating that when the timer runs out, a status update should have been received
from some client.

e As the time critical nature of video streaming requires data to be received at a continuous
rate, there is an evident need to monitor whether data has been received at the required
speed. This will need to be done using a timer monitoring all incoming DCP connections.
This timer will be used in different situations:

Request speed change: If the client requests the sender to dispatch data at another
rate than the one packets are received at, the client must wait for the changes to
take place. Thus, the line of packets being delivered must be emptied for the speed
change to become effective. The client must therefore utilize the knowledge about
the round-trip time between the clients before issuing a new speed change request.

Request resending of data: Performing request for missing data there are two timing
issues to consider. First it should be detected when data is missing and secondly
when the request for resend has gone lost. The first value is a parameter which
should be adjustable from client to client and hence may be set through the client
interface. Secondly the client should utilize knowledge about round-trip time before
issuing a new resend request.

e As opposed to the item above, a client must also use a timer to dispatch packets at a
correct rate, when streaming video data to other clients.

127

I1I. Protocol design 19. Interface

19 Interface

To enable applications to make use of the protocol, an interface must be provided. This
interface must carry commands dispatched from the applications and be accordingly handled

by the protocol.

The server interface should provide the following mechanisms:

Provide information regarding videos to the protocol.

Authorize new connecting clients and provide the bandwidth available to the client.

The server protocol must be able to request video data of the server application which,
in turn, must provide this to the protocol.

The server protocol must be able to request security data of the server application which,
in turn must provide this to the protocol.

The server application must be able to request status from the server protocol.
Client-side, the interface must provide the following mechanisms:

e The client protocol must provide the client application with video data when available.
e The client protocol must handle video interaction requests from the client application.

e Security data must be provided to the client application possibly in the same manner
as in the case of video data.

The interface is depicted in Figure 35.

Server application Client application

>,

1
1
i
! — §
w 4
1 é z
5 -
O
R
& %) slls 9 o 1
i g | allg |z & g Interaction Video Sec
: g | ; ? 3 ; FBE requests data data
- 15 =llg Elle B[Interface
3 A i
Qi vy v v v A
o
<) .
a ! [Server protocol }q—» Client protocol
1
1

Figure 35: Interface between protocol and applications.

128

CHAPTER IV

Protocol implementation

This chapter contains a description of the implementation of the protocol. This will be used
when implementing the protocol. Thus, the implementation sketches an implementation of
the main functionality of the protocol.

129

IV. Protocol implementation 20. Fundamentals

20 Fundamentals

Evidently, the protocol needs to be implemented as a multithreaded library. The protocol
could be implemented as a single passive library using only the thread of the application
instantiating the protocol. This would however, lead to many inconveniences, as this one
thread would need to carry out many separate tasks. As stated in Section 9.2 the number and
location of these threads is the main issue when implementing multithreaded applications.

To simplify the implementation, the solution is divided into a number of main components,
each providing an interface accessible by the other. Some components need to interact with
each other and hence when created a reference to the other components which it must know
about must be passed to it. The threads will of course act as the driving force among these
components and they will be implemented with a minimum amount of code to obtain central-
izing all logic in the components. This way a component can be easily changed as long as it
retains the interface.

To simplify the construction of these components, C++ used as programming language with
an objective approach is chosen. This may come with a small price regarding performance
but enables us to structure the implementation better dividing the different tasks of the
implementation process. Communication between the protocol instances running on different
hosts will use the socket API.

The protocol design can in some cases be found ambiguous as it does not always define how
the implementation of the server side protocol should act. Thus, the protocol design does
not specify if the server should remain passive until an error occurs, or anticipate events and
act before the error occurs. The implementation could monitor all clients and from statistical
material act when some action occurs, as this normally would trigger an error later on. To
keep the implementation simple, we choose only to act only when an error or event occurs.

20.1 Main components

As both a server-side protocol and a client-side protocol will be implemented, identifying the
main components must be done with care to enable reuse of the components on both sides.
Thus, tasks which are shared by both sides of the protocol can benefit from this.

Packets: To facilitate communication between the components, a standard for exchanging
data must be defined. As the interfaces of the components may be complex, due to
the large amount of data which may flow between the components, this standard must
simplify the interfaces. As data is sent and received as packet entities the nodes in
between, data flowing from the network layer is represented in a packet. Thus, trans-
porting packets through the interfaces of the components is simple. The protocol will
therefore embed packets in a packet component which can easily be transported between
the components of the protocol.

Stream Engine: Evidently, streaming of data, either from a client or from the server will

130

IV. Protocol implementation 20. Fundamentals

be done similarly. The difference between the server and a client is simply that client
can stream only one video to a number of clients while the server can stream a number
of different videos to a number of clients. The stream engine will therefore be based
upon streaming of one video, encouraging the need for one streaming entity per video
dispatched from the server. This does in fact make sense as streaming of different videos
can be seen as having well defined boundaries. Hence, a client will use a single instance
of the stream engine entity, while the server will use one per video distributed by the
server.

Data container: Along with a number of streaming engines, the protocol will require some
form of buffering mechanism. This data storage will work differently depending upon
the type of protocol instance. This does in fact describe the main difference between
the server and client. Thus, a client stores data which has been received from another
client, while the server has all data available through the interface, see Section 19, to
the server application. As the data container used by the client side, called the buffer,
is a central part of the protocol design it has been thoroughly described in Section 14.2.
Opposed to this, the server side protocol also needs some form of data storage. This
may come as a surprise, as data will always be available to the server. But as the server
protocol cannot rely upon caching all data transferred through the interface some form
of data cache must be implemented. Contrary to the client-side buffer, the server-side
data container, called data cache, has not been touched yet, as the design of the protocol
does not state anything concerning this.

As the server will serve many different kinds of videos, the properties of the content stored
in the data cache will accordingly be different. Thus, storing data cached for different
videos will add to the complexity of the data cache. As already stated, streaming of
different videos are different tasks therefore one data cache will be used per stream
engine on the server.

Application Task Queue: As the server-side protocol needs to be serviced by the server
application accessing data, validating login requests etc. the protocol needs to be able
to issue tasks for the application to perform. Since the interaction between the protocol
and the application involves a number of threads accessing the same data, a queue of
some kind is needed server-side enqueueing these tasks for the application.

Incoming Packet Queue: The protocol needs the ability to receive a high number of packets
continuously. This must be done at a high rate to ensure that all data received on the
socket is read and nothing is lost due to small operating system buffers etc. Therefore
the packets must be read and pushed into a packet queue.

Transport handler: To hide the complexity of the underlying operating system dependent
network functionality, a transport handler will be implemented. This transport handler
will wrap the socket layer providing only a simple interface to send or receive data
through. Thus, the component will be exchangeable, should the implementation be
used in an environment not supporting the socket API. The component will be used
on the server-side and on the client-side, as sending and receiving data will be handled
identically.

Data bank: The protocol needs a data structure to hold various information regarding con-
nected clients, receival speed and video characteristics. For this purpose, the protocol

131

IV. Protocol implementation

20. Fundamentals

will use a data bank component used both on the server and protocol side. On the server
side this data bank will serve to contain the logical appearance of the network and con-
tain all crucial information about each client. On the client side, the data bank will only
contain information about clients sending and receiving data to/from the client. As the
server can function as a client the server will of course contain information about clients
receiving data from the server.

Logic client/server: Both the client and the server side of the protocol need to embed
special logic which is focused on either the server or the client. The server logic needs
a method to decide which client (or server) should stream data to a new or relocated

client. This method will be described separately in Section 22.

Gluing the components together is best described visually. How the server is organized is
therefore depicted in Figure 36.

Interface

Application task queue

Stream
engine

Stream Stream Data
engine engine bank

|

Cache] [Cache] [Cache]

Logic (server)

Incomming packet queue

(
|
|
{
|
|
|

Transport handler

Figure 36: Main components in the server.

Packets are received and sent using the transport handler component, which handles the
representation of data as it is understood by the socket layer. Incoming packets are enqueued
in the packet queue component and accordingly distributed to the logic which controls the
stream engines. The application task queue is filled by the stream engines and the logic, and
is emptied by the server application through the interface defined in Section 19.

The client is presented in Figure 37.

132

IV. Protocol implementation 20. Fundamentals

[Interface]

Stream

engine

[Logic (client)]
[Incomming packet queue
[Transport handler

Figure 37: Main components in the client.

The main differences between the server and the client are:

e The number of stream engines differs from the client to the server. Where the server
uses multiple (one for each unique video) the client always only uses one.

e The server uses a cache where the client uses a buffer.

e The client does not need to have an application queue, since it does not need to dispatch
requests to the application. The client application only needs to receive data and does
not need to deliver anything back to the protocol except for user interactions which are
handled by the logic.

e The server needs to hold more information in the data bank regarding all clients which
are connected where the client only needs information about the clients to whom it must
send video data.

20.2 Memory management

Handling the amount of data incurred when streaming video data, calls for avoiding data
copying as much as possible. Needless to say, this restriction only applies to video data, as
control data only constitute a small amount of the total data. Thus, minimizing the amount of
video data being copied is a must. This is especially true for the server which may distribute
a vast amount of data.

As a basic rule the server protocol must not copy video data at all. As the server application
has the role of reading data from disc etc. and supplying it to the protocol the memory must
be allocated by the server application and passed through the interface as a pointer. This
means that all data which is sent by the protocol will be held by the server application and is
only represented by a pointer to the protocol. Thus, the protocol needs to be able to notify
the application when it is done using the data.

133

IV. Protocol implementation 20. Fundamentals

Passing video data to the client application from the protocol works in a different way. Here,
copying the memory between the protocol and the application is possible, as the amount of
memory transferred to the client application does not have the same size as on the server.
Thus, the client application allocates a segment of memory and accesses the protocol, which
in turn copies data from the buffer into the memory segment.

At the bottom of the protocol, the socket layer will be supplied a pointer to an amount of data
allocated by the protocol, and accordingly filled by the socket layer. This piece of memory will
be represented by a pointer which will be transported between the various components. Once
the protocol is done using the data it must deallocate it. Deallocating the memory is thus
not up to the transport handler, as the data is passed to another component, even though
the transport handler has the job of allocating it. This is the case both for the server side
protocol and the client side protocol.

20.3 Thread design

As already stated, the threads will work as glue between the components. Thus, a thread
will for example extract data from the transport handler and push it to the packet queue
with as little logic as possible. Only the code which handles the flow of data is placed in the
threads meaning that only the code which connects the different components is placed here.
This design has the great advantage that each of the components can be tested and debugged
separately without having to work with multiple threads and only the final assembling will
involve many threads.

134

IV. Protocol implementation 21. Class design

21 Class design

This section contains a detailed description of the components described in Section 20. Each
component will be presented using a UML class diagram. These diagrams will only display
member variables and member procedures relevant to the understanding of the implementa-
tion. Private members are also presented where it leads to easier understanding.

As previously stated the components will be reused by both client and server-side to the extent
that it is possible. This section will walk through the details of the components, and when
necessary describe the differences between the server and the client. Furthermore a description
of the memory management of each component will be presented.

21.1 Packets

All the packet types described in Section 17 are wrapped in a packet class. This packet class
is inherited to a number of different classes, each representing one of the packets. Data which
is shared between all packet types are defined in the base class, limited to only the contents of
the packet header. Data specific to each of the packet types is private to each of the specific
inherited packet classes.

Internally, data is represented in network byte order, as described in Section 6.6. Thus, all
information must be converted to host byte order when accessed by the protocol. This gives
the advantage, that when the packet is dispatched from the transport handler, no conversion
and no memory copy is needed. Likewise, when data is received from the network, data is
simply embedded in the packet without any network-to-host data conversion.

135

IV. Protocol implementation 21. Class design

packet

& header: void*

& payload: void*

& payload data: void*

= packet(packet_type: int, action_type: int, recv_id: u64, snd_id: u64): packet*

= packet(void* header, void* payload, u32 p_len, void* payload data, u32 p_d_len) : packet*
= get header(): void*

= get payload(): void*

A /\

packet_ XXXx

& XXXX
= packet XXxx
packet_interact pause

& bb: ul6

packet_interact pause(recv_id : u64, snd_id : ub4) : packet interact pause

= Set bb(bb : ul6) : void
packet_conn_req

video _id: u64
username: char*
password: char*

packet_data 54) : packet_conn_req

bbb

b

bb: ul6

packet data(recv_id: u64, snd_id: u64) : packet data
= Set_bb(bb : ul6) : void

get_db() : ul6

| set_db(db : ul6) : void

= get db() : ul6

= Set_speed level(speed_level : u8) : void

= get speed level() : u8

= Set data(data: void*, len: int) : void

= get_data(len : &int) : void*

Figure 38: Class design of the packets.

21.1.1 Memory management

As indicated by Figure 38 the packet contains three types of data: A header and a payload
which are present in all packets and a payload data which is only present in a subset of the
packets. The two first entities are allocated by the packet once it is instantiated while the
third field is set by a pointer to an already allocated area. The advantage of this is that each
of the entities can be deallocated without impact on the others.

136

IV. Protocol implementation 21. Class design

21.2 Transport handler

This component is embedded in a single transport_handler class utilizing a library wrapping
the socket API. This library is a simple extension of the socket API which raises an exception
when an error occurs.

The transport_handler class has member functions used for sending data through either
CCP or DCP. These functions take as argument a packet and send the data embedded in the
packet via TCP or UDP. Receiving data is done via a single member function returning the
first packet available on all channels regardless of the underlying transport protocol. Data is
returned as a packet.

transport_handler

b

socket sd

transport_handler(local_DCP_port : ul6, loca_CCP_port : ul6) : transport_handler
transport_handler(I_DCP_port : ul6, |_CCP_port : ul6, r_CCP_port : ul6, r_CCP_ip : char*) : transport_handler
initialize() : void

send_DCP(pack : packet*, client client_address*) : bool

send_CCP(pack : packet*, client_id u64) : bool

close_ CCP_connection(client_id u64) : void

receive(pack packet*) : u4

Figure 39: Class design of the transport handler component.

The difference between the client-side and the server-side transport_handler, is only the
constructor of the class which takes different arguments. Special to the transport_handler
is, that the class generates the client id of new connecting clients on the server side. This is due
to the fact that the client must be assigned a socket descriptor before the server application
has actually granted a connection. If the server application rejects the client, the protocol
needs to be able to close the TCP connection by using the client id.

21.2.1 Memory management

Sending data through the transport_handler is done without the class interfering with data
contained in the packet. Thus, the caller of the send procedure must deallocate the packet
as according to Section 21.1.1.

Receiving packets is different. Upon reception of a packet the class will allocate the needed
amount of memory in three pieces, one for each of the three fields in the packet.

21.3 Incoming packet queue

In order to control the amount of memory used by the client protocol, the packet queue will be
implemented using a limit which controls how much data can be stored in the queue. Access

137

IV. Protocol implementation 21. Class design

to the queue will be controlled by a mutex which ensure mutual exclusion and by a counting
semaphore which will force the thread retrieving packets from the queue to wait if the queue
is empty.

packet_queue

b

g : queue
packet_queue(max_size: int) : packet_queue
insert_packet(p : packet*) : void
get_next_packet(): packet*

Figure 40: Class design of the packet queue.

21.3.1 Memory management

Data inserted into the queue is simply a pointer to the received packet allocated by the
transport_handler. Hence, no memory is copied during insert and retrieval.

21.4 Data bank

The data bank component contains all information needed in relation to clients, their capacity,
and the properties of the stream they are receiving. Hence, the data bank will constitute
a central point of the implementation, as many components will need to access the data
contained herein.

The data bank differs from the client version of the protocol to the server version on two
distinct points.

1. The client needs information about all other clients currently attached to the client in
order to stream data correctly.

2. The server data bank needs information regarding to all connected clients.

Because of these differences the data bank is divided in two different components. As the
server must function as a client in regard to video data dispatching etc. all sub-components
included in the client data bank, will also be part of the server data bank.

21.4.1 Data bank - Client

The data_bank_client needs to contain information about all clients to whom it should
stream data. The data_bank must have a way of identifying to whom and when the next data
packet should be dispatched. Thus, the stream_engine will use this facility to decide what
data should be sent next.

138

IV. Protocol implementation 21. Class design

The data_bank_client should also keep track of where data should be received from and
with what rate data must be received. Hence the data_bank_client must continuously keep
track of the time interval in which data packets are received.

data bank_client

b

st : stream_table

data_bank_client() : data_bank_client

initialize(pack: packet_conn_granted*) : void

set_recv_table(pack : packet_recv_data stream*) : void

add_stream(pack : packet_snd_data_stream*) : void

stop_stream(pack : packet_stop_stream*) : void

resend_block(client_id : ué4, BB : ul6, DB : ul6) : void

get_next_receiver(video_id : u64, client_id : u64&, wait_time: int&, next bb: ul6&, next_db: ul6&, ...)

stream_table

Si: map<client_id, stream_info>
wait_time : map<system_time, stream_info>

stream_table() : stream_table*

initialize(pack : packet_conn_granted*) : void

add_stream(pack : packet snd_data_stream*, min : int, norm : int, max : int) : void
stop_stream(pack : packet_stop_stream*) : void

get_next_receiver(client_id : u64&, wait_time: int&, ul6& next_bb, ul6& next_db, ...)
resend_block(client_id : u64, BB : ul6, DB : ul6) : bool

b b

stream_info
last_send_time: system_time
time: system_time
pack : packet_snd_data_stream*
next_buffer_block : ul6
next_data block : ul6
resend_queue : queue
stream_info(pack : packet_snd_data_stream*, min : int, norm : int, max : int)
get_next_block(BB : ul6&, DB : ul6&, speed : speed level&) : bool
add_resend_block(BB : ul6, DB : ul6) : void
get_client_id() : u64
set_stop_point(BB : ul6, DB : ul6) : void
get_stop_point(BB : ul6&, DB : ul6&) : void
set_send_time(time : system_time) : void

DPbbbbb

Figure 41: Class design of the client data bank.

Internally, the data_bank_client is structured using an instance of the stream_table class
utilizing a number of stream_info instances each representing the stream of data which must
be sent to a client given in the stream_info instance. If the nature of this stream changes, e.g..
the speed is changed, or the distribution of data blocks changes, the stream_info instance is
simply changed by setting the packet sent from the server.

139

IV. Protocol implementation 21. Class design

21.4.2 Data bank - Server

The server-side data bank will be structured using a table containing a number of client_info
instances, each containing information related to any connected client. Updating this infor-
mation is simply done by handling the client_table a status packet when this is received
by the server. As with the client-side data bank the class stream_table functions similarly
by holding a number of stream_info entities. When the server changes the characteristics
of the data stream dispatched to the client identified by the stream_info, this is simply
done by handling the SND DATA STREAM packet, as described in Section 17.3.2; to the
stream_info class which will update itself accordingly.

140

IV. Protocol implementation 21. Class design

data_bank_server

st : stream_table

data_bank_server() : data_bank_server

initialize(pack: packet_conn_granted*) : void

set_recv_table(pack : packet_recv_data stream*) : void

add_stream(pack : packet_snd_data_stream*) : void

stop_stream(pack : packet_stop_stream*) : void

resend_block(client_id : u64, BB : ul6, DB : ul6) : void

get_next_receiver(video_id : u64, client_id : u64&, wait_time: int&, next bb: ul6&, next_db : ul6&, ...)

b

stream_table

& si: map<client_id, stream_info>
& wait_time: map<system_time, stream_info>

= Stream_table() : stream_table*

= initialize(pack : packet_conn_granted*) : void

= add_stream(pack : packet snd_data_stream*, min : int, norm : int, max : int) : void

= Stop_stream(pack : packet_stop_stream*) : void

= get_next_receiver(client_id : u4&, wait_time: int&, ul6& next_bb, ul6& next_db, ...)
= resend_block(client_id : u64, BB : u16, DB : ul6) : booI

stream_info

last_send_time: system_time
time: system_time

pack : packet_snd_data_stream*
next_buffer_block : u16
next_data block : ul6
resend_queue : queue

stream_info(pack : packet_snd_data_stream*, min : int, norm : int, max : int)
get_next_block(BB : ul6&, DB : ul6&, speed speed_level&) : bool
add_resend_block(BB : ul6, DB : ul6) : void

get_client _id() : ue4

set_stop_point(BB : ul6, DB : ul6) : void

get_stop_point(BB : ul6&, DB : ul6&) : void

set_send_time(time : system_time) : void

bPbbbbb

client_info

pack_status resp : packet_status resp*
pack_conn : packet_conn_req*

bb

client_info(pack packet_conn_reg*) : client_info*
update_status(pack : packet_status resp*) : void

Figure 42: Class design of the server data bank.

21.5 Stream engine

The stream engine component is tied to the functionality of streaming the content of the video
to a number of clients. This functionality will be embedded in a stream_engine class, which

141

IV. Protocol implementation 21. Class design

in itself distributes the data contained in a video. The server-side protocol needs to hold
several instances, as one instance only distributes a single video while the client needs only
one.

As the data bank component contains the information related to each of the data streams
dispatched from the stream engine component, the two components must interact directly.
Thus, the stream engine must hold the data related to the video which it distributes, and the
information related to the data streams must be accessed through the data bank.

To distribute data, the stream engine accesses data held in the data container. This component
will be tightly integrated with the stream engine as the stream engine must access video data
directly. Deciding what data must be sent will be done by continuously calling the data_bank
to extract the next client which should receive data, which data should be sent, and the delay
in milliseconds until data should be sent. The calling thread must wait the given amount of
time before dispatching data to maintain the interval at which packets are be sent.

The only difference between the server-side stream_engine and the client-side stream_engine
is the way that data is stored. Data kept on the client-side protocol is received from other
clients and only a part of the video is available. The server also keeps part of the video but
data can always be retrieved from the server application. Unifying the functionality of the
stream_engine requires that the data containers must provide a uniform interface which will
hide the differences from the stream_engine class. A diagram depicting the design of the
stream_engine class is provided in Figure 43.

stream_engine

dc : data_container

video _id : ué4

stream_engine(dc : data_container*, video_id : u64, client_id : u64) : stream_engine
get_video_id() : ue4

= stream(recv_client_id : u64, bb : bb: ul6, db: ul6, data: void*, len: int): packet*

bb

Figure 43: Class design of the stream engine.

21.6 Data container

The data container will be constructed as an abstract class providing the uniform interface
which all derived classes must implement. The classes data_buffer and data_cache will be
constructed to be used client and server-side.

21.6.1 Data buffer

To conform to the protocol design given in Section 14.2 regarding buffering of data, the
data_buffer class will be implemented as a circular buffer. The data_buffer will be filled

142

IV. Protocol implementation 21. Class design

with data received by the logic, while the stream_engine will retrieve data from the buffer
and send this to the receivers given in the data bank.

21.6.2 Data cache

The server-side data container will be implemented in the class data_cache. This class dif-
fers from the client-side data_buffer in the respect that it must fetch data by itself. The
resemblance to paging in modern operating systems is thus immediate. One could argue that
video, being a continuous media, prefetching of data can never be random, as the protocol
will always know what block a client must be provided with next. But the added complexity
incurred when opening up for resending of data, and the role of the server when a client re-
quests emergency data results in the server having to access DBs randomly. Under optimal
circumstances, the data_cache will simply prefetch the next BB if this is not present. This
implies that the data_cache must have a knowledge of what data the receivers expect. Thus,
when data is dispatched, the cache must check if the next block is present and retrieve this
from the server application if necessary. This raises the simple question of how the protocol
handles a cache miss. As a starting point, the cache should not encounter cache misses, but as
already described requesting emergency or resending of data may occur. Furthermore, data
must be requested from the server application which entails that some waiting time may be
expected. In some cases data may even not be available when needed as the server application
may be heavily loaded. Thus, the stream_engine cannot rely upon data being contained in
the cache when it is needed. Conversely, data must sooner or later reach the data cache.
Thus, if the server application fails to provide the protocol with data either the application is
constructed erroneously, or the hardware utilized by the host is too constrained. Therefore,
the protocol assumes that data will reach the data cache before it is too late.

As the name implies, a cache only contains part of the data needed by the protocol. Thus,
as the cache is being filled, it will at some point be necessary to overwrite some of the blocks
contained in the cache. This also resembles the workings of a paging system, as some pages
will have to be swapped out when new ones are needed. Paging systems therefore uses different
algorithms to determine which page should be swapped out before a new one can be read. In
the scenario at hand, a walk through of the workings of these algorithms is far from relevant
as this will be out of the scope of this thesis. To simplify the procedure, we note the existence
of two simple ways of determining which block should be deleted. The first and simplest is to
delete the block which was last accessed. Thus, when the blocks are used, the protocol needs
to time stamp the blocks to determine which block has been used last. The second model
exploits, that the server is updated regularly with information from each client indicating
where the play pointer is situated. Thus, the server knows that when the play pointer of a
client has passed a given block, it will not be requested by the client except if a skip should
occur. This would however still require some algorithm which can decide which block should
be deleted, as this may be relevant in some cases. Instead a more simple approach is chosen.
When the server application fulfills a data request the call through the interface returns a
pointer to the data which has been possibly released by the protocol. Thus, the control of the
data has been transferred to the server application.

143

IV. Protocol implementation 21. Class design

21.6.3 Class design of the data container

data_container

num_db: int

num_db_in_bb: int

data_container(number_of bb: int, number_of db_in_bb: int): data_container
read_db(bb: ul6, db: ul6, len: int&): void*

= write_db(bb: ul6, db: ul6, data: void*, len: int): void

bbb

A

data_buffer

& bb map: ul6*

& cbp:ul6

& pp:ul6

= data buffer(number_of bb :int, number_of db in_bb: int) : data buffer
= read_db(bb : ul6, db: ul6, len: int&) : void*

= write_db(bb : ul6, db: ul6, data: void*, len : int) : void

= get pp() : ul6

data cache

& data: void*

= data_cache(q : request_queue*, movie id : u64, num_bb) : data_buffer
= read_db(bb : ul6, db: ul6, len: int&) : void*

= write_db(bb : ul6, db: ul6, data: void*, len : int) : void

Figure 44: Class design of the data container.

21.7 Application task queue

This component is used as the link between the protocol and the server application. Since all
data and login validation etc. should be handled by the server application a communication
queue is needed. In this way the application can be implemented as a multithreaded appli-
cation listening for the different tasks enqueued by the protocol. Thus, when a new task is
enqueued by the protocol it must signal to the server application that a new task is ready.

request_queue

& : queue

= request_queue() : request_queue

= add_data request(request : data_struct_reg*) : void
= get data request() : data_struct_reqg*

= count_data request() : int

Figure 45: Class design of the application task queue.

144

IV. Protocol implementation 21. Class design

21.8 Client-side logic

The client-side logic handles the processing of incoming packets. These are handed to the
logic which are handled according to the logic described in each of the packet definitions given
in Section 17. Evidently, packets of type (10, %), (30,x), (50, %), and (60, x) are to be handled
by the client-side logic. These four packet types define packets sent from server to client
and packets sent from a video data receiver or sender to a client. All other packets must be
neglected.

Furthermore, the client-side logic must handle requests from the client application. These will
be passed from the interface to the client-side logic component responsible for performing the
requested task.

logic_client

& th: transport_handler

= logic_client(video_id: u64, th : transport_handler*) : logic_client*
= packet_handler(pack : packet*) : void

= connect(buf_size: size t, login_data client_struct*

= disconnect() : int

= pause() :int

= resume() : int

= Skip() :int

Figure 46: Class design of the client logic.

21.9 Server-side logic

As is the case with the client, the main task of the server logic is to handle incoming packets.
The packets received by the server is the remaining part of the packets which is not treated
by the client logic. This fundamental difference is the main reason why the logic is divided
in two. Several packets result in clients being relocated which is done by the logic using the
selection algorithm as described in Section 22.

Actions on the server are triggered by the reception of packets with one exception. The server
needs to keep track of whether connected clients send status packet with the correct interval.
Otherwise, a status request must be sent.

logic_server
th : transport_handler

logic_server(th : transport_handler*) : logic_server*
= packet_handler(pack : packet*) : void

Ib

Figure 47: Class design of the server logic.

145

IV. Protocol implementation 22. Selection algorithm

22 Selection algorithm

As stated in Section 14.6 the selection mechanism seeks to build up the logical appearance of
the network.

For the selection mechanism to function a sub-mechanism will be used to serve the purpose of
identifying the most anti-social client. This mechanism will be used in the event of a topology
change which will result in the need for disconnecting a client. This may happen when the
protocol cannot find a suitable point for a new or relocated client which provides an amount of
bandwidth higher than an already connected client. Thus, if equilibrium cannot be obtained
when attaching the new client, another client must be disconnected to make room for the new
client.

Furthermore, the selection mechanism will make use of another sub-mechanism which is used
to identify which parts of the video stream a set of clients should send to another client. Thus,
the set of clients will each send a part of the data stream to constitute the total stream. The
sub-mechanism distributes the amount of DBs of each BB between the set of clients while
accounting for the bandwidth available to each client. Hence, the sub-mechanism will output
a list identifying which DBs each client must transmit to the receiver of the data stream.

For the mechanisms to function, a number of working parameters can be present. These
parameters can be used as a foundation for the mechanisms to make proper decisions. The
parameters may be given and maintained for each client and can be separated into three
categories:

Static data: Variables related to static information collected upon connection of a client

Dynamic data: Variables related to information collected during the course of a client’s
session. The information can be based upon status retrieved from each client regarding
the current position, buffer contents, etc.

Statistics: Variables related to statistics gathered by the server during the session of each
client. The statistics can be gathered every time some event occurs, e.g. when the client
pauses, skips, or a client notifies the server of some error, etc. Furthermore, statistics
can be gathered from the dynamic data, enabling the server to keep a history of the
client’s performance.

Intuitively, much information can be gathered to create a more solid ground for taking de-
cisions. The more variables used by the algorithm the more complex and time consuming
it will be although it may also build a more efficient topology. We note the almost endless
possibilities in this subject but choose only to implement a simple selection mechanism which
illustrate how the topology may be built. How this is performed is described in Figure 48.

146

IV. Protocol implementation 22. Selection algorithm

Start

Find list of clients
watching video

i

N

4 . .
List empty \/ List not empty
v J V
Find list of
Flnd a.Vaila.ble L clients containin
channel at server |] o 21
requested data
No clients
available Y
L ?
No available
channel
Channel N V
available - - Clients available Try to con-
Disconnect client | nect again
Attach client to J Y
server Order list by
maximum
available
bandwidth
End ‘
Find anti-social and)
disconnect it
Attach client to List |
list of senders 18t 15 empty \
Extract first
? Y« . L.
client in list
Distribute blocks | List is non-empty A
Add client to list
containing senders
i Senders do not
Senders provide /?\ provide enough
enough bandwidth \/ bandwidth

Figure 48: The selection algorithm.

147

IV. Protocol implementation 22. Selection algorithm

22.1 Finding the most anti-social client

The purpose of this mechanism is to find the most anti-social client. This is only needed in
situations where new connecting or relocated clients cannot be attached to any clients because
of bandwidth or buffer starvation. If the new or relocated client provides a higher bandwidth
than the most anti-social client which can be disconnected in favour of the new client this is
done. How the most anti-social client is selected is therefore the purpose of this mechanism.
We note that there are many possibilities in implementing this mechanism, as the variables
given above may be used in finding the most anti-social client. Therefore an example is given
below:

Step 1: The first step of the mechanism is to determine if the new or relocated client is anti-
social in itself. If this is the case the client it self should immediately be chosen and
disconnected and the algorithm finished.

Step 2: Find all candidates watching the same video as the new or relocated client.

Step 3: From the list of clients found in step 2 all clients that do not contain the requested
BB in their CA must be removed.

Step 4: Remove all candidates which are not marked anti-social. These are clients which
provide at least the same amount of upload capacity which is required to forward the
video unassisted.

Step 5: Sort the remaining clients by available bandwidth. The first client in this list is best
candidate. If only one client is found providing the smallest available bandwidth, this
client should be disconnected in favor of the new or relocated client.

Step 6: If more than one client has been found in the previous step, the client which forwards
data to the lowest number of clients is disconnected in favor of the new or relocated client.

Step 7: If the previous step yields to more than one client the client which has performed
the highest number of user interactions is disconnected in favor of the new or relocated
client.

The last three steps define the central workings of the mechanism. Therefore, these can be
varied in a infinite number of ways. We note these interesting possibilities but choose only to
implement a simple mechanism which will disconnect the first client which can be substituted
with the new or relocated client. Furthermore, clients that provide a buffer size lower than
what is advertised by the server is not considered by the mechanism. As being anti-social
is defined as not providing sufficient bandwidth or buffer this should also be part of the
mechanism.

22.2 Block distribution mechanism

This mechanism seeks to distribute the DBs of each BB to multiple clients in order to enable
multiple clients sending the total data stream to another client.

148

IV. Protocol implementation 22. Selection algorithm

As an illustration, consider two clients selected to send the total stream to another client. Each
BB consists of 100 DB. The first client can only provide 2 percent of the required bandwidth
while the second one 98 percent. Thus, the first client can only send two DB of each BB while
the second will send the remaining 98 DBs.

Choosing which DBs each of the clients should send may seem trivial. But as DBs should
be received in an order resembling the order of which they are distributed throughout the
BBs this may not be trivial. Thus, letting the first client send the two first DBs of each BB
may result in the capacity of the sending client being over used with the impact that data is
received long after it should have been used. In this example, a better solution would be to
only let the first client send DB 1 and DB 50 of each BB. Clearly, as the number of clients
sending data concurrently to another client rises, and the more their bandwidth varies, the
more complex the best solution will be. The solution to this, is to construct an algorithm
which traverses all the DBs in a BB and for each DB decides, which client is best suited to
send the current DB. This may be done in numerous ways, as the mechanism can, like the
rest of the selection mechanism make use of variables collected by the server. However, we
choose to implement this simple by performing the following steps:

Step 1: For each client the average distance between consecutive data dispatched is calcu-
lated. This distance changes as the number of DBs gets fewer. To illustrate this, if a
BB contains 100 DBs and a client needs to send 10 of these, the average distance is
100/10. As the DBs are traversed and distributed among the clients this average dis-
tance changes. Thus, when the first 5 DB has been traversed and a sender has been
chosen for these, the average distance for this particular client becomes 95/10. As the
client is allocated DBs the denominator of the fraction falls.

Step 2: Based on the above calculated distances the best suited client is found for the current
DB. This is done by looking at the distance of all the clients and selecting the one which
comes closest. This client is then allocated the block and the next block is traversed.

The above algorithm will yield a list of clients and the DB numbers of each BB they must
send to the client which is to receive the video data stream.

149

IV. Protocol implementation 23. Threading

23 Threading

This section analyses and describes how the protocol will make use of multi-threaded func-
tionalities. The section will be based upon the components of the implementation accounted
for in Section 21.

23.1 Receiving packages

Both the client and the server share the same structure in reference to reception of packets.
All data is received by the transport handler and based on the received data a packet is
instantiated. The packet is then pushed onto the incoming packet queue.

To empty the buffer of the socket quickly the implementation will make use of a thread which
will have the sole purpose of extracting packets from the transport handler and placing these
on the packet queue. As a large amount of data may be received the thread should be occupied
as little as possible with other tasks. Therefore no logic will be applied to the packets before
they are pushed onto the queue.

23.2 Incoming packet processing

All packets queued in the incoming packet queue, must eventually be processed. A single
thread is sufficient to handle this task. Furthermore this thread will need access to most
components and may therefore require a lot of synchronizing with other threads to avoid
accessing critical regions concurrently. This synchronization may generate a large amount of
overhead, therefore care must be taken to only access regions which are needed by the thread.

A single thread is therefore employed which must pop packets from the incoming packet
queue and process these using the logic component. The processing of the packets can lead
to a number of events as given in Section 13.

23.3 Buffer and cache

Data is filled into the buffer of the client by the thread which processes all incoming packets.
Furthermore, the client needs to keep track of the speed at which data is received. At first
glance one would argue that this could be done by the thread filling the buffer, but clearly
if data receival is brought to a standstill this would never be detected. Therefore, a separate
thread is employed for this task.

150

IV. Protocol implementation 23. Threading

23.4 Stream engine

For the stream engine to work, a separate thread with the sole purpose of sending video data
to all attached clients will be employed. If data cannot be retrieved from the buffer, either
because of buffer underflow or overflow this thread will also be responsible for sending packets
identifying that the data request could not be fulfilled. Thus, each instantiated stream engine
component will employ a thread for this purpose.

23.5 Status thread

Furthermore, the logic needs to send status packets to the server with a specified interval.
This will be done using a separate thread which will be awakened at an interval specified by
the server.

23.6 Application threads

Instantiating the protocol either as server or client will result in the constructor of the protocol
spawning a number of the above threads. When this has been performed, the class has been
constructed, and control will be returned to the calling process. Hereafter, the application
may use the interface as given in Section 24. Some calls dispatched to the protocol may result
in the protocol blocking the calling thread until some event has occurred. Thus, the server
application needs to call the protocol to block until the protocol requests data. Contrarily, the
client application needs to call the protocol for incoming data which the client needs to display
by the video player. Beside this role the client thread will be responsible for dispatching user
interactions to the protocol. This means that when the user interacts with the video the
application thread must call the interface. This call will be handled by the logic which in turn
may end up transmitting a packet.

Whether the applications handle these tasks using one or more threads is completely up to
the implementor and can be done in numerous ways.

23.7 Summarizing

To briefly summerize, the threads present in the protocol are:

Transport handler thread: This thread receives packets and inserts them onto the incom-
ing packet queue. The thread will be present both in the server and the client instance
of the protocol.

Logic thread: This thread takes one packet at a time from the incoming packet queue and
process them using the logic component. The thread is also present in the server and
the client.

151

IV. Protocol implementation 23. Threading

Stream engine thread: This thread has the job of sending video data packets to attached
clients. The thread is not active if the client does not stream data to another client. As
the server also functions as a client, the thread is present on both sides. Furthermore,
one thread is used per instance of the stream_engine class.

Status thread: This thread is used differently on the server and client. On the client side,
the thread is awakened at a specified interval and sends status packets to the server.
On the server side the thread has the job of ensuring that all clients are sending status
respond packets at the correct interval.

Reception speed: This thread is only present on the client and has the job of ensuring that
video data packets are received at the correct speed. This thread furthermore ensures
that data reception does not come to a standstill.

152

IV. Protocol implementation 24. Interface

24 Interface

This section focuses upon the interface between applications and the protocol. The interface
is presented through the classes vod_server and vod_client. The interface is comprised of
the publicly accessible procedures implemented in the classes. The classes conform to the
interface specifications as described in Section 19.

The interface will transport classes and structures, thus precluding applications implemented
in a programming language which does not understand the C++ class construct.

As the protocol provides both functionality for clients and servers, this section is divided in
two, one describing the server side of the implementation and one describing the client side.

24.1 Server interface

The section describes the calls which can be made to the server instance of the protocol.

e vod_server* vod_server (int data_port, int control_port);
The constructor of the class vod_server returns an instance of the class. The data_port
specifies the UDP port used by the DCP for transferring video data to connected clients.
The control_port specifies the TCP port used by the CCP for communicating with
connected clients.

e int open();
The open call binds the two ports which have been set in the constructor. The open
must be performed consecutively after the class has been constructed. Otherwise the
open call will return an error as indicated by a negative return value.

e int close();
The close call disconnects all connected clients and closes all open file handles and
sockets. May be called at any time after the open call has been performed.

e void poll(int& video_data,
int& video_data_hp,
int& sec_data,
int& sec_data_hp,
int& login_req,
int& events);

After the open call has been performed, the server application may start listening for in-
coming tasks by using the poll call. Regardless of how many requests ready to be served
the call will return control to the calling thread immediately. The number and nature
of the requests which are ready to be served is given as references used as arguments in
the call:

153

IV. Protocol implementation 24. Interface

1. int& video_data

Indicates that a number of data request are ready to be served by the server appli-
cation. The number given in the reference corresponds to the number of enqueued
requests.

. int& video_data_hp

Indicates that a number of data request assigned high priority are ready to be
served by the server application. The number given in the reference corresponds to
the number of enqueued requests. This may be used in the event of a emergency
resend of data not currently held by the data cache.

. int& sec_data

Indicates that a number of security data request are ready to be served by the
server application. The number given in the reference corresponds to the number
of enqueued requests.

. int& sec_data_hp

Indicates that a number of security data requests assigned high priority are ready to
be served by the server application. The number given in the reference corresponds
to the number of enqueued requests.

. int& login_req

Indicates that a number of login requests are ready to be served by the server
application. The number given in the reference corresponds to the number of
enqueued requests.

. int& events

Indicates that a number of events are ready to be read by the server application.
The number given in the reference corresponds to the number of enqueued requests.
This queue can be used by the protocol to inform the server application that some
event has occurred. This should simply be regarded as a log functionality.

After retrieving these values the application may serve these requests at will. Requests
placed in the high priority queues should be served first, but this is not a demand.

e int get_data_req(struct data_struct_req& data, DATA_TYPE type);

The get_data_req procedure returns the content of the next data request of the type
given in type. The call blocks the calling thread if no request is available. The content
returned in the structure data specifies the offset and length of the data from a given
video needed by the server. In this structure a field transaction_id specifies a unique
id which must be supplied to the protocol when the request is served. This enables the
protocol to monitor if a request has been serviced.

The argument data is defined as the struct:

struct data_struct_req

{

unsigned long video_id;
unsigned long byte_offset;
size_t len;

long transaction_id;

154

IV. Protocol implementation 24. Interface

The field type is defined by:

enum DATA_TYPE

{
VIDEO_DATA,
VIDEO_DATA_HP,
SEC_DATA,
SEC_DATA_HP

+;

e int get_login_req(struct login_struct_req& user);

The get_login_req procedure returns the content of the next connection request held
by the protocol. The call blocks the calling thread if no request is available. The
content returned in the structure user specifies the user and password of the user trying
to connect. In this structure a field transaction_id specifies a unique id which must
be supplied to the protocol when the request is served. This enables the protocol to
monitor if a request has been serviced.

The argument user is defined by the structure:

struct login_struct_req

{
unsigned long video_id;
user_name;
password;
long transaction_id;

};

e int get_event(struct event_struct& event);

The get_event procedure returns the content of the next event held by the protocol.
The call blocks the calling thread if no request is available. The content returned in the
argument event specifies the event encountered by the protocol.

The event returned by the protocol in the argument event is defined as:

struct event_struct

{
EVENT_TYPE event;
unsigned long timestamp;
char* msg;
int msg_len;

}s;
With event defined as:

enum EVENT_TYPE
{

// Currently unused

};

155

IV. Protocol implementation 24. Interface

e int get_video_info_req(unsigned long& video_id);

The get_video_info procedure returns the content of the next video info request held
by the protocol. The call blocks the calling thread if no request is available. The
content returned in the reference video_id specifies the video which the protocol wishes
to retrieve data for.

e data_class#* deliver_data(data_class* data, DATA_TYPE type);

The deliver_data procedure delivers a type of data requested earlier by the protocol.
The procedure is used by the server application, maintaining the three types of data, to
deliver whatever data has been requested by the protocol. The data_class construct is
allocated by the server application, and passed to the protocol which then uses it.

The procedure returns a pointer to a data_class instance which has been released
by the server protocol. Thus, the protocol uses this to signal the application that it
no longer needs the data_class instance in the cache. If the return value is NULL no
instance has been released by the protocol. This may at first seem as a cumbersome
solution, but in fact it enables advanced memory management on the application side.
The solution enables the protocol to avoid moving data across the interface which can
be very expensive.

Data is thus delivered as a class defined as:

class data_class
{
private:
void* data;
size_t len;
unsigned long video_id;
long transaction_id;
public:
data_class(unsigned long video_id,
long transaction_id,
void* data,
size_t len);
void* get_data();
size_t get_data_length();
unsigned long get_video_id();
long get_transaction_id();

};

e int deliver_login(struct login_struct_resp login);

The deliver_login procedure authorizes clients which try to connect to the server. The
protocol will match a previous connection request by the transaction id embedded in
the argument login. This will furthermore contain the measured upstream capacity of
the client measured in available byte/sec.

login is defined as:

156

IV. Protocol implementation 24. Interface

struct login_struct_resp
{
long transaction_id;
boolean login_allow;
int upload_bandwidth;
s

e int deliver_video_info(struct video_struct_resp video);

The deliver_video_info procedure provides the protocol with information related to
a video. Thus, this call is used to provide information about new videos to the protocol.
The argument video is defined by the structure video_struct_resp given by:

struct video_struct_resp

{
unsigned long video_id;
int bit_rate;
char[256] title;
unsigned long video_len;
unsigned long video_duration;
unsigned int skip_distance;

};

24.2 Client interface

The client interface defines the applications programmers interface used when programming
a client application.

e vod_client* vod_client(size_t buf_size,
struct client_address* client);

The constructor is given a number of arguments used for initializing the protocol. The
size_t buf_size argument specifies the maximum amount of memory which may be
used by the internal buffer of the protocol instance. This limit concerns only the buffer
as this will be the the main memory consumer. The overall memory used by the protocol
will therefore exceed this limit. The argument is measured in bytes.

The argument struct client_address* client specifies the address of the local client
as found in the structure:

struct client_address
{

ccp_port;

dcp_port;

};

ccp_port defines the local TCP port used by the CCP while dcp_port defines the local
UDP port opened by the DCP.

157

IV. Protocol implementation 24. Interface

e int connect(unsigned long video_id,
struct server_addr* address,
struct login_data* client);

This call is performed when a client wishes to connect the protocol to a given server.
This call may be followed by a recv_data call. The arguments are defined as followed:

1. unsigned long video_id defines the video which the client wishes to stream. This
id is of no relevance to the protocol and is defined by the server application. The
id is only used by the protocol to identify a video, but its contents is defined by
the server application.

2. The struct server_addr* address argument defines the address of the server
offering the video material. The call will connect the client to the server contained
in address as defined by:

struct server_addr
{
char* ip_address;
int port;

};

3. struct login_data* client identifies the local client wishing to connect to the
server. The argument contains among others a user name and password which must
be authorized by the server application before the client can be granted access. The
argument is defined as:

struct login_data

{
unsigned long video_id;
char[64] user_name;
char[64] password;
unsigned int video_len;
unsigned int video_duration;
unsigned int skip_distance;
char[256] title;

s

e size_t recv_data(void* buf, size_t max_len,
unsigned long& offset);

from the protocol layer. Data returned will be the next data available. Data will be
copied into the memory area given in buf at a maximum length of max_len bytes. The
call blocks until data is available and returns the amount of bytes written to buf. The
argument offset identifies the byte offset in the video.

e int disconnect();
This call disconnects the client from the server. The call may be regarded as stopping
the video stream.

158

IV. Protocol implementation 24. Interface

e int pause();
The call pauses the data stream until it is resumed. Subsequent calls to recv_data until
the stream has been resumed will fail.

e int resume();
This call resumes the data stream and enables the client application to retrieve data.
This call can only be performed after a pause.

e int skip(unsigned long position);
The skip call will skip to a given place on the video. The argument position specifies
the point in the video where the skip must occur to given in milliseconds. This call can
only be performed in playing mode, e.g. the video must not be paused.

159

IV. Protocol implementation 25. Our implementation

25 Our implementation

This section describes our implementation. The section is therefore meant as documentation
for the problems incurred in the process of implementing the protocol. Furthermore, the
section clarifies the shortcomings of the implementation and where we have chosen to restrain
the implementation related to the protocol design.

Initially the protocol was implemented using standard C++ on a Linux platform using the
BSD POSIX socket API and the BSD pthread implementation. The idea was simply to im-
plement the protocol using Linux and port the code to the windows .NET platform, thus
compiling a dynamic linked library. This library was simply to be included when developing
the applications making use of the protocol. This would give us the strength of Linux, when
implementing the protocol and the flexibility of the .NET platform concerning graphical user
interface. Unfortunately, porting the protocol to windows was more problematic than imag-
ined. Thus, neither the socket API and the pthread library works seamlessly under windows.
Therefore, we decided to move the implementation of the protocol to the .NET platform at a
late state.

The socket implementation used under windows, called Winsock unfortunately does not pro-
vide all of the functions described in the POSIX socket specification. Thus, neither the
sendmsg call or the recvmsg call are available using Winsock. This forced us to implement
receiving and sending of packets using expensive copying of memory. Furthermore the imple-
mentation of the MSG_PEEK option when reading from connectionless sockets is unstable
which is acknowledged by Microsoft.

As stated, the pthread library is not directly accessible using the .NET platform. However,
implementation of the library does exist but these are made by third part providers and
not Microsoft self. Therefore we chose to use the standard threading libraries provided by
the .NET platform. This, however, caused a lot of frustrations as mixing unprotected and
protected C++ code when using the Microsoft .NET compiler can be quite tricky.

25.1 Limitations

The implementation of the protocol focuses upon the important parts of the protocol de-
sign. Thus, the implementation of streaming a single video from the server, and on to other
clients has been the primary goal of the implementation. Hence the following issues remains
unimplemented in this prototype of the protocol:

e No security mechanisms has been implemented.

The server protocol interface has been partially implemented.

No error handling concerning buffer overflow or underflow has been implemented.

The selection mechanism of the protocol has been implemented simply.

160

IV. Protocol implementation 25. Our implementation

e The protocol does not considerate the bandwidth of connected clients.

The above issues has been omitted to focus upon the core workings of the protocol which has
been implemented to work as intended.

161

IV. Protocol implementation 25. Our implementation

162

CHAPTER V

Verification

This chapter contains tests and validations of the protocol. It is divided in two parts. The
first part serves as a simple end-to-end test while the second part contains a discussion of the
performance obtained by protocol.

163

V. Verification 26. Verification of the implementation

26 Verification of the implementation

The end-to-end test considers a setup using a server connected to a number of clients. Based
on this we perform a series of tests which should determine whether the implementation
fulfills the basic requirements. In order to do this a client and server applications have been
developed. Both of these applications have been developed with this specific test in mind.
Because of this they are implemented in the simplest manner with no regard to performance.
Both applications are implemented using the Visual Studio 2005 .NET framework. The client
makes use of the Apple Quicktime component in order to enable easy display of a video.
Therefore, the video provided by the server application must be compatible with a decoder
which can be used with Apple Quicktime.

In order to minimize the time spent developing the client a simplification has been made. As
the quicktime component does not support reading directly from a stream data are written to
and streamed from a file concurrently. Thus, the client application both reads data from the
protocol and writes it to a file on disk, which is displayed concurrently in the player.

The server application is simple. Once started, a new instance of the server protocol is made
and video data is read directly from the disk. Hence, no attempt has been made to optimize
the performance of the server application.

26.1 Test scenarios

In this section a set of test scenarios will be designed. These will form the base of the test,
which we will perform. The main focus in testing will be one the following cases:

Scenario 1 - Simple streaming of data: Verify that a client can connect to the server and
that the client receives data which can be displayed.

Scenario 2 - Data consumption: Verify that the video stream is sent at the correct speed
— only the needed amount of data is received.

Scenario 3 - User interaction: Verify that user interaction requests can be send from the
client and that the server fulfills the requests correctly.

Scenario 4 - Connection of multiple clients: Verify that a client can send data to a sec-
ond client.

Scenario 5 - Receiving streams from multiple sources: Verify that a client can receive
data from more than one client hence that a client is capable of streaming only a part
of the video.

Scenario 6 - Streaming to multiple sources: Verify that a client or the server can stream
to more than one other client.

Scenario 7 - Reallocate client: Verify that if a sender of data stops sending, the receiving
client will be attached to another client or the server.

164

V. Verification 26. Verification of the implementation

The following section will describe how these scenarios are tested. All of the scenarios are
performed using both a single computer running the server and one or more clients and on
multiple computers running only one application each.

The tests were performed on 4 laptop computers each with a CPU in the range of 2-3 GHz
running Microsoft Windows XP. These were connected using a 100 Mbit Ethernet. The video
employed in the tests had the following characteristics:

Size: 19.64 MB.

Bit-rate: 1172 Kbit/sec.
Duration: 137050 milliseconds.
Number of BBs: 45.

Number of DBs per BB: 100.
Size of client buffer: 15 BBs.

Media type: MPEG-4.

Scenario 1 - Simple streaming of data

This scenario verifies that a single client can connect to the server and receive the video stream.
Furthermore, the scenario verifies that the client is capable of displaying the video.

The expected result is the clients ability to display the video stream continuously without
interruptions. Furthermore, after play-back the client should be logged off from the server,
and the client should no longer be considered connected.

Scenario 2 - Data consumption

This simple scenario can be verified by testing that during the run of scenario 2 data must not
be received slower and not substantially faster than it is consumed. This is easily determined
by checking that the consumed ingoing bandwidth used for transmitting video data does not
rise much above the bit-rate of the video.

The expected result is that data is only sent at a rate slightly faster than the rate at which it

is consumed. This is done using a packet sniffer application which can monitor all incoming
and outgoing packets.

Scenario 3 - User interaction

This scenario verifies whether the client can perform a user interaction. The test is conducted
by performing a sequence of skips while displaying the video.

165

V. Verification 26. Verification of the implementation

The expected result is that a skip in the video stream will display the correct part of the
video. Furthermore, skipping outside the buffer will result in small interruptions as the data
delivery to the client application is done one BB at a time to simplify data deliverance. Hence
the multimedia player must wait until a full BB has arrived before viewing can be resumed.

Scenario 4 - Connection of multiple clients

This test is performed by connecting a second client meanwhile streaming data to the first
client. The second client will be attached to the first client as the data needed by the second
client is held in the buffer of the first client.

It is expected that both clients are able to display the video from start to end smoothly.

Scenario 5 - Receiving video data from multiple sources

Scenario 4 is run again. A third client is now connected while data is still contained in the
buffers of the two first clients. Thus, this third client will be attached to the two first clients.
These will each send only half the data stream to the third client. This is done due to the
workings of the selection algorithm.

The expected result is that all three clients will display the video from beginning to end
without interruptions.

Scenario 6 - Streaming to multiple clients

Scenario 5 verifies that one client can send data to two other clients as the first client sends
the full data stream to the second client and half a data stream to the third client. Continuing
this scenario by stopping the second client, the server will take over the data stream which
was dispatched from the second client. Thus, the server will still provide the full data stream
to the first client, and half the data stream to the third client.

It is expected that the first and third clients display the video in its entirety regardless of

where the data stream is received from while the second client only displays the video until it
is stopped.

Scenario 7 - Reallocate client

Reallocation will happen in scenario 6. Once the second client stops the third client will be
reallocated to the server.

It is expected that when a reallocation occurs, no interruptions in the video will be seen.

166

V. Verification 26. Verification of the implementation

26.2 The test result

Generally all test scenarios were run successfully and with the expected result. A simple
screendump of the test is presented in Appendix E. Thus, we can conclude that the imple-
mentation and the design works as intended although this first and simple implementation
does not comprise all functionalities of the design. As a result, the implementation is not
always completely stable although in this limited setup this does not affect the overall result
of verifying that the implementation works as intended. However, some elements discovered
during the test deserve to be emphasized.

As skipping between portions of the video is done using BBs we can conclude that sometimes
a skip to a given BB will result in interruptions. This is because two adjacent BBs may part
the contents of the elements which the video standard is divided into.

During the test we experienced that the protocol did indeed hide all the functionality for the
applications which was precisely the goal. However, this did not help to make the test easier
as it became difficult to determine how the protocol reacted to different events without digging
into the code. In addition to this, some of the functionalities which were deliberately out out
also contributed to making the test difficult. This indicates that the functionalities of the
protocol is tightly coupled together.

Finally we can conclude, that the intention of creating reusable components which could be
used both server-side and client-side has been successful. Thus, the stream engine, the main
parts of the data bank, and all the packets were directly reusable.

167

V. Verification 27. Discussion of the performance

27 Discussion of the performance

In this section we will discuss the obtained performance of the protocol and whether the design
actually reaches the overall goal of lowering the bandwidth usage of the server. As part of this
we try to determine the parameters which influence the performance of the protocol leading
to a discussion on the worst case and best case scenarios.

As already described in Section 14.1 it is at least in theory possible to connect an infinite
number of clients. This can be illustrated by dividing into & BBs. Since all clients can be
attached to another clients BB, the total needed number of channels provided by the server
will be x. Clearly, this is a simplification as this obviously requires that all clients are capable
of streaming at least one whole video stream. But if a client does not have the needed amount
of bandwidth to forward the data stream the client is regarded anti-social possibly resulting
in the need for a higher number of channels available from the server. Thus, the number of
clients which can be connected becomes dependent upon the sum of bandwidth available in
the network. The extreme situation is if all connecting clients cannot provide any upstream
bandwidth resulting in a network resembling the unicast model presented in Figure 1.

Based on this we can conclude that the bandwidth consumption of the server is strongly
related to the upload capacity of the clients and is linearly dependent on the number of BBs
the movie is divided into.

27.1 Parameters

Arising from this, a number of parameters determine the ability of the protocol to lower the
number of video streams dispatched from the server. Throughout the design and implemen-
tation of the protocol we have experienced that these parameters are closely linked together.
This became even more true as testing the protocol revealed the relationship between these.
Thus, it has become clear that these parameters can be set to an infinite number of combina-
tions which makes it extremely difficult to determine a precise performance gain or loss. Each
of the parameters not only influence upon the performance of protocol but they also have a
huge impact upon each other.

Client buffer size: Obviously, the size of the clients buffer plays an important role to the
performance of the protocol. If a client is able to hold the entire video in its buffer it
clearly has a much higher chance of providing the needed data of another client. But
the size of the buffer is tightly linked to the amount of bandwidth the client provides as
there is nothing gained if the client does not have the bandwidth capacity to distribute
data to other clients.

Client upload capacity: The upload capacity of the client has a direct impact on the num-
ber of clients which the client can stream data to. But if all clients provide enough
bandwidth to at least stream data to one other client there would always be enough
bandwidth to connect one more client. But again, if the clients does not provide a suf-

168

V. Verification 27. Discussion of the performance

ficiently large buffer, chances are that all new clients will be attached to the server as
this will be the only one which can provide the needed data.

Video subdivision: The number of BBs the video is divided into has an effect on how many
streams are needed by the server to distribute the video. This parameter arises from the
design of the protocol, which determines that each client must have one of the BBs as a
starting point. Again if a client has the specific BB in its buffer the client can stream to
a new client even if its own PP is not at the exact same BB hence this is closely linked
to the clients’ buffer size.

CCP consumption: The amount of overhead used to send control packets between the
server and each client makes it impossible to add an unlimited number of clients since
all clients will need to communicate with the server. Thus, the bandwidth of the server
will at some point be exhausted effectively blocking the connection of any new clients.
The question is therefore how much bandwidth the CCP consumes. Measuring the
individual sizes of the packets is of course possible but determining how many and how
often these packets are sent is simply not possible. The reason is simply that the interval
between consecutive sending of these packet is dependent upon the users behaviour.

User /network behaviour: This type of parameters is clearly impossible to estimate. One
could argue that the users’ behaviour changes depending on the type of video — indeed
this is supported by [20] which notes that videos can be separated into different categories
according to the behaviour of the user. Therefore estimating this would require a survey
collecting and analysing data in order to determine this. The result of this survey would
be based on averages and would therefore only be useful in large setups. Furthermore as
the protocol is vulnerable to the amount of user interactions one could argue that based
upon the result of this survey the used selection algorithm should be modified.

The network behaviour clearly have the same impact. Simulating or collecting statistics
determining the behaviour of the Internet is a large and complicated subject which is a
field of computer science in itself. Again the statistics and knowledge gathered in this
area could be used to modify the selection algorithm to employ mechanisms to handle
network problems.

The above descriptions have revealed the different parameters are tightly linked and none of
them can be assigned a specific value which is more correct than any other.

Based upon the analysis of the behaviour of these parameters we can conclude that to set up
formal calculations of the performance of the protocol is extremely difficult. Furthermore, if a
formal calculation was made, this would be associated with much uncertainty as the behaviour
of each user and their connection is almost unpredictable. However, the worst case and best
case scenarios for the performance can be identified.

27.2 Boundaries of the performance

In this section we will based on the above discussed parameters try to determine the limits of
the performance of the protocol by assigning values to these parameters.

169

V. Verification 27. Discussion of the performance

27.2.1 Worst case scenario

Clearly the worst case scenario involves that all connecting clients do not have the ability
to forward the video to other clients. Furthermore, if the clients do not have a sufficiently
large buffer to hold at least a significant part of the video chances are that the clients will not
even be able to utilize the bandwidth which is available. Thus, all channels dispatched by the
server will only have one client attached each, resulting in the simple unicast model. Indeed
this scenario represents worse performance than traditional unicasting as the inclusion of data
transported by CCP will raise the bandwidth requirements of the server.

27.2.2 Best case scenario

The best case scenario involves connecting a client which provides a very high capacity and
a buffer sufficient enough to hold the entire video. This client would then forward data to
a number of clients which had the capacity of forwarding data on to the next client. If the
clients furthermore have a buffer capacity of the whole video and none is performing any user
interaction, the server would need to send data to only a single client. This scenario is of
course unrealistic in practice but never the less it becomes the best case scenario.

27.2.3 Conclusion

Based on the above assertions we can conclude that the bandwidth usage can be lowered using
our protocol as long as certain conditions are fulfilled. Most important the clients need to be
in possession of a significant amount of bandwidth.

An important remark is that each time a client is connected a new CCP connection is needed.
This connection is not taken into account in the above scenarios. This means that even
though the best case scenario suggests that if all the connecting clients have at least capacity
to forward the video an infinite number of clients could be connected. The only problem is
that each client takes up a constant amount of the bandwidth of the server to maintain a CCP
connection and hence the infinite number of clients does not hold in practice.

170

CHAPTER VI

Closure

L\

This chapter contains our final remarks on the thesis. This includes the perspectives and the
final conclusion.

171

VI. Closure 28. Perspectives

28 Perspectives

To widen the aspects of the thesis, this section presents some of the perspectives of the designed
protocol, its usage, and how this initial implementation can be extended.

It should be evident, that designing and implementing a protocol facilitating video on-demand
using bandwidth sharing is a large project. Therefore the protocol design has gone through
many ideas and extensions. Some of these ideas, although favourable, have been kept out of
the thesis in order to impose a limit on the amount of work.

Server-to-server protocol: As described in Section 3 implementing a streaming network for
on-demand video may easily require more than one centralized server. Thus, extending
the protocol to also implement a server side protocol used between a number of servers
which may balance the load equally and ensure that a video is available on the right
server when requested by a client may prove to be of great value. This would furthermore
benefit from scenarios where servers are geographically dispersed. Thus, a protocol
enabling multiple servers to exchange data would bring higher efficiency. Furthermore
a setup resembling the proxy system described in Section 7.1.2 may be deployed using
a centralized server controlling a number of "super clients” located at different places.
These "super clients” would only have to be slightly modified clients and should provide
high bandwidth.

Security: One of the main obstacles for using a protocol which distributes video by the use
of bandwidth sharing is securing copyright to the distributed material. But due to the
problems incurred this field has been partially left out of the protocol. Therefore, one
of the main perspectives of the protocol is to ensure digital rights management. As
given in section 11 this field is a large subject, which is why this has been limited in
this thesis. Implementing a proper security scheme in the server and client applications
would surely remedy this and widen the perspectives of the protocol. Fortunately, this
is already part of the protocol design.

Simulator: Even though the test and validation of the protocol have given good hints about
the usefulness of the protocol a variety of other tests may be performed. In order to
test the protocol with a large number of clients a simulator could be developed. The
simulator could be built with the purpose of testing the main issues:

e The protocol’s ability to connect and distribute video data to a large number of
clients.

e The protocol’s ability to handle network interruptions and other failures.
e The protocol’s ability to handle user interactions like skip and pause.

e Test of the different selection algorithms to find the best suitable solution.
The protocol could be simulated without any regard to the network layer of the operating

system. This would simulate a ’'perfect’ network, where no network interruptions or
connection fluctuations would occur.

172

VI. Closure 28. Perspectives

As the protocol does not define which ports are used by the clients, it is possible to run
a large number of instances of the protocol on the same computer. Hence a simulator
could use the implemented protocol by instantiating a server and a number of clients
locally. Next, the instances of the client protocols could connect locally to the server
and each perform various actions to test the performance of the protocol.

Complete implementation: A key point of the future work of the protocol obviously is to
implement all the features of the design. This will serve to rectify all functionalities.
Furthermore, the protocol could be implemented using other programming languages
such as Java opening up for the implementation of different client and server applications.

Extending the selection algorithm: The selection algorithm used to select the set of clients
which are to stream data to a new or relocated client could be implemented in a number
of ways. Varying this implementation may result in many performance gains as described
in Section 22. Therefore the implementation of the algorithm can be made very complex
and may depend on a wide range of parameters. One could for instance add weights to
the edges of the network and use these to determine how the topology should be built.
These weights could be based on the clients’ upload capacity or their physical location.
Another parameter could be a credit system which assigned each client a number of
points which would then be used by the algorithm. This could be used commercially by
assigning points to customers according to the amount of money they had paid to see the
video. Furthermore, the more bandwidth the customer provided, the more points would
be given. As an illustration of the almost endless possibilities in constructing an efficient
selection algorithm we present three approaches which present different paradigms when
constructing the topology which we have worked with throughout this thesis:

Dense network: This algorithm will seek to construct the network as densely as pos-
sible. This means that when a client logs on, the server will attach the client to
a client which is already streaming to other clients. Thus, the algorithm tries to
attach as many clients as possible to clients already streaming data. The main idea
when using this approach is to utilize all of the bandwidth present at some client,
before extending to another client. Thus, if a client providing high bandwidth con-
nects, the protocol will seek to use all the bandwidth of the client before another
client is used.

Sparse network: This algorithm works opposite a dense network, aiming to construct
a sparse topology where all clients, regardless of their provided bandwidth use a
part of their bandwidth. Thus, the network will be shaped as a sparse graph aiming
to distribute resources as evenly as possible.

Reliability: This algorithm will work based on the statistics gathered by the server.
The server will try to determine which client is the most stable, in terms of error
occurrence rate, user interaction, etc.

Applications: Even though the applications have not been the focus of this thesis some
issues need to be addressed if one should wish to implement new applications. The
client application could of course be built in a variety of ways and will not be subject to
any further discussion. The server application on the other hand has one key element
which should be addressed if one wishes to implement a strong application. This is the

173

VI. Closure 28. Perspectives

way data is fetched from disc. The protocol facilitates that the server application can
be implemented with an advanced algorithm when retrieving data. Streamed data is
obviously sequential and this property could be used in implementing algorithms which
for instance prefetch data from disc and keep it ready in a buffer pool ready to hand it
to the protocol upon request.

The fetching of data from disc could become a bottle neck and therefore considerations
have been put into the protocol design in order to make it possible to build more advanced
server applications.

174

VI. Closure 29. Conclusion

29 Conclusion

The main goal of the thesis was to lower the amount of consumed bandwidth of a central
on-demand video streaming server by designing and implementing a network protocol for this
purpose. The result is a comprehensive design specification which enables the development
of heterogenous implementations operating alongside each other in a network. The specifica-
tion should further be considered as an evidence of the large amount of considerations and
discussions which have gone into the final design of the protocol.

The protocol has been designed to enable delivery of a stable stream of data guaranteeing that
a video stream is delivered without disruptions. Furthermore, the protocol has the ability to
handle partial network disruptions ensuring that the delivery of data is not affected. In
addition, the protocol enables user interactions such as skipping and pausing which is exactly
the characteristics of video on-demand. As these properties were among the primary goals of
the thesis we can conclude that we have designed a protocol which fulfills the expectations.

The amount of security mechanisms built into the protocol has been limited to only granting
or denying clients access. The protocol has been designed to enable applications using the
protocol to employ security measures as needed. Thus, the applications may ensure that
clients cannot change the content of the data stream before it is forwarded to another client
and ensure that clients cannot receive video data without being acknowledged by the server.

The implementation of the protocol has been carried out with the primary focus of illustrating
the core functionality of the protocol design. Thus, the implementation is meant as a proof of
concept which verifies that the protocol design works as intended. The implementation defines
an interface which enables applications to utilize the embedded functionality of the protocol.
The protocol implementation may be ported to other platforms though not as straightforward
as intended because of the diversities of the implementations of C++ in different operating
systems.

An analysis of the designed protocol has shown that distribution of the overall bandwidth
consumption is possible. Thus, we have successfully minimized the bandwidth consumption
of the server hence making it possible to maximize the number of clients which can concurrently
receive the video stream. The thesis has shown that the ability to undertake a calculation of
the conserved bandwidth is extremely difficult. Estimates can be performed, but these will
be based upon several unknown variables associated with high inaccuracy caused by network
reliability and human behaviour. Therefore no exact calculation proving the efficiency of the
protocol has been made. However, a firm understanding of the relationship between these
unknowns has been accounted for. The conclusion on this subject is that to get a more precise
indication of the efficiency of the protocol a simulation and/or empirical results obtained
through practical usage must be performed.

In spite of the challenges experienced throughout the implementation of a multithreaded
and memory intensive protocol we have constructed an operational implementation which
demonstrates all the key aspects of the design. Through a series of test scenarios, we have
proven that this implementation works as intended.

175

VI. Closure 29. Conclusion

On a more personal level we have learned that the completion of this thesis has covered many
subjects within computer science. Thus, one of the most difficult subjects has been to study
and combine these. The development of the thesis has clearly shown that a substantial amount
of further development could be put into our work. However, we have succeeded in producing
a solid foundation even though it has been difficult to set the right limitations and at the same
time produce a complete thesis. Furthermore, our initial beliefs concerning clients’ ability and
willingness to share bandwidth may be doubtful. Hence a stronger use of servers located at
advanced points in the network may be feasible. However, the developed protocol can easily be
modified to support this method and the knowledge acquired through this thesis still applies.

At last we can conclude that we have succeeded in designing and implementing a network
protocol which largely fulfills the main goals of this thesis as was initially set in the synopsis.
Thus, we have succeeded in constructing an alternative to the simple unicast model offering
all the functionalities expected from a video on-demand system.

176

Glossary

A

Application Programming Interface (API): An API defines the interface that software
provides in order to allow requests for functionality implemented in the software to be
made by other computer programs.

Anti-social: A client is regarded anti-social if at least one of two things apply. First, if a
client does not have the bandwidth capacity to send at least one whole video. Secondly,
if a client has a connect area (CA) which is less then the size advertised by the server.

Application processes: A process which resides in the application holding an instance of
either the server or client protocols.

Asynchronous bandwidth: Is defined as bandwidth where the maximum upstream differs
from maximum downstream. Thus, a client could have a maximum downstream band-
width of 2048 Kbit/sec but only 512 Kbit/sec upstream — a typical specification of todays
ADSL lines. As downstream speed is often assigned higher priority than upstream speed
Internet users will often have higher downstream speed at their disposal.

Asynchronous connection: An Internet connection equipped with asynchronous bandwidth.

B

Backbone providers: Companies which deliver networks connections used by Internet Ser-
vice Providers (ISP).

Bandwidth: There is no single universal definition of bandwidth but normally the term is
used as a measurement of a frequency range. More recently the word has been used
when describing the capacity in networks (and the Internet) where it is used to denote
the amount of data which can be transferred through a connection.

Bandwidth sharing: This term refers to a type of network where the bandwidth of the users
is a shared resource.

Big endian: Refers to a way of storing multi-byte values in memory where the most signifi-
cant bit is located in the high order byte in terms of memory address space.

177

GLOSSARY Glossary

Bit-rate: Is the number of bits which is consumed during a given interval. In the case of
digital video it defines the amount of data consumed per second while displaying the
video.

Best-effort: This term refers to the quality of service of an Internet connection. Basically
this means that the connection will try to send as much data as possible as fast as
possible.

C

Client application: Refers to an application which holds an instance of the client protocol.

Client protocol: The client side of the protocol or a specific instance of the protocol in client
mode.

Connect area (CA): The area of the clients buffer where new clients can be attached, also
know as CA.

Connectionless: The term is used about protocols which do not require a connection to be
established before data can be transmitted. A classic example is UDP.

Connection-oriented: Opposite of connection-less. A classic example is TCP.

Constant bit-rate: In accordance to video the term means that the bit-rate of the video is
constant. Abbreviation: CBR.

Critical state: The client enters a critical state if the Absorption Area (AA) of the buffer is
not completely filled with relevant data.

D

Decoder: Referring to video, decoding is the process of converting data to its original format.

De-facto standard De facto is Latin for "in fact" or "in practice". A de facto standard
is a technical standard that is so dominant that everybody follows it as an authorized
standard.

E

Encoder: Opposite of decoder.

178

GLOSSARY Glossary

F

Frame rate: The rate at which a video is displayed e.g. the number of frames per second.

Frames: A video is build up of a series of still images called frames.

H

HDTYV: Is short for High-Definition TeleVision. HDTV offers significantly higher resolution
than traditional formats like NTSC and PAL.

Header: In computer networks the header of a packet is a sort of control data which is
placed in the beginning of the packet. The header may contain information about how
the packet should be handled.

Hop: One step, from one node to the next, on the path of a packet on an Internet Protocol
(IP) network.

Hosts: A network attached device which communicates over the network. In this thesis it
refers to both a client or a server.

Host byte-order: Refers to the byte-order (big endian or little endian) of a given host.
Whether this is big endian or little endian is decided by the architecture of the host.

IP-address: An IP address (Internet Protocol address) is a unique number that is used by
hosts on networks using the Internet Protocol (IP).

L

Latency: The term refers to the delay experienced in network communication.

Little endian: Refers to a way of storing multi-byte values in memory where the most sig-
nificant bit is located in the low order byte in terms of memory address space.

N

Network byte-order: Refers to the byte-order (big endian or little endian) used in a net-
work. Upon the Internet the used byte-order is big endian.

179

GLOSSARY Glossary

Non-sequential: The term is used in this thesis regarding the circular buffer of the client.
Data is said to be sequential if data contained in the buffer is sequential in terms of the
order of which the BBs are placed in the buffer from the Play Pointer (PP) and back
to a specified point. Non-sequential is the opposite and will occur when then client has
performed a skip outside it buffer area.

Node: Refers to an entity on the Internet. This may be either a computer, router, switch, or
other equipment along an Internet path.

O

Out-of-order: In relation to network communications this term is used when data is received
in a different order than the one in which it was sent.

P

Packet: In computer networks a packet is a formatted block of data which is transferred over
the network.

Payload: The payload is the data part of a packet which is being transported by the layer
resting on top of the protocol.

Peer-to-peer: A type of network in which each host has equivalent capabilities and respon-
sibilities. This differs from the client/server architectures, where some computers are
dedicated to serving others. Abbreviation: P2P.

Play block: This term is used to describe the Buffer Block in the clients buffer from where
the client is currently viewing the video.

Port: In the TCP and UDP transport protocols a port number is used to multiplex between
different applications. Thus, the pair (ip-address, port) is used to identify an application
upon the Internet.

Protocol: In computers, a protocol is a convention on how data is transferred between two
hosts on a shared network. This convention can besides the data transfer, include how
the connection is established, synchronization of the connection etc.

Protocol stack: The term protocol stack refers to a collection of protocols 'packaged’ in a
stack to offer easy interchangeability of the individual protocols of the stack.

Q

Quality of Service: In the field of computer networking, the term Quality of Service (QoS)
refers to the probability of the network meeting a given contract. In many cases it is

180

GLOSSARY Glossary

used to refer to the probability of a packet succeeding in passing through the network
within a desired latency period.

R

Receive block: The receive block is the Buffer Block (BB) in the data buffer of the client
which holds the current buffer block being received.

Reliable byte stream: The term is used in connection with network protocols if the protocol
implements mechanisms which ensures that the bytes which emerge from the commu-
nication channel at the recipient are exactly the same, and in the exact same order, as
the sender inserted them into the channel.

Server application: Refers to an application which holds an instance of the server side
protocol.

Server protocol: The server side of the protocol or a specific instance of the protocol in
server mode.

Session: The term session is used throughout this thesis regarding the time from where a
client connects until it disconnects. This interval is referred to as the clients session.

Streaming: In computer networking, a stream is succession of data elements made available
over time. The term video streaming is referred to a method of transferring data at the
speed at which it is consumed.

T

Three-way handshake: This term is used for the way some protocols create a connection.
First the connecting host sends a connect request and the counterpart sends a connect
respond back and finally the connection client sends an acknowledgment back.

Traffic shaping: This term refers to a way of attempting to control computer network traffic
in order to guarantee performance, latency, and bandwidth.

Threads: Threads are a method of dividing software into several simultaneously running
tasks sharing the same resources. Although threads are said to run simultaneously, they
are run in a round-robin like manner assigned only a portion of execution time using
time slices.

181

GLOSSARY Glossary

U

Unix time: Unix time, or POSIX time is the number of seconds elapsed since midnight UTC
on the morning of January 1, 1970.

vV

Variable bit-rate: In accordance to digital video the term means that the bit-rate of the
video is variable from frame to frame. Abbreviation: VBR.

Video standard: A standard which describes how frames and audio are structured and com-
bined into a video.

182

[1]
2]

3]

4]
1]

6]

7]
18]
19]

[10]
[11]

[12]
[13]

Bibliography

BitTorrent, Inc., Bittorrent, Website accessible at http://www.bittorrent.com (2006).

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An Architecture for
Differentiated Service, REC 2475 (Informational) (1998). Updated by RFC 3260.

Y. Cai and K. A. Hua, An efficient bandwidth-sharing technique for true video on demand
systems, Proceedings of the Seventh ACM International Conference on Multimedia (Part
1), ACM Press, New York, USA (1999), 211-214.

P. C. Chapin, pthread tutorial (2005).

F. Cores, A. Ripoll, and E. Luque, A fully scalable and distributed architecture for video-
on-demand, PROMS 2001: Proceedings of the 6th International Conference on Protocols
for Multimedia Systems, Springer-Verlag, London, UK (2001), 59-73.

Y. Cui and K. Nahrstedt, Layered peer-to-peer streaming, NOSSDAV ’03: Proceedings
of the 13th international workshop on Network and operating systems support for digital
audio and video, ACM Press, New York, USA (2003), 162-171.

J. de Fine Skibsted, S. Lynge, and et al., eXstream — High performance multimedia
streaming server (2005).

eDonkey, edonkey2000 — overnet, Website accessible at http://www.edonkey.com (2006).

Gnutella file sharing and distribution network, Gnutella proto-
col development, Worldwide ~ Web Document (2006). Available at
http://rfc-gnutella.sourceforge.net/developer/stable/index.html.

Gnutella, Gnutella.org, Website accessible at http://www.gnutella.org (2006).

Y. Guo, K. Suh, J. Kurose, and D. Towsley, P2cast: peer-to-peer patching scheme for
vod service, WWW ’03: Proceedings of the 12th international conference on World Wide
Web, ACM Press, New York, USA (2003), 301-3009.

F. Halsall, Multimedia Communication, Addison-Wesley (2001).

M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, Promise: peer-to-peer me-
dia streaming using collectcast, MULTIMEDIA ’03: Proceedings of the eleventh ACM
international conference on Multimedia, ACM Press, New York, USA (2003), 45-54.

183

http://www.bittorrent.com
http://www.edonkey.com
http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://www.gnutella.org

GLOSSARY Glossary

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

22]

23]

[24]

[25]

[26]

[27]

28]

M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, Promise: peer-to-peer media
streaming using collectcast, Proceedings of the eleventh ACM international conference on
Multimedia, ACM Press, New York, USA (2003), 45-54.

M. Hofmann and L.R. Beaumont, Content Networking: Architecture, Protocols, and
Practice, First Edition, Morgan Kaumann (2005).

K.A. Hua, Y. Cai, and S. Sheu, Patching: a multicast technique for true video-on-
demand services, Proceedings of the sizth ACM international conference on Multimedia,
ACM Press, New York, USA (1998), 191-200.

Y. hua Chu, J. Chuang, and H. Zhang, A case for taxation in peer-to-peer streaming
broadcast, PINS ’04: Proceedings of the ACM SIGCOMM workshop on Practice and
theory of incentives in networked systems, ACM Press, New York, USA (2004), 205-212.

MIT Kerberos, Kerberos: The network authentication protocol, Website accessible at
http://web.mit.edu/kerberos/ (2006).

S.H. Lee, K. Y. Whang, Y.S. Moon, and 1. Y. Song, Dynamic buffer allocation in video-
on-demand systems, Proceedings of the 2001 ACM SIGMOD International Conference on
Management of Data, ACM Press, New York (2001), 343-354.

F.C. Li, A. Gupta, E. Sanocki, L. wei He, and Y. Rui, Browsing digital video, CHI ’00:
Proceedings of the SIGCHI conference on Human factors in computing systems, ACM
Press, New York, USA (2000), 169-176.

T. Liu and S. Nelakuditi, Disruption-tolerant content-aware video streaming, Proceedings
of the 12th Annual ACM International Conference on Multimedia, ACM Press, New York
(2004), 420-423.

C. Logg, L. Cottrell, and J. Navratil, Experiences in traceroute and available bandwidth
change analysis, NetT ’04: Proceedings of the ACM SIGCOMM workshop on Network
troubleshooting, ACM Press, New York, USA (2004), 247-252.

D. Loguinov, A. Kumar, V. Rai, and S. Ganesh, Graph-theoretic analysis of structured
peer-to-peer systems: routing distances and fault resilience, Proceedings of the 2008 Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer Com-
munications, ACM Press, New York, USA (2003), 395-406.

H. Ma and K. G. Shin, Multicast video-on-demand services, SIGCOMM Comput. Com-
mun. Rev. 32,1 (2002), 31-43.

H. Ma and K. G. Shin, Multicast video-on-demand services, SIGCOMM Comput. Com-
mun. Rev. 32,1 (2002), 31-43.

F. Mittelbach and M. Goossens, The BTgX Companion, Second Edition, Addison-Wesley
(2004).

Moving Picture Experts Group (MPEG), MPEG home page, Website accessible at
http://www.chiariglione.org/mpeg/ (2006).

Napster, Napster.com, Website accessible at http://www.napster.com (2006).

184

http://web.mit.edu/kerberos/
http://www.chiariglione.org/mpeg/
http://www.napster.com

GLOSSARY Glossary

[29]

[30]

31]

32]
[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]
[41]

42]

[43]

[44]

Y. Okada, M. Oguro, J. Katto, and S. Okubo, A new approach for the construction of
alm trees using layered video coding, Proceedings of the ACM workshop on Advances in
Peer-to-Peer Multimedia Streaming, ACM Press, New York, USA (2005), 59-68.

W.B. Pennebaker and J.L. Mitchell, JPEG Still image data compression standard, Van
Nostrand Reinhold (1993).

L.L. Peterson and B.S. Davie, Computer Networks, Second Edition, Morgan Kaufmann
(2000).

J. Postel, RFC 768: User Datagram Protocol (1980).
J. Postel, RFC 791: Internet Protocol (1981).
J. Postel, RFC 793: Transmission Control Protocol (1981).

M. Rocha, M. Maia, I. Cunha, J. Almeida, and S. Campos, Scalable media streaming
to interactive users, Proceedings of the 13th annual ACM international conference on
Multimedia, ACM Press, New York, USA (2005), 966-975.

W. Shi and S. Ghandeharizadeh, Buffer sharing in video-on-demand servers, SIGMET-
RICS Perform. Eval. Rev. 25,2 (1997), 13-20.

R. Sinha and C. Papadopoulos, An adaptive multiple retransmission technique for con-
tinuous media streams, NOSSDAV ’04: Proceedings of the 14th international workshop
on Network and operating systems support for digital audio and video, ACM Press, New
York, USA (2004), 16-21.

W.R. Stevens, B. Fenner, and A. M. Rudoff, UNIX Network Programming: The Sockets
Networking API, Third Edition, Addison-Wesley (2004).

W.R. Stevens, B. Fenner, and A. M. Rudoff, UNIX Network Programming: The Sockets
Networking API, Third Edition, Addison-Wesley (2004).

A.S. Tanenbaum, Computer Networks, Third Edition, Addison-Wesley (1996).

M. A. Tantaoui, K. A. Hua, and S. Sheu, Interaction with broadcast video, Proceedings
of the tenth ACM international conference on Multimedia, ACM Press, New York, USA
(2002), 29-38.

D.A. Tran, K. A. Hua, and T.T. Do, Scalable media streaming in large peer-to-peer
networks, Proceedings of the tenth ACM international conference on Multimedia, ACM
Press, New York, USA (2002), 247-250.

B. Wang, J. Kurose, P. Shenoy, and D. Towsley, Multimedia streaming via tcp: an
analytic performance study, Proceedings of the 12th annual ACM international conference
on Multimedia, ACM Press, New York, USA (2004), 908-915.

B. Wang, J. Kurose, P. Shenoy, and D. Towsley, Multimedia streaming via tcp: an
analytic performance study, Proceedings of the 12th annual ACM international conference
on Multimedia, ACM Press, New York, USA (2004), 908-915.

185

BIBLIOGRAPHY Bibliography

[45]

[46]

147]

[48]

[49]

K. Wittenburg, C. Forlines, T. Lanning, A. Esenther, S. Harada, and T. Miyachi, Rapid
serial visual presentation techniques for consumer digital video devices, UIST ’03: Pro-

ceedings of the 16th annual ACM symposium on User interface software and technology,
ACM Press, New York, USA (2003), 115-124.

C. Wu and B. Li, Optimal peer selection for minimum-delay peer-to-peer streaming with
rateless codes, Proceedings of the ACM Workshop on Advances in Peer-to-Peer Multime-
dia Streaming, ACM Press, New York (2005), 69-78.

C. Wu and B. Li, Optimal peer selection for minimum-delay peer-to-peer streaming with
rateless codes, P2PMMS’05: Proceedings of the ACM workshop on Advances in peer-to-
peer multimedia streaming, ACM Press, New York, USA (2005), 69-78.

M. Zhang, L. Zhao, Y. Tang, J. G. Luo, and S. Q. Yang, Large-scale live media streaming
over peer-to-peer networks through global internet, Proceedings of the ACM Workshop on
Advances in Peer-to-Peer Multimedia Streaming, ACM Press, New York (2005), 21-28.

Y. Zhang and N. Duffield, On the constancy of internet path properties, Proceedings of
the 1st ACM SIGCOMM Workshop on Internet Measurement, ACM Press, New York,
USA (2001), 197-211.

186

\
/,

APPENDIX A

Packet table

Connection granted
Connection denied
Connection closed
Receive data stream
Security data

Request status
Distribute data
Stop data distribution

Status respond

Request connect
Pause video player
Pause stream
Resume stream

Skip

Disconnect

Error receiving data
Request backup data

Data

Data not available
End of data

Pong

Request data resend
Adjust speed
Ping

CCP CONN_GRANTED
CCP CONN_DENIED

CCP CONN_CLOSED

CCP RECV_DATA STREAM
CCP SEC_DATA

CCP STATUS_REQ

CCP SND_DATA_STREAM
CCP STOP_STREAM

CCP STATUS RESP

CCP CONN_REQ

CCP INTERACT PAUSE
CCP INTERACT PAUSE _STREAM
CCP INTERACT RESUME
CCP INTERACT _SKIP

CCP DISCONN

CCP STREAM_ERROR
CCP REQ_BACKUP_DATA
DCP DATA

DCP NO_DATA

DCP NO_MORE_DATA
DCP PONG

DCP RESEND _DATA

DCP ADJUST _SPEED

DCP PING

187

A. Packet table

188

APPENDIX B

Protocol source files

(L

data bank client.h

#ifndef DATA_BANK_CLIENT
#define DATA_BANK_CLIENT

#include "../include/packet.h"

#include "../include/packet_recv_data_stream.h"
#include "../include/packet_snd_data_stream.h"
#include "../include/packet_stop_stream.h"
#include "../include/stream_table.h"

#include "../include/packet_conn_granted.h"

#include "../include/types.h"
#include "../include/enum.h"

class data_bank_client {
bool v_initialized;

// Packet containing video information regarding bitrate, bb size, etc.
packet_conn_granted* v_video_info_pack;

// Packet containing info about the nature of from who, where and when
// video data is received.
packet_recv_data_stream* v_recv_table;

// Table containing info about to who, and when we must send data
stream_table* v_streams;

public:
data_bank_client();
~“data_bank_client();

// Initialize the class
void initialize(packet_conn_granted* pack);

// Set receive table. Sets the packet containint

// information regarding the contents of the ingoing
// data stream.

void set_recv_table(packet_recv_data_stream* pack);

// Add a stream to the data bank
void add_stream(packet_snd_data_stream* pack);

189

B. Protocol source files

// Stop a stream
void stop_stream(packet_stop_stream* pack);

// Resend a block to a client
void resend_block(u64 client_id, ul6 BB, ul6 DB);

// Adjust speed
void adjust_speed(u64 client_id, speed_level level);

// Get the next receiver in line
bool get_next_receiver(u64 video_id,
ub4& client_id,
int& wait_time,
ul6& next_bb,
ul6& next_db,
speed_level& level,
u64& ip_addr,
ul6& port);

// Get the length of the video in milliseconds
u64 get_video_duration();

// Get the length of the video in bytes
u64 get_video_length();

// Get the skip distance of the video
u64 get_skip_distance();

// Get the total number of db in the video
u32 get_num_of_bb();
};

#endif

data_bank client.cpp

#include "stdafx.h"
#include "../include/data_bank_client.h"

[/ % H Aok ok sk ok ok o koo ok ok o ok ok ok sk ok ok sk ok Kok o ok ok o Kok ok ok ok o Kok
// Constructor
[/ % H Aok ok sk ok ok o koo ok ok o ok ok ok sk ok ok sk ok Kok o ok ok o Kok ok ok ok o Kok
data_bank_client::data_bank_client ()
{
v_initialized = false;
v_streams = new stream_table();
v_video_info_pack = NULL;
v_recv_table = NULL;
}

/[%%k ok sk ok ok ok ok ok ok ok Kok ok ok ok Kk ok sk ok K Kk ok ok Kk ok ok Kok ok ok Kok K

// destructor
[/ F Rk ok ok ok ks koo ko ok ok ok ks ok ok sk sk ok ok ks ok sk ok kok o ok ok ok

190

B. Protocol source files

data_bank_client::~data_bank_client ()
{

delete v_video_info_pack;

delete v_recv_table;

delete v_streams;

}

[/ %%k ok sk ok ok ok ok sk ok ok ok ok ok ok kK ok sk ok K Kk ok ok K ok ok kK ok ok ok Kok ok
// Initialize
[/ ko ko ok ok R Rk R o ok ko ok sk ok sk ok ok sk ok ok ok ok ok ok ok Kok koK
void data_bank_client::initialize(packet_conn_granted* pack)
{
if (Yv_initialized) {
// Initialize the stream_table. Do we need the pack information in the
// stream_table element?
v_streams->initialize(pack) ;
v_video_info_pack = pack;
v_initialized = true;
}

else throw new data_bank_exception("Error: databank already initialized!");

/[%%k ke sk ok ok ok ok ok ok ok ok ok ok ok Kok ok sk ok K Kk ok ok ok ok ok ok ok ok ok ok Kok K

// Set receive table
/] %k ks o ok koo o skok o ok sk ok sk stk sk o ok o ok o o ko ok sk ok o ok

void data_bank_client::set_recv_table(packet_recv_data_stream* pack)
{
if (v_initialized) {
v_recv_table = pack;
}

else throw new data_bank_exception("Error: databank accessed before it was initialized!");

/[%%k sk ok ok ok ok ok ok ok Kok ok ok ok Kok ok sk ok K Kk s ok ok ok ok ok ok Kok ok ok Kok K

// Add a stream to the data bank
/] %k ks o ok koo o skok o ok sk ok sk stk sk o ok ok stk o o ko ok sk ok o ok

void data_bank_client::add_stream(packet_snd_data_stream* pack)

{
if (v_initialized) {
try {
int fac = (int) ((v_video_info_pack->get_db_total() /
v_video_info_pack->get_bb_total()) / pack->get_number_of_db());
v_streams->add_stream(pack, v_video_info_pack->get_speed_low() * fac,
v_video_info_pack->get_speed_normal() * fac,
v_video_info_pack->get_speed_high() * fac);
}
catch (stream_table_exception* ex) {
throw ex;
}
}
else
throw new data_bank_exception("Error: databank accessed before it was initialized!");
}

191

B. Protocol source files

]k ko ko ok ok kR R Rk ko ok sk ok sk ok ok sk ok ok ok ok ok ok ok Kok koK
// Stop stream
]k ko ko ok ok kR R Rk ko ok sk ok sk ok ok sk ok ok ok ok ok ok ok Kok koK
void data_bank_client::stop_stream(packet_stop_stream* pack)
{
if (v_initialized) {
v_streams->stop_stream(pack) ;
}
else
throw new data_bank_exception("Error: databank accessed before it was initialized!");

[/ Rk ok sk ok Kok ok ok ok Kk skok sk o ok ok Kok ok ok o ok Kok ok ok ok o Kk ok ok
// Resend block to client
[/ Rk ok ok sk ok Kok ok ok ok Kk sk ok ok ok ok Kok ok ok o ok Kok ok ok ok o Kk ok ok
void data_bank_client::resend_block(u64 client_id, ul6é BB, ul6 DB)
{
if (v_initialized) {
v_streams->resend_block(client_id, BB, DB);
}
else
throw new data_bank_exception("Error: databank accessed before it was initialized!");

[/ %k sk ok ok sk ok sk ok sk ok ko ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok
// Adjust speed of a client
[/ F ks ks ok sk sk sk ok ok ks sk ok sk ok sk sk ok sk ki sk ok sk ki sk ok sk sk skok sk ok ok sk ok
void data_bank_client::adjust_speed(u64 client_id, speed_level level)
{
if (v_initialized) {
v_streams->adjust_speed(client_id, level);
}
else
throw new data_bank_exception("Error: databank accessed before it was initialized!");

/[%%k ok sk ok ok ok ok sk ok ok ok ok ok ok koK sk ok K Kk s ok ok K ok ok ok Kok ok ok Kok K
// Get the next receiver

[/ F ko ok kR R kR o ko ok sk ok sk ok ok sk ok ok ok ok ok ok ok Kok koK
bool data_bank_client::get_next_receiver(u64 video_id,
u64& client_id,

int& wait_time,

ul6& next_bb,

ul6& next_db,

speed_level& level,

u64& ip_addr,

ul6& port)

if (v_initialized) {
return v_streams->get_next_receiver(client_id,
wait_time,
next_bb,

192

B. Protocol source files

next_db,
level,
ip_addr,
port);

}

else

throw new data_bank_exception("Error: databank accessed before it was initialized!");

/[%%k e sk ok ok ok ok ok ok ok ok ok ok ok Kk o sk ok K Kk ok ok Kk ok kK ok ok ok Kok K

// Return the duration of the video
[/ F Rk ok ok ok ks koo ko ok ok ok ks ok ok ks ok ok kb sk ok sk ok ok o ok ok ok

u64 data_bank_client::get_video_duration()
{
return v_video_info_pack->get_video_duration();

}

[/ %%k sk ok ok ok ok sk ok ok ok ok ok ok kK o sk ok K Kk s ok ok ok ok ok kK ok ok ok Kok K

// Return the length of the video in bytes
[/ FFF AR kAR AR R AR O oK Kok KoK K o kK ok K K
u64 data_bank_client::get_video_length()
{
return v_video_info_pack->get_video_size();

}

[/ %%k ok sk ok ok ok ok ok ok ok Kok ok ok ok Kok o sk ok K Kk s ok ok K ok ok ok Kok ok ok Kok K

// Return the skip distance of the video
[/ FFF AR kAR AR AR O o Kok KoK K o kK ok K K

u64 data_bank_client::get_skip_distance()
{
return v_video_info_pack->get_skip_distance();

}

//**

// get the number of data blocks in total
[/ FE Rk kR oK R K KK Rk Kk K ok ok o o
u32 data_bank_client::get_num_of_bb ()
{
return v_video_info_pack->get_bb_total();

}

data bank server.h

#ifndef DATA_BANK_SERVER
#define DATA_BANK_SERVER

//#include "../include/packet_video_init_resp.h"
#include "../include/stream_table.h"

#include "../include/types.h"

193

B. Protocol source files

#include "../include/enum.h"

#include "../include/packet_status_resp.h"
#include "../include/packet_conn_req.h"
#include "../include/client_info.h"

#include "../include/packet_interact_skip.h"

#include <map>

// Constants

const ul6é C_BB_TOTAL = 45 ;

const ul6é C_DB_PER_BB = 100;

const u64 C_VIDEO_SIZE = 20690708; // bytes
const int C_VIDEO_DURATION = 137000; // msec

const u32 C_DB_TOTAL = C_BB_TOTAL * C_DB_PER_BB;

const ul6 C_DB_SIZE = 4598; // byte

const u32 C_BB_SIZE = C_DB_SIZE * C_DB_PER_BB; // byte

const int C_BB_DURATION = C_VIDEO_DURATION / C_BB_TOTAL; // msec

const int C_VIDEO_HEADER_SIZE = 2; // amount of db’s
const int C_RECOM_CA_SIZE = 45; // amount of bb’s
const int C_SPEED_LOW = 40; // msec

const int C_SPEED_NORMAL = 30; // msec

const int C_SPEED_HIGH = 25; // msec

typedef std::map<u64, client_info*>::const_iterator iterator_client;

class data_bank_server

{
private:
bool v_initialized;
// Private variable defining to who and when the server should stream data
stream_table* v_streams;
// Map containing all logged in client
std: :map<u64, client_info*> v_clients;
public:

// Constructor
data_bank_server();
// Destructor
~data_bank_server();

// Initialize the class
void initialize();

// Get the next receiver in-line
bool get_next_receiver(u64 video_id,
ub4& client_id,
int& wait_time,
ul6é& next_bb,
ul6& next_db,
speed_level& level,
u64& ip_addr,
ul6& port);

194

B. Protocol source files

ub4 get_server_id(u64 client_id);
ub4 get_video_id();

// Fill conn_granted packet with info related to video
void get_movie_info(u64 get_video_id, packet_conn_granted* p);

// Update the status of a client given in the packet
void update_status(packet_status_resp* pack);

bool add_streams(ul6* db_list, ub64 video_id);

// Add new stream to internal stream table

bool add_new_stream(packet_snd_data_stream* pack);
// Remove a stream from data bank

void remove_stream(u64 client_id);

// Update the contents of a given stream

bool update_stream(packet_snd_data_stream* pack);

// Ad newe client to internal client table
bool add_new_client (packet_conn_req* pack);
// Remove a client from data bank
void remove_client(u64 client_id);

// Set client posotion
bool skip_stream(u64 client_id, ul6 BB);

// Find client which can attach a client into DB, BB
bool find_clients(ul6 BB, ul6é DB, ub4*& clients, int& client_length);

// Get the ip address of a given client id
u64 get_ip_address(u64 client_id) ;

// Get the dcp port of a given client id
ul6 get_dcp_port(u64 client_id);

// Attach a stream to some client
void add_stream_to_client(u64 client_id, packet_snd_data_stream* pack);

// Get attached clients of a given client
packet_snd_data_stream* get_attached_clients(u64 client_id);

// Get the current status of a client
packet_status_resp* get_client_status(u64 client_id);

ul6 get_num_of_bb(u64 video_id);
u32 get_size_of_bb(u64 video_id);
u32 get_num_of_db(u64 video_id);
ul6 get_size_of_db(u64 video_id);
ub4 get_video_size(u64 video_id);
ul6 get_num_of_db_in_bb(u64 video_id);

#endif

195

B. Protocol source files

data bank server.cpp

#include "stdafx.h"
#include "../include/data_bank_server.h"

[/ % H ko ok sk ok ok ok ok ok ok ok o ok ok ok sk sk ok sk ok Kok o ok ok o Kok ok ok ok o Kok
// Constructor
[/ Kk ok ok sk ok Kok ok ok o Kk sk ok ok ok ok ok Kok ok ok o ok Kok Kok ok ok Kk ok ok
data_bank_server::data_bank_server()
{
v_streams = new stream_table();
v_streams->initialize (NULL) ;
v_initialized = true;

}

[/ F Rk ok ok ok ks koo ko ok ok ok ks ok ok sk sk ok ok sk kosk ok sk sk kok o ok ko ok ok
// destructor

[/ F Rk ok ok ok ks koo ko ok ok ok ks ok ok sk sk ok ok sk kosk ok sk sk kok o ok ko ok ok
data_bank_server::~data_bank_server()

{

[/ F Rk ok ok ok ks koo ko ok ok ok ks ok ok sk sk ok ok sk kosk ok sk sk kok o ok ko ok ok
// Initialize
/] %k ks o ok koo koo ok sk ok sk stk sk o ok ok ok o o ok ok sk ok o ok
void data_bank_server::initialize()

return;

}

/[%%k sk ok ok ok ok ok ok ok ok ok ok ok Kok o sk ok K Kk ok ok K ok ok ok ok ok ok ok Kok K
// Get the next receiver in-line
[/ ko ko ok ok R Rk R o ok ko ok sk ok sk ok ok sk ok ok ok ok ok ok ok Kok koK
bool data_bank_server::get_next_receiver(u64 video_id,
u64& client_id,
int& wait_time,
ul6& next_bb,
ul6& next_db,
speed_level& level,
u64& ip_addr,
ul6& port)
{
return v_streams—>get_next_receiver(client_id,
wait_time,
next_bb,
next_db,
level,
ip_addr,
port);

//***

// Return dummy server-id
[/ FE Rk kR K KR KK R o K K ok K K

196

B. Protocol source files

u64 data_bank_server::get_server_id(u64 client_id)
{
return 0;

}

[/ K%k ok sk ok ok ok ok ok Kk sk ok ok ok ok Kok ok ok o ok Kok ok ok ok o o Kk ok ok
// Return dummy video id
[/ K%k ok ok sk ok Kok ok ok o Kk sk ok ok o ok sk Kok sk ok o ok Kok Kok ok o o Kk ok ok
u64 data_bank_server::get_video_id()

return 0;

}

[/% ek ok ko ok sk sk s ok sk ok R s R o K K K o R KR K S KoK K o K o K oK

// Get movieinfo. Write data to packet.

[/AR Kk Kk kKK o oK ook oK oK K ok Ko oK oK oK oK o KK K K oK K o K ook ook

void data_bank_server::get_movie_info(u64 get_video_id, packet_conn_granted* p)

{
//p->set_video_id(1);
p->set_video_size (C_VIDEO_SIZE);
//p->set_video_len(C_VIDEO_DURATION) ;
p->set_bb_total (C_BB_TOTAL) ;
p->set_db_total (C_DB_TOTAL);
p->set_db_size(C_DB_SIZE);
p->set_video_header_size (C_VIDEO_HEADER_SIZE) ;
p->set_recon_ca_size (C_RECOM_CA_SIZE) ;
p->set_speed_low(C_SPEED_LOW) ;
p->set_speed_normal (C_SPEED_NORMAL) ;
p->set_speed_high (C_SPEED_HIGH) ;
p->set_sec_type(0);
p->set_skip_distance (C_BB_DURATION) ;

// p->set_video_title(NULL);

}

/[%%k sk ok ok ok ok ok ok ok ok ok ok ok Kok o sk ok K Kk ok ok K ok ok ok ok ok ok ok Kok K

// Add_streams
[/ % H ko ok sk ok ok ok ok ok ok ok o ok ok ok sk ok sk ok Kok o sk ok ok Kok ok ok ok o Kok
bool data_bank_server::add_streams (ul6* db_list, u64 video_id)
{
return true;

}

[/%R Rk Kk kKK oK ook oK oK K ok K o oK oK oK oK oK K KK oK K o K ook oK

// Update status of a given client

[/AR Kk Kk KKK oK oK oK KoK K o Ko oK oK oK o K o KK K K oK K o K ook ook

void data_bank_server::update_status(packet_status_resp* pack)

{
client_info* client = v_clients[pack->client_id];
client->update_status (pack) ;

}

//**

// Add new client.
/[F Rk ok ok ks ko ko ok ok ok sk sk ok sk sk ok sk sk ok ok sk sk ok ok ok sk ok ok ok ok ok o

bool data_bank_server::add_new_client (packet_conn_req* pack)
{

client_info* client = new client_info(pack);

197

B. Protocol source files

v_clients[pack->client_id] = client;
return true;

}

//**

// Add new client which should receive data from server.
[/ F ko ok ok ok ok ko ko ok ok ok sk kok skok sk okok okok ok ok ok Kok K K KK o K K ok ok

void data_bank_server::remove_client(u64 client_id)
{
client_info* ci = v_clients[client_id];
if(ci == NULL) {
return;
}
else {
v_clients.erase(client_id);
delete ci;
}

return;

[/ /% %k sk ok ok ok ok sk ok ok ok ok ok ok Kok o ok ok Kk sk ok K Kk s ok Kk ok ok kok ok ok Kok ok ok K

// Add new client which should receive data from server.
[/ F R Rk kR kR kR ko sk sk sk skok skok ok Kok ok KK KKK R R kK

bool data_bank_server::add_new_stream(packet_snd_data_stream* pack)

{
v_streams—>add_stream(pack, C_SPEED_LOW, C_SPEED_NORMAL, C_SPEED_HIGH);
return true;

}

/ /% %k ok sk ok ok ok ok sk ok ok Kok ok ok ok Kok o ok ok K Kk sk ok K Kk ok Kk ok ok ok ok ok ok ok Kok ok ok K

// delete client which are receiving data from server.
[/ %%tk ks ok ok ok ok sk kR ok sk ik ok koo ko ok skok sk ko ok ko ko ko ok sk ok sk ok

void data_bank_server::remove_stream(u64 client_id)
{
v_streams->remove_stream(client_id);

}

[/ /% %k sk ok ok ok ok ok ok ok Kok ok ok ok Kok o ok ok K K sk ok K Kk s ok ok ok ok ok ok ok ok ok Kok ok ok K

// Update the propeties of a stream
[/ FFF Rk Aok K kKK ok KK ok KKk KK ok Kok K ok kK ok ko

bool data_bank_server::update_stream(packet_snd_data_stream* pack)
{
return v_streams->update_stream(pack) ;

}

//**

// Set the position of a given stream
[/ FFF ARk AR KR kKK ok KK o KKk KK ok KRk ok kK ok K o

bool data_bank_server::skip_stream(u64 client_id, ul6 BB)
{
return v_streams->skip(client_id, BB);

}

//**

// Add new client which should receive data from server.
[/ F Rk Rk kR Rk ok sk sk ok sk skok skok ok Kok ok KK KK R R Rk

ul6 data_bank_server::get_num_of_bb(u64 video_id)

198

B. Protocol source files

return C_BB_TOTAL;
}

[/ %Ak ok ok ok ok ok okok ok ok o ok ok ok sk ok ok sk ok kok o ok ok o sk ok ok ok o Kok ok ok ok ok K

// get the size of a bb

[/ %ok ok ok ok ok ok ok ok ok o ok ok ok sk ok ok sk ok kok o ok ok o ko sk ok ok o Kok ok ok ok ok K

u32 data_bank_server::get_size_of_bb(u64 video_id)
return C_BB_SIZE;

[/%o ok sk ok ks ok ok ok ks sk ks ok sk ok sk sk ko ok ok ok ok sk ok sk ok koK ok ok sk ok ok ok ok
// get the number of data blocks per in total
[/% ks ok ok sk ko sk sk ok ok sk sk sk ok s sk ok sk sk ks sk sk ko sk ko sk sk sk ok sk ok sk sk ok
u32 data_bank_server::get_num_of_db(u64 video_id)

return C_DB_TOTAL;

/] %%k ok sk ok ok ok ok ok Kok ok ok ok Kok Kok sk ok o ok Kok ok ok ok ko Kok ok ok ok ok ok K Kok

// get the size of a db

/] %%k ok sk ok Kok ok ok ok ok ok ok ok ok ok Kok sk ok o ok Kok ok ok ok ok Kok ok ok ok ok K Kok

ul6 data_bank_server::get_size_of_db(u64 video_id)
return C_DB_SIZE;

/] %%k ok sk ok ok ok ok ok Kk ok ok ok Kok Kok sk ok o ok Kok ok ok ok ok Kok ok ok ok ok ok K Kok

// get the total length of the video

[/ %ok ok ok ok ok ok ok ok ok o ok ok ok sk ok ok sk ok Kok o ok ok o sk sk ok ok o Kok ok ok ok ok K

u64 data_bank_server::get_video_size(u64 video_id)
return C_VIDEO_SIZE;

[[%k ok ok sk ok sk ok ok ks sk ks ok sk ok sk sk ko ok ok ok ok sk ok o sk ok sk ok ok sk ok ok ok ok
// get the total length of the video
[/% ks ok ok sk ko sk sk ok ok sk sk ks ok sk ok sk sk ks sk ok ok ok sk ko sk sk sk sk ok sk ok sk sk ok
ul6 data_bank_server::get_num_of_db_in_bb(u64 video_id)
{

return C_DB_PER_BB;
}

[/ %%k ok ok ok o oK KoK ok o o KK oK ok o o KKK KoK ok o o K KoK oK ok o o KK oK ok ok o o K K K
// Find client containing given data in connect area
[/ F Rk kR Rk kR Rk sk sk ok sk skokskok ok Kok ok KK KKK R R R ok
bool data_bank_server::find_clients(ul6 BB, ul6 DB, u64*& clients, int& client_length)
{
iterator_client it;
clients = (u64*) malloc(sizeof (u64) * v_clients.size());

int next = 0;
client_infox* info;
for (it = v_clients.begin(); it != v_clients.end(); it++) {
info = it->second;
// We should check if client contains the right data in the buffer

199

B. Protocol source files

clients[next] = info->get_client_id();
next++;
}
if (next == 0) {
client_length = 0;
return false;
}
else {
client_length = next;
return true;

}

}

[/ FE Rk kR oK R K KK Rk Kk K ok ok o o

// Get the ip address of a client

[/ FFF Rk Aok K kKK ok Ko KKk KKk Kk K ok kK ok ko o

u64 data_bank_server::get_ip_address(u64 client_id)
return v_clients[client_id]->get_client_ip4();

}

[[F KA FAAF A A A A KA KA A KK A KA A KA KA KA A KA A KA A K KA KA KA A KA A KA K
// Get the DCP port of a client
[[F KA KA AR A A A A A AR A KA KA KKK KKK KK KKK K KKK K
ul6 data_bank_server::get_dcp_port(u64 client_id)
{

return v_clients[client_id]->get_client_dcp_port();

}

[/ /% %k sk ok ok ok ok sk ok ok ok ok ok ok Kok o ok ok Kk sk ok K Kk s ok Kk ok ok kok ok ok Kok ok ok K
// Add a stream to a client
[/ /% %k sk ok ok ok ok sk ok ok ok ok ok ok Kok o ok ok Kk sk ok K Kk s ok Kk ok ok kok ok ok Kok ok ok K
void data_bank_server::add_stream_to_client(u64 client_id, packet_snd_data_stream* pack)
{

client_info* client = v_clients[client_id];

if (!client == NULL)

client->add_stream(pack) ;

//**

// Get whatever clients are attached to a given client
[/ /% %k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o ok ok K K sk ok K Kk ok Kk ok ok ok ok ok ok Kok ok ok K

packet_snd_data_stream* data_bank_server::get_attached_clients(u64 client_id)
{
packet_snd_data_stream* rv = NULL;
client_info* client = v_clients[client_id];
if (!client == NULL)
rv = client->get_attached_clients();

return rv;

[/ /% %k ok sk ok ok ok ok sk ok ok Kok sk ok ok Kok o o ok ok K K sk ok K Kk ok ok ok ok ok ok ok ok Kok ok ok K

// Get the status of a given client
[/ FFF Rk AR K kKK ok KK o Kok KKk Ko kKK ok kK ok ko

packet_status_resp* data_bank_server::get_client_status(u64 client_id)

{

200

B. Protocol source files

packet_status_resp* rv = NULL;
client_info* client = v_clients[client_id];
if (!client == NULL)

rv = client->get_client_status();

return rv;

data buffer.h

#ifndef DATA_BUFFER
#define DATA_BUFFER

#include <string.h>
#include "../include/data_container.h"

class data_buffer : public data_container {
private:

u32 v_min_start_up_db;

ul6é v_db_size;

ul6* bb_map;
u8* signal_map;

ul6 cbp;
ul6é pp;

int v_num_bb;
int v_num_db_in_bb;

data_element** v_data;
HANDLE v_semaphore_buffer;

public:
data_buffer(int number_of_bb,
int number_of_db_in_bb,
ul6é db_size,
u32 min_start_up_db);
void* read_db(ul6é bb, ul6 db, int& len);
void write_db(ul6é bb, ul6 db, void* data, int len);

ul6 get_ppQ);
void set_pp(ulé new_pp);

size_t read_data(void* buf, size_t max_len, unsigned int& offset);

#endif

201

B. Protocol source files

data buffer.cpp

#include "stdafx.h"
#include "../include/data_buffer.h"

//***

// Constructor

// Creates the new buffer and mallocs the needed space.

[/ sk ks sk ok sk ke sk sk sk sk ok sk ke ok sk ke sk sk s ok sk ok sk sk ok ok sk ke sk sk s ok sk s ke sk sk s ok sk ok ok sk
data_buffer::data_buffer(int number_of_bb,

int number_of_db_in_bb,
ulé db_size,
u32 min_start_up_db)

// Save variables

v_db_size = db_size;
v_min_start_up_db = min_start_up_db;
v_num_bb = number_of_bb;
v_num_db_in_bb = number_of_db_in_bb;

// Create semaphore
v_semaphore_buffer = CreateSemaphore(NULL, O, 10000, NULL);

// Allocate memory
bb_map = (ul6*)malloc(sizeof(ul6) * v_num_bb);
ZeroMemory ((void*)bb_map, (sizeof(ul6) * v_num_bb));

signal_map = (u8*)malloc(sizeof (u8) * v_num_bb);
ZeroMemory ((void*)signal_map, (sizeof(u8) * v_num_bb));

v_data = (data_element**) malloc((v_num_bb * v_num_db_in_bb) * sizeof(data_elementx*));
ZeroMemory ((void*)v_data, v_num_bb * v_num_db_in_bb * sizeof(data_elementx*));

// play pointer
pp = 0;
cbp = 0;

[/% %k sk ok ok ok ok sk ok ok Kok ok ok ok Kok ok ok ok K o ok ok K K sk ok Kk ok Kok ok ok ok ok ok ok ok Kok ok ok K

// Reads a specific db from the buffer if it exists.
[[F KK AR A A AR A A K KA AR AR A K AR KKK KKK KKK KK KK K
void* data_buffer::read_db(ul6é bb, ul6 db, int& len)

{

int pos = -1;
for(int i = 0; i < v_num_bb; i++) {
if (bb_map[i]l == bb) {
pos = 1i;
break;
}
}

if(pos == -1) {

len = 0;
return NULL;

202

B. Protocol source files

}
else {
len = v_datal[(pos * v_num_db_in_bb) + db]->data_len;
return v_data[(pos * v_num_db_in_bb) + db]->data;
}
}

[/ H A E KA A A AR A A A A A KA A A AR A AR K KA KK KK KoK KK oK KoK KK oK KK o KoK K o KoK o
// VWrites a specific db to the buffer (only if the right db is in the buffer).
[/ H A E KA A A AR A A A A A KA A A AR A AR K KA KK KK KoK KK oK KoK KK oK KK o KoK K o KoK o
void data_buffer::write_db(ul6 bb, ul6 db, void* data, int len)
{

int pos = -1;

for(int i = 0; i < v_num_bb; i++) {

if (bb_map[i]l == bb) {

pos = 1i;
break;
}
¥
if(pos == -1) {
cbp = (cbp + 1) % v_num_bb;
pos = cbp;

bb_map [pos] = bb;

signal_map[pos] = 0;

ZeroMemory ((void*) (&(v_data[pos * v_num_db_in_bb]l)),
v_num_db_in_bb * sizeof(data_element*));

System: :Diagnostics: :Debug: :WriteLine("Start new BB: " + bb);

if(bb == 9 && db == 1)
System: :Diagnostics: :Debug: :WriteLine ("STOP") ;

data_element* e = (data_element*) malloc(sizeof (data_element));
e->data_len = len;

e->data = data;

v_data[(pos * v_num_db_in_bb) + db] = e;

// Check if full BB then signal data
int completed = 0;
if (signal_map[pos] == 0) {
completed = 1;
for(int i = 0; i < v_num_db_in_bb; i++) {
if (v_datal[(pos * v_num_db_in_bb) + i] == NULL) {
completed = 0;
break;
}
}
}

if (completed) {

signal_map[pos] = 1;

ReleaseSemaphore (v_semaphore_buffer, 1, NULL);

System: :Diagnostics: :Debug: :WriteLine("Signal data ready for BB: " + bb_map[pos]);
}

203

B. Protocol source files

//**

// Returns and updates the current postition of the PP
[/ %ok koo sk ook ko sk ko kskoskok stk stk skok sk ok stk ok sk ok sk sk skok sk sk ok ko sk ok ok

ul6 data_buffer::get_pp()

{

}

return pp;

void data_buffer::set_pp(ulé new_pp)

{

}

PP = new_pp;

/[%%k ek ok ok ok ok ok ok ok ok o ok ok ok KoKk sk ok K Kk ok ok ok ok ok kKo ok ok Kok

// Reads data and returns it back to the buffer
/[F Rk sk ok ok ks ok ko ko ok ok ks ok sk sk ok o sk sk ok ok sk sk ok o ok ok ok

size_t data_buffer::read_data(void* buf, size_t max_len, unsigned int& offset)

{

DWORD wait_result_sema = WaitForSingleObject (v_semaphore_buffer, INFINITE);
int rv = 0;
data_element* d;

int pos = -1;
for(int i = 0; i < v_num_bb; i++) {
if (bb_map[i] == pp) {
pos = 1i;
break;
}
}

for(int i = 0; i < v_num_db_in_bb; i++) {
d = (v_data[(pos * v_num_db_in_bb) + i]);

if(d !'= NULL) {
//memcpy ((void#*) (((char*)buf)+(i * d->data_len)), d->data, d->data_len);
memcpy ((voidx) (((charx)buf)+(i * 4598)), d->data, d->data_len);
rv += d->data_len;
}
}

System: :Diagnostics: :Debug: :WriteLine ("BB delivered to client: " + pp);

offset = pp * v_num_db_in_bb * v_db_size;
pptt;

if(pp == 45)
System: :Diagnostics: :Debug: :WriteLine ("BB delivered to client: " + pp);

return rv;

204

B. Protocol source files

data cache.h

#ifndef DATA_CACHE
#define DATA_CACHE

#include "../include/types.h"
#include "../include/request_queue.h"

class data_cache : public data_container {

private:
ub4 v_movie_id;
ul6é v_num_bb;
u32 v_size_bb;
ulé v_db_in_bb;
ulé v_size_db;
ub4 v_video_size;

void* read_data;

request_queue* v_request_queue;
data_element** v_cache_array;
public:
data_cache (request_queue* queue,
u64 movie_id,
ul6é num_bb,
u32 size_bb,
ulé num_db,
ul6 size_db,
ub4 video_size);

void* read_db(ul6 BB, ul6 DB, int& len);

void write_db(ul6é bb, ul6 db, void* data, int len);
void write_bb(ul6é bb, void* data, int len);

void data_not_sent(u64 client_id, ul6é bb, ul6 db);

#endif

data_cache.cpp

#include "stdafx.h"
#include "../include/data_cache.h"

[/ ks dskokok ok ok sk ok ok ok ok ok ok ok o ok ok K Kk s ok K Kk ok Kk ok ok ok Kok ok ok K K
// Constructor
[/ FEskskok ok ok ok ok ok ok ok ok ok ok ok ok skok skokokok ok sk ok ok Kok Kk koK Kok KK K
data_cache::data_cache(request_queue* queue,

u64 movie_id,

ul6é num_bb,

u32 size_bb,

ulé num_db,

205

B. Protocol source files

ulé size_db,
ub4 video_size)

v_request_queue = queue;
v_movie_id = movie_id;
v_num_bb = num_bb;

v_size_bb = size_bb;
v_db_in_bb = num_db / num_bb;
v_size_db = size_db;
v_video_size = video_size;

read_data = NULL;

v_cache_array = (data_element**)malloc(num_bb * sizeof (data_element*));
ZeroMemory (v_cache_array, num_bb) ;

[/ Fkkkokkok ok ok ok skkoskok ko ok ok ok ok ok sk sk ok sk sk ok ok sk sk ok o sk ok ok
// Read a db from cache
[/ Rk ok okok ok ok sk ok skok ok ok ok o skok o ok sk o ko sk sk sk o ok ok ok ok
void* data_cache::read_db(ul6 bb, ul6 db, int& len)
{
// In this version the file is read directly from the disc.
if(read_data == NULL) {
ifstream fs ("c:\\movie.mov", ios::in | ios::binary);
read_data = malloc(v_video_size);

if (!fs.read((char*)read_data, v_video_size))
System: :Diagnostics: :Debug: :WriteLine ("Could not read data from file.");
fs.close();

// Calculate if we have reached end-of-stream
if (bb == v_num_bb - 1 && db == v_db_in_bb - 1)
len = v_video_size % v_size_db;
else
len = v_size_db;

char* rv = ((char*)read_data) + ((bb * v_size_db * v_db_in_bb) + (db * v_size_db));
return (void*) rv;

[/ FEkkokkok ok ok ok kosk ok ko ok ok ok ok sk ok ok sk sk ok o sk sk ok o sk sk ok o sk ok ok

// Write a db to cache

[/ Rk okok okok ok ok ok skok stk ok ok sk o skok o ok sk o ok sk sk sk ok ok ok ok ok

void data_cache::write_db(ul6 bb, ul6 db, void* data, int len)
{

}

[/ sk dokokok ok ok ok ok ok ok ok ok ok ok o ok ok K Kk sk ok K Kk ok Kk ok ok kK ok ok ok Kok

// Write a bb to cache
[/ FEkdokkok ok ok ok kosk ok ko ok ok ok ks ok ok sk sk ok o sk ok o sk sk ok o sk ok ok

void data_cache::write_bb(ul6 bb, void* data, int len)

{

206

B. Protocol source files

data_element* d = new data_element;
d->data = data;
d->data_len = len;

v_cache_array[bb] = d;
}

data_container.h

#ifndef DATA_CONTAINER
#define DATA_CONTAINER

#include <stdlib.h>
#include "../include/types.h"

struct data_element {
int data_len;
void* data;

};

class data_container {
public:

virtual void* read_db(ul6 bb, ul6 db, int& len) = 0;

virtual void write_db(ul6 bb, ul6 db, void* data, int len) = 0;
1

#endif

global functions.h

#ifndef GLOBAL_FUNCTIONS
#define GLOBAL_FUNCTIONS

//#include <sys/time.h>
//#include <time.h>
#include <stdlib.h>
#include <sys/timeb.h>
#include <time.h>

struct system_time {
long sec;
long msec;

s

void get_system_time(system_time* time);

bool operator<(const system_time tl, const system_time t2);

207

B. Protocol source files

bool operator>(const system_time tl, const system_time t2);

system_time operator-(const system_time tl, const system_time t2);

system_time operator+(const system_time tl, const system_time

bool operator==(const system_time tl, const system_time t2);
system_time operator+(const system_time tl, int usec);
int to_msec(const system_time t1);

#endif

global functions.cpp

#include "stdafx.h"
#include "../include/global_functions.h"

[/ % H Aok ok ok ok ok ok ok ok o ok ok ok ko ok ok ok ok kok o ok ok o ko
// Get current time and create a timestamp
/] 3%k ok ok o koK ok ok o Kk Kok sk ok ok K Kok ok ok o ko Kok K okok ok
void get_system_time(system_time* time)
{

_timeb timebuffer;

_ftime64_s(&timebuffer);

time->sec = timebuffer.time;

time->msec = timebuffer.millitm;

//***

// Compares (<) two timestamps
[[F KK A KA AR A AR A AR A A KKK A KK A KKK KKK KKK K

bool operator<(const system_time tl, const system_time t2)

{

if (tl.sec == t2.sec) {
return tl.msec < t2.msec;
}
else {
return tl.sec < t2.sec;
}
}

//***

// Compares (>) two timestamps
[[F KK A KA A AR A KA A KKK KK KA KK A KKK KKK K

bool operator>(const system_time tl, const system_time t2)

{

if (tl.sec == t2.sec) {
return tl.msec > t2.msec;
}
else {
return tl.sec > t2.sec;
}
}

208

t2);

B. Protocol source files

[/ F 3k sk koo ok ook ok ok ok ok ok ok o sk sk ok o sk ok ok o sk ok ok
// Addition of two timestamps
[[F ks sk ok sk ok ok ko ok sk ok sk ok ok sk sk sk ok ok ok sk sk ok ok ok sk ok ok ok
system_time operator+(const system_time tl, const system_time t2)
{
struct system_time rv;
int new_msec = tl.msec + t2.msec;

// Calculate remainder
int remainder = new_msec % 1000;
rv.msec = remainder;

// Calculate carry

int carry = (int) new_msec / 1000;
rv.sec = tl.sec + t2.sec + carry;
return rv;

//***

// Subtraction of two timestamps
[/ %k ks o ok koo ks o ok koo ko sk o ok o okok ok ko

system_time operator-(const system_time tl, const system_time t2)
{

struct system_time rv;

int new_msec = tl.msec - t2.msec;

if (new_msec < 0) {
rv.sec = tl.sec - t2.sec - 1;
rv.msec = 1000 - abs(new_msec);

else {
rv.sec = tl.sec - t2.sec;
rv.msec = tl.msec - t2.msec;

}

return rv;

[/% o R o ks K s oK ok ok R o R o K K K K o R K K KoK K
// Compare (==) two timestamps
[/% o R o ks K s oK ok ok R o R o K K K K o R K K KoK K
bool operator==(const system_time tl, const system_time t2)
{
return (tl.sec == t2.sec) && (tl.msec == t2.msec);

}

//***

// Converts timestamp to msec.
[[F KKK A A KA AR A A KA KKK KK A KK KKK F A KK KKK

int to_msec(const system_time t1)

{
return ((tl.sec*1000) + ti1.msec);
}

209

B. Protocol source files

[/ F 3k sk koo ok ook ok ok ok ok ok ok o sk sk ok o sk ok ok o sk ok ok
// Add msec. to a timestamp
[[F ks sk ok sk ok ok ko ok sk ok sk ok ok sk sk sk ok ok ok sk sk ok ok ok sk ok ok ok
system_time operator+(const system_time tl, int msec)
{

struct system_time rv;

int new_msec = msec + tl.msec;

// Calculate remainder
int remainder = new_msec % 1000;
rv.msec = remainder;

// Calculate carry

int carry = (int) new_msec / 1000;
rv.sec = tl.sec + carry;

return rv;

logic client.h

#ifndef LOGIC_CLIENT
#define LOGIC_CLIENT

#include "../include/transport_handler.h"
#include "../include/data_bank_client.h"
#include "../include/stream_engine.h"

#include "../include/data_buffer.h"
#include "../include/packet_queue.h"

#include "../include/stream_engine_thread.h"
#include "../include/status_thread.h"
#include "../include/enum.h"

#include "../include/packet_conn_granted.h"
#include "../include/packet_status_req.h"
#include "../include/packet_conn_req.h"

#include "../include/packet_status_resp.h"
#include "../include/packet_data.h"
#include "../include/packet_stop_stream.h"
#include "../include/packet_disconn.h"
#include "../include/packet_stream_error.h"
#include "../include/packet_end_of_data.h"
#include "../include/packet_handler.h"

#include "../include/packet_interact_pause.h"
#include "../include/packet_interact_pause_stream.h"
#include "../include/packet_interact_resume.h"
#include "../include/packet_interact_skip.h"

#include "../include/packet_no_data.h"
#include "../include/packet.h"

#include "../include/packet_adjust_speed.h"
#include "../include/packet_req_backup_data.h"

#include "../include/packet_conn_closed.h"
#include "../include/packet_resend_data.h"
#include "../include/packet_conn_denied.h"

210

B. Protocol source files

#include "../include/packet_snd_data_stream.h"
class logic_client {

private:
ub4 v_video_id;
size_t v_buf_size;

transport_handler* v_transport_handler;
data_bank_client* v_data_bank;
stream_engine* v_stream_engine;
data_buffer* v_data_buffer;
packet_queue* v_packet_queue;

DWORD v_stream_thread_id;
HANDLE v_stream_thread;

DWORD v_status_thread_id;
HANDLE v_status_thread;

int hatten;
int v_state;

u64 v_client_id;
ub4d v_server_id;

void conn_granted(packet_conn_granted* pack);

void conn_denied(packet_conn_denied* pack);

void conn_closed(packet_conn_closed* pack);

void recv_data_stream(packet_recv_data_stream* pack);

void status_req(packet_status_req* pack);

void snd_data_stream(packet_snd_data_stream* pack);
void stop_stream(packet_stop_stream* pack);

void data(packet_data* pack);

void no_data(packet_no_data* pack);

void end_of_data(packet_end_of_data* pack);

int logic_clientmovie_info();

void resend_data(packet_resend_data* pack);
void adjust_speed(packet_adjust_speed* pack);

bool check_data_reception(u64 snd_client_id,
ul6é bb,
ul6 db);

public:
logic_client(u64 video_id, transport_handler* th, packet_queue* pq);

void packet_handler(packet* pack);

int connect(size_t buf_size, struct login_data* client, ul6 ccp_port, ul6 dcp_port);

211

B. Protocol source files

size_t poll();

size_t recv_data(void* buf, size_t max_len, unsigned int& offset);
int disconnect();

int pause();

int resume();

int skip(unsigned int distance);

int movie_info();

u64 get_video_duration();

u64 get_video_length();

ub4 get_skip_distance();

};

#endif

logic client.cpp

#include "stdafx.h"
#include "../include/logic_client.h"

[/ sk kst sk ok sk ke sk sk sk sk ok ks e ok sk ke sk sk s ok sk ok sk sk ok ok sk ok sk sk s ok sk s ke sk sk s ok sk ok ok sk
// Constructor
// Sets the reference to transport_handler and packet_queue
[/ sk sk ok sk ke sk sk sk sk ok ks ke ok sk ke sk sk s ok sk ok sk sk ok ok sk ke sk sk s ok sk s ke sk sk s ok sk ok ok sk
logic_client::logic_client(u64 video_id, transport_handler* th, packet_queue* pq)
{

v_video_id = video_id;

v_stream_engine = NULL;

v_transport_handler = th;
v_packet_queue = pq;
v_data_bank = new data_bank_client();

}

/[F kR kR R R R ok ok ok ok ok ok ok ok ok koK skok K ok ok Kok K K K K Kk ok ok ok ok
// Function called to connect client to server, waits for
// respond on connect request.
/[F kR Rk Rk R R ok ok ok ok ok ok ok ok sk ok ok skok K ok ok Kok K KK K ok ok ok ok ok
int 1ogic_c1ient::connect(size_t buf_size,

struct login_data* client,

ul6é ccp_port,

212

B. Protocol source files

ulé dcp_port)

packet_conn_req* snd_p = new packet_conn_req(0,0);
snd_p->set_video_id(1234);

snd_p->set_ccp_port (ccp_port);

snd_p->set_dcp_port (dcp_port) ;
v_transport_handler->send_CCP(snd_p, 0);

// Wait for respond on connect packet - always a packet_conn_granted in this version
packet* recv_p = v_packet_queue->get_next_packet();

packet_handler (recv_p);

client->skip_distance = ((packet_conn_granted*)recv_p)->get_skip_distance();
client->video_duration = ((packet_conn_granted#*)recv_p)->get_video_duration();
client->video_size = ((packet_conn_granted*)recv_p)->get_video_size();

v_data_bank->initialize((packet_conn_granted*) recv_p);
return 0;

[/% %k sk ok ok ok ok sk ok ok K ok ok ok ok Kok ok ok ok K ok ok K K sk ok Kk s ok Kok ok ok ok ok ok ok ok Kok ok ok K

// Returns data from the buffer to the client.
[/ %k ks o ok koo sk o ok ok sk stk sk o ok o ks o sk stk sk o ok ok ok sk o ko ok ok ok

size_t logic_client::recv_data(void* buf, size_t max_len, unsigned int& offset)
{
return v_data_buffer->read_data(buf, max_len, offset);

}

[/% %k ek ok ok ok ok sk ok ok ok ok ok ok ok Kok ok ok ok K ok ok K K s ok K K ok Kok ok ok ok ok ok ok ok Kok ok ok K

// Returns data from the buffer to the client.
[/ %k ks o ok koo oksk o ok sk ok sk stk sk o sk o koo sk stk sk o ok ok ok sk o ko o ok ok
int logic_client::disconnect()
{
// If a stream engine exists it must be stopped
if (v_stream_engine != NULL) {
TerminateThread(v_stream_thread, 0);

// Delete objects
delete(v_stream_engine) ;

}

// Delete status thread
TerminateThread(v_status_thread, 0);

packet_disconn* p = new packet_disconn(v_server_id, v_client_id);
v_transport_handler->send_CCP(p, v_server_id);

return O;

[/ /% %k sk ok ok ok ok ok ok ok Kok ok ok ok Kok o ok ok ok K ok ok K K sk ok Kk ok Kok ok ok ok ok ok ok ok ok ok ok K

// Function is called duing a skip.
[/ FFF AR kAR KRR Ko Kok Ko kKK ok kKK KK o kKK ok Kok ok K

int logic_client: :skip(unsigned int distance)

{

213

B. Protocol source files

packet_interact_skip* p = new packet_interact_skip(v_server_id,
v_data_buffer->set_pp(distance);

p->set_target_block(distance);

v_transport_handler->send_CCP(p, v_server_id);

return O;

[/% ks sk ok sk sk sk ko sk sk ok sk sk sk sk ok s sk ko sk ks ko sk ks sk sk ok sk sk ok sk ok
// The packet handler is called upon reception of a packet.
[/% ks sk ok sk sk sk ko sk sk ok sk sk sk sk ok s sk ko sk ks ko sk ks sk sk ok sk sk ok sk ok
void logic_client::packet_handler (packet* pack)
{
switch(pack->get_packet_type()) {
// Server to client resp
case 10:
switch(pack->get_action_type()) {
case 10: // CONN_GRANTED
conn_granted ((packet_conn_granted*) pack);

break;

case 20: // CONN_DENIED
break;

case 30: // CONN_CLOSED
break;

case 50: // RECV_DATA_STREAM
recv_data_stream((packet_recv_data_stream*) pack);
break;
}
break;

// Server to client req
case 20:
switch(pack->get_action_type()) {
case 10: // STATUS_REQ
break;
case 20: // SND_DATA_STREAM
snd_data_stream((packet_snd_data_stream*) pack);
break;
case 30: // STOP_STREAM
stop_stream((packet_stop_stream*) pack);
break;
}
break;

// Client recv. to client snd
case 50:
switch(pack->get_action_type()) {
case 10: // DATA
data((packet_datax) pack);

break;
case 20: // NO_DATA
break;
case 30: // END_OF_DATA
break;
}
break;

214

v_client_id);

B. Protocol source files

// Client snd to client recv.
case 60:
switch(pack->get_action_type()) {
case 10: // RESEND_DATA
resend_data((packet_resend_data*) pack);
break;
case 20: // AJUST_SPEED
adjust_speed((packet_adjust_speed*) pack);
break;
}
break;
}
}

[/ %3k koo sk koo ko ok ok sk ko ok ok ok sk ok ok ok ok sk ok ok sk ok ok sk sk k ok sk sk ok ko sk ok ok o
// Called upon reception of conn_granted, sets client and
// server id and creates the buffer. (Private function).
[/ %3k koo ks koo ok ok ok sk sk ok ok ok ok sk ok ok ok ok sk ok sk sk k ok sk sk k ok sk sk ok ok ok sk ok ok o
void logic_client::conn_granted(packet_conn_granted* pack)
{

v_client_id = pack->get_client_id();

v_server_id = pack->get_server_id();

v_state = 1;

v_data_buffer = new data_buffer(pack->get_recon_ca_size(),
pack->get_db_total() / pack->get_bb_total(),
pack->get_db_size(),
pack->get_video_header_size());

// Startup the status thread

status_params* args = (status_params*) malloc(sizeof (status_params));
args->v_data_buffer = this->v_data_buffer;

args->v_transport_handler = this->v_transport_handler;
args->v_server_id = v_server_id;

args->v_client_id = v_client_id;

v_status_thread = CreateThread(NULL,
0,
(LPTHREAD_START_ROUTINE) status_thread,
(voidx) args,
0,
&v_status_thread_id) ;

[/ %k ks sk ok s ok s ok sk ok ok ok ok ok ok ok ok s ok ok ok s o ok ok ok ok o ok ok ok sk o ok ok ok ok o ok ok ok ok ok ok ook ok ok ok
// Called upon reception of recv_data_stream packet, sets
// from whom the client will recieve data. (Private function).
[[F ks ks sk ok s ok sk ok sk ok ok ok ok o ok ok ok s ok ok ok s o ok ok ok ok o ok ok ok ok o ok ok ok sk ok ok ok ok ok K ok ook ok ok ok
void logic_client::recv_data_stream(packet_recv_data_stream* pack)
{
v_data_bank->set_recv_table(pack) ;
}

215

B. Protocol source files

[/ sk sk ks ok sk ok sk sk sk sk ok ks e ok sk ke sk sk s ok sk ok sk sk ok ok sk ke sk sk s ok sk s ke sk sk s ok sk ok ok sk

// Called upon reception of recv_data_stream packet, sets

// to whom the client must send. (Private function).

[/ sk sk ks ok sk ok sk sk sk sk ok ks ke ok sk ke sk sk s ok sk ok sk sk ok ok sk ke sk sk s ok sk s ke sk sk s ok sk ok ok ok

void logic_client::status_req(packet_status_req* pack)

{
packet_status_resp* status_pack = new packet_status_resp(v_server_id, v_client_id);
status_pack->set_pp(v_data_buffer->get_pp());
v_transport_handler—>send_CCP(status_pack, v_server_id) ;

delete(status_pack) ;

[/ %ok koo ok ook ko stk ksl sk ok stk ok skl skok sk ok kst sk ok sk ok sk sk sk ok sk sk ok stk sk ok sk o ok ok
// Called upon reception of snd_data_stream packet, sets
// to whom the client must send data and starts a stream-
// engine if one is not already running. (Private function).
[/ sk sk sk ok sk ke sk sk sk sk ok sk ke ok sk ok sk sk s ok sk ok sk sk ok ok sk ke sk sk sk ok sk s ke sk sk s ok sk ok ok ok
void logic_client::snd_data_stream(packet_snd_data_stream* pack)
{
v_data_bank->add_stream(pack) ;

if (v_stream_engine == NULL) {
v_stream_engine = new stream_engine(v_data_buffer,
v_video_id,
v_client_id);

stream_params* args = (stream_params#*) malloc(sizeof (stream_params)) ;
args->v_data_bank = this->v_data_bank;

args->v_transport_handler = this->v_transport_handler;
args->v_stream_engine = this->v_stream_engine;;

v_stream_thread = CreateThread(NULL,
01
(LPTHREAD_START_ROUTINE) stream_thread,
(voidx) args,
01
&v_stream_thread_id) ;

[/ F ks ks ok sk sk sk ok sk ok sk sk sk sk sk sk sk sk ok sk sk sk ok stk sk sk ok stk ks ok sk ks sk ko sk ok
// Upon reception of stop_stream the stream-engine is

// informed to stop streaming. (Private function).
[/ FE Rk ok Rk o ko o KK R K K K KK oK S K oK K

void logic_client::stop_stream(packet_stop_stream* pack)
{

v_data_bank->stop_stream(pack) ;
}

//**

// Returns aditional info about the movie
[/ % sk ks o ok ok ko koo ok sk o ok ko sk o ok ok ko ok o ok

int logic_client::movie_info()

216

B. Protocol source files

return O;

}

[/ FE Ak kR K Rk K KK K ok Ko
// Handles data packets
[/ FE Ak sk ok K Rk K KK R ok Ko
void logic_client::data(packet_data* pack)
{
// Check if packet is ok before insert into buffer
if (check_data_reception(pack->get_snd_client_id(),
pack->get_bb(),
pack->get_db())) {

int data_len;
void* data_pointer = pack->get_data(data_len);

v_data_buffer->write_db(pack->get_bb(),
pack->get_db(),
data_pointer,
data_len);

/[%%k ok sk ok ok ok ok ok ok ok ok ok ok ok ok s sk ok ok ok sk ok ok ok ok ok ok K

// Checks received data

[/ F ok ok ok ok ok ok ok ok Rk ok ko ook skok sk ok ok ok ok Kk koK

bool logic_client::check_data_reception(u64 snd_client_id,
ul6 bb,
ul6 db)

return true;

}

[/ %%k ok ok ok o Kok ok ok o o kK kok sk ok ok K Kok ok ok o ok Kok Kok ok

// Function to resend data to a client

/] %%k ok ok ok o koK ok ok o o sk kok sk ok ok K Kok ok ok o ok Kok Kok ok

void logic_client::resend_data(packet_resend_data* pack)

{

v_data_bank->resend_block(pack->get_snd_client_id(),

pack->get_bb(),
pack->get_db());

v_data_bank->adjust_speed(pack->get_snd_client_id(), HIGH);
}

[/% F AR Rk kKKK oK ook oK ok Ko Ko K oK K o K KKK oK K o
// Handles speed adjustment
[/% F AR Rk kKKK oK ook oK ok Ko Ko K oK K o K KKK oK K o
void logic_client::adjust_speed(packet_adjust_speed* pack)
{
v_data_bank->adjust_speed(pack->get_snd_client_id(),
(speed_level) pack->get_speed_level());

217

B. Protocol source files

[] FFF Rk KK KKK ok KKK Ko koK ok kK
// Returns video duration from the databank
[/ FFF Rk kR KooKk KK ok KKk Ko Kk ok K
u64 logic_client::get_video_duration()
return v_data_bank->get_video_duration();

}

//***

// Returns the length of the video from the databank
[/ FE Rk R K RS KK K R o K K K oK K
u64 logic_client::get_video_length()
{

return v_data_bank->get_video_length();
}

/7 %%k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o o sk ok K Kk s ok K Kk ok Kk ok ok ok Kok ok ok Kok K

// Returns the video skip distance from the databank
[/ %k ks ook koo ks o ok sk ok sk stk sk ok sk o ok sk o ok sk sk sk o ok ok ok ok
u64 logic_client::get_skip_distance()
{

return v_data_bank->get_skip_distance();
}

logic _client thread.h

#ifndef LOGIC_CLIENT_THREAD
#define LOGIC_CLIENT_THREAD

#include "../include/logic_client.h"
#include "../include/packet_queue.h"

struct logic_params
{
packet_queue* v_packet_queue;
logic_client* v_logic_client;
s

void logic_thread(void* args);

#endif

logic client thread.cpp

#include "stdafx.h"
#include "../include/logic_client_thread.h"

[/ F ks sk ks ok sk ok sk ok ok ko ko ok ok ok ok ok ook ok ok ok ok ok ok sk ok sk ok sk ok sk ok sk ok ok ok ok o ok o
// Thread which pops packets from the incomming queue and

218

B. Protocol source files

// handes them to the logic.
[/ FFF AR kAR KK KR KK o Kok Ko kKK ok kK KK kKK ok ok K ok K

void logic_thread(void* args)

{
packet_queue* v_packet_queue = ((logic_params#*)args)->v_packet_queue;
logic_client* v_logic_client = ((logic_params*)args)->v_logic_client;
int foo = 0;
for(;;) {
packet* pack = v_packet_queue->get_next_packet();
v_logic_client->packet_handler (pack) ;
}
return;
}

logic server.h

#ifndef LOGIC_SERVER
#define LOGIC_SERVER

#include "../include/vod_server.h"

#include "../include/transport_handler.h"

#include "../include/stream_engine.h"

#include "../include/data_cache.h"

#include "../include/stream_engine_server_thread.h"
#include "../include/request_queue.h"

#include "../include/enum.h"

#include "../include/packet_conn_granted.h"
#include "../include/packet_status_req.h"
#include "../include/packet_conn_req.h"
#include "../include/packet_status_resp.h"
#include "../include/packet_data.h"

#include "../include/packet_stop_stream.h"
#include "../include/packet_disconn.h"
#include "../include/packet_stream_error.h"

#include "../include/packet_end_of_data.h"
#include "../include/packet_handler.h"

#include "../include/packet_interact_pause.h"
#include "../include/packet_interact_pause_stream.h"
#include "../include/packet_interact_resume.h"

#include "../include/packet_interact_skip.h"
#include "../include/packet_no_data.h"
#include "../include/packet.h"

#include "../include/packet_adjust_speed.h"
#include "../include/packet_req_backup_data.h"

#include "../include/packet_conn_closed.h"
#include "../include/packet_resend_data.h"
#include "../include/packet_conn_denied.h"

#include "../include/packet_snd_data_stream.h"

class logic_server {

219

B. Protocol source files

private:
int hackvar;

transport_handler* v_transport_handler;
stream_engine* v_stream_engine;
data_cachex* v_data_cache;
data_bank_server* v_data_bank;
request_queue* v_request_queue;

stream_params args;
DWORD v_stream_thread_id;
HANDLE v_stream_thread;

int v_state;

// Handle status respond packet

void status_resp(packet_status_resp* pack);

// Handle connectio request packet

void conn_req(packet_conn_req* pack);

// Handle pausing of the clietns video player
void interact_pause(packet_interact_pause* pack);
// Handle pausing of the video stream

void interact_pause_stream(packet_interact_pause_stream* pack);
// Handle resending of data

void resend_data(packet_resend_data* pack);

// Handle adjustment of speed

void adjust_speed(packet_adjust_speed* pack);

// Handle disconnect packet

void disconnect (packet_disconn* pack);

// Handle skip packet

void skip(packet_interact_skip* pack);

// Start new stream engine
void start_stream_engine(u64 video_id);

// Attach a client to the local server
void attach_client_to_server(packet_conn_req* pack);

// Attach a client to a set of clients
void attach_client_to_streamers(u64* sender_clients, int client_length, packet_conn_reqg* pack);

// Fil a packet snd data stream packet
void fill_packet_snd_data_stream(packet_snd_data_stream* pack, int spreading);

public:

// Constructor
logic_server(transport_handler* th);

// Handle incoming packet
void packet_handler(packet* pack);

// Get the next data request. Called from server application
int get_data_req(struct data_struct_req& data, data_type type);

// Deliver data. Called from server application

220

B. Protocol source files

int deliver_data(data_class* data, data_type type);
3

#endif

logic server.cpp

#include "stdafx.h"
#include "../include/logic_server.h"

[/ %%k ok sk ok ok ok ok ok ok ok ok ok ok ok Kok o sk ok K Kk ok ok K ok ok ok ok ok ok ok Kok K
// Constructor
[/ ko kR R R R o ko ko ok sk ok sk ok ok sk ok ok ok ok ok ok ok Kok koK
logic_server::logic_server(transport_handler* th)
{

v_stream_engine = NULL;

v_state = 0;

v_transport_handler = th;

v_data_bank = new data_bank_server();

v_request_queue = new request_queue();

System: :Diagnostics: :Debug: :WriteLine ("Logic Created");

hackvar = 0;

}

[/% ok ok sk s K s oK ok R R o K K K K R KR K KK oK R o K o oK oK
// Packet handler
[/%A Rk Kk KKK oK oK oK oK K o K o K oK oK oK KK K K oK K o K ook ook
void logic_server::packet_handler (packet* pack)
{
switch(pack->get_packet_type()) {
// Client to server resp
case 30:
switch(pack->get_action_type()) {
case 10: // STATUS_RESP
status_resp((packet_status_resp*) pack);
break;
}
break;

// client to server req
case 40:
switch(pack->get_action_type()) {
case 10: // CONN_REQ
conn_req((packet_conn_req#*) pack);
break;
case 30: // INTERACT_PAUSE
interact_pause ((packet_interact_pause*) pack);
break;
case 40: // INTERACT_PAUSE_STREAM
interact_pause_stream((packet_interact_pause_stream*) pack);
break;
case 60: // INTERACT_SKIP
skip((packet_interact_skip*) pack);

221

B. Protocol source files

break;
case 70: // DISCONNECT
disconnect ((packet_disconn*) pack);
break;
}
break;

// Client snd to client recv.
case 60:
switch(pack->get_packet_type()) {
case 10: // RESEND_DATA
resend_data((packet_resend_datax) pack);
break;
case 20: // AJUST_SPEED
adjust_speed((packet_adjust_speed*) pack);
break;
}
break;
}
}

[/ sk sk ok sk ke sk sk sk sk ok ks e ok sk ok sk sk sk ok sk ok ke sk sk ok ok sk ke sk sk sk o kok

// Client to server resp

[/ %ok ko sk ook stk kskskok ksl ok stk ok stk skok skl o ke sksk ok ok sk sk sk sk ok ok

void logic_server::status_resp(packet_status_resp* pack)
v_data_bank->update_status (pack) ;

[/% ks ok ok sk ok sk sk ko sk sk ks skok s sk ok sk sk ko sk sk ok ok sk ok sk ko sk ok ok

// Handle connection request packet

[/% ks ok ok sk ok sk sk ko sk sk ks skok s sk ok sk sk ok sk sk sk ok sk ok sk sk o sk ok ok

void logic_server::conn_req(packet_conn_req* pack)

{
// We should add client to applicationtask queue to
// validate client. Thi is not implemented. We simply
// verify the client.

// Extract client id coming from transport_handler
u64 client_id = pack->client_id;
u64 video_id = v_data_bank->get_video_id();

// Create packet conn-granted packet
packet_conn_granted* p;
p = new packet_conn_granted(pack->client_id, v_data_bank->get_server_id(client_id));

v_data_bank->get_movie_info(video_id, p);
v_transport_handler->send_CCP(p, client_id);

// Find appropriate clients
u64* sender_clients = NULL;
int client_length = 0;
bool rv = v_data_bank->find_clients(0,0, sender_clients, client_length);
if (rv)
attach_client_to_streamers(sender_clients, client_length, pack);
else
attach_client_to_server(pack);

222

B. Protocol source files

// If stream engine has not been instantiated yet, do so.
if (v_stream_engine == NULL)
start_stream_engine(video_id) ;

[/ Kk ok ok sk ok Kok ok ok o Kk sk ok ok ok sk Kok sk ok o ok Kok Kok ok ok o Kk ok ok
// Attach a client to server. The new or
// relocated client is given in the pack argument.
/] Kk ok sk ok Kok ok ok ok Kk oKk ok o ok ok Kok ok ok o ok Kok ok ok ok o o Kk ok ok
void logic_server::attach_client_to_server(packet_conn_req* pack)
{
// Add client to databank;
// We should check if client already exists
v_data_bank->add_new_client (pack) ;

u64 client_id = pack->client_id;
u64 server_id = v_data_bank->get_server_id(client_id);

// Create packet packet_snd_data_stream to store in databank
packet_snd_data_stream* stream_pack;
stream_pack = new packet_snd_data_stream(client_id, server_id);

fill_packet_snd_data_stream(stream_pack, 0);

stream_pack->client_CCP_port = pack->get_ccp_port();
stream_pack->client_DCP_port = pack->get_dcp_port();
stream_pack->client_id = pack->client_id;
stream_pack->client_ip = pack->client_ip;
stream_pack->set_client_id(pack->client_id);
stream_pack->set_client_ip4(pack->client_ip);
stream_pack->set_client_port (pack->get_dcp_port());

v_data_bank->add_new_stream(stream_pack) ;

[/% ks ok ok sk ok sk sk ok ok sk sk ks ok s sk ok sk sk ko sk ok sk ok sk ok sk o sk ok ok

// Attach a client to some other client(s)

// The senders of data (clients, which the new or

// relocated client is to be attached to) is given

// in sender. The new or relocated client is given

// in the pack argument.

[/ %k ok sk ok ks ok ok ok ok o sk ks ok ks sk ok sk sk ko ok sk ok ok sk ok ok ok o sk ok oo

void logic_server::attach_client_to_streamers(u64* sender_clients,
int client_length,
packet_conn_req* pack)

// Add client to databank;
// We should check if client already exists
v_data_bank->add_new_client (pack) ;

u64 client_id = pack->client_id;
u64 server_id = v_data_bank->get_server_id(client_id);

// Create packet containing senders of data

223

B. Protocol source files

if (client_length == 1) {
packet_snd_data_stream* stream_pack;
stream_pack = new packet_snd_data_stream(sender_clients[0], server_id);

fill_packet_snd_data_stream(stream_pack, 0);
stream_pack->client_CCP_port = pack->get_ccp_port();
stream_pack->client_DCP_port = pack->get_dcp_port();
stream_pack->client_id = pack->client_id;
stream_pack->client_ip = pack->client_ip;
stream_pack->set_client_ip4(pack->client_ip);
stream_pack->set_client_port (pack->get_dcp_port());
stream_pack->set_client_id(pack->client_id);

// Update internal representation of network
v_data_bank->add_stream_to_client (sender_clients[0], stream_pack);

// Send packet
v_transport_handler->send_CCP(stream_pack, sender_clients[0]);
}
else {
for (int i = 0; i < client_length; i++) {
packet_snd_data_stream* stream_pack;
stream_pack = new packet_snd_data_stream(sender_clients[i], server_id);

fill_packet_snd_data_stream(stream_pack, i+1);
stream_pack->client_CCP_port = pack->get_ccp_port();
stream_pack->client _DCP_port = pack->get_dcp_port();
stream_pack->client_id = pack->client_id;
stream_pack->client_ip = pack->client_ip;
stream_pack->set_client_ip4(pack->client_ip);
stream_pack->set_client_port (pack->get_dcp_port());
stream_pack->set_client_id(pack->client_id);

// Update internal representation of network
v_data_bank->add_stream_to_client (sender_clients[i], stream_pack);

// Send packet
v_transport_handler->send_CCP(stream_pack, sender_clients[i]);

[/ %k ks ok ok sk ok sk ok sk ok ko ok ok ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok o
// Fill packet_snd_data_stream with datablocks
[/ %k ks ok ok sk ok sk ok sk ok ko ok ok ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok o
void logic_server::fill_packet_snd_data_stream(packet_snd_data_stream* pack, int spreading)
{
int length ;
void* db_list;
int dbnum = 0;
int num_of_dbs = v_data_bank->get_num_of_db_in_bb(0);

switch (spreading) {
case O:
pack->init (num_of_dbs) ;
db_list = malloc(sizeof(ul6) * num_of_dbs);
pack->set_start_bb(0);

224

B. Protocol source files

pack->set_start_db(0);
for (int i = 0; i < num_of_dbs; i++) {
((ul6*)db_list) [i] = i;

}
pack->set_db_list((ul6*) db_list);
break;

case 1:
pack->init ((int) num_of_dbs / 2);
db_list = malloc(sizeof(ul6) * (int) num_of_dbs / 2);
pack->set_start_bb(0);
pack->set_start_db(0);

for (int i = 0; 1 < num_of_dbs; i = i+2) {
((u16#*)db_list) [dbnum] = i;
dbnum++

}

pack->set_db_list((ul6*) db_list);

break;

case 2:

pack->init ((int) num_of_dbs / 2);

db_list = malloc(sizeof(ul6) * (int) num_of_dbs / 2);

pack->set_start_bb(0);

pack->set_start_db(1);

for (int i = 1; 1 < num_of_dbs ; i = i+2) {
((u16#*)db_list) [dbnum] = i;
dbnum++

}

pack->set_db_list((ul6*) db_list);

break;

default:
break;

[/ %k sk ok sk ok ks ok sk ok ks ks ok ok sk ok sk sk ko ok ok ok ok sk ok ok ok o sk ok o

// Instantiate new stream engine, and start

// stream engine thread

[/ %k sk ok sk ok ks ok ok ok ok sk sk ks ok ok sk ok sk sk ko sk ok ok ok sk ok ok ok o sk ok o

void logic_server::start_stream_engine(u64 video_id)

{

v_data_cache = new data_cache(v_request_queue,

video_id,
v_data_bank->get_num_of_bb(video_id),
v_data_bank->get_size_of_bb(video_id),
v_data_bank->get_num_of_db(video_id),
v_data_bank->get_size_of_db(video_id),
v_data_bank->get_video_size(video_id));

// Create new stream-engine object

v_stream_engine = new stream_engine((data_container*)v_data_cache,
video_id,
false); // Don’t start sending

// We should request first portion of video data from server application
// if this is not contained in data cache.

225

B. Protocol source files

// Params

args.v_data_bank = this->v_data_bank;
args.v_transport_handler = this->v_transport_handler;
args.v_stream_engine = this->v_stream_engine;

// Start stream engine thread
v_stream_thread = CreateThread(NULL,
0,
(LPTHREAD_START_ROUTINE) stream_thread,
(void*) &args,
0,
&v_stream_thread_id);

[/ F3k sk koo ook ok ok ok ook skok ok kok ook kok ook kok ook ok ok

// Handle pause interaction

[[%3k sk ok ko sk ok ko ok ok ok sk ok sk ok ok sk ok ok sk ok sk ok ok sk ok ok sk ok ok ok ok

void logic_server::interact_pause(packet_interact_pause* pack)
// v_data_bank->pause_client (pack) ;

[/ %k sk ok sk ok sk ok sk ok sk ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok

// Handle pause stream

[/ F ks ks ok sk sk sk ok ok ks ok sk ok stk sk sk ok sk ki sk ok sk ki sk ok sk sk sk ok sk ok sk ok

void logic_server::interact_pause_stream(packet_interact_pause_stream* pack)
//v_data_bank->pause_client (pack) ;

[/ ek sk sk ok sk ke sk sk sk sk ok ks ok sk ok sk sk s ok sk ok ke sk sk ok ok sk ke sk sk sk ok kok

// Client snd to client resv.

[/ %ok ks sk sk ook sk stk kskoskok stk ok stk skok skl o ke stk ok ok sk ek sk sk o kok

void logic_server::resend_data(packet_resend_data* pack)

{

[/AR Kk Kk kKK oK ok oK oK K o K o oK oK oK oK o KK K K ok K o K ok oK ook

// Adjust speed of client

[/AR Rk Kk kKK oK oK oK oK K o K o oK oK K oK o KK K K oK K o K ok oK ook

void logic_server::adjust_speed(packet_adjust_speed* pack)

{
//v_data_bank->adjust_speed(pack->get_snd_client_id(),
// (speed_level) pack->get_speed_level());

}

[/% ek ks ok sk ok sk sk s ok sk sk ks ks ok ok sk sk sk ok sk sk sk ok sk ko ok sk ok e ok

// Handle disconnect packet from client

// This procedure should collect all clients which

// are receiving data from the disconnecting client and
// relocate these.

// Furthermore all client which are streaming data to the

226

B. Protocol source files

// disconnecting client should stop sending data.
[/% ks ks ok sk ok sk sk s ok sk sk sk ok sk ok ok sk sk sk ok sk ok sk sk ok sk ko ok sk ok ek
void logic_server::disconnect(packet_disconn* pack)
{
packet_snd_data_stream* receiver = v_data_bank->get_attached_clients(pack->client_id);
if (!receiver == NULL) {
packet_status_resp* status = v_data_bank->get_client_status(receiver->get_client_id());
// Set the next blocks to be received to what has been fetched from status packet.
receiver->set_start_bb(status->get_pp());
receiver->set_start_db(0);

// Attach client to server. We should relocate client to better suited clients.
v_data_bank->add_new_stream(receiver);

v_transport_handler—>close_CCP_connection(pack—>c1ient_id);
v_data_bank->remove_stream(pack->client_id);
v_data_bank->remove_client (pack->client_id) ;

[/% ek ok ok sk R s oK oo R o R o K K K K R KR K KK oK K o K o K oK
// Handle disconnect packet from client
[/% ok ko ok sk sk s oK o R R o K K K K o R K K KoK K o K o K oK
void logic_server::skip(packet_interact_skip* pack)
{
v_data_bank->skip_stream(pack->client_id, pack->get_target_block());

// Check if we need to relocate any clients
// These should be relocated know
}

/ /% %k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o sk ok K Kk ok ok ok ok ok ok Kok ok ok Kok K
// Return next data request to server application
/ /% %k sk ok ok ok ok sk ok ok Kok ok ok ok Kok ok sk ok K Kk s ok ok Kk ok ok Kok ok ok Kok K
int logic_server::get_data_req(struct data_struct_req& data,
data_type type)
{
switch(type) {
// Client to server resp
case VIDEO_DATA:
v_request_queue->get_data_request(data) ;
return O;
break;
defualt:
// Not implmentet in this version
break;

}

return 1;

/ /% %k sk ok ok ok ok sk ok ok ok o ok ok ok Kk o sk ok K Kk s ok ok ok ok ok ok ok ok ok ok Kok K

// Deliver data from server application to protocol.
[/ %k ks ok ok sk ok sk ok sk ok ok ok ok ok ok ok sk ok sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok

int logic_server::deliver_data(data_class* data, data_type type)

{

227

B. Protocol source files

switch(type) {
// Client to server resp
case VIDEO_DATA:
v_data_cache->write_bb((ul6) (data->get_transaction_id()), data->get_data(), data->get_data_length());
return O;
break;
defualt:
// Not implmentet in this version
break;
}

return 1;

}

logic _server thread.h

#ifndef LOGIC_SERVER_THREAD
#define LOGIC_SERVER_THREAD

#include "../include/logic_server.h"
#include "../include/packet_queue.h"

struct logic_params

{
packet_queue* v_packet_queue;
logic_server* v_logic_server;

s
void logic_thread(void* args);

#endif

logic server thread.cpp

#include "stdafx.h"
#include "../include/logic_server_thread.h"

/[%%k sk ok ok ok ok ok ok ok ok ok ok ok Kok o sk ok K Kk ok ok K ok ok ok ok ok ok ok Kok K

// Main procedure.
[/ FFF AR Ak AR AR R AR O o KK ok KoK K o koK o ok K

void logic_thread(void* args)

{
packet_queue* v_packet_queue = ((logic_params#*)args)->v_packet_queue;
logic_server* v_logic_server = ((logic_params*)args)->v_logic_server;
for(5;) {

packet* pack = v_packet_queue->get_next_packet();
v_logic_server->packet_handler (pack) ;

}

228

B. Protocol source files

return;

}

packet adjust speed.h

#ifndef PACKET_ADJUST_SPEED
#define PACKET_ADJUST_SPEED

#include "../include/packet.h"

#define c_adjust_speed_packet_type 60
#define c_adjust_speed_action_type 20
#define c_adjust_speed_payload_len 1

class packet_adjust_speed : public packet
{
public:
packet_adjust_speed(u64 recv_id, u64 snd_id);

“packet_adjust_speed();

void set_speed_level(u8 speed_level);
u8 get_speed_level();
};

#endif

packet adjust speed.cpp

#include "stdafx.h"
#include "../include/packet_adjust_speed.h"

/[%%k ok sk ko ok ok sk ok ok ok ok ok ok ok Kok o sk ok K K sk ok K K ok Kk ok ok ok ok ok ok Kok ok ok KoK
// Constructor
[/ F ko kR kR Rk ok ok ok ok ko sk ok ok ok ok sk okok Kok ok ok ok Kok KK K ok ok
packet_adjust_speed::packet_adjust_speed(u64 recv_id, u64 snd_id)
: packet(c_adjust_speed_packet_type, c_adjust_speed_action_type, recv_id, snd_id)
{
v_payload = malloc(c_adjust_speed_payload_len);
set_payload_len(c_adjust_speed_payload_len);
}

I I ™
// Deconstructor
I I ™

packet_adjust_speed: : “packet_adjust_speed()
{

free(v_payload) ;
}

229

B. Protocol source files

//***

// Get or set the speed level
[[F KK A AR A AR A KA AR A A A A AR K A KA KK KK KKK KK KKK KoK oK

void packet_adjust_speed::set_speed_level(u8 speed_level)

{

set_value_u8(speed_level, v_payload, 0);
}
u8 packet_adjust_speed::get_speed_level()
{

return get_value_u8(v_payload, 0);
}

packet conn_closed.h

#ifndef PACKET_CONN_CLOSED
#define PACKET_CONN_CLOSED

#include "../include/packet.h"

#define c_conn_closed_packet_type 10
#define c_conn_closed_action_type 30
#define c_conn_closed_payload_len 256

class packet_conn_closed : public packet
{
public:
packet_conn_closed(u64 recv_id, u64 snd_id);

“packet_conn_closed() ;

void set_message(char* message);
char* get_message();

};

#endif

packet conn_closed.cpp

#include "stdafx.h"
#include "../include/packet_conn_closed.h"

[/ F ko kR kR R ok ok ok ko sk ok ok ok ok sk ok ok skok sk ok ok Kok KK K Kk ok

// Constructor

/ /% %k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o ok ok K K sk ok K Kk s ok Kk ok ok ok ok ok ok Kok ok ok KoK

packet_conn_closed: :packet_conn_closed(u64 recv_id, u64 snd_id)

: packet(c_conn_closed_packet_type, c_conn_closed_action_type, recv_id, snd_id)

{
v_payload = malloc(c_conn_closed_payload_len);
set_payload_len(c_conn_closed_payload_len) ;

}

230

B. Protocol source files

//***

// Deconstructor
I I ™

packet_conn_closed:: “packet_conn_closed()

{
free(v_payload) ;
}

/ /% %k sk ko ok ok sk ok ok Kok ok ok ok Kok o ok ok K K sk ok K K s ok Kk ok sk ok ok ok ok ok Kok ok ok KoK

// Get or set the error message
[/ FE Rk ko KR o koo K R K K K K K KK K K

void packet_conn_closed::set_message(char* message)

{
strncpy (((char*)v_payload), message, 255);

if (strlen(message) > 255)
((char*)v_payload) [255] = ’\0’;
}
char* packet_conn_closed: :get_message()
{
return (char*)v_payload;

}

packet conn denied.h
#ifndef PACKET_CONN_DENIED
#define PACKET_CONN_DENIED
#include "../include/packet.h"
#define c_conn_denied_packet_type 10
#define c_conn_denied_action_type 20
#define c_conn_denied_payload_len 256
class packet_conn_denied : public packet
{
public:
packet_conn_denied(u64 recv_id, u64 snd_id);
~“packet_conn_denied() ;
void set_message(char* message);
char* get_message();
}

#endif

packet conn denied.cpp

#include "stdafx.h"
#include "../include/packet_conn_denied.h"

231

B. Protocol source files

//***

// Constructor
[/ F ok ok ok kR kR R ok ok ok ko sk ok ok ok ok sk okok skok ok Kok Kok K KK K ok ok
packet_conn_denied: :packet_conn_denied(u64 recv_id, u64 snd_id)
: packet(c_conn_denied_packet_type, c_conn_denied_action_type, recv_id, snd_id)
{
v_payload = malloc(c_conn_denied_payload_len);
set_payload_len(c_conn_denied_payload_len) ;

}

/ /% %k ok sk ok ok ok ok sk ok ok Kok ok ok ok Kok o o ok ok K K sk ok K K s ok Kk ok ok ok ok ok ok Kok ok ok KoK

// Deconstructor
S I I ™

packet_conn_denied:: “packet_conn_denied()
{

free(v_payload) ;
}

/ /% %k ok sk ok ok ok ok sk ok ok Kok ok ok ok Kok o o ok ok K K sk ok K K s ok Kk ok ok ok ok ok ok Kok ok ok KoK

// Get or set the error message
/[F Rk ok ok ks ko ko ok ok ok sk sk ks sk sk ko ok sk sk ok ok sk ok ok sk ok ok ok ok ok

void packet_conn_denied::set_message(char* message)
{
strncpy (((char*)v_payload) , message, 255);

if (strlen(message) > 255)
((charx*)v_payload) [255] = ’\0’;
}
char* packet_conn_denied::get_message()
{
return (char*)v_payload;

}

packet conn granted.h

#ifndef PACKET_CONN_GRANTED
#define PACKET_CONN_GRANTED

#include "../include/packet.h"

#define c_conn_granted_packet_type 10

#define c_conn_granted_action_type 10

#define c_conn_granted_payload_len 308

class packet_conn_granted : public packet

{

public:
packet_conn_granted(u64 recv_id, u64 snd_id);
“packet_conn_granted() ;
void set_client_id(u64 client_id);

ub4 get_client_id();

232

B. Protocol source files

void set_server_id(u64 server_id);
ub4 get_server_id();

void set_video_size(u64 video_size);
u64 get_video_size();

void set_video_duration(u32 video_duration);
u32 get_video_duration();

void set_bb_total (ul6 number_of_bb);
ul6 get_bb_total();

void set_db_total (ul6 number_of_db);
ul6 get_db_total();

void set_db_size(ul6 size_of_db);
ul6 get_db_size();

void set_video_header_size(u32 video_header_size);
u32 get_video_header_size();

void set_recon_ca_size(ul6 recon_ca_size);
ul6 get_recon_ca_size();

void set_speed_low(ul6 speed_low);
ulé get_speed_low();

void set_speed_normal (ul6 speed_normal);
ul6 get_speed_normal();

void set_speed_high(ul6 speed_high);
ulé get_speed_high();

void set_sec_type(ul6é sec_type);
ul6 get_sec_type();

void set_skip_distance(u32 skip_distance);
u32 get_skip_distance();

void set_video_title(char* movie_title);
char* get_video_title();
1

#endif

packet conn granted.cpp

#include "stdafx.h"
#include "../include/packet_conn_granted.h"

[/ %k ks ook koo ks o ok koo stk sk o ko o ok sk o kol sk sk sk o ok ok ok ok
// Comstructor

233

B. Protocol source files

/[F ko ok ok ok ok ok R R ok ok ok ok ko sk ok ok ok ok sk ok ok okok kK ok Kok kK K

packet_conn_granted: :packet_conn_granted(u64 recv_id, u64 snd_id)
packet(c_conn_granted_packet_type, c_conn_granted_action_type, recv_id, snd_id)

{
v_payload = malloc(c_conn_granted_payload_len);
set_payload_len(c_conn_granted_payload_len);

}

/[%%k e ok ok ok ok ok sk ok ok Kok ok ok ok kK o sk ok K K sk ok K Kk ok Kok ok ok ok Kok ok ok Kok

// Deconstructor

/[%%k e ok ok ok ok ok sk ok ok Kok ok ok ok kK o sk ok K K sk ok K Kk ok Kok ok ok ok Kok ok ok Kok

packet_conn_granted::”packet_conn_granted()
free(v_payload) ;

[/ %k ks o ok ko ok ook sk o ok ok ok ok stk sk o sk o ok sk o sk sk sk sk o ok ok ok ok
// Get/set client id
[/ F Rk ok ok ks koo ko ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok o sk sk ok o sk ok ok
void packet_conn_granted::set_client_id(u64 client_id)
{

set_value_u6b4(client_id, v_payload, 0);
}
u64 packet_conn_granted::get_client_id()
{

return get_value_u64(v_payload, 0);
}

/[%%k e ok ok ok ok ok sk ok ok Kok ok ok ok koK o sk ok K Kk sk ok K Kk ok Kok ok ok ok Kok ok ok Kok

// Get/set server id
[/ %k ks o ok koo ook sk o ok ok koo stk sk o skok o ok sk o sk sk sk sk o ok ok ok ok

void packet_conn_granted::set_server_id(u64 server_id)
{
set_value_u64(server_id, v_payload, 8);
}
u64 packet_conn_granted::get_server_id()
{
return get_value_u64(v_payload, 8);
}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok kK o o sk ok K Kk sk ok K Kk ok Kok ok ok kKo ok ok Kok

// Get/set video length in bytes
[/% ks ok ok s sk ko sk sk ok sk sk sk sk ok s sk ok sk sk sk sk sk ok o sk ko sk s skok sk ok sk ok
void packet_conn_granted::set_video_size(u64 video_size)
{
set_value_u64(video_size, v_payload, 16);
}
u64 packet_conn_granted::get_video_size()
{
return get_value_u64(v_payload, 16);
}

//***

// Get/set video duration in msec
[/ %k ks ook koo ks o ok koo otk sk o skok o ok sk ok ok sk sk sk o ok ok ok ok

void packet_conn_granted::set_video_duration(u32 video_duration)

234

B. Protocol source files

{
set_value_u32(video_duration, v_payload, 24);
}
u32 packet_conn_granted::get_video_duration()
{
return get_value_u32(v_payload, 24);
}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok koK o sk ok K Kk sk ok K Kk ok Kok ok ok ok Kok ok ok Ko K

// Get/set total number of bb in the video
[/ %k ks o ok ko ok ks o ok sk kb ko sk o skok o ok sk o ok sk ok sk o ok ok ok ok

void packet_conn_granted::set_bb_total(u16 number_of_bb)
{
set_value_ul6 (number_of_bb, v_payload, 28);

}
ul6 packet_conn_granted::get_bb_total()
{

return get_value_ul6(v_payload, 28);
}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o sk ok K Kk s ok K Kk ok Kok ok ok ok Kok ok ok Kk K

// Get/set total number of db in the video
[/ %k ks o ok koo ks o ok koo ko sk ok sk o ok sk o ok sk sk sk o ok ok ok ok

void packet_conn_granted::set_db_total(u16 number_of_db)
{
set_value_ul6 (number_of_db, v_payload, 30);

}
ul6 packet_conn_granted::get_db_total()
{

return get_value_ul6(v_payload, 30);
}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o sk ok K K sk ok K Kk ok Kok ok ok ok Kok ok ok Kok

// Get/set the size of the db (bytes)
[/ F KK AR A KA AR A KA KA K AR KK KK KK KK KK KK oK ok K

void packet_conn_granted::set_db_size(u16 size_of_db)
{
set_value_ul6(size_of_db, v_payload, 32);

}
ul6 packet_conn_granted::get_db_size()
{

return get_value_ul6(v_payload, 32);
}

[[%3k sk ok ok sk ok ko ko ok sk sk ok ok skok sk sk ok sk sk sk ok sk sk ok ok ok ok o sk ok ok ok

// Get/set the video_header_size, the DBs needed

// before playback can begin duing startup and skip

[[F ks sk ok sk ok sk ok ko ko ok sk sk ok ok skok sk sk ok sk sk sk ok sk sk ok ok sk ok ok o sk ok ok ok

void packet_conn_granted::set_video_header_size(u32 video_header_size)
{

set_value_u32(video_header_size, v_payload, 34);

}
u32 packet_conn_granted::get_video_header_size()
{
return get_value_u32(v_payload, 34);
}

235

B. Protocol source files

//***

// Get or set the recommended ca size
[/ %k ks o ok koo ks o ok sk ok ok stk sk o ko o ok sk o ok sk sk sk sk o ok ok ok ok

void packet_conn_granted::set_recon_ca_size(ul6 recon_ca_size)
{

set_value_ul6(recon_ca_size, v_payload, 38);

}
ul6 packet_conn_granted::get_recon_ca_size()
{
return get_value_ul6(v_payload, 38);
}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o o sk ok K K sk ok K Kk ok Kok ok ok ok Kok ok ok Kk

// Get or set the rate of the low speed level
[/ F Rk ok ok sk sk ook ko ok ok sk sk kok ok sk sk ok ok sk sk ok ok sk sk ok o sk sk ok o sk ok ok

void packet_conn_granted::set_speed_low(uls speed_low)
{
set_value_ul6(speed_low, v_payload, 40);

}
ul6 packet_conn_granted::get_speed_low()
{

return get_value_ul6(v_payload, 40);
}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o o sk ok K Kk sk ok K Kk ok Kok ok ok ok Kok ok ok Kok K

// Get or set the rate of the normal speed level
[/ F ko ok ok ks ok ko ok ok sk sk kok ok sk sk ok ok sk sk koo sk sk ok o sk sk ok o sk ok ok

void packet_conn_granted::set_speed_normal(uls speed_normal)
{

set_value_ul6(speed_normal, v_payload, 42);

}
ul6 packet_conn_granted::get_speed_normal()
{
return get_value_ul6(v_payload, 42);
}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o o sk ok K Kk sk ok K Kk ok Kok ok ok ok Kok ok ok Kok K

// Get or set the rate of the high speed level
[/ F Rk ok ok sk sk ook ko ok ok sk sk kok ok sk sk ok ok sk sk ok ok sk sk ok o sk sk ok o sk ok ok

void packet_conn_granted: :set_speed_high(ul6 speed_high)
{
set_value_ul6(speed_high, v_payload, 44);

}
ul6 packet_conn_granted::get_speed_high()
{
return get_value_ul6(v_payload, 44);
}

/[%%k ok sk ok ok ok ok sk ok ok Kok ok ok ok Kok o sk ok K Kk sk ok K Kk ok Kk ok ok ok Kok ok ok Ko K

// Get or set the security mechanisms type
[/ FHEFAAF A F A A KA A A A KA A KA A KA KA K KA KA A KA A KA KA F A KKK

void packet_conn_granted::set_sec_type(ul6 sec_type)
{
set_value_ul6(sec_type, v_payload, 46);
}
ul6 packet_conn_granted::get_sec_type()

236

B. Protocol source files

{
return get_value_ul6(v_payload, 46);
}

//***

// Get or set the skip distance
[/ F Rk ok ok ks koo ko ok ok ks ok ok sk sk kok ok sk sk ok okok sk sk ok o sk sk ok o sk ok ok

void packet_conn_granted::set_skip_distance(u32 skip_distance)
{
set_value_u32(skip_distance, v_payload, 48);

}
u32 packet_conn_granted::get_skip_distance()
{
return get_value_u32(v_payload, 48);
}

/[%%k ok sk ok ok ok ok sk ok ok Kok ok ok ok Kok o sk ok K K s ok K Kk ok Kok ok ok ok Kok ok ok K K

// Get or set the video title
[/ F ko ok ok ks ook ko ok ok ok sk kok ok sk sk ok sk sk ok sk sk ok o sk sk ok o sk ok ok

void packet_conn_granted::set_video_title(char* movie_title)
{
strncpy (& (((char*)v_payload) [562]), movie_title, 256);

if (strlen(movie_title) > 256)
((char*)v_payload) [(52 + 256)] = ’\0’;

}
char* packet_conn_granted::get_video_title()
{
return &(((char*)v_payload) [52]);
}

packet conn req.h
#ifndef PACKET_CONN_REQ
#define PACKET_CONN_REQ
#include "../include/packet.h"
#define c_conn_req_packet_type 40
#define c_conn_req_action_type 10
#define c_conn_req_payload_len 140
class packet_conn_req : public packet
{

public:

packet_conn_req(u64 recv_id, u64 snd_id);

~packet_conn_req() ;

void set_ccp_port(ul6é ccp_port);
ulé get_ccp_port();

void set_dcp_port(ul6é dcp_port);
ulé get_dcp_port();

237

B. Protocol source files

void set_video_id(u64 video_id);
u64 get_video_id();

void set_username (char* username) ;
char* get_username();

void set_password(char* password) ;
char* get_password();

};

#endif

packet conn_req.cpp

#include "stdafx.h"
#include "../include/packet_conn_req.h"

/[F ko ok ok ok ok ok ok ok ok ok ok ok ko sk ok ok ok ok sk ok ok ok ok Kk koK Kok K K K

// Comstructor

/[F kR Rk kR R ok ok ok ok ok sk ok ok ok ok sk ok ok Kok k koK Kok K K K

packet_conn_req: :packet_conn_req(u64 recv_id, u64 snd_id)

: packet(c_conn_req_packet_type, c_conn_req_action_type, recv_id, snd_id)

{
v_payload = malloc(c_conn_req_payload_len);
set_payload_len(c_conn_req_payload_len);

}

[/ %k ks ok ok koo ks o ok sk ok sk ko sk o skok o ok sk o ok sk sk sk o ko ok ok ok
// deconstructor
/[F Rk ok ok ks ok sk ok ok ok sk sk ok ok sk sk kok ok sk sk ok sk sk ok o sk ok o sk ok ok
packet_conn_req: : “packet_conn_req()

free(v_payload) ;

[/AR A R Kk KKK oK ook oK oK oK K o K oK oK oK o KK KK K K oK Ko K ok ook ook o oK
// get or set the CCP port
[/AR K Kk KKK oK oK oK oK oK K o KoK oK K oK KK KK K K oK Ko K ok ook ook o oK
void packet_conn_req::set_ccp_port(ulé ccp_port)
{
set_value_ul6(ccp_port, v_payload, 0);
}
ul6 packet_conn_req:: get_ccp_port()
{
return get_value_ul6(v_payload, 0);
}

/[%%k ok sk ok ok ok ok sk ok ok Kok ok ok ok kK o sk ok K Kk ok K Kk ok Kok ok ok kK ok ok kK K

// get or set the DCP port
[/ FFF AR kAR AR AR KO Koo KK ok KooK K o koK ok ok ok K

void packet_conn_req::set_dcp_port(ul6 dcp_port)
{
set_value_ul6(dcp_port, v_payload, 2);

238

B. Protocol source files

}
ul6 packet_conn_req::get_dcp_port()
{
return get_value_ul6(v_payload, 2);
}

[/ F KA FA A A A F A A KA A A A KA K KA KA KA K KA KA A KA KA KA KA KKK

// get or set the video id

[/ F KA AR A KA A A KA KA K AR KK KKK KK KKK KK KK oK ok K

void packet_conn_req::set_video_id(u64 video_id)
set_value_u64(video_id, v_payload, 4);

}
u64 packet_conn_req::get_video_id()
{
return get_value_u64(v_payload, 4);
}

[/ sk sk ok sk ke sk sk sk s ok sk ke sk sk sk sk s ok sk ok sk sk ok sk sk ke sk sk s ok sk ok kok sk
// get or set the username

[/ %ok koo ok ko sk ko ksl ok stk stk sk sk ok ksl skok ok sk ok sk sk sk ok sk sk sk ok
void packet_conn_req::set_username (char* username)

{
strncpy (& (((char*)v_payload) [12]), username, 64);

if (strlen(username) > 64)
((char*)v_payload) [(12 + 64)] = >\0’;

}
char* packet_conn_req::get_username ()
{
return &(((char*)v_payload) [12]);
}

[/ sk ks ok sk ok sk sk sk sk ok sk ke sk sk sk sk s ok sk ok sk sk ok sk skl ke sk sk ok sk ok ok sk ok

// get or set the password

[/ %ok koo ok okt sk sk ko ksl ok sk stk ok sk ok ksl ko ok sk ok sk sk sk ok sk sk sk ok

void packet_conn_req::set_password(char* password)
strncpy (& (((char*)v_payload) [76]), password, 64);

if (strlen(password) > 64)
((char*)v_payload) [(76 + 64)] = >\0’;

}
char* packet_conn_req::get_password()
{
return &(((char*)v_payload) [76]);
}

packet.h

#ifndef PACKET
#define PACKET

#include <string.h>

239

B. Protocol source files

//#include "winsock2.h"

#include <stdlib.h>

#include <iostream>

#include "../include/types.h"

#include "../include/global_functions.h"
#define c_header_len 28

class packet {

protected:
void* v_header;

void* v_payload;
u32 v_payload_len;

void* v_payload_data;
u32 v_payload_data_len;

system_time v_create_time;

void set_value_u64(u64 value, void* target, int pos);
u64 get_value_u64(void* source, int pos);

void set_value_u32(u32 value, void* target, int pos);
u32 get_value_u32(void* source, int pos);

void set_value_ul6(ul6é value, void* target, int pos);
ul6 get_value_ul6(void* source, int pos);

void set_value_u8(u8 value, void* target, int pos);
u8 get_value_u8(void* source, int pos);

void set_value_s32(s32 value, void* target, int pos);
s32 get_value_s32(void* source, int pos);

public:
packet(ul6 packet_type, ul6 action_type, ub4 recv_id, u64 snd_id);

packet (void* header, void* payload, u32 payload_len, void* payload_data, u32 payload_data_len);
packet (void* header) ;
~“packet () ;

u8 get_packet_type();
u8 get_action_type();

void* get_header();

void set_payload(void* payload, u32 payload_len);
void* get_payload();

void set_payload_len(u32 payload_len);
u32 get_payload_len();

void set_payload_data(void* payload_data, u32 payload_data_len);

240

B. Protocol source files

void* get_payload_data();

void set_payload_data_len(u32 payload_data_len);
u32 get_payload_data_len();

long wait_time_usec();
void print();

unsigned int get_size();
u64 get_recv_client_id();

u64 get_snd_client_id();

// 01d client_struct_addr
u64 client_ip;
ul6 client_DCP_port;
ul6 client_CCP_port;
ub4 client_id;
SOCKET sd;
};

#endif

packet.cpp

#include "stdafx.h"
#include "../include/packet.h"

packet::packet (ul6 packet_type, ul6 action_type, u64 recv_id, u64 snd_id)
{

v_create_time.sec = 0;

v_create_time.msec = 0;

get_system_time (&v_create_time);
v_header = malloc(c_header_len);

v_payload_len = 0;
v_payload_data_len = 0;

set_value_u8(1, v_header, 0); // Version number
set_value_u8(0, v_header, 1); // Option
set_value_u8(packet_type, v_header, 2); // Packet type
set_value_u8(action_type, v_header, 3); // Action type
set_value_u32(0, v_header, 4); // payload size
set_value_u32(0, v_header, 8); // payload_data size
set_value_u64(recv_id, v_header, 12);
set_value_u64(snd_id, v_header, 20);

packet: :packet (void* header,

241

B. Protocol source files

void* payload,

u32 payload_len,
void* payload_data,
u32 payload_data_len)

{
v_create_time.sec = 0;
v_create_time.msec = 0;
get_system_time (&v_create_time) ;
v_header = header;
v_payload = payload;
v_payload_len = payload_len;
v_payload_data = payload_data;
v_payload_data_len = payload_data_len;

}

packet: :packet (void* header)

{
v_create_time.sec = 0;
v_create_time.msec = 0;
get_system_time (&v_create_time);
v_header = header;
v_payload_len = 0;
v_payload_data_len = 0;

}

// Deconstructor
packet: : “packet ()
{

free(v_header) ;

}

void* packet::get_header()
{
return v_header;

}

u8 packet::get_packet_type ()
{
return get_value_u8(v_header, 2);

}

u8 packet::get_action_type()
{
return get_value_u8(v_header, 3);

}

242

B. Protocol source files

// set/get payload
void packet::set_payload(void* payload, u32 payload_len)
{

v_payload = payload;

set_payload_len(payload_len);

}
void* packet::get_payload()
{
return v_payload;
}

// set/get payload len
void packet::set_payload_len(u32 payload_len)

{
v_payload_len = payload_len;
set_value_u32(v_payload_len, v_header, 4); // payload size
}
u32 packet::get_payload_len()
{
return get_value_u32(v_header, 4);
}

// set/get payload data
void packet::set_payload_data(void* payload_data, u32 payload_data_len)
{
v_payload_data = payload_data;
set_payload_data_len(payload_data_len);

}
void* packet::get_payload_data()
{
return v_payload_data;
}

// set/get payload_data len

void packet::set_payload_data_len(u32 payload_data_len)

{
v_payload_data_len = payload_data_len;
set_value_u32(v_payload_data_len, v_header, 8); // payload data size

}
u32 packet::get_payload_data_len()
{
return get_value_u32(v_header, 8);
}

// Get and set 8 byte
void packet::set_value_u64(u64 value, void* target, int pos)

{
* ((u64*) & (((charx)target) [pos])) = htonl(value);

243

B. Protocol source files

if(sizeof (u64) == 4)
* ((u64*) & (((charx)target) [(pos+4)])) = 0;

u64 packet::get_value_u64(void* source, int pos)
{

return ntohl (*((u64%*) (&((char#*)source) [pos])));
}

// Get and set 4 byte (unsigned int)
void packet::set_value_u32(u32 value, void* target, int pos)
{
* ((u32%) & (((charx)target) [pos])) = htonl(value);
1

unsigned int packet::get_value_u32(void* source, int pos)
{

return ntohl (*((u32%*) (&((char#*)source) [pos])));
¥

// Get and set 2 byte (unsigned short)
void packet::set_value_ul6(ul6é value, void* target, int pos)
{
* ((u16%) (& ((charx)target) [pos])) = htons(value);
}

ul6é packet::get_value_ul6(void* source, int pos)
{

return ntohs(*((ul6*) (&((char#*)source) [pos])));
¥

// Get and set 1 byte (unsigned short)
void packet::set_value_u8(u8 value, void* target, int pos)
{
((char*)target) [pos] = (char)value;
}

u8 packet::get_value_u8(void* source, int pos)
{
return (u8) (((char*)source) [pos]);

}

// Get and set 4 byte (int)
void packet::set_value_s32(s32 value, void* target, int pos)

{
* ((s32%) (&((char*)target) [pos])) = htonl(value);
}

532 packet::get_value_s32(void* source, int pos)

{
return ntohl (*((s32%) (&((char*)source) [pos])));
}

244

B. Protocol source files

// Print function
void packet::print()

{
std::cout << "Header length: " << c_header_len << std::endl;
for(unsigned int i = 0; i < c_header_len; i++)
std::cout << (int) ((char*)v_header) [i] << std::endl;
std::cout << std::endl;
std::cout << "Payload length: " << v_payload_len << std::endl;
for(unsigned int i = 0; i < v_payload_len; i++)
std::cout << (int) ((char*)v_payload) [i] << std::endl;
std::cout << std::endl;
std::cout << "Payload data length: " << v_payload_data_len << std::endl;
for(unsigned int i = 0; i < v_payload_data_len; i++)
std::cout << (int) ((char*)v_payload_data)[i] << std::endl;
}

long packet::wait_time_usec()

{
system_time current_time = {0,0};
get_system_time (¤t_time) ;
long result = ((v_create_time.sec - current_time.sec) * 1000) +
(v_create_time.msec - current_time.msec);
if (result > 600000000 && result < 0)
result = -1;
return result;
}

unsigned int packet::get_size()
{

return (c_header_len + (unsigned int)v_payload_len + (unsigned int)v_payload_data_len);

}

u64 packet::get_recv_client_id()
{

return get_value_u64(v_header, 10);

}

u64 packet::get_snd_client_id()
{

return get_value_u64(v_header, 18);

}

245

B. Protocol source files

packet data.h

#ifndef PACKET_DATA
#define PACKET_DATA

#include "../include/packet.h"

#define c_data_packet_type 50
#define c_data_action_type 10
#define c_data_payload_len 5

class packet_data : public packet
{
public:
packet_data(u64 recv_id, u64 snd_id);

~packet_data();

void set_bb(ul6é bb);
ul6 get_bb();

void set_db(ulé db);
ul6 get_db();

void set_speed_level (u8 speed_level);
u8 get_speed_level();

void set_data(void* data, int len);
void* get_data(int &len);
1

#endif

packet data.cpp

#include "stdafx.h"
#include "../include/packet_data.h"

//***

// comstructor
[/ F ko ok ok ks koo sk ok ok ok sk sk ok ok sk sk ok ok sk sk koo sk sk ok o sk sk ok o sk ok ok

packet_data: :packet_data(u64 recv_id, u64 snd_id)

: packet(c_data_packet_type, c_data_action_type, recv_id,

{
v_payload = malloc(c_data_payload_len);
set_payload_len(c_data_payload_len) ;

}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o sk ok K Kk s ok K Kk ok Kok ok ok ok Kok ok ok Kk K

// deconstructor
/[F ko ok ok sk sk ook ko ok ok sk sk kok ok sk sk kok ok sk sk ok sk sk ok o sk sk ok o sk ok ok

packet_data: : “packet_data()
{

246

snd_id)

B. Protocol source files

free(v_payload) ;
}

[/ FHEFAAFAAFA A KA A KA K KA KK A KA KKK KA KA A KA A KA KA KKK KK
// Get or set the bb number

[/ F KK AR AR A A A KA KA K K KK KK KK KK KK KK oK ok K
void packet_data::set_bb(ulé bb)

{
set_value_ul6(bb, v_payload, 0);
}
ul6 packet_data::get_bb()
{
return get_value_ul6(v_payload, 0);
}

[/ F KA FAAF A F A A KA A A A KA K KA KA KA K KA KA A KA KA KA KA KKK
// Get or set the db number

[/ F KA A AR A KA AR A AR A KA KA K AR KK KKK KK KKK KK KK oK o ok K
void packet_data::set_db(ulé db)

{
set_value_ul6(db, v_payload, 2);
}
ul6 packet_data::get_db()
{
return get_value_ul6(v_payload, 2);
}

[/AR A Rk Kk KKK oK KoK K oK K o K oK oK K K KK KK K K oK Ko K ok ook ook o K
// Get or set the speed level
[/% ok ok ks K s ok ko R s R K K K K R SR K S Ko K o K K K Ko oK
void packet_data::set_speed_level(u8 speed_level)
{
set_value_u8(speed_level, v_payload, 4);
}
u8 packet_data::get_speed_level()
{
return get_value_u8(v_payload, 4);

}

[/ %Ak ks ook koo ok sk o ok ok ok sk stk sk o sk o ok sk ok ok sk sk sk o ok ok ok ok
// Get or set the video data
/[F Rk ok ok ks ok ko ok ok ks kok ok sk sk kok o sk sk ok ok sk sk ok o sk ok o sk ok ok
void packet_data::set_data(void* data, int len)
{
set_payload_data(data, (u32)len);
}
void* packet_data::get_data(int &len)
{
len = get_payload_data_len();
return get_payload_data();
}

247

B. Protocol source files

packet disconn.h
#ifndef PACKET_DISCONN

#define PACKET_DISCONN

#include "../include/packet.h"
#define c_disconn_packet_type 40
#define c_disconn_action_type 70

#define c_disconn_payload_len 0O

class packet_disconn : public packet

{

public:
packet_disconn(u64 recv_id, u64 snd_id);
~packet_disconn();

1

#endif

packet disconn.cpp

#include "stdafx.h"
#include "../include/packet_disconn.h"

//***

// Constructor
[/ %ok koo ks ko sk sk ksl ok stk ok skok sk sk ok sk skok ok sk ok sk sk sk ok sk sk sk ok
packet_disconn: :packet_disconn(u64 recv_id, u64 snd_id)
: packet(c_disconn_packet_type, c_disconn_action_type, recv_id, snd_id)
{
set_payload_len(c_disconn_payload_len);

}

//***

// Deconstructor
[/ F ko ok ok ks ok ko ok ok ok sk kok ok sk sk kok ok sk sk ok sk sk ok o sk sk ok o sk ok ok

packet_disconn:: “packet_disconn()
{

free(v_payload) ;
}

packet end of data.h

#ifndef PACKET_END_OF_DATA
#define PACKET_END_OF_DATA

248

B. Protocol source files

#include "../include/packet.h"

#define c_end_of_data_packet_type 50
#define c_end_of_data_action_type 30
#define c_end_of_data_payload_len 0O

class packet_end_of_data : public packet

{

public:
packet_end_of_data(u64 recv_id, u64 snd_id);
“packet_end_of_data() ;

1

#endif

packet end of data.cpp

#include "stdafx.h"
#include "../include/packet_end_of_data.h"

//***

// Constructor
[/ sk sk ks ok sk ke sk sk sk s ok sk ke sk sk sk sk s ok sk ok sk sk ok sk sk ke sk sk sk sk ok ok ok sk
packet_end_of_data::packet_end_of_data(u64 recv_id, u64 snd_id)
: packet(c_end_of_data_packet_type, c_end_of_data_action_type, recv_id, snd_id)
{

set_payload_len(c_end_of_data_payload_len);
}

//***

// Deconstructor
[/ F ko ok ok sk sk ook ko ok ook sk sk kok ok sk sk kok ok sk sk koo sk sk ok o sk sk ok o sk ok ok

packet_end_of_data::“packet_end_of_data()
{

packet interact pause.h
#ifndef PACKET_INTERACT_PAUSE

#define PACKET_INTERACT_PAUSE

#include "../include/packet.h"

#define c_interact_pause_packet_type 40
#define c_interact_pause_action_type 30

#define c_interact_pause_payload_len 2

class packet_interact_pause : public packet

{

249

B. Protocol source files

public:
packet_interact_pause(u64 recv_id, u64 snd_id);

~packet_interact_pause();

void set_play_block(ul6 play_block);
ul6 get_play_block();
s

#endif

packet interact pause.cpp

#include "stdafx.h"
#include "../include/packet_interact_pause.h"

/[%%k ok ok ok ok ok sk ok ok Kok ok ok ok Kk o o ok ok K Kk s ok K Kk ok Kk ok ok ok Kok ok ok Kok

// Constructor
/[F ok ok ok kR kR ok ok ok ok ko sk ok ok ok ok sk ok ok Kok k koK Kok K K K
packet_interact_pause::packet_interact_pause(u64 recv_id, u64 snd_id)
: packet(c_interact_pause_packet_type, c_interact_pause_action_type, recv_id, snd_id)
{
v_payload = malloc(c_interact_pause_payload_len);
set_payload_len(c_interact_pause_payload_len);

}

//***

// Deconstructor
[/ %k ks ook koo ook o ok sk koo ko sk o sk o ok sk ok sk sk sk sk o ok ok ok ok

packet_interact_pause::~packet_interact_pause()
{

free(v_payload) ;
X

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o sk ok K Kk sk ok K Kk ok Kk ok ok ok Kok ok ok Kok K

// Get or set the play block
[/ F KA FA A A A F A A KA A A A KA KA A KA KA K KA KA A KA KA KA KA KKK

void packet_interact_pause::set_play_block(ul6 play_block)

{

set_value_ul6(play_block, v_payload, 0);
}
ul6 packet_interact_pause::get_play_block()
{

return get_value_ul6(v_payload, 0);
}

packet interact pause stream.h

#ifndef PACKET_INTERACT_PAUSE_STREAM
#define PACKET_INTERACT_PAUSE_STREAM

250

B. Protocol source files

#include "../include/packet.h"
#define c_interact_pause_stream_packet_type 40
#define c_interact_pause_stream_action_type 40

#define c_interact_pause_stream_payload_len 0O

class packet_interact_pause_stream : public packet

{

public:
packet_interact_pause_stream(u64 recv_id, u64 snd_id);
“packet_interact_pause_stream() ;

};

#endif

packet interact pause stream.cpp

#include "stdafx.h"
#include "../include/packet_interact_pause_stream.h"

/[%%k ok ok ok ok ok sk ok ok Kok ok ok ok kK o ok ok K Kk sk ok K Kk ok Kok ok ok ok Kok ok ok Kok K

// Constructor
[/ F kR kR ok kR ok ok ok ok ko sk ok ok ok ok sk ok ok okok K Kok Kok K K K K
packet_interact_pause_stream::packet_interact_pause_stream(u64 recv_id, u64 snd_id)
: packet(c_interact_pause_stream_packet_type, c_interact_pause_stream_action_type, recv_id, snd_id)
{

set_payload_len(c_interact_pause_stream_payload_len);

}

/[%%k ok sk ok ok ok ok sk ok ok Kok ok ok ok Kok o sk ok K K sk ok K Kk ok Kok ok ok ok Kok ok ok Kok K

// Deconstructor
[/ F ko ok ok ks ok ko ok ok ok sk kok ok sk sk kok ok sk sk ok sk sk ok o sk sk ok o sk ok ok

packet_interact_pause_stream::”packet_interact_pause_stream()
{

free(v_payload) ;
}

packet interact resume.h
#ifndef PACKET_INTERACT_RESUME
#define PACKET_INTERACT_RESUME
#include "../include/packet.h"
#define c_interact_resume_packet_type 40

#define c_interact_resume_action_type 50
#define c_interact_resume_payload_len 2

251

B. Protocol source files

class packet_interact_resume : public packet
{
public:
packet_interact_resume(u64 recv_id, u64 snd_id);

“packet_interact_resume();

void set_target_block(ul6 target_block);
ul6 get_target_block();
};

#endif

packet interact resume.cpp

#include "stdafx.h"
#include "../include/packet_interact_resume.h"

[/ R R K K K K K K K K K K K Kk ok ok s sk ok ok ok ok sk ok ok ok K KoK KoK K KK K
// Constructor
[[F ko ko ok Rk R R ok ok ok ok ko sk ok ok ok ok sk ok ok ok ok K Kok Kok K K K
packet_interact_resume::packet_interact_resume(u64 recv_id, u64 snd_id)
: packet(c_interact_resume_packet_type, c_interact_resume_action_type, recv_id, snd_id)
{
v_payload = malloc(c_interact_resume_payload_len);
set_payload_len(c_interact_resume_payload_len);

}

[/ sk sk ks ok sk ke sk sk sk s ok sk ke sk sk sk sk s ok sk ok sk sk ok sk sk ke sk sk ok sk ok kok ok

// Deconstructor

[/ %ok koo ok ko sk ko ksl ok sk stk ok sk ok ksl skok ok sk ok sk sk ok sk sk sk ok

packet_interact_resume::~packet_interact_resume ()
free(v_payload) ;

/] %%k ok sk ok ok Kok ok ok ok ok sk ok ok o ok sk kok sk ok o ok Kok sk ok ok o ok Kk ok ok ok ok o K
// Get or set the target block
[/ % H Aok ok sk ok ok ok ok ok ok o Kok ok sk ok ok ok sk ok kok o ok ok o Kok ok ok ok Kok ok ok ok
void packet_interact_resume::set_target_block(u16 target_block)
{

set_value_ul6(target_block, v_payload, 0);
}
ul6 packet_interact_resume::get_target_block()
{

return get_value_ul6(v_payload, 0);
}

252

B. Protocol source files

packet interact skip.h

#ifndef PACKET_INTERACT_SKIP
#define PACKET_INTERACT_SKIP

#include "../include/packet.h"

#define c_interact_skip_packet_type 40
#define c_interact_skip_action_type 60
#define c_interact_skip_payload_len 2

class packet_interact_skip : public packet

{
public:
packet_interact_skip(u64 recv_id, u64 snd_id);

~packet_interact_skip();

void set_target_block(ul6 target_block);
ul6 get_target_block();
s

#endif

packet interact skip.cpp

#include "stdafx.h"
#include "../include/packet_interact_skip.h"

[[F ok kR kR kR ok ok ok ok ko sk ok ok ok ok sk ok ok Kok kK ok Kok K K K K
// Constructor
/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o o sk ok K Kk sk ok K Kk ok Kok ok ok ok Kok ok ok Kok K
packet_interact_skip::packet_interact_skip(u64 recv_id, u64 snd_id)
: packet(c_interact_skip_packet_type, c_interact_skip_action_type, recv_id, snd_id)
{
v_payload = malloc(c_interact_skip_payload_len);
set_payload_len(c_interact_skip_payload_len);
}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kk o o sk ok K Kk s ok K Kk ok Kk ok ok ok Kok ok ok Kok K

// Deconstructor
[/ F Rk ok ok ks koo ko ok ok ks ok ok sk sk kok ok sk sk ok okok sk sk ok o sk sk ok o sk ok ok
packet_interact_skip::~packet_interact_skip()
{
free(v_payload) ;
}

//***

// Get or set the target block
[/ F ko ok ok ks koo sk ok ok ok sk sk ok ok sk sk ok ok sk sk kokok sk sk ok o sk sk ok o sk ok ok

void packet_interact_skip::set_target_block(ul6 target_block)
{
set_value_ul6(target_block, v_payload, 0);

253

B. Protocol source files

}
ul6 packet_interact_skip::get_target_block()
{
return get_value_ul6(v_payload, 0);
}

packet no data.h

#ifndef PACKET_NO_DATA
#define PACKET_NO_DATA

#include "../include/packet.h"
#define c_no_data_packet_type 50
#define c_no_data_action_type 20
#define c_no_data_payload_len 8
class packet_no_data : public packet
{
public:
packet_no_data(u64 recv_id, u64 snd_id);

~packet_no_data();

void set_req_block_bb(ul6é bb);
ulé get_req_block_bb();

void set_req_block_db(ul6 db);
ulé get_req_block_db();

void set_next_block_bb(ul6 bb);
ul6 get_next_block_bb();

void set_next_block_db(ul6 db);
ul6 get_next_block_db();

};

#endif

packet no data.cpp

#include "stdafx.h"
#include "../include/packet_no_data.h"

/[%%k sk ok ok ok ok ok ok ok Kok ok ok ok Kok o sk ok K Kk sk ok K Kk ok Kok ok ok ok Kok ok ok Ko K

// Constructor
[/ %Rk ks o ok koo ks o ok sk koo ko sk o ko o ok sk o ok sk sk sk sk o ok ok ok ok

packet_no_data: :packet_no_data(u64 recv_id, u64 snd_id)
: packet(c_no_data_packet_type, c_no_data_action_type, recv_id, snd_id)

254

B. Protocol source files

{
v_payload = malloc(c_no_data_payload_len);
set_payload_len(c_no_data_payload_len);

}

[/ %k ks ok ok koo ks o ok ok koo stk sk o ko o ok sk o ok sk sk sk o ok ok ok ok
// Deconstructor
[/ %k ks ook ko ok ks o ok sk ok sk stk sk o sk o ok sk o ok sk sk sk o ko ok ok ok
packet_no_data::“packet_no_data()

free(v_payload) ;

[/ %k ks ok ok koo ks o ok ok koo stk sk o ko o ok sk o ok sk sk sk o ok ok ok ok
// Get or set the request bb
[/ F ko ok ok ks ook ok ko ok ok sk sk ok ok sk sk kok ok sk sk ok ok sk sk ok o sk sk ok o sk ok ok
void packet_no_data::set_req_block_bb(ul6 bb)
{

set_value_ul6(bb, v_payload, 0);

}
ul6 packet_no_data::get_req_block_bb()
{

return get_value_ul6(v_payload, 0);
}

[/ %k ks o ok koo ok sk o ok ok ok sk ko sk o skok o ok sk o ok sk sk sk o ok ok ok ok
// Get or set the request db
/[F Rk ok ok ks ook sk ok ok ok sk sk kok o sk sk ok sk sk ok ok sk sk ok o sk sk ok o sk ok ok
void packet_no_data::set_req_block_db(ul6 db)
{

set_value_ul6(db, v_payload, 2);

}
ul6 packet_no_data::get_req_block_db()
{

return get_value_ul6(v_payload, 2);
}

[/ %Ak ks ook koo ks o ok sk koo ko sk o skok o ok sk o sk ok sk sk o ko ok ok ok

// Get or set the next bb

[/ F Rk ok ok ks koo ko ok ok ook sk kok ok sk sk kok ok sk sk ok o sk sk ok o sk sk ok o sk ok ok

void packet_no_data::set_next_block_bb(ul6 bb)
set_value_ul6(bb, v_payload, 4);

}
ul6 packet_no_data::get_next_block_bb()
{

return get_value_ul6(v_payload, 4);
}

/[%%k sk ok ok ok ok sk ok ok ok ok ok ok kK o o ok ok K Kk sk ok K Kk ok Kk ok ok ok Kok ok ok Kok K

// Get or set the next db
[/ F ko ok ok ks ok ko ok ok sk sk kok ok sk sk kok ok sk sk kok o sk sk ok o sk sk ok o sk ok ok
void packet_no_data::set_next_block_db(ul6é db)
{
set_value_ul6(db, v_payload, 6);
}
ul6 packet_no_data::get_next_block_db()

255

B. Protocol source files

{
return get_value_ul6(v_payload, 6);
}

packet queue.h

#ifndef PACKET_QUEUE
#define PACKET_QUEUE

#include <queue>
#include "../include/packet.h"
#include "../include/vod_exception.h"

using namespace std;
class packet_queue {

private:
int foo;

queue<packet*> v_queue;
unsigned int v_max_size;
unsigned int v_used_space;
HANDLE v_mutex;

HANDLE v_semaphore;

public:

packet_queue (unsigned int max_size);
void insert_packet(packet* p);
packet* get_next_packet();

s

#endif

packet queue.cpp

#include "stdafx.h"
#include "../include/packet_queue.h"

[/ %3k sk ok ok ko ook ok ok ok oksk ok ok sk ok kb sk sk ok sk ok o ok ok ok ok ok
// Constructor
[/ %3k sk ok ok ko ook ok ok ok oksk ok ok sk ok kb sk sk ok sk ok o ok ok ok ok ok
packet_queue: :packet_queue (unsigned int max_size)
{

v_max_size = max_size;

v_used_space = 0;

v_mutex = CreateMutex(NULL, false, NULL);
v_semaphore = CreateSemaphore(NULL, O, 100000, NULL);
}

256

B. Protocol source files

/[%%k ok ok ok ok ok ok sk ok ok Kok ok ok ok koK o o sk ok K Kk sk ok K Kk ok Kok ok ok ok Kok ok ok Kk K

// Insert a packet into queue
[/ FHEFA A A A F A A KA A A A KA KA AR KA KA K KA KA A KA KA KA F A KKK

void packet_queue::insert_packet (packet* p)

{
DWORD wait_result = WaitForSingleObject(v_mutex, INFINITE);
if (wait_result == WAIT_OBJECT_O) {
if(v_max_size < v_used_space + p->get_size()) {
System: :Diagnostics: :Debug: :WriteLine ("Packet queue is full.");
}
else {
v_queue.push(p) ;
v_used_space += p->get_size();
}
}
ReleaseMutex (v_mutex) ;
ReleaseSemaphore (v_semaphore, 1, NULL);
}

/[%%k ok ok ok ok ok sk ok ok Kok sk ok ok koK o o sk ok K Kk sk ok K Kk ok Kok ok ok ok Kok ok ok Kok K

// Get the next packet awaiting in queue
[/ F KA AR A KA A A KA KA K AR KK KKK KK KKK KK KK oK ok K

packet* packet_queue::get_next_packet ()

{
packet* rv = NULL;
DWORD wait_result_sema = WaitForSingleObject(v_semaphore, INFINITE);
if(wait_result_sema == WAIT_OBJECT_O) {
DWORD wait_result = WaitForSingleObject(v_mutex, INFINITE);
if (wait_result == WAIT_OBJECT_O) {
if (lv_queue.empty()) {
rv = v_queue.front();
v_queue.pop() ;
v_used_space -= rv->get_size();
}
ReleaseMutex (v_mutex) ;
}
}
return rv;
}

packet recv data stream.h

#ifndef PACKET_RECV_DATA_STREAM
#define PACKET_RECV_DATA_STREAM

257

B. Protocol source files

#include "../include/packet.h"
#include "../include/vod_exception.h"

#define c_recv_data_stream_packet_type 10
#define c_recv_data_stream_action_type 50
#define c_recv_data_stream_payload_len 2 // Not including the DB’s

class packet_recv_data_stream : public packet

{
private:
bool v_initialized;

int calc_offset(int client_num);
public:

packet_recv_data_stream(u64 recv_id, u64 snd_id);
“packet_recv_data_stream() ;

void init(ul6 number_of_clients, u32 number_of_db_in_video);

void set_client_id(int client_num, u64 client_id);
u64 get_client_id(int client_num);

void set_client_ip4(int client_num, s32 client_ip4);
s32 get_client_ip4(int client_num);

void set_client_port(int client_num, ul6é client_port);
ul6 get_client_port(int client_num);

void set_start_bb(int client_num, ul6 start_bb);
ul6 get_start_bb(int client_num);

void set_start_db(int client_num, ul6 start_db);
ul6 get_start_db(int client_num);

ul6 get_number_of_db(int client_num);
void set_db_list(int client_num, ul6* db_list);
ul6 get_db(int client_num, int offset);

};

#endif

packet recv data stream.cpp

#include "stdafx.h"
#include "../include/packet_recv_data_stream.h"

[/ %%k ek ok ok ko sk ok ok Kok ok ok ok koK o o sk ok K Kk s ok K Kk ok Kok ok ok ok Kok ok ok Kk K

// Constructor
[/ %k ks ook ko ok ks o ok sk kol stk sk o skok o ok sk ok ok sk sk sk o ok ok ok ok

packet_recv_data_stream::packet_recv_data_stream(u64 recv_id, u64 snd_id)
: packet(c_recv_data_stream_packet_type, c_recv_data_stream_action_type, recv_id, snd_id)

258

B. Protocol source files

{
set_payload_len(0);
v_initialized = false;

}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kk o o sk ok K Kk s ok K Kk ok Kk ok ok ok Kok ok ok Kok K
// Deconstructor
/[%%k ok sk okok ok ok sk ok ok sk ok sk ok ok koK o sk ok K Kk sk ok K Kk ok Kok ok ok ok Kok ok ok Kk K
packet_recv_data_stream::”packet_recv_data_stream()
{
if (v_payload_len > 0)
free(v_payload) ;

/[%%k ok sk okok ok ok sk ok ok sk ok sk ok ok koK o sk ok K Kk sk ok K Kk ok Kok ok ok ok Kok ok ok Kk K
// Initialize packet
/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kk o o sk ok K Kk s ok K Kk ok Kk ok ok ok Kok ok ok Kok K
void packet_recv_data_stream::init(u16 number_of_clients, u32 number_of_db_in_video)
{
if (v_initialized)
throw new packet_exception("Packet is already initialized");
else {
// Calculates the total size of the packet
v_payload_len = c_recv_data_stream_payload_len +
(12 * number_of_clients) +
number_of_db_in_video;
v_payload = malloc(v_payload_len);
set_value_ul6(number_of_clients, v_payload, 0);
v_initialized = true;
}
}

/] %k ko ok sk ok Kok ok ok ok Kk sk ok ok o ok sk Kok ok ok o ok Kok sk ok ok o Kk ok ok ok ok o K
// get/set client_id
/] %k ko ok sk ok Kok ok ok ok Kk sk ok ok o kK Kok ok ok o ok Kok sk ok ok o Kok sk ok ok ok o K
void packet_recv_data_stream::set_client_id(int client_num, u64 client_id)
{
set_value_u64(client_id, v_payload, O + calc_offset(client_num));
}
u64 packet_recv_data_stream::get_client_id(int client_num)
{
return get_value_u64(v_payload, 0 + calc_offset(client_num));

}

[/AR R Kk kKoK oK ook oK ook K o KooK oK oK o KKK K K ok Ko K ok ook ook o oK
// get/set client_ip
[/3 ok o ok ks K s ok sk o R s R K K K K R SR K S Ko K o K K K K o oK
void packet_recv_data_stream::set_client_ip4(int client_num, s32 client_ip4)
{
set_value_s32(client_ip4, v_payload, 8 + calc_offset(client_num));
}
532 packet_recv_data_stream::get_client_ip4(int client_num)
{
return get_value_s32(v_payload, 8 + calc_offset(client_num));

}

//***

259

B. Protocol source files

// get/set client_port
[/ FFF AR kAR AR R ROk KK ook KK ok KoK K o ok ok ok ok K

void packet_recv_data_stream::set_client_port(int client_num, ulé client_port)
{

set_value_ul6(client_port, v_payload, 24 + calc_offset(client_num));

}
ul6 packet_recv_data_stream::get_client_port(int client_num)
{
return get_value_ul6(v_payload, 24 + calc_offset(client_num));
}

[/ % H Aok ok sk ok ok ok ok ok ok o ok ok ok sk ok ok ok sk ok kok o ok ok o Kok ok ok ok ok ok ok ok ok ok
// get/set start_bb
/] %k ko ok sk ok ok Kok ok ok ok Kk sk ok ok o ok sk skok sk ok o ok Kok sk ok ok ko Kk ok ok ok ok o K
void packet_recv_data_stream::set_start_bb(int client_num, ul6é start_bb)
{
set_value_ul6(start_bb, v_payload, 26 + calc_offset(client_num));

}
ul6 packet_recv_data_stream::get_start_bb(int client_num)
{
return get_value_ul6(v_payload, 26 + calc_offset(client_num));
}

/[%%k ok ok ok ok ok sk ok ok ok ok ok ok Kok o sk ok K Kk sk ok K Kk ok Kk ok ok ok Kok ok ok Kok K

// get/set start_db
[/%R ok ok ok sk ok ok sk ok ok ko sk sk ok sk ok ok ok ok sk ko sk ok ok ok ok ook ok ok ok

void packet_recv_data_stream::set_start_db(int client_num, ul6 start_db)
{
set_value_ul6(start_db, v_payload, 28 + calc_offset(client_num));

}
ul6 packet_recv_data_stream::get_start_db(int client_num)
{
return get_value_ul6(v_payload, 28 + calc_offset(client_num));
}

/[%%k ok ek ok ok ok ok sk ok ok ok ok ok ok Kok o ok ok K Kk sk ok K Kk ok Kok ok ok ok Kok ok ok Kok

// get number_of_db
[/% sk sk ke ks sk ok ok ok sk sk sk o ok ok sk sk ok ok sk ok ks sk ok ok ok koK sk sk sk o ok koK sk sk ok ok ok ok

ul6 packet_recv_data_stream::get_number_of_db(int client_num)
{
return get_value_ul6(v_payload, 30 + calc_offset(client_num));

}

/[%%k ok ok ok ok ok ok sk ok ok Kok ok ok ok Kok o o ok ok K Kk sk ok K Kk ok Kok ok ok kK ok ok ok Kok

// get/set dbs
[/ % H Aok ok ok ok ok ok ok ok ok ok o Kok ok ok sk ok ok ok ok ok kok o ok ok o Kk ok ok ok Kok ok ok ok
void packet_recv_data_stream::set_db_list(int client_num, ul6* db_list)
{
for(int i = 0; i < (int) (get_value_ul6(v_payload, 30 + calc_offset(client_num))); i++) {
set_value_ul6(db_list[i],
v_payload,
(32 + calc_offset(client_num)) + (i * sizeof(ul6)));

260

B. Protocol source files

ul6 packet_recv_data_stream::get_db(int client_num, int offset)
{

return get_value_ul6(v_payload, 32 + ((calc_offset(client_num)) * sizeof(ul6)));
}

//***

// Calculate offset. Private.
[/ %k ks o ok koo ks o ok sk ok sk ko sk o skok o ok sk ok ok sk sk sk o ok ok ok ok

int packet_recv_data_stream::calc_offset(int client_num)

{
int pos = 30;
for(int i = 0; i < client_num; i++) {
pos += (get_value_ul6(v_payload, pos) * 2) + 30;
}
pos = pos - 30;
return pos;
}

packet req backup data.h
#ifndef PACKET_REQ_BACKUP_DATA
#define PACKET_REQ_BACKUP_DATA
#include "../include/packet.h"
#define c_req_backup_data_packet_type 40
#define c_req_backup_data_action_type 100
#define c_req_backup_data_payload_len 4
class packet_req_backup_data : public packet
{

public:

packet_req_backup_data(u64 recv_id, u64 snd_id);

~packet_req_backup_data() ;

void set_bb(ul6é bb);
ul6 get_bb();

void set_db(ulé db);
ul6 get_db();
1

#endif
packet req backup data.cpp

#include "stdafx.h"

261

B. Protocol source files

#include "../include/packet_req_backup_data.h"

[/ R R R K K K K K K K K K K K K K ok ok s sk ok ok ok ok sk ok ok ok K KoK Kok K KK K
// Constructor
/[F ok ok ok Rk kR ok ok ok ok ko sk ok ok ok ok sk ok ok okok k koK Kok K K K
packet_req_backup_data::packet_req_backup_data(u64 recv_id, u64 snd_id)
: packet(c_req_backup_data_packet_type, c_req_backup_data_action_type, recv_id, snd_id)
{
v_payload = malloc(c_req_backup_data_payload_len);
set_payload_len(c_req_backup_data_payload_len);
}

[/ sk sk ok sk ok sk sk sk sk ok sk ke sk sk sk sk s ok sk ok sk sk ok sk sk ok sk sk s ok sk ok ok sk ok

// Deconstructor

[/ %ok koo ok ok ko sk ko ksl sk ok sk stk sk sk ok ksl ko ok sk ok sk sk sk ok ko sk sk ok

packet_req_backup_data::~packet_req_backup_data()
free(v_payload) ;

/[%%k ok ek ok ok ok ok sk ok ok Kok ok ok ok kK o sk ok K Kk s ok K Kk ok Kk ok ok ok Kok ok ok Kok

// get or set bb
[/ %k ks ook koo ks o ok sk ok sk ko sk ok sk o ok sk ok ok sk sk sk o ko ok ok ok
void packet_req_backup_data::set_bb(ul6 bb)
{
set_value_ul6(bb, v_payload, 0);
}

ul6 packet_req_backup_data::get_bb()
{

return get_value_ul6(v_payload, 0);
}

//***

// get or set db
[/ F KA A AR A KA AR A AR A KA KA K AR KK KKK KK KKK KK KK oK o ok K
void packet_req_backup_data::set_db(ul6 db)
{
set_value_ul6(db, v_payload, 2);
}

ul6 packet_req_backup_data::get_db()
{

return get_value_ul6(v_payload, 2);
}

packet resend data.h

#ifndef PACKET_RESEND_DATA
#define PACKET_RESEND_DATA

#include "../include/packet.h"

262

B. Protocol source files

#define c_resend_data_packet_type 60
#define c_resend_data_action_type 10
#define c_resend_data_payload_len 4

class packet_resend_data : public packet

{
public:
packet_resend_data(u64 recv_id, u64 snd_id);
“packet_resend_data() ;
void set_bb(ul6é bb);
ul6 get_bb();
void set_db(ulé db);
ul6 get_db();
};
#endif

packet resend data.cpp

#include "stdafx.h"
#include "../include/packet_resend_data.h"

[/ sk sk ok sk ok sk sk sk sk ok sk ke sk sk sk sk s ok sk ok sk sk ok sk sk ke sk sk s ok sk ok ok ok ok
// Constructor
[/ %ok koo ok sk ko sk ko skl sk ok stk ok skok ok sk ok ksl ko ok sk ok sk sk sk ok sk sk sk ok
packet_resend_data::packet_resend_data(u64 recv_id, u64 snd_id)
: packet(c_resend_data_packet_type, c_resend_data_action_type, recv_id, snd_id)
{
v_payload = malloc(c_resend_data_payload_len);
set_payload_len(c_resend_data_payload_len);
¥

[/ F KA FA A A A F A A KA A A A KA KA A KA KA K KA KA A KA KA KA KA KKK

// Deconstructor

[/ F KA FA A A A F A A KA A A A KA KA A KA KA K KA KA A KA KA KA KA KKK

packet_resend_data::“packet_resend_data()
free(v_payload) ;

//***

// Get or set the bb
[/ %Rk ks ok ok ko ok ook o ok sk ok sk ko sk o sk o ok sk ok ok sk sk sk sk o ok ok ok ok
void packet_resend_data::set_bb(ul6 bb)
{
set_value_ul6(bb, v_payload, 0);
}

ul6 packet_resend_data::get_bb()
{

263

B. Protocol source files

return get_value_ul6(v_payload, 0);
}

//***

// Get or set the db
[/ %k ks ok ok koo ks o ok ok koo stk sk o ko o ok sk o ok sk sk sk o ok ok ok ok
void packet_resend_data::set_db(ul6 db)
{
set_value_ul6(db, v_payload, 2);
}

ul6 packet_resend_data::get_db()
{

return get_value_ul6(v_payload, 2);
}

packet snd data stream.h

#ifndef PACKET_SND_DATA_STREAM
#define PACKET_SND_DATA_STREAM

#include "../include/packet.h"
#include "../include/vod_exception.h"

#define c_snd_data_stream_packet_type 20

#define c_snd_data_stream_action_type 20

#define c_snd_data_stream_payload_len 32 // Not including the DB’s
class packet_snd_data_stream : public packet

{

private:

bool v_initialized;

public:
packet_snd_data_stream(u64 recv_id, u64 snd_id);

“packet_snd_data_stream() ;
void init(ul6 number_of_db);

void set_client_id(u64 client_id);
ub4 get_client_id();

void set_client_ip4(s32 client_ip4);
s32 get_client_ip4();

void set_client_port(ul6é client_port);
ul6 get_client_port();

void set_start_bb(ul6 start_bb);
ulé get_start_bb();

void set_start_db(ul6 start_db);

264

B. Protocol source files

ul6 get_start_db();
ul6 get_number_of_db();

void set_db_list(ul6* db_list);
ul6 get_db(int offset);

#endif

packet snd data stream.cpp

#include "stdafx.h"
#include "../include/packet_snd_data_stream.h"

[/ F ko ok ok ok ok ok ok ok ok ok ok ok ko sk ok ok ok ok sk ok ok ok ok Kk ok Kok kK K
// Constructor
[/ F ko ok ok ok ok ok ok ok ok ok ok ok ko sk ok ok ok ok sk ok ok ok ok Kk ok Kok kK K
packet_snd_data_stream: :packet_snd_data_stream(u64 recv_id, u64 snd_id)
: packet(c_snd_data_stream_packet_type, c_snd_data_stream_action_type, recv_id, snd_id)
{
set_payload_len(0);
v_initialized = false;

}

/] %k ko ok sk ok Kok ok ok ok Kk sk ok ok o ok sk Kok ok ok o ok Kok sk ok ok o Kk ok ok ok ok o K
// Deconstructor
[/ % H Aok ok sk ok ok ok ok ok ok o Kok ok sk ok ok ok sk ok kok o ok ok o Kok ok ok ok Kok ok ok ok
packet_snd_data_stream::”packet_snd_data_stream()
{
if (v_payload_len > 0)
free(v_payload) ;

[/% ok ko ok ks K s ok koK R o R K K K K R SR S K S Ko K o K K K K o oK
// Initialize packet
[/AR A Rk Kk KKK oK KoK K oK K o K oK oK K K KK KK K K oK Ko K ok ook ook o K
void packet_snd_data_stream::init(ul6 number_of_db)
{
if(v_initialized)
throw new packet_exception("Packet is already initialized");
else {
v_payload_len = c_snd_data_stream_payload_len + (number_of_db * 2);
v_payload = malloc(v_payload_len);
set_payload_len(v_payload_len);
set_value_ul6 (number_of_db, v_payload, 30);
v_initialized = true;
}
}

[/ %k ks ok sk ok sk ok sk ok sk ok ok sk ook ok ok ok sk ok ok ok s ok ok ok ok o ok ok ok ok ok ok ok o ok ok ok ok

// get/set client_ip

[/ F 3k ks ks ok ok sk sk ok skok ok ks ok sk ok sk ok sk sk ok sk sk sk ok sk ok sk ok sk ok sk ok sk sk ok sk ok ok ok ok ok

void packet_snd_data_stream::set_client_ip4(s32 client_ip4)

265

B. Protocol source files

{

set_value_s32(client_ip4, v_payload, 0);
}
s32 packet_snd_data_stream: :get_client_ip4()
{

return get_value_s32(v_payload, 0);
}

[/ %k ks ok sk ok sk ok sk ok sk ok ok ok sk ok ok ok ok s o ok ok ok s ok ok ok ok o ok ok ok ok o ok ok ok ok ok ok ok

// get/set client_port

[/ ks ks ok ok sk sk ok sk ok ks ok sk ok sk sk sk ok sk sk sk ok sk ok sk ok sk ok sk ok sk sk sk ok ok ok ok ok

void packet_snd_data_stream::set_client_port(ul6é client_port)

{
set_value_ul6(client_port, v_payload, 16);

}
ul6 packet_snd_data_stream::get_client_port ()
{
return get_value_ul6(v_payload, 16);
}

[/ %%k sk ok ok ok ok sk ok ok Kok ok ok ok koK o o ok ok K K s ok K Kk ok Kok ok ok kKo ok ok Kok K

// get/set client_id

/[F ko ok ko kR kR ok ok ok ok ko sk ok ok ok ok sk ok ok Kok Kk Kok Kok Kk K K

void packet_snd_data_stream::set_client_id(u64 client_id)
set_value_ub4(client_id, v_payload, 18);

}
u64 packet_snd_data_stream::get_client_id()
{
return get_value_u64(v_payload, 18);
}

/[%%k ok sk ok ok ok ok sk ok ok ok ok ok ok kK o sk ok K Kk sk ok K Kk ok Kok ok ok ok Kok ok ok Kok K

// get/set start_bb
[/ FHE A A AR AR KRR Kok Kok kK kK KKk ok kK

void packet_snd_data_stream::set_start_bb(ul6 start_bb)
{
set_value_ul6(start_bb, v_payload, 26);

}
ul6 packet_snd_data_stream::get_start_bb()
{
return get_value_ul6(v_payload, 26);
}

//***

// get/set start_db
[/ FHEFAAFAAF A A KA A A A K KA K KA KA KA K KA KKK A KA KA KK KKK
void packet_snd_data_stream::set_start_db(ul6 start_db)
{

set_value_ul6(start_db, v_payload, 28);
}

ul6 packet_snd_data_stream::get_start_db()

266

B. Protocol source files

{
return get_value_ul6(v_payload, 28);
}

/[F ks ok ok ks koo ko ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok o sk ok o sk ok ok
// get number_of_db
[/ F Rk ok ok ks koo ko ok ok ks ok ok sk sk kok ok sk sk ok okok sk sk ok o sk sk ok o sk ok ok
ul6 packet_snd_data_stream::get_number_of_db()

return get_value_ul6(v_payload, 30);

/[F ko ok ok ks koo ko ok ok sk sk ok ok sk sk ok ok sk sk ok o sk sk ok o sk sk ok o ok ok ok
// get/set dbs
[/ %Ak ks ook koo ks o ok kb ko sk o sk o ok sk o ok sk sk sk o ko ok ok ok
void packet_snd_data_stream::set_db_list(ul6* db_list)
{
for(int i = 0; i < (int) (get_value_ul6(v_payload, 30)); i++)
set_value_ul6(db_list[i], v_payload, 32 + (i * sizeof(ul6)));

}
ul6 packet_snd_data_stream::get_db(int offset)
{
return get_value_ul6(v_payload, 32 + (offset * sizeof(ul6)));
}

packet status req.h

#ifndef PACKET_STATUS_REQ
#define PACKET_STATUS_REQ

#include "../include/packet.h"

#define c_status_req_packet_type 20

#define c_status_req_action_type 10

#define c_status_req_payload_len 4

class packet_status_req : public packet

{

public:
packet_status_req(u64 recv_id, u64 snd_id);
~packet_status_req() ;
void set_status_interval (u32 status_interval);
u32 get_status_interval();

};

#endif

267

B. Protocol source files

packet status req.cpp

#include "stdafx.h"
#include "../include/packet_status_req.h"

[/ sk ks ok sk ok sk sk sk sk ok sk ke sk sk sk sk s ok sk ok sk sk ok sk sk ke sk sk s ok sk ok kok ok

// Constructor

[/ %ok koo ok ko sk ko ksl sk ok stk stk sk sk ok ksl ko ok sk ok sk sk sk ok sk sk sk ok

packet_status_req: :packet_status_req(u64 recv_id, u64 snd_id)

: packet(c_status_req_packet_type, c_status_req_action_type, recv_id, snd_id)

{
v_payload = malloc(c_status_req_payload_len);
set_payload_len(c_status_req_payload_len);

¥

//***

// Deconstructor
/[F ko ok ok ks ok ko ok ok sk sk kok ok sk sk kok ok sk sk kokok sk sk ok o sk sk ok o sk ok ok

packet_status_req:: “packet_status_req()
{

free(v_payload) ;
}

//***

// Get or set the interval
[/ %Ak ks o ok ko ok ks o ok sk ok ok ko sk o sk o ok sk ok sk sk sk sk o ok ok ok ok

void packet_status_req::set_status_interval(u32 status_interval)
{

set_value_u32(status_interval, v_payload, 0);

}
u32 packet_status_req::get_status_interval()
{
return get_value_u32(v_payload, 0);
}

packet status resp.h

#ifndef PACKET_STATUS_RESP

#define PACKET_STATUS_RESP

#include "../include/packet.h"

#define c_status_resp_packet_type 30
#define c_status_resp_action_type 10
#define c_status_resp_payload_len 2
class packet_status_resp : public packet
{

public:

packet_status_resp(u64 recv_id, u64 snd_id);

~packet_status_resp();

268

B. Protocol source files

void set_pp(ul6 bb);
ul6 get_ppQ;
};

#endif

packet status resp.cpp

#include "stdafx.h"
#include "../include/packet_status_resp.h"

//***

// Constructor
/[F ok kR ok ok kR ok ok ok ok ko sk ok ok ok ok sk ok ok Kok ok koK Kok K K K
packet_status_resp::packet_status_resp(u64 recv_id, u64 snd_id)
: packet(c_status_resp_packet_type, c_status_resp_action_type, recv_id, snd_id)
{
v_payload = malloc(c_status_resp_payload_len);
set_payload_len(c_status_resp_payload_len);
}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o sk ok K Kk sk ok K Kk ok Kk ok ok ok Kok ok ok Kok K

// Deconstructor
[/ F Rk ok ok ks koo ko ok ok sk sk ok ok sk sk kok ok sk sk ok sk sk ok o sk sk ok o sk ok ok

packet_status_resp::”packet_status_resp()
{

free(v_payload) ;
}

//***

// Get or set the playpointer
[/ FFF AR kAR AR R ROk KK ook KK ok KoK K o ok ok ok ok K

void packet_status_resp::set_pp(ul6 bb)
{

set_value_ul6(bb, v_payload, 0);
}

ul6 packet_status_resp::get_pp()
{

return get_value_ul6(v_payload, 0);
}

packet stop stream.h

#ifndef PACKET_STOP_STREAM
#define PACKET_STOP_STREAM

#include "../include/packet.h"

#define c_stop_stream_packet_type 20

269

B. Protocol source files

#define c_stop_stream_action_type 30
#define c_stop_stream_payload_len 12

class packet_stop_stream : public packet
{
public:
packet_stop_stream(u64 recv_id, u64 snd_id);

“packet_stop_stream() ;

void set_client_id(u64 client_id);
u64 get_client_id();

void set_stop_bb(ul6 stop_bb);
ul6 get_stop_bb();

void set_stop_db(ul6 stop_db);
ul6 get_stop_db();
};

#endif

packet stop stream.cpp

#include "stdafx.h"
#include "../include/packet_stop_stream.h"

/[F ok ok ok kR kR ok ok ok ok ko sk ok ok ok ok sk ok ok okok k koK Kok K K K K

// Constructor

/[F ok ok ok kR kR ok ok ok ok ko sk ok ok ok ok sk ok ok okok k koK Kok K K K K

packet_stop_stream: :packet_stop_stream(u64 recv_id, u64 snd_id)

: packet(c_stop_stream_packet_type, c_stop_stream_action_type, recv_id, snd_id)

{
v_payload = malloc(c_stop_stream_payload_len);
set_payload_len(c_stop_stream_payload_len);

}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o sk ok K Kk s ok K Kk ok Kok ok ok ok Kok ok ok Kk K

// Deconstructor
/[F ko ok ok sk sk ook ko ok ok sk sk kok ok sk sk kok ok sk sk ok sk sk ok o sk sk ok o sk ok ok

packet_stop_stream:: “packet_stop_stream()
{

free(v_payload) ;
}

//***

// Get or set client id
[/ F ko ok ok ks ook ok ko ok ok ok sk kok ok sk sk kok ok sk sk koo sk sk ok o sk sk ok o sk ok ok
void packet_stop_stream::set_client_id(u64 client_id)
{

set_value_u6b4(client_id, v_payload, 0);
}

u64 packet_stop_stream::get_client_id()

270

B. Protocol source files

{
return get_value_u64(v_payload, 0);
}

//***

// Get or set stop bb
[/ FFF AR kAR AR R ROk KK ook KK ok KoK K o ok ok ok ok K

void packet_stop_stream::set_stop_bb(ul6 stop_bb)
{
set_value_ul6(stop_bb, v_payload, 8);

}
ul6 packet_stop_stream::get_stop_bb()
{

return get_value_ul6(v_payload, 8);
}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kk o o sk ok K Kk s ok K Kk ok Kk ok ok ok Kok ok ok Kok K

// Get or set stop db
[/ F KA AR A KA AR A KA KA KA KK KKK KK KK KK KK oK kK

void packet_stop_stream::set_stop_db(ul6 stop_db)
{
set_value_ul6(stop_db, v_payload, 10);

}
ul6 packet_stop_stream::get_stop_db()
{

return get_value_ul6(v_payload, 10);
}

packet stream error.h

#ifndef PACKET_STREAM_ERROR
#define PACKET_STREAM_ERROR

#include "../include/packet.h"

#define c_stream_error_packet_type 40
#define c_stream_error_action_type 80
#define c_stream_error_payload_len 12

class packet_stream_error : public packet

{

public:
packet_stream_error(u64 recv_id, u64 snd_id);
“packet_stream_error();

void set_client_id(u64 client_id);
u64 get_client_id();

void set_rate(ul6 rate);
ulé get_rate();

void set_bb(ul6é bb);

271

B. Protocol source files

ulé get_bb();
s

#endif

packet stream error.cpp

#include "stdafx.h"
#include "../include/packet_stream_error.h"

packet_stream_error: :packet_stream_error (u64 recv_id, u64 snd_id)
: packet(c_stream_error_packet_type, c_stream_error_action_type, recv_id, snd_id)
{
v_payload = malloc(c_stream_error_payload_len);
set_payload_len(c_stream_error_payload_len);

}

packet_stream_error::”packet_stream_error()
{

free(v_payload) ;
}

void packet_stream_error::set_client_id(u64 client_id)
{

set_value_u6b4(client_id, v_payload, 0);
}

u64 packet_stream_error::get_client_id()
{

return get_value_u64(v_payload, 0);
}

void packet_stream_error::set_rate(ul6 rate)
{

set_value_ul6(rate, v_payload, 8);
}

ul6 packet_stream_error::get_rate()
{

return get_value_ul6(v_payload, 8);
}

void packet_stream_error::set_bb(ul6 bb)

{
set_value_ul6(bb, v_payload, 10);
}

ul6 packet_stream_error::get_bb()

272

B. Protocol source files

{
return get_value_ul6(v_payload, 10);
}

request queue.h

#ifndef REQUEST_QUEUE
#define REQUEST_QUEUE

#include <queue>
#include "../include/vod_server.h"

struct data_struct_req {
unsigned long movie_id;
unsigned long byte_offset;
size_t len;
long transaction_id;

s
using namespace std;
class request_queue {

private:
queue<data_struct_req*> v_queue;

unsigned int v_count_data;

HANDLE v_mutex_data;
HANDLE v_semaphore_data;

public:
request_queue() ;
void add_data_request(data_struct_req* request);
void get_data_request(struct data_struct_req& request);
int count_data_request();

};

#endif

request queue.cpp

#include "stdafx.h"
#include "../include/request_queue.h"

[/ %%k sk ok ok ok ok ok ok ok Kok ok ok ok Kok o sk ok K Kk s ok ok K ok ok ok ok ok ok ok Kok K

// Constructor
/] %ok ks o ok koo koo ok sk ok sk stk sk o ok ok ok o ko sk sk ok o ok

request_queue: :request_queue ()

{

273

B. Protocol source files

v_count_data 0;
v_mutex_data = CreateMutex(NULL, false, NULL);
v_semaphore_data = CreateSemaphore(NULL, O, 100, NULL);
}

//***

// Add request to queue
[/ FF Rk kR KK KR KK S K o K K K K K

void request_queue::add_data_request(data_struct_req* request)

{
DWORD wait_result = WaitForSingleObject(v_mutex_data, INFINITE);

if (wait_result == WAIT_OBJECT_O) {
v_queue.push(request) ;
v_count_data++;

}

ReleaseMutex (v_mutex_data) ;
ReleaseSemaphore (v_semaphore_data, 1, NULL);

/[%%k sk ok ok ok ok ok ok ok Kok ok ok ok Kok ok sk ok K Kk s ok ok ok ok ok ok Kok ok ok Kok K

// Get the next data request from queue
[/ F Rk ok ok ok ks koo ko ok ok ok ks ok ok ks ok sk sk kok ok sk sk kok o ok ok ok

void request_queue::get_data_request(struct data_struct_req& request)
{
data_struct_req* temp = NULL;

DWORD wait_result_sema = WaitForSingleObject(v_semaphore_data, INFINITE);
if (wait_result_sema == WAIT_OBJECT_O) {

DWORD wait_result = WaitForSingleObject(v_mutex_data, INFINITE);

if (wait_result == WAIT_OBJECT_O) {

if (!v_queue.empty()) {
temp = v_queue.front();
v_queue.pop();
v_count_data--;

memcpy ((void*)&request, temp, sizeof (data_struct_req));
delete (temp) ;

ReleaseMutex(v_mutex_data) ;
}
}

//***

// Return the number of awaiting requests.
[/ F Rk ok ok ks koo ko ok ok ok sk ks ok ok sk sk ok sk kb sk ok sk sk kok o sk ok ok

int request_queue::count_data_request()
{

int rv;

274

B. Protocol source files

DWORD wait_result = WaitForSingleObject(v_mutex_data, INFINITE);

if(wait_result == WAIT_OBJECT_O)
rv = v_count_data;

ReleaseMutex (v_mutex_data);

return rv;

socket utils.h

#ifndef SOCKET_UTILS
#define SOCKET_UTILS

#include "../include/packet_data.h"

#include <sys/types.h>
#include "winsock2.h"
//#include <sys/select.h>
//#include <sys/time.h>
#include <errno.h>

#include <stdio.h>

#include <string.h>

#include <iostream>

//#include <unistd.h>

#include <fcntl.h>

#include "../include/vod_exception.h"

struct iovec {
void *iov_base; /* Pointer to data. =*/
size_t iov_len; /* Length of data. */

};

struct msghdr {

void *msg_name; /* Address to send to/receive from. */

int msg_namelen; /* Length of address data. */

struct iovec *msg_iov; /* Vector of data to send/receive into. */
size_t msg_iovlen; /* Number of elements in the vector. */
void *msg_control; /* Ancillary data (eg BSD filedesc passing).
size_t msg_controllen; /* Ancillary data buffer length. */

int msg_flags; /* Flags on received message. */

SOCKET Socket(int family, int type, int protocol);

275

*/

B. Protocol source files

int Bind (SOCKET sockfd, const struct sockaddr* myaddr, int addrlen);
SOCKET Accept (SOCKET sockfd, struct sockaddr* myaddr, int* addrlen);
void Listen(SOCKET fd, int backlog);
int Close(SOCKET fd);
int Sendmsg(SOCKET sd, struct msghdr *msg, int flags);
int Recvmsg(SOCKET sd, struct msghdr *msg, int flags);
int Select(int, fd_set*, fd_set*, fd_set*, timevalx);
int Connect(SOCKET sockfd, const struct sockaddr* serveraddr, int addrlen);
size_t Send(SOCKET sockfd, const void *buf, size_t len, int flags);
int Read(SOCKET fd, void* buf, size_t len);
size_t Recvfrom(SOCKET sd,
voidx* buf,
size_t len,
int flags,
struct sockaddr* from,
int* fromlen);
void setnblck (SOCKET sd);
int set_so_reuseable(SOCKET sd);

char* produce_error(const charx);

#endif

socket utils.cpp

#include "stdafx.h"
#include "../include/socket_utils.h"

[/ REFREFA A A A A KA KA A KA KA A K KA KK A A KA KA A KKK A KK
// Wrap the socket call

[/ REFRE A A AR A AR A AR A A KK A KA A K KA KK A KKK KKK KA K KKK
SOCKET Socket(int family, int type, int protocol)

{
int n = socket(family, type, protocol);
if (n<0) {
throw new transport_exception(produce_error("Error creating socket: "));
}
else {
return n;
}
}

276

B. Protocol source files

[/ FEk sk ok sk ok sk ok sk ok o sk ok ok ok sk ok sk ok ok sk ok ok ok o sk ok o
// Wrap the bind call
[/ FEk sk ok sk ok ok sk ok sk ok sk ok sk sk ko ok sk ok ok sk ok ok ok o sk ok o
int Bind (SOCKET sockfd, const struct sockaddr* myaddr, int addrlen)
{
int n = bind(sockfd, myaddr, addrlen);
if (n<0){
throw new transport_exception(produce_error("Error binding port: "));
}
else {
return n;
}
}

[/ FkRdok ok koo sk sk ok skok ok ok ko ko ok ok sk ok sk ok ok sk ok ok ok sk ok ok ok ok
// Wrap the accept call
[/ Fkrdokkokkk ok okok ok ok kokok ok ok ok ok ok ok ok kok ok ok ok ok ok kok ok
SOCKET Accept (SOCKET sockfd, struct sockaddr* myaddr, int* addrlen)
{
SOCKET n = accept(sockfd, myaddr, addrlen);
if (n == SOCKET_ERROR) {
throw new transport_exception(produce_error("Error accepting new connection: "));
¥
else {
return n;
¥
X

[/ wEk ks ks ok ok sk ok sk ok sk ok sk ko sk ok ok ok sk ok ok ok o sk ok o
// Wrap the send call
[/ ko ok sk skok sk ko sk sk ko sk sk ko sk sk sk ok sk ok sk ko sk ok ok
size_t Send(SOCKET sockfd, const void *buf, size_t len, int flags)
{
int n = send(sockfd, (const charx) buf,len, flags);
if (m <0) {
throw new transport_exception(produce_error("Error sending data to remote host: "));
}
else {
return n;
}
}

// 3k 3k 3k 3k 3k ok ok 3k 3k 3k ok ok 3k 3k %k %k %k 3k 3k 3k %k ok 3k 3k %k %k %k 3k 3k 3k %k %k %k 3k 3k %k %k %k %k %k %k %k %k k kk

// Wrap the read call
[/ REFREFA KA AR A AR A AR A A A A KA K KA KK A KKK KKK KKK KK

int Read(SOCKET sockfd, void #*buf, size_t len)
{

int n = recv(sockfd, (char*) buf, len, 0);

if (n < 0) {
Close(sockfd) ;

//throw new transport_exception(produce_error("Error sending data to remote host: "));

}
else {
return n;

277

B. Protocol source files

[/ Rk k ok koo ok ok o ok ok ok kok ok ok ok ok sk ok Kok ok ok ok ok Kok ok ok ok o Kok
// Wrap the recvfrom call
[/ Rk kR ok sk ok ok Kok ok ok ok Kk sk ok ok o ok ok ok ok o ok Kok ok ok ok o o Kk ok ok
size_t Recvfrom(SOCKET sd,

void* buf,

size_t len,

int flags,

struct sockaddr* from,

int* fromlen)

int n = recvfrom(sd, (charx*) buf, len, flags, from, fromlen);
return n;

}

[/ ks dskokok ok ok ok ok ok ok o ok ok ok ok ok sk ok KK Kk ok ok K ok ok ok Kok ok ok Kok K

// Wrap the connect call
[/ REFRE AR A AR A AR A AR A A A A KA K KA KK A KKK KKK A KKK KK

int Connect (SOCKET sockfd, const struct sockaddr* serveraddr, int addrlen)
{

int n = connect(sockfd, serveraddr, addrlen);

if (n < 0) {

throw new transport_exception(produce_error("Error connecting to remote host:

}
else {
return n;
}
}

[/ FrrEk ok KRR K R OR o K K oK KK
// Wrap the listen call
[/ FrrEk ok KRR K R OR o K K oK KK
void Listen(SOCKET fd, int backlog)
{
if ((listen(fd, backlog) < 0)) {
throw new transport_exception(produce_error("Error listening on socket: "));
}
else {
return;
}
}

// 3k 3k 3k 3k 3k ok ok 3k 3k 3k ok ok 3k 3k 3k %k %k 3k 3k 3k %k %k 3k 3k %k %k %k 3k 3k 3k %k %k 3k 3k 3k %k %k %k %k %k %k %k %k k kk

// Wrap the close call
[/ Frrrkkkkk ok ok ok ok kKKK

int Close(SOCKET £fd)
{

int rv = closesocket(fd);

if (xrv < 0) {
throw new transport_exception(produce_error("Error closing socket: "));

}
else {
return rv;

278

"))

B. Protocol source files

[/ FRE ARk ok ok ook ok Ko Ko KKK ok oK K K oK o KK K KoK K o K ok oK ook
// Wrap the select call
[/ Rk ks ok sk ks Rk R K o R R o K K K R R K KK oK Ko K o K oK
int Select(int maxfdpl,

fd_set* read_set,

fd_set* write_set,

fd_set* except_set,

timeval* timeout)

{
int n = select(maxfdpl,read_set, write_set, except_set, timeout);
if m<0) {
throw new transport_exception(produce_error("Error calling select: "));
}
else {
return n;
}
}

[/ FEk ks ok sk ok sk ok sk ok o sk ok ok ok sk sk ko sk sk ok ok sk ok o sk ko sk ok o
// Wrap the sendmsg call
[/ ko skk ks ok sk ok sk ko sk sk ko sk sk ko sk sk sk ok sk ok sk ko sk ok ok
int Sendmsg(SOCKET sd, struct msghdr *msg, int flags)
{
int bufsize = 0;
int offset = 0;
char*x buf = NULL;

// Loop through all iovectors in msghdr
for(int i = 0; i < msg->msg_iovlen; i++) {
bufsize += msg->msg_iov[i].iov_len;

}
buf = (char*) malloc(bufsize);

for(int i = 0; i < msg->msg_iovlen; it++) {
// Do expensive memcopy due to the unavailable sendmsg call
memcpy (buf + offset, msg->msg_iov[i].iov_base, msg->msg_iov[i].iov_len);
offset = offset + msg->msg_iov[i].iov_len;

return sendto(sd, buf, bufsize, 0, (sockaddr*) msg->msg_name, msg->msg_namelen) ;

[/ ks dskokokokok ok ok ok ok o ok ok ok ok ok sk ok KK K K ok ok Kk ok ok Kok ok ok Kk K

// VWrap the recvmsg call
[/ FrrEE kAR KRR KKK KKK ok KKK K o kK ok KK

int Recvmsg(SOCKET sd, struct msghdr *msg, int flags)
{

int loop = msg->msg_iovlen;

int readlen = 0;

int read = 0;

char hat;
sockaddr sock;

279

B. Protocol source files

int socklen = sizeof (sock);

// Loop through all iovectors in msghdr
for(int i = 0; i < loop; it++) {
readlen += msg->msg_iov[i].iov_len;

void* buf = malloc(readlen);
Recvfrom(sd, buf, readlen, 0, &sock, &socklen);

int offset = 0;

for(int i = 0; i < loop; it++) {
// Do expensive memcopy due to the unavailable recvmsg call
memcpy (msg->msg_iov[i] .iov_base, (void#*)(((char*) buf)+offset), msg->msg_iov[i].iov_len);
offset += msg->msg_iov[i].iov_len;

}

free(buf) ;

return read;

[/ ks sdskokok ook ok ok ok ok ok ok ok ok ok sk ok KK K K ok ok Kk ok kK ok ok ok Kok K

// Set a file descriptor nonblocking
[/ FrrEE kAR KRR KKK KKK ok KKK K o kK ok KK

void setnblck (SOCKET sd)

{
int opts;
u_long iMode = 1;
ioctlsocket(sd, FIONBIO, &iMode);
int sndsize = 200000;
int err = setsockopt(sd, SOL_SOCKET, SO_RCVBUF, (char *)&sndsize, (int)sizeof(sndsize));
return;
}

[/ F Rk ok ko ok ok ok ok ok kok ok ok ok ok sk ok Kok o ok ok ok Kok ok ok ok o Kok
// Set a socket descriptor reusable
[/ Rk Rk ok sk ok ok Kok ok ok ok Kk sk ok ok o ok Kok ok ok o ok Kok Kok ok o Kk ok ok
int set_so_reuseable(SOCKET sd)
{
int optval = 1;
int rv = setsockopt(sd, SOL_SOCKET, SO_REUSEADDR, (char*) &optval, sizeof (optval));

if (rv < -1)

throw new transport_exception(produce_error("Error setting SO_REUSEADDR socket optiom: "));
else

return rv;

// 3k 3k 3k 3k %k ok ok 3k 3k 3k ok ok 3k 3k %k %k %k 3k 3k 3k %k %k 3k 3k %k %k %k 3k 3k %k %k %k 3k 3k 3k %k %k %k %k %k %k %k %k k kk

// Read error from errno and return
[/ FRskokok ook okok ok ok ok skok ko ok ok sk o ok ok ok o o ok kb ok o ok

char* produce_error(const char* errmsg)

{
char* err = strerror(errno);
char* ptr = (char*) malloc(strlen(err) + strlen(errmsg) + 1);

280

B. Protocol source files

memcpy (ptr, errmsg, strlen(errmsg));
memcpy (ptr + strlen(errmsg), err, strlen(err) + 1);

return ptr;

}

stream _engine.h

#ifndef STREAM_ENGINE
#define STREAM_ENGINE

#include "../include/types.h"

#include "../include/enum.h"

#include "../include/packet.h"
#include "../include/packet_data.h"
#include "../include/data_container.h"

class stream_engine {

private:

data_container* v_data_container;
ub4 v_snd_client_id;

ub4 v_video_id;

bool v_streaming;

public:
stream_engine(data_container* dc, u64 video_id, u64 client_id);
stream_engine (data_container* dc, u64 video_id);

ub4 get_video_id();
packet* stream(u64 recv_client_id, ul6 bb, ul6 db, speed_level speed);
1

#endif

stream __engine.cpp

#include "stdafx.h"
#include "../include/stream_engine.h"

[/ /% %k sk sk ok ok ok ok ok Kok sk ok ok Kok o ok ok K K sk ok K Kk s ok Kk ok ok ok ok ok ok Kok ok ok K
// Constructor
[/ F ko ko ko ok ok ok ok ok ok ok sk kok sk ok sk okok ok ok ok Kok Kok oK K KK o K K o ok
stream_engine::stream_engine(data_container* dc,

ub4 video_id,

ub4 client_id)

v_data_container = dc;
v_snd_client_id = client_id;

281

B. Protocol source files

v_video_id = video_id;
}

[/ /% %k sk ok ok ok ok sk ok ok Kok ok ok ok ok o ok ok Kk sk ok K Kk ok ok ok ok ok ok ok ok Kok ok ok K
// Constructor
[/ F ok ko ok ok ok ok ko ko ok ok ok sk kok sk ok ok okok okok ok ok ok Kok K K K K o K ok ok
stream_engine::stream_engine(data_container* dc,

u64 video_id)

{
v_data_container = dc;
v_snd_client_id = 0; // All data from the server has client-id O in this version
v_video_id = video_id;
}
u64 stream_engine::get_video_id()
{
return v_video_id;
}

[/ /% %k sk ok ok ok ok sk ok ok Kok sk ok ok Kok o ok ok Kk sk ok K Kk s ok Kk ok ok ok ok ok ok Kok ok ok K
// Retrieve a specific packet
[/ F ko ko ko ok ok ok ok ok ok ok sk kok sk ok sk okok ok ok ok Kok Kok oK K KK o K K o ok
packetx* stream_engine::stream(u64 recv_client_id, ul6 bb, ul6 db, speed_level speed)
{
// Retrive data
int data_len = 0;
void* data = v_data_container->read_db(bb, db, data_len);

// Cache / buffer miss
if (data == NULL)
return NULL;

// Building data packet

packet_data* pack = new packet_data(recv_client_id, v_snd_client_id);
pack->set_bb(bb) ;

pack->set_db(db) ;

pack->set_speed_level((u8) speed);

pack->set_data(NULL, 0);

pack->set_payload_data(data, data_len);

return pack;

stream engine server thread.h

#ifndef STREAM_ENGINE_SERVER_THREAD
#define STREAM_ENGINE_SERVER_THREAD

#include "../include/transport_handler.h"
#include "../include/stream_engine.h"
#include "../include/data_bank_server.h"

struct stream_params

282

B. Protocol source files

{
data_bank_server* v_data_bank;
stream_engine* v_stream_engine;
transport_handler* v_transport_handler;
};

void stream_thread(void* args);

#endif

stream engine server thread.cpp

#include "stdafx.h"
#include "../include/stream_engine_server_thread.h"

[/ %k ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok sk ko sk ko ok ok sk ok ok ok o sk ok

// Main procedure

[/ %k ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok sk ko sk ko ok ok sk ok ok ok o sk ok

void stream_thread(void* args)

{
data_bank_server* v_data_bank = ((stream_params*)args)->v_data_bank;
stream_engine* v_stream_engine = ((stream_params#*)args)->v_stream_engine;
transport_handler* v_transport_handler = ((stream_params#)args)->v_transport_handler;

u64 recv_client_id;
int wait_time;

ul6é next_bb;

ulé next_db;
speed_level speed;
u64 ip_addr;

ul6 port;

for(;;) {
wait_time = 0;
// get the next receiver in line
if (v_data_bank->get_next_receiver(v_stream_engine->get_video_id(),
recv_client_id,
wait_time,
next_bb,
next_db,
speed,
ip_addr,
port)) {

if (wait_time > 0) {
//System: :Diagnostics: :Debug: :WriteLine("Sleeping: " + wait_time);
System: : Threading: :Thread: :Sleep(wait_time) ;
}
if (!(next_bb > (v_data_bank->get_num_of_bb(0)) - 1)) {
packet* pack = v_stream_engine->stream(recv_client_id,

next_bb,
next_db,
speed) ;

283

B. Protocol source files

if (pack == NULL) {
// If cache miss - inform data_bank
}
else {
client_address v_client_address;
v_client_address.client_ip = ip_addr;
v_client_address.client_DCP_port = port;
v_transport_handler—>send_DCP(pack, &v_client_address);
}
}
}
else {
delete v_stream_engine;
v_stream_engine = NULL;
break;
}
}
return;

}

stream engine thread.h
#ifndef STREAM_ENGINE_THREAD

#define STREAM_ENGINE_THREAD

#include "../include/transport_handler.h"
#include "../include/stream_engine.h"

#include "../include/data_bank_client.h"

struct stream_params

{
data_bank_client* v_data_bank;
stream_engine* v_stream_engine;
transport_handler* v_transport_handler;
};

void stream_thread(void* args);

#endif

stream engine thread.cpp

#include "stdafx.h"
#include "../include/stream_engine_thread.h"

[/ ks dskokok ok ok ok ok ok ok ok ok ok ok o o ok ok KK K sk ok K Kk ok Kk ok ok ok ok ok ok ok Kok ok ok KoK

// Main streaming thread procedure
[/ FrrEk koK kR KKK kKK K kK ok oK kK KK KKK ok K

284

B. Protocol source files

void stream_thread(void* args)

{
data_bank_client* v_data_bank = ((stream_params*)args)->v_data_bank;
stream_engine* v_stream_engine = ((stream_params#*)args)->v_stream_engine;
transport_handler* v_transport_handler = ((stream_params#*)args)->v_transport_handler;

u64 recv_client_id;
int wait_time;

ul6 next_bb;

ul6é next_db;
speed_level speed;
u64 ip_addr;

ul6 port;

for(;;) {
wait_time = O;

// get the next receiver in line
if (v_data_bank->get_next_receiver(0, recv_client_id,

wait_time,

next_bb,

next_db,

speed,

ip_addr,

port)) {

if (wait_time > 0) {
// System: :Diagnostics: :Debug: :WriteLine("Sleeping: " + wait_time);
System: : Threading: :Thread: :Sleep(wait_time) ;
}

if (!(next_bb > (v_data_bank->get_num_of_bb()) - 1)) {

if (next_db == || next_db == 1)
System: :Diagnostics: :Debug: :WriteLine("Sender BB: " + next_bb);

packet* pack = v_stream_engine->stream(recv_client_id,
next_bb,
next_db,
speed) ;
if (pack == NULL) {
// Data could not be found in buffer.
// We should send error packet to receiver.
System: :Diagnostics: :Debug: :WriteLine("Data was not found in buffer!");
}
else {
client_address v_client_address;
v_client_address.client_ip = ip_addr;
v_client_address.client_DCP_port = port;
v_transport_handler—>send_DCP(pack, &v_client_address);
}
}
}
else
break;
}

return;

285

B. Protocol source files

stream info.h

#ifndef STREAM_INFO
#define STREAM_INFO

#include "../include/packet_snd_data_stream.h"
#include "../include/global_functions.h"
#include "../include/enum.h"

#include <queue>

struct resend_block {
ulé bb;
ulé db;
};

class stream_info {
// Client id associated to the given client
u64 v_client_id;

// Variable defining if we have started streaming
bool started;

// Timestamp indicating the last time a packet was sent
system_time v_last_send_time;

// Timestamp indicating the next time a packet should be sent
system_time v_next_send_time;

// The next buffer block a packet should be sent from

ul6é v_next_buffer_block;

// The next data block to be sent

ulé v_next_data_block;

// last index of
int v_last_index;

// The amount of millisconds between consecutive packet dispatches
int v_low_speed_interval;

int v_normal_speed_interval;

int v_high_speed_interval;

// The speed level of the connected client
speed_level v_speed;

// The point in the movie where the stream should be stopped
ul6é v_stop_point_db;
ul6 v_stop_point_bb;

// Queue containing all blocks to be resend
std: :queue<struct resend_block> v_resend_queue;

// Get the next timestamp of data dispatch

286

B. Protocol source files

system_time update_send_time();

public:
// Packet containing information about the contents of the stream
packet_snd_data_stream* v_pack;

// Constructor

stream_info(packet_snd_data_stream* pack, int min, int norm, int max) ;
// Destructor

~“stream_info();

// Get the next block for sending
bool get_next_block(ul6& BB, ul6& DB, speed_level& speed);

// Add a resend block to internal resend queue
void add_resend_block(ul6é BB, ul6 DB);

// Adjust the speed
void adjust_speed(speed_level new_speed) ;

// Return the client id associated with the stream info.x
u64 get_client_id();

// Set the stop point of the stream
void set_stop_point(ul6é BB, ul6 DB);

// Get the stop point of the stream
void get_stop_point(ul6& BB, ul6& DB);

// Set the given point to play from
void set_play_point(ul6 BB);

// Set the next sending time
void set_send_time(system_time t);

// get the next sinding time
system_time get_send_time();

};

#endif

stream _info.cpp

#include "stdafx.h"
#include "../include/stream_info.h"

/ /% %%k ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok ok K sk ok ok K ok ok ok o sk ok ok K

// Constructor
/[%k ks o ok koo sk ok sk o ko ko sk o ok ok koo o ok ok ok ok

stream_info::stream_info(packet_snd_data_stream* pack, int min, int norm, int max)

{

287

B. Protocol source files

v_pack = pack;

v_next_buffer_block = 0;
v_next_data_block = 0;

v_client_id = pack->get_client_id();

v_low_speed_interval = min;
v_normal_speed_interval = norm;
v_high_speed_interval = max;

system_time now;
system_time last = {0,0};
get_system_time (&now) ;
v_next_send_time = now;
v_last_send_time = last;

44,
99;

v_stop_point_bb
v_stop_point_db

v_last_index = 0;

v_speed HIGH;
started = false;

[/ %k ok ok ok ok ok sk ok ok o ok ok o kok ok ok ok o ok ok sk ok ok Kok ok ok ok o
// Constructor
/] Kk ok ok ok ok Kok ok ok o o kK ok sk ok ok K Kok sk ok o ok Kok Kok ok o o K
stream_info::“stream_info ()

delete v_pack;

// We should loop through all elements of v_resend_queue and delete these
}

/[%k ks o ok koo ok ok sk o sk ko sk o ok ok koo o ok ok ok
// update_send_time

/[F Rk ok ok ok ks ok ok ok ok ok ok sk sk ok ok sk ok ok sk kok ok ok ok
system_time stream_info::update_send_time ()

{

int time_increase = 0;

switch (v_speed) {

case LOW:
time_increase = v_low_speed_interval;
break;

case NORMAL:
time_increase = v_normal_speed_interval;
break;

case HIGH:
time_increase = v_high_speed_interval;
break;

default:
break;

v_next_send_time = v_next_send_time + time_increase;
return v_next_send_time;

288

B. Protocol source files

[/ %k sk ks ok o ok sk ok sk ok sk ok Kok sk ook o ok ok ok ok ok ok ook sk ok ook ok ok

// get_next_block

[/ %k sk ks ok o ok sk ok sk ok sk ok Kok sk ook o ok ok ok ok ok ok ook sk ok ook ok ok

bool stream_info::get_next_block(ul6& BB, ul6& DB, speed_level& speed)
{

ulé latest_BB v_next_buffer_block;
ul6é latest_DB = v_next_data_block;

// Start checking if any resend blocks are queued.
if (!v_resend_queue.empty()) {
resend_block block;
block = v_resend_queue.front();
v_resend_queue.pop();
BB = block.bb;
DB = block.db;
this->adjust_speed(HIGH) ;
speed = v_speed;
update_send_time();
return true;
}
// Check if we have reached stop point.
if (latest_BB > v_stop_point_bb) {
// We have crossed the stop point. Done sending data.
return false;

}

if (!started) {
// We are at beginning of stream. Send start block
BB = v_pack->get_start_bb();
DB = v_pack->get_start_db();
v_next_data_block = v_pack->get_start_bb();
v_next_buffer_block = v_pack->get_start_bb();
speed = v_speed;
update_send_time() ;
started = true;
return true;
}
else {
// Normal data dispatching
ul6 number_of_dbs = v_pack->get_number_of_db();

if (v_last_index == number_of_dbs - 1) {
v_last_index = 0;
v_next_buffer_block = latest_BB + 1;

}

else {
v_last_index++;

}

v_next_data_block = v_pack->get_db(v_last_index);

BB v_next_buffer_block;
DB v_next_data_block;
speed = v_speed;
update_send_time() ;
return true;

289

B. Protocol source files

//***

// Add a block to the resend queue
[[F KA A KA A A KA KA KA KK KKK KK KK KoK KK oK K o
void stream_info::add_resend_block(ul6 BB, ul6 DB)
{
resend_block block = {BB,DB};
v_resend_queue.push(block) ;

}

//***

// Adjust the speed of the stream
[/ F ks ks ok sk ks ok skok ok ks sk sk sk ok sk sk sk sk sk ks ok stk sk sk sk sk sk ok sk ok
void stream_info::adjust_speed(speed_level new_speed)
{

v_speed = new_speed;

}

/[%%k ek ok ok ko sk ok ok ok ok ok ok Kok o sk ok Kk sk ok K Kk ok ok ok ok ok ok Kok ok ok K

// Return client associated with the stream_info
/] %%k ok sk ok ok ok ok ok sk sk ok sk o ok sk Kok sk ok o o Kok ok ok ok o Kk sk ok ok ok
u64 stream_info::get_client_id()

return v_client_id;

}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kok o sk ok Kk sk ok Kk ok ok ok ok ok ok ok Kok ok ok K

// Return client associated with the stream_info
[/ F Rk ok ok ks ko ko ok ok ok ko ok ks ok ok sk ok ok sk ok ok ok ok o

void stream_info::set_stop_point(ul6 BB, ul6 DB)
{

v_stop_point_bb = BB;
v_stop_point_bb = DB;
}

/] Rk ok sk ok ok ok ok ok Kk sk ok sk o ok sk Kok sk ok o o Kok ok ok ok o o Kk sk ok ok ok
// Return client associated with the stream_info
[/ %Ak ok ok sk ok ok koo ok ok o ok ok ok sk o kok sk ok Kok o ok ok o Kok ok ok ok o Kok ok
void stream_info::get_stop_point(ul6& BB, ul6& DB)
{

BB = v_stop_point_bb;

DB v_stop_point_bb;

/[%%k ok sk ok ok ok ok s sk ok ok ok ok ok ok Kok o sk ok K Kk s ok K Kk ok ok ok ok ok ok Kok ok ok K

// Return client associated with the stream_info
[/] F Rk ok ok ok ks ko ko ok ok ok sk ok ks ok ks ok ok ok kb ok ok o

void stream_info::set_send_time(system_time t)
{

v_next_send_time = t

}

//***

// Set the current play point
[[F Rk ok ok ks ko sk ok ok ok ok sk sk ok sk sk ok sk sk ok ks ok ok kb ok ok o

290

B. Protocol source files

void stream_info::set_play_point(ul6 BB)
{

v_next_buffer_block = BB;

v_last_index = -1;

}

[/ % H Aok ok sk ok ok o koo ok ok o ok ok ok ko o kok sk ok kok o ok ok o ko ok ok ok o Kok ok
// Return client associated with the stream_info
/] 3%k ok sk ok Kok ok ok ok Kk sk ok sk ok ok sk Kok ok ok o o Kok ok ok ok ok Kk ok ok ok ok
system_time stream_info::get_send_time()

return v_next_send_time;

}

stream_table.h

#ifndef STREAM_TABLE
#define STREAM_TABLE

#include <map>

#include "../include/global_functions.h"
#include "../include/enum.h"

#include "../include/types.h"

#include "../include/packet_snd_data_stream.h"
#include "../include/packet_stop_stream.h"
#include "../include/stream_info.h"

#include "../include/packet_conn_granted.h"

typedef std::map<struct system_time, stream_info*>::const_iterator CIT;
class stream_table {

bool v_initialized;

// Internal representation of the packet structure containing information
// about the video

packet_conn_granted* v_pack;

// Internal map representing the streams dispatched
std: :map<u64, stream_info*> v_streams;

std: :map<struct system_time, stream_info*> v_wait_times;

public:
// Constructor
stream_table();
// Destructor
~“stream_table();

// Initializer
void initialize(packet_conn_granted* pack);

// Add a stream to the stream_table
void add_stream(packet_snd_data_stream* pack, int min, int norm, int max);

291

B. Protocol source files

// Delete a given stream from stream table
void stop_stream(packet_stop_stream* pack);

// Get next receiver in line. This will return the next receiver
// in terms of the minimum delay before the receiver should receive
// the next data block. The delay is given in wait_time. Note that
// this may be negative.
bool get_next_receiver(u64& client_id,
int& wait_time,
ul6& next_bb,
ul6& next_db,
speed_level& speed,
u64& ip_addr,
ul6& port);

// Adjust the speed of a given client.
bool adjust_speed(u64 client_id, speed_level new_speed);

// Resend a block to a client.
bool resend_block(u64 client_id, ul6 BB, ul6é DB);

// Remove stream
void remove_stream(u64 client_id);

// / Update contents of a stream
bool update_stream(packet_snd_data_stream* pack);

// Skip to a given point in a stream
bool skip(u64 client_id, ul6 BB);

};

#endif

stream _table.cpp

#include "stdafx.h"
#include "../include/stream_table.h"

using namespace std;

//***

// constructor
/[%k ok sk o ok koo sk ok sk o ko ko sk o ok ok koo o ok ok ok ok

stream_table::stream_table()
{
v_initialized = false;
v_pack = NULL;
}

//***

// Initializer
[/ %k ks o ok koo sk o ok sk o ok ko sk o ok ok koo o ok ok ok ok ok

void stream_table::initialize(packet_conn_granted* pack)

292

B. Protocol source files

{
if (! v_initialized) {
v_pack = pack;
v_initialized = true;
}
else {
throw new stream_table_exception("Error: stream_table already initialized");
}
}

/[%%k ok sk o ok koo ook ok sk o sk ko sk o ok ok koo o kok ok ok ok ok
// destructor

/[%%k ok sk o ok koo ook ok sk o sk ko sk o ok ok koo o kok ok ok ok ok
stream_table::~stream_table()

{

delete v_pack;

v_streams.clear();

v_wait_times.clear();

// We should clean up all references to stream_info classes in maps

}

[/% %k ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K sk ok ok K sk ok ok 3 sk ok ok X kK
// Add a stream
[/% %%k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok K sk ok ok K ok ok ok 3 ok ok ok X kK
void stream_table::add_stream(packet_snd_data_stream* pack, int min, int norm, int max)
{
if (v_initialized) {
stream_info* stream = new stream_info(pack, min, norm, max);

// First packet should be sent immidiately
system_time now;

get_system_time (&now) ;
stream->set_send_time (now) ;

// Insert stream into maps

v_streams [pack->get_client_id()] = stream;

v_wait_times[now] = stream;
}
else {

throw new stream_table_exception("Error: stream_table not initialized!");
}

}

[/% F AR Kk KA KKK oK ook oK K oK K o oK oK KK K KK KK oK K o Ko K oK
// stop stream
[/% F AR Kk KA KKK oK ook oK K oK K o oK oK KK K KK KK oK K o Ko K oK
void stream_table::stop_stream(packet_stop_stream* pack)
{
if (v_initialized) {
u64 client_id = pack->get_client_id();
stream_info* si = v_streams[client_id];
if (pack->get_stop_bb() == 0 && pack->get_stop_db() == 0) {
// Delete entry from maps
v_wait_times.erase(si->get_send_time());
v_streams.erase(client_id);

293

B. Protocol source files

delete si;
}
else {
si->set_stop_point (pack->get_stop_bb(), pack->get_stop_db());
}
}
else {
throw new stream_table_exception("Error: stream_table not initialized!");

}

/ /% %%k ok ok ok ok ok ok ok ok ok ok ok s ok ok ok ok ok sk ok ok K sk ok ok K ok ok ok 3 sk ok ok kK
// get_next_receiver
/ /% %%k ok ok ok ok ok ok ok ok ok ok ok s ok ok ok ok ok sk ok ok K sk ok ok K ok ok ok 3 sk ok ok kK
bool stream_table::get_next_receiver(u64& client_id,
int& wait_time,
ul6& next_bb,
ul6& next_db,
speed_level& speed_level,
u64& ip_addr,
ul6& port)
{
if (v_initialized) {
wait_time 0;
client_id = 0;
next_bb = 0;
next_db = 0;

system_time now;
get_system_time (&now) ;

system_time t1 = {0,0};

CIT i = v_wait_times.lower_bound(tl);
stream_info* info;

if (i == v_wait_times.end()) {
return false;

}

else {

info = i->second;
system_time next_send_time = info->get_send_time();
if (!info->get_next_block(next_bb, next_db, speed_level)) {
// There is no more data to send. Delete stream_info instance
v_wait_times.erase(i->first);
v_streams.erase(client_id) ;
delete info;
wait_time = O;
return true;
}
else {
client_id = info->get_client_id();
wait_time = to_msec(next_send_time - now);
ip_addr = info->v_pack->get_client_ip4();
port = info->v_pack->get_client_port();
// Remove data from the wait times map
v_wait_times.erase(i->first);

294

B. Protocol source files

// Insert data again with updated send time
v_wait_times[info->get_send_time()] = info;
return true;
}
}
}
else {
throw new stream_table_exception("Error: stream_table not initialized!");

}

[/ %Kk ok ok ok o K KK ok ok o o KKK ok o o K K KoK ok o o K KK Kok ok o KK Kok ok ok
// Adjust the speed of a given client
/[F R R R R R R R R R Rk ok sk s sk ok ok ok ok sk ok skok kKoK KoK K K
bool stream_table::adjust_speed(u64 client_id, speed_level new_speed)
{
if (v_initialized) {
stream_info* info = v_streams[client_id];
if (info == NULL) {
return false;
}
else {
info->adjust_speed(new_speed) ;
return true;
}
}
else {
throw new stream_table_exception("Error: stream_table not initialized!");

}

/] %k ko ok ok sk ok ok ok ok ok Kk oKk ok o ok ok Kok sk ok o ok Kok ok ok ok o Kk ok ok ok ok
// Resend a data block (enqueues) the data block
// into the resend queue of the client.
/] %k ko ok ok sk ok ok ok ok ok Kk sk ok ok o ok sk Kok sk ok o o Kok ok ok ok o Kk ok ok ok ok
bool stream_table::resend_block(u64 client_id, ul6 BB, ul6 DB)
{
if (v_initialized) {
stream_info* info =
if (info == NULL) {
return false;
}
else {
info->add_resend_block(BB, DB);
return true;

}

v_streams[client_id];

}
else {
throw new stream_table_exception("Error: stream_table not initialized!");

}

//***

// Remove stream
[/ %k ks o ok koo kok o ok sk ok sk stk sk o ko o o skok o sk sk ok sk o ok ok

void stream_table::remove_stream(u64 client_id)

295

B. Protocol source files

stream_info* si = NULL;

si = v_streams[client_id];

if (si != NULL) {
v_wait_times.erase(si->get_send_time());
v_streams.erase(client_id);

delete si;

}

/[%%k ek ok ok ok ok sk ok ok Kok ok ok ok Kok o sk ok Kk sk ok K Kk ok ok ok ok ok ok Kok ok ok K
// Update stream
/[F ok ok kR Rk ok kR ok ok ok ko sk ok ok ok ok ok ok ok ok ok k koK Kok K K
bool stream_table::update_stream(packet_snd_data_stream* pack)
{
stream_info* si = v_streams[pack->client_id];
if (si == NULL)
return false;
else
return true;

/] %k ko ok ok sk ok Kok ok ok ok Kk skok ok ok ok sk Kok sk ok o ok Kok ok ok ok o Kk ok ok ok ok
// Skip to a given point in the video
[/ % F Ak ok ok ok koo ok ok o ok ok ok ko ok ok sk o kok o ok ok o ko ok ok ok o Kok ok
bool stream_table::skip(u64 client_id, ul6 BB)
{
stream_info* si = v_streams[client_id];
if (si == NULL)
return false;
else
si->set_play_point (BB);

thread client.h

#ifndef THREAD_CLIENT
#define THREAD_CLIENT

#include "../include/transport_handler.h"
#include "../include/stream_engine.h"
#include "../include/data_bank_client.h"
#include "../include/logic_client.h"
#include "../include/packet_queue.h"

struct thread_params

{
data_bank_client* v_data_bank;
stream_engine* v_stream_engine;
transport_handler* v_transport_handler;
packet_queuex* v_packet_queue;
logic_client* v_logic_client;

};

296

B. Protocol source files

void receive_thread(void* args);
void stream_thread(void* args);
void logic_thread(void* args);

#endif

thread client.cpp

#include "stdafx.h"
#include "../include/thread_client.h"

void receive_thread(void* args)

{
packet_queue* v_packet_queue = ((thread_params*)args)->v_packet_queue;
transport_handler* v_transport_handler = ((thread_params#)args)->v_transport_handler;

packet* pack = NULL;
struct client_address addr;

for(;;) {
v_transport_handler->receive(pack, addr);

ub4 client_id = 1234;
if (pack == NULL) {
v_transport_handler->close_CCP_connection(client_id) ;
break;
}
else {
v_packet_queue->insert_packet (pack) ;
}
}

return;

}

void stream_thread(void* args)

{
data_bank_client* v_data_bank = ((thread_params*)args)->v_data_bank;
stream_engine* v_stream_engine = ((thread_params#*)args)->v_stream_engine;
transport_handler* v_transport_handler = ((thread_params#)args)->v_transport_handler;

ub4 recv_client_id;
int wait_time;

ul6 next_bb;

ul6é next_db;
speed_level speed;
u64 ip_addr;

ul6 port;

for(;;) {
wait_time = O;

297

B. Protocol source files

if (v_data_bank->get_next_receiver(v_stream_engine->get_video_id(),
recv_client_id,

wait_time,

next_bb,

next_db,

speed,

ip_addr,

port)) {

if (wait_time == 0) {

packet* pack = v_stream_engine—>stream(recv_c1ient_id,
next_bb,

next_db,

speed) ;

client_address v_client_address;
v_client_address.client_ip = ip_addr;
v_client_address.client_DCP_port = port;
v_transport_handler—>send_DCP(pack, &v_client_address);
}

else {

System: : Threading: :Thread: :Sleep(wait_time / 1000);
}

}

else

break;

}

return;

}

void logic_thread(void* args)

{
packet_queue* v_packet_queue = ((thread_params*)args)->v_packet_queue;
logic_client* v_logic_client = ((thread_params#*)args)->v_logic_client;
for(5;) {

packet* pack = v_packet_queue->get_next_packet();
v_logic_client->packet_handler (pack) ;
}

return;

}

transport handler.h

#ifndef TRANSPORT_HANDLER
#define TRANSPORT_HANDLER

#include "../include/packet_data.h"

#include "../include/vod_exception.h"

298

B. Protocol source files

#include "../include/socket_utils.h"
#include "../include/packet.h"
#include "../include/types.h"
//#include <arpa/inet.h>

#include <string.h>

//#include <netinet/in.h>

#include <map>

#include <errno.h>

//#include "winsock2.h"

enum NODE_TYPE{
CLIENT = O,
SERVER = 1
};

struct client_address {
u64 client_ip;

ul6 client_DCP_port;
ul6 client_CCP_port;
u64 client_id;

SOCKET sd;

};

typedef std::map<int, client_address*>::const_iterator CI;

class transport_handler
{

int foo;
void fill_addr_client_values(packet*&, client_address* client_addr);

// Variable indicating if the class is initialized
bool v_initialized;

// The type of the transport_handler instance
NODE_TYPE v_type;

// Socket descriptor for the CCP socket
SOCKET v_CCP_sd;
// S0cket descriptor for the DCP socket
SOCKET v_DCP_sd;

// value indicating the CCP port either opened

// locally on the server or connected to remotely from the client
ul6é v_CCP_port;

// Value indicating the DCP port opened by the transport_handler
ul6é v_DCP_port;

// Hash containing socket descriptors and client id’s
std::map<int, client_address*> v_clients;

// number indicating the highest socket number
int v_high_sock;

// variable indicating the highest fd which is ready for reading.

299

B. Protocol source files

int v_high_sock_ready;

// fd set containing list of all socket descriptors used
fd_set v_sock_list;

// Struct containing information about the
// local opened port used by DCP. Used on client and server
struct sockaddr_in v_local_DCP_addr;

// Struct containing information about the local opened port
// used by CCP. Used by server to open a specific port locally,
// and by client to bind a local port.

struct sockaddr_in v_local_CCP_addr;

// Struct containing the remote CCP server. Used only by client.
struct sockaddr_in v_remote_CCP_addr;

//initializer functions.
void initialize_DCP();
void initialize_CCP();

// Function resetting all file descriptors in fd_set
void reset_descriptors();

// Generate new unique id from socket descriptor
u64 generate_id(int);

// Handle new connecting CCP client
void handle_new_CCP_req();

// Read a incoming DCP packet
void read_DCP_packet(packet*&, client_address&);

// Read a incoming DCP packet
void read_CCP_packet(packet*&, SOCKET sd);

public:
// constructors
transport_handler (ul6, ul6);
transport_handler(ul6é, ul6, ul6, charx*);
// destructor
“transport_handler();

// Initialize the class

void initialize();

// send data through the DCP channel. May throw a transport_exception*.
bool send_DCP(packet*, client_address¥);

// send data through the CCP channel. May throw a transport_exception.
bool send_CCP(packet*, u64);

// receive. May throw a transport_exceptionk.

ub4 receive (packet*&);

// Close an open connection. May throw a transport_exceptionk.

void close_CCP_connection(u64);

};

#endif

300

B. Protocol source files

transport handler.cpp

#include "stdafx.h"
#include "../include/transport_handler.h"

using namespace std;

[/ %k ks o ok koo ook o ok ok ok ok ko sk o skok o ok sk o koo sk sk sk o ok ok ok ok
// Comstructor.

// Initializes the transport_handler as server
[/ F KA A AR A KA AR A AR A KA KA K AR KK KKK KK KKK KK KK oK o ok K

transport_handler: :transport_handler (ul6é local _DCP_port, ul6

{
foo = 0;
v_initialized = false;
v_DCP_port = local_DCP_port;
v_CCP_port = local_CCP_port;
v_type = SERVER;
v_high_sock = 0;
v_high_sock_ready = 0;
FD_ZERD (&v_sock_list);
// initialize variables to zero
ZeroMemory (&v_local _DCP_addr, sizeof(v_local_DCP_addr));
ZeroMemory (&v_local_CCP_addr, sizeof(v_local_CCP_addr));
ZeroMemory (&v_remote_CCP_addr, sizeof(v_remote_CCP_addr));
v_local_CCP_addr.sin_family = AF_INET;
v_local_CCP_addr.sin_addr.s_addr = htonl (INADDR_ANY);
v_local_CCP_addr.sin_port = htons(local_CCP_port);
v_local_DCP_addr.sin_family = AF_INET;
v_local_DCP_addr.sin_addr.s_addr = htonl(INADDR_ANY);
v_local_DCP_addr.sin_port = htons(local_DCP_port);

}

[/R R R R R R R R R Rk ok ok s sk ok ok ok ok sk ok skok K KoK KoK K K K K

// Comstructor.

// Initializes the transport_handler as client

[/R R R R R R R R R Rk ok ok s sk ok ok ok ok skok sk ok K KoK KoK K K K K

transport_handler: :transport_handler (ul6 local_DCP_port,
ul6é local_CCP_port,

ul6 remote_CCP_port,
char* remote_CCP_ip)

foo = 0;

v_initialized = false;
v_DCP_port = local_DCP_port;
v_CCP_port = remote_CCP_port;
v_type = CLIENT;

301

local _CCP_port)

B. Protocol source files

v_high_sock = 0;
v_high_sock_ready = 0;

FD_ZERD(&v_sock_list);

// initialize variables to zero

ZeroMemory (&v_local _DCP_addr, sizeof(v_local_DCP_addr));
ZeroMemory (&v_local_CCP_addr, sizeof(v_local_CCP_addr));
ZeroMemory (&v_remote_CCP_addr, sizeof(v_remote_CCP_addr));

v_remote_CCP_addr.sin_family = AF_INET;
v_remote_CCP_addr.sin_port = htons(remote_CCP_port);
v_remote_CCP_addr.sin_addr.S_un.S_addr = inet_addr(remote_CCP_ip);

v_local_CCP_addr.sin_family = AF_INET;
v_local_CCP_addr.sin_addr.s_addr = htonl (INADDR_ANY);
v_local_CCP_addr.sin_port = htons(local_CCP_port);

v_local_DCP_addr.sin_family = AF_INET;
v_local_DCP_addr.sin_addr.s_addr = htonl (INADDR_ANY);
v_local_DCP_addr.sin_port = htons(local_DCP_port);

/] %k ok sk ok Kok ok ok ok Kk skok ok o ok sk Kok ok ok o ok Kok sk ok ok o o Kk ok ok ok ok o K
// Destructor
/] %k ok sk ok Kok ok ok ok Kk skok ok o ok sk Kok ok ok o ok Kok sk ok ok o o Kk ok ok ok ok o K
transport_handler: : “transport_handler ()
{
try {
Close(v_CCP_sd);
Close(v_DCP_sd);
WSACleanup() ;
// Loop through all connected clients and close socket descriptor
CI a = v_clients.begin();
struct client_address* client;

while (a !'= v_clients.end()) {
client = a->second;
at+;

Close(client->sd);

}

}

catch(transport_exception* ex) {
throw ex;

}

//***

// Initializer function
[/ %k ks o ok koo ks o ok ok ok ok stk sk o sk o ok sk o ok sk sk sk o ok ok ok ok

void transport_handler::initialize()

{

if (!'v_initialized) {

302

B. Protocol source files

WSADATA wsaData;
int iResult = WSAStartup(MAKEWORD(2,2), &wsaData);

if (iResult == NO_ERROR) {
initialize_DCP();
initialize_CCP();
v_initialized = true;
¥
else
v_initialized = false;
¥
else
throw new transport_exception("Error: transport_handler was already initialized.");

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok kK o o sk ok K Kk sk ok K Kk ok Kok ok ok kKo ok ok Kok

// Initialize the Data Communication Client
[/ F ko ok ok ks ook ok ko ok ok ok sk ok ok sk sk kok ok sk sk kok ok sk sk ok o sk ok o sk ok ok

void transport_handler::initialize_DCP()

{
try {
// Open cdp socket
v_DCP_sd = Socket(AF_INET, SOCK_DGRAM, 0);
// set the socket nonblocking
setnblck (v_DCP_sd) ;
Bind(v_DCP_sd, (struct sockaddr*) &v_local_DCP_addr, sizeof(v_local_DCP_addr)) ;
}
catch (transport_exception* ex) {
throw ex;
}
}

[/ %k ks o ok koo ks o ok sk ok ok stk sk o ko o ok sk o ok sk sk sk sk o ok ok ok ok
// Initialize the Control Communication server
/[F ko ok ok ks koo ko ok ok ok sk ok ok sk sk ok ok sk sk ok ok sk sk ok o sk sk ok o sk ok ok
void transport_handler::initialize_CCP()
{
try {
// Open socket
v_CCP_sd = Socket(AF_INET, SOCK_STREAM,O0);
// bind socket to local port
set_so_reuseable(v_CCP_sd);
Bind(v_CCP_sd, (struct sockaddr*) &v_local_CCP_addr, sizeof(v_local_CCP_addr)) ;
if (v_type == CLIENT) {
// Connect to server
Connect (v_CCP_sd, (const sockaddr*) &v_remote_CCP_addr, sizeof(v_remote_CCP_addr));
setnblck (v_CCP_sd);
}
else {
setnblck (v_CCP_sd);
// Listen with a queue lenght of 5
Listen(v_CCP_sd, 5);
}
}

catch (transport_exception* ex) {

303

B. Protocol source files

closesocket (v_CCP_sd);
throw ex;

}

[/ Rk ok ok o kK sk ok sk kK Kok sk ok ok K Kok ok ok ok Kk sk sk ok ok ok ok Kok sk ok ok o ok Kok ok okok ok ok K
// Reset file descriptors in fd set
[/ %Ak ok sk ok ok ok ok ok ok o ok ok sk ok ok ok ok skok o ok ok o Kok ok ok ok ko ok ok ok ok ok ko o ok ok o K
void transport_handler::reset_descriptors()
{

FD_ZERD (&v_sock_list);

FD_SET(v_CCP_sd, &v_sock_list);

FD_SET(v_DCP_sd, &v_sock_list);

v_high_sock_ready = 0;
v_high_sock = 0;

client_address* client;

for (CI i = v_clients.begin(); i != v_clients.end(); ++i){
client = i->second ;
FD_SET(client->sd, &v_sock_list) ;
}
}

/[%%k sk ok ok ok ok sk ok ok Kok ok ok ok Kk ok ok ok K o ok ok K K sk ok K K ok Kok o ok ok Kok ok ok Kok ok ok Kok
// Close a socket descriptor associated with a given client id
/[F kR Rk kR R ok ok ok ok sk ok ok ok ok ok koK sk ok ok ok ok Kok K KK K Kk ok ok ok o o ok
void transport_handler::close_CCP_connection(u64 client_id)
{

int sd;

client_address* client;

try {
// Retrieve socket handler from client id
client = v_clients[client_id];
v_clients.erase(client_id);
FD_CLR(client->sd, &v_sock_list);
Close(client->sd);
delete client;

}
catch (transport_exception* ex) {

cout << "Caught exception: " << ex->get_message() << endl;
}

}

/] %%k sk ok ok ok ok sk ok ok ok ok ok ok Kok sk ok ok K o ok ok K K sk ok K K ok Kok o ok ok ok ok ok ok Kok ok ok Kok

// Send data through CCP
[/ FFF AR kAR AR ROk KK o KK ok KoK K o kK ok oK kK K o kKK ok oK o

bool transport_handler::send_CCP(packet* pack, u64 client_id)
{
if (v_initialized) {
size_t rv;
SOCKET sd;

304

B. Protocol source files

client_address* client;

void* header;

// We malloc an iovec of size 3 (maximum size)

iovec* msg_parts = (iovec*) malloc(sizeof (iovec) * 3);

try {
if (v_type == CLIENT)
sd = v_CCP_sd;
else {
client = v_clients[client_id];
sd = client->sd;
}
// Send data
// Create msghdr struct
msghdr msg;

// Fill socket addr indicating receiver of packet
msg.msg_name = NULL;
msg.msg_namelen = 0;

// Fill msg_iov field

// Set iocvector in msghdr to msg_parts
msg.msg_iov = msg_parts;

msg.msg_iovlen = 0;

// Fill vector

msg_parts[0].iov_base = pack->get_header();

msg_parts[0].iov_len = c_header_len;

msg.msg_iovlent+;

if (pack->get_payload_len() > 0) {

msg_parts[1].iov_base = pack->get_payload();
msg_parts[1].iov_len = pack->get_payload_len();
msg.msg_iovlent+;

}

if (pack->get_payload_data_len() > 0) {

msg_parts[2] .iov_base = pack->get_payload_data();

msg_parts[2].iov_len = pack->get_payload_data_len();
msg.msg_iovlent+;

}

msg.msg_control = (void*) NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;

// Send message
Sendmsg(sd, &msg, 0);
delete msg_parts;

}
catch (transport_exception* ex) {
delete msg_parts;
throw ex;
}
X
else
throw new transport_exception("Error: transport_handler send was

305

B. Protocol source files

called before the class was inititalized.");

//***

// Send data through DCP
[/ FF Ak sk sk R o KR KK o K R K K K K KK S K o

bool transport_handler::send_DCP(packet* pack, client_address* client)
{

if (v_initialized) {

// We malloc an iovec of size 3 (maximum size)

iovec* msg_parts = (iovec*) malloc(sizeof (iovec) * 3);

ZeroMemory((void*) msg_parts, sizeof (iovec) * 3);
try {

// Create msghdr struct

msghdr msg;

ZeroMemory((voidx) &msg, sizeof (msg));

// Fill socket addr indicating receiver of packet
sockaddr_in receiver;

receiver.sin_family = AF_INET;

receiver.sin_port = htons(client—>c1ient_DCP_port);
receiver.sin_addr.S_un.S_addr = client->client_ip;
msg.msg_name = (void*) &receiver;

msg.msg_namelen = sizeof (receiver);

// Fill msg_iov field

// Set iocvector in msghdr to msg_parts
msg.msg_iov = msg_parts;

msg.msg_iovlen = 0;

// Fill vector

msg_parts[msg.msg_iovlen] .iov_base = pack->get_header();
msg_parts[msg.msg_iovlen].iov_len = c_header_len;
msg.msg_iovlent+;

if (pack->get_payload_len() > 0) {

msg_parts[msg.msg_iovlen] .iov_base = pack->get_payload();
msg_parts[msg.msg_iovlen].iov_len = pack->get_payload_len();
msg.msg_iovlent+;

}

if (pack->get_payload_data_len() > 0) {
msg_parts[msg.msg_iovlen].iov_base = pack->get_payload_data();
msg_parts[msg.msg_iovlen].iov_len = pack->get_payload_data_len();
msg.msg_iovlent+;

}

msg.msg_control = (void*) NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;

// Send message
int res = Sendmsg(v_DCP_sd, &msg, 0);
delete msg_parts;

}

catch (transport_exception* ex) {
delete msg_parts;

306

B. Protocol source files

throw ex;
}
}
else
throw new transport_exception("Error: transport_handler.send was called before
the class was inititalized.");

[[%3k sk ok sk ok ko ko ok sk ok sk sk ok skok sk sk ok ok sk sk ok sk sk ok sk sk ok ok sk ok ok ok sk sk ok ok ok ok ok ok ok
// Receive data from socket and return data wrapped in a packet
[/ F3k sk ok ook ok ook ok ok ok ook ok ok sk ok sk sk ok stk ok sk ok stk ok sk ok ok ok ok
ub4 transport_handler::receive (packet* &pack)
{

SOCKET sd;

pack = NULL;

client_address client_addr;

if (v_initialized) {
try {
for (;;){ // Loop until data has arrived
reset_descriptors();
// Perform select call on all socket descriptors with no time-out
v_high_sock_ready = Select(v_high_sock + 1, &v_sock_list, NULL, NULL, NULL);
if (FD_ISSET(v_CCP_sd, &v_sock_list)) {
if (v_type == SERVER) {
// Handle new connecting CCP client. This can only happen as server
handle_new_CCP_req() ;

}

else {
// client got control message from server
read_CCP_packet (pack, v_CCP_sd);

if (pack !'= NULL)
fill_addr_client_values(pack, &client_addr);

return 0;

}

}

if (FD_ISSET(v_DCP_sd, &v_sock_list)) {
// Read incoming DCP packet
read_DCP_packet (pack, client_addr);
f£ill_addr_client_values(pack, &client_addr);
return 0;

// Loop through all connected clients to see if socket descriptor is set.
CI a = v_clients.begin();
struct client_address* client;

while (a !'= v_clients.end()) {
//we extract the file descriptor
client = a->second ;
// we increment the iterator as it might be deleted
if (FD_ISSET(client->sd, &v_sock_list)){
client_addr.client_id = client->client_id;
client_addr.client_ip = client->client_ip;

307

B. Protocol source files

read_CCP_packet (pack, client->sd);
if (pack !'= NULL)
f£ill_addr_client_values(pack, &client_addr);

return client->client_id;

catch (transport_exception* ex) {
throw ex;

}
}

else
throw new transport_exception("Error: transport_handler.receive called
before the class was inititalized.");

[/ F3k sk ok ook ok ook ok ok ok okskok ok sk ok o sk sk ok sk ko sk ok sk ok ks ok ok ok ok
// Read new packet from DCP port
[[F ks sk ko ks ok ko ko ok sk ok sk ok ok skok sk sk skok sk sk ok sk sk ok sk sk ok ok sk ok ok ok ok sk ok ok ok ok ok ok
void transport_handler::read_DCP_packet(packet* &pack, struct client_address &client)
{
size_t n_bytes;
void* header = (void*) malloc(c_header_len);
struct sockaddr_in sender;
int len = sizeof (sockaddr_in);
void* payload_data = NULL;
void* payload = NULL;
try {
// First we must peek to see how much data awaits on socket
// This is done, as calling receive on an UDP socket WILL
// discard all data belonging to the datagram awaiting in
// socket no matter how much of the data is read. Thus calling
// receive MUST be done once on all data awaiting to be read.

n_bytes = Recvfrom(v_DCP_sd,
header,
c_header_len,
MSG_PEEK,
(struct sockaddr*) &sender,
&len) ;

pack = new packet (header);

int bytes_to_read = c_header_len +
pack->get_payload_len() +
pack->get_payload_data_len();

// Now we construct msg header for the recvmsg call
msghdr msg;

// We malloc an iovec of size 3 (maximum size)

iovec* msg_parts = (iovec*) malloc(sizeof (iovec) * 3);

308

B. Protocol source files

// Fill socket addr to indicate sender of packet
sockaddr_in sender;

ZeroMemory ((void*) &sender, sizeof (sender));
msg.msg_name = (void*) &sender;

msg.msg_namelen = sizeof (sender);

// Fill msg_iov field

// Set iocvector in msghdr to msg_parts
msg.msg_iov = msg_parts;

msg.msg_iovlen = 0;

// Fill vector

// Set packet header
msg_parts[msg.msg_iovlen].iov_base = header;
msg_parts[msg.msg_iovlen].iov_len = c_header_len;
msg.msg_iovlent+;

// Set payload header
if (pack->get_payload_len() > 0) {
msg_parts[msg.msg_iovlen] .iov_base = malloc(pack->get_payload_len());
msg_parts[msg.msg_iovlen].iov_len = pack->get_payload_len();
payload = msg_parts[msg.msg_iovlen].iov_base;
msg.msg_iovlent+;

if (pack->get_payload_data_len() > 0) {
msg_parts[msg.msg_iovlen].iov_base = malloc(pack->get_payload_data_len());
msg_parts[msg.msg_iovlen].iov_len = pack->get_payload_data_len();
payload_data = msg_parts[msg.msg_iovlen].iov_base;
msg.msg_iovlent+;

msg.msg_control = (void*) NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;

n_bytes = Recvmsg(v_DCP_sd, &msg, 0);
pack->set_payload(payload, pack->get_payload_len());
pack->set_payload_data(payload_data, pack->get_payload_data_len());
}
catch (transport_exception* ex) {
throw ex;
}
}

//***

// Read new packet from CCP port
[[F KK F AR A AR A A KA A A AR AR A KA KA KK KK KKK oK K K K KK oK K o KK o

void transport_handler::read CCP_packet (packet* &pack, SOCKET sd)
{

size_t n_bytes;
void* header = (void*) malloc(c_header_len);
try {

n_bytes = Read(sd, header, c_header_len);

309

B. Protocol source files

if (n_bytes == 0) // Got eof - channel should be closed
pack = NULL;

else {
pack = new packet (header);

// Read payload

if (pack->get_payload_len() > 0) {
void* payload = (void*) malloc(pack->get_payload_len());
n_bytes = Read(sd, payload, pack->get_payload_len());
pack->set_payload(payload, n_bytes);

if (pack->get_payload_data_len() > 0) {
void* payload_data = (void*) malloc(pack->get_payload_data_len());
n_bytes = Read(sd, payload_data, pack->get_payload_data_len());
pack->set_payload_data(payload_data, n_bytes);
}
}
}
catch (transport_exception* ex) {
throw ex;

}
}

[/ Rk Rk ok o kK ok ok o o kK ok sk ok ok K Kok ok ok o Kk sk skok sk ok ok Kok sk ok ok o ok Kok ok ok ok ok o K
// Handle new connection on CCP port
[/ Rk Kok sk o kK ok ok o ok Kok sk ok ok K Kok ok ok o Kok sk skok ok o ok Kok sk ok ok o ok Kok ok okok ok ok K
void transport_handler::handle_new_CCP_req()
{

SOCKET new_sd;

struct sockaddr_in new_client;

int addr_len;

if (v_type == SERVER) {
try {
// Accept the new incoming connection and set socket non blocking
addr_len = sizeof (new_client);
new_sd = Accept(v_CCP_sd, (struct sockaddr *) &new_client, &addr_len);
setnblck (new_sd) ;
// Generate client id and store this in hash with new file descriptor
u64 client_id = generate_id(new_sd);
struct client_address* client = (client_address*) malloc(sizeof (client_address));
client->client_ip = new_client.sin_addr.S_un.S_addr;
client->client _CCP_port = new_client.sin_port;
client->client_id = client_id;
client->sd = new_sd;
v_clients[client_id] = client;
System: :Diagnostics: :Debug: :WriteLine ("Connected client" + client_id);
}
catch (transport_exception* ex) {
throw ex;
}
}
else
throw new transport_exception("Error: got new connection on DCP channel as client.");

310

B. Protocol source files

//***

// Generate new client id from feile descriptor
[/ F KK F AR A AR A A A A AR A KRR AR A KA KA KK KKK KKK K K K K KK oK K o KK o

u64 transport_handler::generate_id(int £d)
{
return fd;

}

void transport_handler::fill_addr_client_values(packet* &pack,
client_address* client_addr)

{

pack->client_ip = client_addr->client_ip;

pack->client _DCP_port = client_addr->client_DCP_port;

pack->client _CCP_port = client_addr->client_CCP_port;

pack->client_id = client_addr->client_id;

pack->sd = client_addr->sd;

transport handler thread.h

#ifndef TRANSPORT_HANDLER_THREAD
#define TRANSPORT_HANDLER_THREAD

#include "../include/transport_handler.h"
#include "../include/packet_queue.h"

struct receive_params

{
packet_queuex* v_packet_queue;
transport_handler* v_transport_handler;

s
void receive_thread(void* args);

#endif

transport handler thread.cpp

#include "stdafx.h"
#include "../include/transport_handler_thread.h"

[/ sk sk ok sk ke sk sk sk sk ok sk ke ok sk ok sk sk s ok sk ok sk sk ok sk sk ke sk sk sk ok ok

// Main procedure

[/ %ok koo ok ok ko sk ko ksl kok stk ok skok ko sk o sk sk ok ok sk sk sk sk o ok

void receive_thread(void* args)

{
packet_queue* v_packet_queue = ((receive_params#*)args)->v_packet_queue;
transport_handler* v_transport_handler = ((receive_params*)args)->v_transport_handler;

311

B. Protocol source files

packet* pack = NULL;

for(;;) {
u64 client_id = v_transport_handler->receive(pack);

if (pack == NULL) {
v_transport_handler—>close_CCP_connection(client_id);
break;
}
else {
v_packet_queue->insert_packet (pack) ;
}
}

return;

}

vod _client.h

#ifndef VOD_CLIENT
#define VOD_CLIENT

#include "../include/define.h"

#include "../include/types.h"

#include "../include/logic_client.h"
#include "../include/logic_client_thread.h"
#include "../include/packet_queue.h"

#include "../include/transport_handler.h"
#include "../include/transport_handler_thread.h"
#include "../include/packet_conn_req.h"

// Struct used to clients ports
struct client_addr {

int dcp_port;

int ccp_port;

};

// Struct containing servers address
struct server_addr {

char* ip_address;

int port;

};

// Struct containing clients login-data
struct login_data {

char user_name[64];

char password[64];

unsigned int video_size;

unsigned int video_duration;

unsigned int skip_distance;

};

// Struct containing info needed for the client

312

B. Protocol source files

struct video_info {
unsigned long skip_distance;
unsigned long video_duration;
unsigned long video_length;

};

class vod_client {
private:
size_t v_buf_size;

client_addr* v_client_addr;
server_addr* v_server_address;

logic_client* v_logic_client;
transport_handler* v_transport_handler;
packet_queuex* v_packet_queue;

DWORD v_logic_thread_id;
HANDLE v_logic_thread;

DWORD v_receive_thread_id;
HANDLE v_receive_thread;

bool connect_status();
void clean_up();

logic_params argsi;
receive_params args2;

public:
// Constructor

vod_client(size_t buf_size, struct client_addr* client);

// Connect to server
int connect(unsigned long video_id, struct server_addr* address, struct login_data* login);

// Receive data from client’s buffer
size_t recv_data(void* buf, size_t max_len, unsigned long& offset);

// Disconnect from server
int disconnect() ;

// User interaction, puase
int pause();

// User interaction, resume
int resume();

// User interaction, skip
int skip(unsigned long distance);

// Returns movie info
void video_info(struct video_info* info);

};

#endif

313

B. Protocol source files

vod client.cpp

#include "stdafx.h"
#include "../include/vod_client.h"

[/ %3k ok ok ok o K KK ok ok o o KKK ok ok o KKK Kok ok o o K KoK K ok ok o KK ok ok ok o K
// Comstructor.
// Sets the buffer size and client address
[/ %3k ok ok ok K KoK ok ok o KKK ok o o KKK Kok ok o o K KoK K ok ok o KK ok ok ok o o K
vod_client::vod_client(size_t buf_size, struct client_addr* address)
{

v_buf_size = buf_size;

v_client_addr = new client_addr;

memcpy (v_client_addr, address, sizeof(client_addr));

}

[/% etk ks ok sk ok sk sk s ok ke sk sk ok sk ok ok ok sk sk sk ok stk sk sk ko ok ok ok sk sk sk o ok

// Connects the client to the server.

[/ %5k sk ok ok ok sk ok ok ok skoksk ok ok kR ok o ok ok sk ok ks ko ok ko ok

int vod_client::connect(unsigned long movie_id,
struct server_addr* address,
struct login_data* login)

v_server_address = new server_addr;
memcpy (v_server_address, address, sizeof(server_addr));

// Create packet-queue
v_packet_queue = new packet_queue(c_packet_queue_size_client);

// Create transport handler

v_transport_handler = new transport_handler(v_client_addr—>dcp_port,
v_client_addr->ccp_port,
address->port,
address->ip_address) ;

v_transport_handler->initialize();

// Create logic

v_logic_client = new logic_client((u64)movie_id,
v_transport_handler,
v_packet_queue) ;

// Create transport-handler thread
args2.v_packet_queue = v_packet_queue;
args2.v_transport_handler = v_transport_handler;
v_receive_thread = CreateThread(NULL,

0,

(LPTHREAD_START_ROUTINE) receive_thread,

(void#*) &args2,

0,

&v_receive_thread_id) ;

// Tries to login

v_logic_client->connect (v_buf_size, login,
v_client_addr->ccp_port,
v_client_addr->dcp_port);

314

B. Protocol source files

// Create client-logic thread
argsl.v_packet_queue = v_packet_queue;
argsl.v_logic_client = v_logic_client;
v_logic_thread = CreateThread(NULL,

0,

(LPTHREAD_START_ROUTINE) logic_thread,

(void*) &argsl,

0,

&v_logic_thread_id);

return 0;

}

/[%%k ok sk ok ok ok ok sk ok ok Kok ok ok ok kK o sk ok K K sk ok K Kk ok Kok ok ok ok Kok ok ok Kok

// Receive data from protocol
[/ F KA A AR AR AR A AR A KA KA K AR KA KKK KK KK KK oK ok K

size_t vod_client::recv_data(void* buf, size_t max_len, unsigned long& offset)
{

size_t rv = 0;

if(v_logic_client != NULL) {
rv = v_logic_client->recv_data(buf, max_len, (unsigned int&)offset);

if (!'this->connect_status())
clean_up();

return rv;

}

/[%%k ok ek ok ok ok ok sk ok ok ok ok ok ok kK o sk ok K Kk s ok K Kk ok Kok ok ok ok Kok ok ok Kok K

// Disconnect client
[/ F ko ok ok sk sk koo ko ok ok sk sk ok ok sk sk kok ok sk sk kokok sk sk ok o sk sk ok o sk ok ok

int vod_client: :disconnect ()

{
int rv = v_logic_client->disconnect();
clean_up();

return rv;

}

//***

// Pause client
[/ F ko ok ok ks ok ko ok ok ok sk kok ok sk sk kok ok sk sk ok sk sk ok o sk sk ok o sk ok ok

int vod_client: :pause()
{
return O;

}

//***

// Resume client
[/ %k ks o ok ko ok ks o ok sk ok ok ko sk o sk o ok sk o ok sk sk sk o ok ok ok ok

int vod_client: :resume()
{
return 0;

}

315

B. Protocol source files

[/ FFF AR kAR AR R AR K oo KK ok KKK K o koK ok ok ook K
// Skip
[/ FFF AR kAR AR R AR K oo KK ok KKK K o koK ok ok ook K
int vod_client::skip(unsigned long distance)

return v_logic_client->skip(distance);

}

[/ % H Aok ok sk ok ok ok ok ok ok ok o Kok ok ok sk ok ok ok ok ko o ok ok o Kok ok ok ok Kok ok ok ok

// Retrieve video info

/] %k ko ok sk ok Kok ok ok ok Kk sk ok ok o ok sk Kok ok ok o ok Kok sk ok ok ok Kk ok ok ok ok o K

void vod_client::video_info(struct video_info* info)

{
info->skip_distance = v_logic_client—>get_skip_distance();
info->video_duration = v_logic_client->get_video_duration();
info->video_length = v_logic_client->get_video_length();

}

/] %k ko ok sk ok ok ok ok ok ok Kk sk ok ok kK Kok sk ok o ok Kok ok ok ok o Kk ok ok ok ok o K
// Get the connectec status
[/ % H Aok ok ok ok ok ok ok ok o Kok ok ok sk ok ok ok ok ok ko o ok ok o Kok ok ok ok ko ok ok ok
bool vod_client::connect_status()

return true;

}

[/ F Rk ok ok ks ok ko ok ok sk sk kok ok sk sk ok ok sk sk ok sk sk ok o sk sk ok o sk ok ok
// Clean up
[/ %Ak ks o ok ko ok ks o ok sk ok ok ko sk o sk o ok sk ok sk sk sk sk o ok ok ok ok
void vod_client::clean_up()
{
// Send cancel to threads
TerminateThread (v_logic_thread, 0);
TerminateThread(v_receive_thread, 0);

// Delete objects
delete(v_logic_client);

delete (v_packet_queue) ;
//delete(v_transport_handler);

vod _exception.h

#ifndef VOD_EXCEPTION
#define VOD_EXCEPTION

#include <string.h>
#include <stdlib.h>

class vod_exception
private:
char* v_err_msg;

316

B. Protocol source files

public:
vod_exception(const charx);
const char* get_message();

};

class transport_exception : public vod_exception
{
public:

transport_exception(const char*);

};

class packet_exception : public vod_exception
{

public:

packet_exception(const char*);

};

class packet_queue_exception : public vod_exception
{

public:

packet_queue_exception(const charx);

};

class data_bank_exception : public vod_exception
{
public:

data_bank_exception(const char%);

};

class stream_table_exception : public vod_exception
{
public:

stream_table_exception(const char%);

};

#endif

vod __exception.cpp

#include "stdafx.h"
#include "../include/vod_exception.h"

vod_exception: :vod_exception(const char* msg)
{
v_err_msg = (char*) malloc(strlen(msg) + 1);
strcpy(v_err_msg, msg);

}

const char* vod_exception::get_message()
{

return (const char*) v_err_msg;

317

B. Protocol source files

// Transport exception
transport_exception: :transport_exception(const char* msg): vod_exception(msg)

{

// Packet exception
packet_exception::packet_exception(const char* msg): vod_exception(msg)

{

// Packet_queue exception
packet_queue_exception: :packet_queue_exception(const char* msg): vod_exception(msg)

{

// Packet_queue exception
stream_table_exception::stream_table_exception(const char* msg): vod_exception(msg)

{

// data bank exception
data_bank_exception::data_bank_exception(const char* msg): vod_exception(msg)

{

vod server.h
#ifndef VOD_SERVER
#define VOD_SERVER

#include "../include/define.h"
#include "../include/types.h"

#include "../include/enum.h"

#include "../include/logic_server.h"

#include "../include/logic_server_thread.h"
#include "../include/packet_queue.h"

#include "../include/transport_handler.h"
#include "../include/transport_handler_thread.h"
#include "../include/data_container.h"

#include "../include/request_queue.h"

struct login_struct_req {
long video_id;
char user_name[32];

318

B. Protocol source files

char password[32];
long transaction_id;

};

enum event_type {
X,
y

3

struct event_struct {
event_type event;

};

class vod_server {
private:
logic_params argsi;
receive_params args2;

logic_serverx* v_logic_server;
transport_handler* v_transport_handler;
packet_queuex* v_packet_queue;

DWORD v_logic_thread_id;
HANDLE v_logic_thread;

DWORD v_receive_thread_id;
HANDLE v_receive_thread;

int v_data_port;
int v_control_port;

request_queue* v_request_queue;

public:
vod_server (int data_port, int control_port);

int open();

int close();

void poll(int& video_data,
int& video_data_hp,
int& sec_data,
int& sec_data_hp,
int& login_req,

int& events);

int get_data_req(struct data_struct_req& data,
data_type type);

int get_login_req(struct login_struct_req& user);
int get_event(struct event_struct& event);
int get_video_info_req(unsigned long& video_id);

int deliver_data(data_class* data, data_type type);

319

B. Protocol source files

};

#endif

vod _server.cpp

#include "stdafx.h"

[/ /% %k ok ok ok ok ok ok sk ok ok Kk ok ok ok Kok ok ok ok K K sk ok K Kk s ok Kk ok ok ok ok s sk ok Kok ok ok ok ok ok

// Constructor
[/ %k ks ok ok s koo sk o ok sk o sk ko sk o ok sk stk ok o ko ok sk ok ok o kb ok o ok ok ok k

vod_server: :vod_server(int data_port, int control_port)

{
v_data_port = data_port;

v_control_port = control_port;

}

[/ sk sk sk sk ok sk ke sk sk ok sk sk ok ksl s ok sk ke sk sk sk ok ks ke sk sk sk ke ok sk sk ksl sk ke ok sk sk ok ok sk sk ok

// Open connection and start listening for incoming clients

[/ %k kst sk ook stk stk ok ksl ok sk skl skok ksl ok stk ksl ok stk ki sk ok ok sk sk ok ksl ok ok

int vod_server: :open()

{
// Create objects
v_packet_queue = new packet_queue(c_packet_queue_size_server);
v_transport_handler = new transport_handler(v_data_port, v_control_port);
v_transport_handler->initialize();
v_logic_server = new logic_server(v_transport_handler);

// Create thread logic
argsl.v_packet_queue = v_packet_queue;
argsl.v_logic_server = v_logic_server;
v_logic_thread = CreateThread (NULL,

0,

(LPTHREAD_START_ROUTINE) logic_thread,

(void*) &argsl,

0,

&v_logic_thread_id);

// Create thread transport_handler
args2.v_packet_queue = v_packet_queue;
args2.v_transport_handler = v_transport_handler;
v_receive_thread = CreateThread(NULL,

0,

(LPTHREAD_START_ROUTINE) receive_thread,

(void*) &args2,

0,

&v_receive_thread_id) ;

return 0;

[/ F 3k ok ook ok ook ok ok ok ook koot ko kok ok ko ok ok kok ok ko ok kb ok ok
// Close server. Terminate all threads and close all open
// socket despcriptors.

320

B. Protocol source files

[/ %ok ok ok ok ok ok sk ok ok o ok ok ok kok ok ok ok o ok ok ok ok o Kok ok ok ok ok ok ok ok ok ok ok ok ok kK
int vod_server::close()

// Logic - including stream engine

TerminateThread (v_logic_thread, 0);

delete v_receive_thread;

// Transport handler - including socket
TerminateThread(v_receive_thread, 0);
delete v_transport_handler;

// Additional objects
delete v_packet_queue;
delete v_request_queue;

return O;

[/ ek sk sk s ok sk ke sk sk ok sk sk ok ksl s ok sk ok sk sk sk ok ks ke sk sk sk ke ok sk sk ksl sk ke ok sk sk ok sk sk ok
// Poll call
[/ %ok ks sk sk ok ok stk stk ok ksl ok skk ksl skok ksl ok stk sk ok stk ok sk sk ok ksl sk ok ksl ok ok
void vod_server::poll(int& movie_data,

int& movie_data_hp,

int& sec_data,

int& sec_data_hp,

int& login_req,

int& events)

movie_data = v_request_queue—>count_data_request();
movie_data_hp = 0;

sec_data = 0;

sec_data_hp = 0;

login_req = 0;

events = 0;

[[/ F AR Kk Kk kKK o oK ook oK oK K ok K o K ook oK oK KK KK oK K o K o oK ook o K oK K K K K K
// Get next data request
[/% ok o o ok sk s oK ko R R s R K K K R KR K SR R o K o K K K K K K o K
int vod_server::get_data_req(struct data_struct_req& data,
data_type type)
{
return v_logic_server->get_data_req(data, type);

}

[/ FFF Rk Ko KRk KK o KKk K kK ok ok K KK kKK ok ok o
// Get next login request

// Not implemented in this version.
[[FKEFA A F A A A A KA A A A KA KA AR KA KA K KA KA A KA K A KA KA A KA KA KK KK

int vod_server::get_login_req(struct login_struct_req& user)
{
return O;

}

[] F KA FA A A A A A A KA A A A KA KA AR KA A K KA KA A KA A KA KA F A A KA KKK KKK
// Get next event
// Not implemented in this version.

321

B. Protocol source files

[/%K ok ok kR ok ok ok ok Kok okok ok ok sk ok sk ok ok Kok okok ok ok ok ok ok ok ok ok K Kok skok ok o ok
int vod_server::get_event(struct event_struct& event)
return O;

}

[/ F Rk ok ok ks koo ko ok ok ok ks ok ok ok sk ok sk sk ok ok ok sk ok ok ks ok ko ok ok ok ok
// Get next movie info request

// Not implemented in this version.

[/ F ok ok ok ok ok ok ok ko ok ko ok ook skok sk ok ok okok sk Kok ok K K KK K kK K ok o o o sk ok

int vod_server::get_video_info_req(unsigned long& movie_id)
return O;

}

//**

// Deliver data
[/ %k ks o ok s koo koo ok sk o sk ko sk o ok sk stk ok o ko ok stk ok ok ok ok ok o ok ok ok k

int vod_server::deliver_data(data_class* data, data_type type)
{
return v_logic_server—>de1iver_data(data, type);

}

322

APPENDIX C

Client application source files

\

VOD _ Client.cpp

// VOD_Client.cpp : main project file.

#include "stdafx.h"
#include "Forml.h"

using namespace V0OD_Client;

[STAThreadAttribute]

int main(array<System::String ~> ~args)

{

// Enabling Windows XP visual effects before any controls are created
Application: :EnableVisualStyles();

Application: :SetCompatibleTextRenderingDefault (false) ;

// Create the main window and run it
Application: :Run(gcnew Forml());
return 0;

}

Form1.h

#pragma once

namespace VOD_Client {

using namespace System;
using namespace System::ComponentModel;
using namespace System::Collections;
using namespace System::Windows::Forms;
using namespace System::Data;
using namespace System::Drawing;

using namespace System::I0;

using namespace System::Text;

/// <summary>

/// Summary for Forml
/17

323

C. Client application source files

/// WARNING:

/17
/17
/17
/17

public ref class Forml

{
public:

If you change the name of this class, you will need to change the
’Resource File Name’ property for the managed resource compiler tool
associated with all .resx files this class depends on. Otherwise,
the designers will not be able to interact properly with localized

resources associated with this form.
/// </summary>

Forml (void)

{

InitializeComponent () ;

}

protected:

/// <summary>
/// Clean up any resources being used.
/// </summary>

~“Formi ()
{

if (components)

{

delete components;

}
}

private: System::Windows::Forms::Button™ buttonl;

private: System::Windows::Forms::Button™ button2;
private: System::Windows::Forms::Button™ button3;
private: System::Windows::Forms::GroupBox™ groupBoxl
private: System::Windows::Forms::GroupBox™ groupBox2
private: System::Windows::Forms::Label~ labell;
private: System::Windows::Forms::TextBox~™ textBox2;
private: System::Windows::Forms::Label~ label2;
private: System::Windows::Forms::TextBox~ textBoxl;
private: System::Windows::Forms::TextBox~™ textBox4;
private: System::Windows::Forms::Label~ label4;
private: System::Windows::Forms::TextBox~™ textBox3;
private: System::Windows::Forms::Label™ label3;
private: System::Windows::Forms::Label™ label6;
private: System::Windows::Forms::TextBox~™ textBoxb;
private: System::Windows::Forms::TextBox~™ textBox6;
private: System::Windows::Forms::Button™ button6;
private: System::Windows::Forms::Button™ button5;
private: System::Windows::Forms::Button™ button4;
private: System::Windows::Forms::Label™ labellO;
private: System::Windows::Forms::TextBox~ textBox9;
private: System::Windows::Forms::TextBox™ textBox8;
private: System::Windows::Forms::TextBox™ textBox7;
private: System::Windows::Forms::Label~ label9;
private: System::Windows::Forms::Label™ label8;

: public System::Windows::Forms::Form

324

C. Client application source files

private: System::Windows::Forms::Label™ label7;
private: System::Windows::Forms::Label™ label5;
private: System::Windows::Forms::RichTextBox~ richTextBoxl1;

protected:

private:

vod_client* client_protocol;
login_data* login;
data_thread* dt;
unsigned long skip_distance;

private: AxQTOControlLib::AxQTControl~ axQTControll;
private: System::Windows::Forms::Timer~ timerl;
private: System::ComponentModel::IContainer” components;

/// <summary>

/// Required designer variable.
/// </summary>

#pragma region Windows Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>

void InitializeComponent (void)

{

this->components = (gcnew System::ComponentModel: :Container());

System: :ComponentModel: : ComponentResourceManager~ resources

(gcnew System: :ComponentModel: :ComponentResourceManager (Forml::typeid));

this->buttonl = (gcnew System::Windows::Forms: :Button());
this->button2 = (gcnew System::Windows::Forms::Button());
this->button3 = (gcnew System::Windows::Forms::Button());

this->groupBoxl = (gcnew System::Windows: :Forms::GroupBox());

this->label6 = (gcnew System::Windows::Forms::Label());
this->textBox5 = (gcnew System::Windows::Forms::TextBox());
this->textBox4 = (gcnew System::Windows::Forms::TextBox());
this->label4 = (gcnew System::Windows::Forms::Label());
this->textBox3 = (gcnew System::Windows::Forms::TextBox());
this->label3 = (gcnew System::Windows::Forms::Label());
this->textBox2 = (gcnew System::Windows::Forms::TextBox());
this->label2 = (gcnew System::Windows::Forms::Label());
this->textBoxl = (gcnew System::Windows::Forms::TextBox());
this->labell = (gcnew System::Windows::Forms::Label());

this->groupBox2 = (gcnew System::Windows: :Forms: :GroupBox());

this->labell0 = (gcnew System::Windows::Forms::Label());
this->textBox9 = (gcnew System::Windows::Forms::TextBox());
this->textBox8 = (gcnew System::Windows::Forms::TextBox());
this->textBox7 = (gcnew System::Windows::Forms::TextBox());
this->label9 = (gcnew System::Windows::Forms::Label());
this->label8 = (gcnew System::Windows::Forms::Label());
this->label7 = (gcnew System::Windows::Forms::Label());
this->textBox6 = (gcnew System::Windows::Forms::TextBox());
this->button6 = (gcnew System::Windows::Forms: :Button());
this->buttonb = (gcnew System::Windows::Forms: :Button());
this->button4 = (gcnew System::Windows::Forms::Button());
this->label5 = (gcnew System::Windows::Forms::Label());

325

C. Client application source files

this->richTextBoxl = (gcnew System::Windows::Forms::RichTextBox());
this->axQTControll = (gcnew AxQTOControlLib::AxQTControl());
this->timerl = (gcnew System::Windows::Forms::Timer (this->components));
this->groupBox1->SuspendLayout () ;
this->groupBox2->SuspendLayout () ;
(cli::safe_cast<System::ComponentModel: :ISupportInitialize~ >
(this->axQTControll))->BeginInit();

this->SuspendLayout () ;

//

// buttonl

//

this->buttonl->Location = System::Drawing::Point(6, 20);
this->buttonl->Name L"buttonl";

this->buttonl->Size = System::Drawing::Size(75, 23);
this->buttonl->TabIndex = 1;

this->buttonl->Text = L"Play";
this->buttonl->UseVisualStyleBackColor = true;
this->buttonl->Click += gcnew System::EventHandler(this, &Forml::buttonl_Click);
//

// button2

//

this->button2->Enabled = false;

this->button2->Location = System::Drawing::Point(6, 49);
this->button2->Name = L"button2";

this->button2->Size = System::Drawing::Size(75, 23);
this->button2->TabIndex = 2;

this->button2->Text = L"Pause";
this->button2->UseVisualStyleBackColor = true;
this->button2->Click += gcnew System::EventHandler(this, &Forml::button2_Click);
//

// button3

//

this->button3->Location = System::Drawing::Point (96, 149);
this->button3->Name = L"button3";

this->button3->Size = System::Drawing::Size(75, 23);
this->button3->TabIndex = 3;

this->button3->Text = L"Connect";
this->button3->UseVisualStyleBackColor = true;
this->button3->Click += gcnew System::EventHandler(this, &Forml::button3_Click);
//

// groupBox1

//

this->groupBox1->Controls->Add (this->label$) ;
this->groupBox1->Controls->Add (this->textBox5) ;
this->groupBox1->Controls->Add(this->button3);
this->groupBox1->Controls->Add (this->textBox4) ;
this->groupBox1->Controls->Add (this->label4) ;
this->groupBox1->Controls->Add (this->textBox3) ;
this->groupBox1->Controls->Add (this->label3);
this->groupBox1->Controls->Add (this->textBox2) ;
this->groupBox1->Controls->Add (this->label2);
this->groupBox1->Controls->Add (this->textBox1);
this->groupBox1->Controls->Add (this->labell);
this->groupBoxl->Location = System::Drawing::Point (509, 12);
this->groupBox1->Name = L"groupBox1l";

this->groupBox1->Size = System::Drawing::Size (182, 190);
this->groupBox1->TabIndex = 4;

326

C. Client application source files

this->groupBox1->TabStop = false;

this->groupBox1->Text = L"Settings";

//

// label6

//

this->label6->AutoSize = true;

this->label6->Location = System::Drawing::Point(6, 154);
this->label6->Name = L"label6";

this->label6->Size = System::Drawing::Size(SS, 13);
this->label6->TabIndex = 11;

this->label6->Text = L"Movie ID:";

//

// textBoxb5

//

this->textBox5->Location = System::Drawing::Point(65, 151);
this->textBox5->Name = L"textBoxb5";

this->textBox5->Size = System::Drawing::Size(25, 20);
this->textBox5->TabIndex = 10;

this->textBoxb5->Text = L"1";

this->textBoxb5->TextAlign = System::Windows::Forms: :HorizontalAlignment
//

// textBox4

//

this->textBox4->Location = System::Drawing::Point (96, 72);
this->textBox4->Name = L"textBox4";

this->textBox4->Size = System::Drawing::Size(SO, 20);
this->textBox4->TabIndex = 7;

this->textBox4->Text = L"10000";

this->textBox4->TextAlign = System::Windows::Forms: :HorizontalAlignment
//

// labeld

//

this->label4->AutoSize = true;

this->label4->Location = System::Drawing::Point(6, 75);
this->label4->Name = L"label4d";

this->label4->Size = System::Drawing::Size(82, 13);
this->label4->TabIndex = 6;

this->label4->Text = L"Client TCP Port:";

//

// textBox3

//

this->textBox3->Location = System::Drawing::Point (96, 97);
this->textBox3->Name = L"textBox3";

this->textBox3->Size = System::Drawing::Size(SO, 20);
this->textBox3->TabIndex = 5;

this->textBox3->Text = L"11000";

this->textBox3->TextAlign = System::Windows::Forms: :HorizontalAlignment
//

// label3

//

this->label3->AutoSize = true;

this->label3->Location = System::Drawing::Point(6, 100);
this->label3->Name = L"label3";

this->label3->Size = System::Drawing::Size(84, 13);
this->label3->TabIndex = 4;

this->label3->Text = L"Client UDP Port:";

//

327

::Right;

::Right;

::Right;

C. Client application source files

// textBox2

//

this->textBox2->Location = System::Drawing::Point (96, 46);
this->textBox2->Name = L"textBox2";
this->textBox2->Size = System::Drawing::5ize(80, 20);
this->textBox2->TabIndex = 3;

this->textBox2->Text = L"20000";
this->textBox2->TextAlign = System::Windows::Forms::HorizontalAlignment::Right;
//

// label2

//

this->label2->AutoSize = true;

this->label2->Location = System::Drawing::Point(6, 49);
this->label2->Name = L"label2";

this->label2->Size = System::Drawing::S5ize(63, 13);
this->label2->TabIndex = 2;

this->label2->Text = L"Server Port:";

//

// textBoxl

//

this->textBoxl->Location = System::Drawing::Point (76, 20);
this->textBoxl->Name = L"textBoxl";
this->textBox1l->Size = System::Drawing::Size (100, 20);
this->textBox1->TabIndex = 1;

this->textBox1->Text = L"192.168.15.145";
this->textBox1->TextChanged += gcnew System::
EventHandler (this, &Forml::textBox1l_TextChanged);

//

// labell

//

this->labell->AutoSize = true;

this->labell->Location = System::Drawing::Point(6, 23);
this->labell->Name = L"labell";

this->labell->Size = System::Drawing::Size(54, 13);
this->labell->TabIndex = 0;

this->labell->Text = L"Server IP:";

//

// groupBox2

//

this->groupBox2->Controls->Add (this->labell0);
this->groupBox2->Controls->Add (this->textBox9) ;
this->groupBox2->Controls->Add (this->textBox8) ;
this->groupBox2->Controls->Add (this->textBox7) ;
this->groupBox2->Controls->Add (this->label9) ;
this->groupBox2->Controls->Add (this->label8);
this->groupBox2->Controls->Add (this->label7);
this->groupBox2->Controls->Add (this->textBox6) ;
this->groupBox2->Controls->Add (this->button6) ;
this->groupBox2->Controls->Add (this->button5) ;
this->groupBox2->Controls->Add (this->button4) ;
this->groupBox2->Controls->Add (this->button2) ;
this->groupBox2->Controls->Add (this->buttonl);
this->groupBox2->Enabled = false;
this->groupBox2->Location = System::Drawing::Point (12, 351);
this->groupBox2->Name = L"groupBox2";
this->groupBox2->Size = System::Drawing::Size (491, 80);
this->groupBox2->TabIndex = 5;

328

C. Client application source files

this->groupBox2->TabStop = false;

this->groupBox2->Text = L"Control";

//

// labellO

//

this->labell0->AutoSize = true;

this->labellO->Location = System::Drawing::Point (351, 25);
this->labell0->Name = L"labellQ";

this->labell0->Size = System::Drawing::Size(71, 13);
this->labell0->TabIndex = 13;

this->labell0->Text = L"Remain. time:";

//

// textBox9

//

this->textBox9->Location = System::Drawing::Point (426, 22);
this->textBox9->Name = L"textBox9";
this->textBox9->Readlnly = true;

this->textBox9->Size = System::Drawing::Size(SQ, 20);
this->textBox9->TabIndex = 12;

this->textBox9->TextAlign = System::Windows::Forms::HorizontalAlignment::Right;
//

// textBox8

//

this->textBox8->Location = System::Drawing::Point (149, 22);
this->textBox8->Name = L"textBox8";
this->textBox8->Readlnly = true;

this->textBox8->Size = System::Drawing::Size(SQ, 20);
this->textBox8->TabIndex = 11;

this->textBox8->TextAlign = System::Windows::Forms::HorizontalAlignment::Right;
//

// textBox7

//

this->textBox7->Location = System::Drawing::Point (286, 22);
this->textBox7->Name = L"textBox7";
this->textBox7->ReadlOnly = true;

this->textBox7->Size = System::Drawing::Size(SQ, 20);
this->textBox7->TabIndex = 10;

this->textBox7->TextAlign = System::Windows::Forms::HorizontalAlignment::Right;
//

// label9

//

this->label9->AutoSize = true;

this->label9->Location = System::Drawing::Point (214, 25);
this->label9->Name = L"label9";

this->label9->Size = System::Drawing::Size(66, 13);
this->label9->TabIndex = 9;

this->label9->Text = L"Current time:";

//

// label8

//

this->label8->AutoSize = true;

this->label8->Location = System::Drawing::Point (354, 25);
this->label8->Name = L"label8";

this->label8->Size = System::Drawing::Size(0, 13);
this->label8->TabIndex = 8;

//

// label7

329

C. Client application source files

/7

this->label7->AutoSize = true;

this->label7->Location = System::Drawing::Point (87, 25);
this->label7->Name = L"label7";

this->label7->Size = System::Drawing::Size(56, 13);
this->label7->TabIndex = 7;

this->label7->Text = L"Total time:";

/7

// textBox6

/7

this->textBox6->Location = System::Drawing::Point (243, 52);
this->textBox6->Name = L"textBox6";

this->textBox6->Size = System::Drawing::Size(24, 20);
this->textBox6->TabIndex = 6;

this->textBox6->Text = L"1";

this->textBox6->TextAlign = System::Windows::Forms: :HorizontalAlignment::Center;
/7

// button6

/7

this->button6->Location = System::Drawing::Point (410, 49);
this->button6->Name = L"button6";

this->button6->Size = System::Drawing::Size(75, 23);
this->button6->TabIndex = 5;

this->button6->Text = L"Stop";
this->button6->UseVisualStyleBackColor = true;
this->button6->Click += gcnew System::EventHandler(this, &Forml::button6_Click);
/7

// buttonb

/7

this->button5->Location = System::Drawing::Point (273, 49);
this->button5->Name = L"buttonb";

this->buttonb->Size = System::Drawing::Size(75, 23);
this->button5->TabIndex = 4;

this->buttonb->Text = L"Skip >>";
this->button5->UseVisualStyleBackColor = true;
this->buttonb->Click += gcnew System::EventHandler(this, &Forml::buttonb_Click);
/7

// button4

/7

this->button4->Enabled = false;

this->button4->Location = System::Drawing::Point (162, 49);
this->button4->Name = L"button4";

this->button4->Size = System::Drawing::Size(75, 23);
this->button4->TabIndex = 3;

this->button4->Text = L"<< Skip";
this->button4->UseVisualStyleBackColor = true;
this->button4->Click += gcnew System::EventHandler(this, &Forml::button4_Click);
/7

// labelb

/7

this->labelb->AutoSize = true;

this->label5->Location = System::Drawing::Point (516, 212);
this->labelb->Name = L"labelb";

this->label5->Size = System::Drawing::Size(62, 13);
this->label5->TabIndex = 11;

this->label5->Text = L"Information:";

/7

330

C. Client application source files

// richTextBox1l

//

this->richTextBox1->Location = System::Drawing::Point (517, 230);
this->richTextBox1->Name = L"richTextBoxl1";
this->richTextBox1->Size = System::Drawing::Size(163, 193);
this->richTextBox1->TabIndex = 10;

this->richTextBox1->Text = L"";

//

// axQTControlil

//

this->axQTControll->Enabled = true;
this->axQTControll->Location = System::Drawing::Point (11, 13);
this->axQTControll->Name = L"axQTControll";
this->axQTControll->0cxState = (cli::safe_cast<System::Windows::Forms::AxHost::State‘>
(resources->GetObject (L"axQTControll.OcxState")));
this->axQTControll->Size = System::Drawing::Size(491, 338);
this->axQTControll->TabIndex = 12;

//

// timerl

//

this->timer1->Tick += gcnew System::EventHandler(this, &Forml::timerl_Tick);
//

// Formi

//

this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
this->AutoScaleMode = System::Windows::Forms::AutoScaleMode: :Font;
this->ClientSize = System::Drawing::Size(701, 443);
this->Controls->Add(this->axQTControll);
this->Controls->Add(this->1label5);
this->Controls->Add(this->richTextBox1);
this->Controls->Add(this->groupBox2) ;
this->Controls->Add(this->groupBox1) ;

this->Name = L"Forml";

this->Text = L"Client";

this->groupBox1->ResumeLayout (false) ;
this->groupBox1->PerformLayout () ;
this->groupBox2->ResumeLayout (false) ;
this->groupBox2->PerformLayout () ;
(cli::safe_cast<System::ComponentModel: :ISupportInitialize~ >
(this->axQTControll))->EndInit();

this->ResumeLayout (false) ;

this->PerformLayout () ;

#pragma endregion

private: System::Void button3_Click(System::0bject~ sender, System::EventArgs~ e)
{

client_addr c;

c.dcp_port = Convert::ToInt32(textBox3->Text);

c.ccp_port = Convert::ToInt32(textBox4->Text);

client_protocol = new vod_client (1000, &c);

server_addr s;
s.port = Convert::ToInt32(textBox2->Text);

331

C. Client application source files

pin_ptr<const wchar_t> wch = PtrToStringChars(textBoxl->Text);
size_t sizeInBytes = ((textBoxl->Text->Length + 1) * 2);
char *ch = (char *)malloc(sizeInBytes);
size_t convertedChars = 0;
wcstombs_s (&convertedChars,
ch, sizelInBytes,
wch, sizeInBytes);
s.ip_address = ch;

login = new struct login_data;
client_protocol->connect (Convert: :ToInt32(textBox5->Text), &s, login);

dt = new data_thread(client_protocol, login—>video_size);

false;
true;

groupBox1->Enabled
groupBox2->Enabled
IS

private: System::Void button2_Click(System::0Object~ sender, System::EventArgs~ e)
{

axQTControll->Movie->Pause() ;

};

private: System::Void buttonl_Click(System::0Object~ sender, System::EventArgs~ e)
{

if (axQTControll->URL == "") {
System: :Diagnostics: :Process™ p = System::Diagnostics::Process::GetCurrentProcess();
System: :String~ filname = "c:\\video" + System::Convert::ToString(p->Id) + ".mov";

axQTControll->URL = filname;

axQTControll->Movie->TimeScale = 1000;

textBox8->Text = Convert::ToString(axQTControll->Movie->Duration);
skip_distance = login->skip_distance;

axQTControll->Movie->Play(1);
timerl->Enabled = true;

};

private: System::Void button4_Click(System::0Object~ sender, System::EventArgs~ e)
{
3

private: System::Void button6_Click(System::0bject~ sender, System::EventArgs~ e)
{

timerl->Enabled = false;

axQTControll->Movie->Stop() ;

axQTControll->URL = "";

delete dt;

client_protocol->disconnect();
delete client_protocol;

groupBox1->Enabled = true;
groupBox2->Enabled = false;

332

C. Client application source files

System: :Diagnostics::Process™ p = System::Diagnostics::Process::GetCurrentProcess();
System: :String~ path = "c:\\video" + System::Convert::ToString(p->Id) + ".mov";
//System: :I0: :File: :Delete(path);

};

private: System::Void button5_Click(System::0bject~ sender, System::EventArgs~ e)
{

int skip_bb = Convert::ToInt32(textBox6->Text);

client_protocol->skip(skip_bb);

timerl->Enabled = false;

axQTControll->Movie->Pause() ;

axQTControll->Movie->Time = skip_bb * skip_distance;

};

private: System::Void timerl_Tick(System::0bject™ sender, System::EventArgs~ e)
{
textBox7->Text = Convert::ToString(axQTControll->Movie->Time) ;
textBox9->Text = Convert::ToString((axQTControll->Movie->Duration) -
(axQTControll->Movie->Time)) ;
textBox7->Refresh();
textBox9->Refresh();

}
public: System::Void TriggerPlay()
{
axQTControll->Movie->Pause() ;
}
private: System::Void textBoxl_TextChanged(System::0bject™ sender, System::EventArgs~ e) {
}
s
¥

data thread.h

#ifndef DATA_THREAD
#define DATA_THREAD

//#include <iostream>
//#include <fstream>

class data_thread {
private:
DWORD thread_id;
HANDLE thread;
vod_client* v_client;

unsigned int v_movie_size;

public:
data_thread(vod_client* client, unsigned int movie_size);

333

C. Client application source files

};

~“data_thread();

#endif

data thread.cpp

#include "stdafx.h"
#include "data_thread.h"

void data_retrive(void* args)

{
vod_client* vc = (vod_client*)args;
System: :Diagnostics: :Process™ p = System::Diagnostics::Process::GetCurrentProcess();
System: :String~ filname = "c:\\video" + System::Convert::ToString(p->Id) + ".mov";
System::I0::FileStream™ fs = System::I0::File::0pen(filname,
System::I0::FileMode: :0Open,
System::I0::FileAccess::Write,
System::I0::FileShare: :ReadWrite);
void* buffer = malloc(2000000) ;
unsigned long offset;
for(;;) {
// Receive data
offset = 0;
size_t len = vc->recv_data(buffer, 2000000, offset);
// Write data to file
fs->Position = offset;
for(int i = 0; i < len; i++)
fs->WriteByte (((char*)buffer) [i]);
fs->Flush();
System: :Diagnostics: :Debug: :WriteLine ("Writing data to client, length: " +
len + " - offset: " + offset);
}
return;
}

data_thread: :data_thread(vod_client* client, unsigned int movie_size)

{

System: :Diagnostics: :Process™ p = System::Diagnostics::Process::GetCurrentProcess();
System: :String~ path = "c:\\video" + System::Convert::ToString(p->Id) + ".mov";
System::I0::FileStream™ fsa = System::I0::File::Create(path);
fsa->SetLength(movie_size) ;

fsa->Close();

thread = CreateThread (NULL,

334

C. Client application source files

0,

(LPTHREAD_START_ROUTINE) data_retrive,
(void*) client,

0,

&thread_id) ;

}

data_thread::~data_thread()
{
//fs->Flush();
//fs->Close();

TerminateThread (thread, 0);
}

335

C. Client application source files

336

APPENDIX D

Server application source files

L

VOD _Server.cpp

// VOD_Server.cpp : main project file.

#include "stdafx.h"
#include "Forml.h"

using namespace V0OD_Server;

[STAThreadAttribute]

int main(array<System::String ~> ~args)

{

// Enabling Windows XP visual effects before any controls are created
Application: :EnableVisualStyles();

Application: :SetCompatibleTextRenderingDefault (false) ;

// Create the main window and run it
Application: :Run(gcnew Forml());
return 0;

}

Form1.h

#pragma once
namespace VOD_Server {

using namespace System;

using namespace System::ComponentModel;

using namespace System::Collections;

using namespace System::Windows::Forms;

using namespace System::Data;

using namespace System::Drawing;

using namespace System::Threading;
using namespace System::I0;

/// <summary>
/// Summary for Forml

337

D. Server application source files

/17

/// WARNING: If you change the name of this class, you will need to change the
/17 ’Resource File Name’ property for the managed resource compiler tool
/// associated with all .resx files this class depends on.

/// the designers will not be able to interact properly with localized
/// resources associated with this form.

/// </summary>
public ref class Forml : public System::Wi
{
private:
vod_server* my_server;
private: System::Windows::Forms::Label”
private: System::Windows::Forms::Label”
private: System::Windows::Forms::TextBox
private: System::Windows::Forms::TextBox

data_thread* dt;

public:
Forml (void)
{
InitializeComponent () ;
//
//TOD0: Add the constructor code here
//
}

protected:

/// <summary>

/// Clean up any resources being used.
/// </summary>

“Form1 ()

{

if (components)

{

delete components;

X

X

private: System::Windows::Forms::Button~
private: System::Windows::Forms::Button”
protected:

private:
/// <summary>
/// Required designer variable.
/// </summary>
System: : ComponentModel: :Container ~compone

#pragma region Windows Form Designer gener
/// <summary>

/// Required method for Designer support -
/// the contents of this method with the c
/// </summary>

void InitializeComponent (void)

{

ndows: :Forms: :Form

labell;

label2;
~ tbxLocalCCPport;
~ tbxLocalDCPport;

buttonl;
button?2;

nts;
ated code

do not modify
ode editor.

this->buttonl = (gcnew System::Windows::Forms: :Button());

338

D. Server application source files

this->button2 = (gcnew System::Windows::Forms: :Button());
this->labell = (gcnew System::Windows::Forms::Label());
this->label2 = (gcnew System::Windows::Forms::Label());
this->tbxLocalCCPport = (gcnew System::Windows::Forms::TextBox());
this->tbxLocalDCPport = (gcnew System::Windows::Forms::TextBox());
this->SuspendLayout () ;

//

// buttonl

//

this->buttonl->Location = System::Drawing::Point (123, 114);
this->buttonl->Name = L"buttonl";

this->buttonl->Size = System::Drawing::Size(75, 23);
this->buttonl->TabIndex = 0;

this->buttonl->Text = L"Start";
this->buttonl->UseVisualStyleBackColor = true;
this->buttonl->Click += gcnew System::EventHandler(this, &Forml::buttonl_Click);
//

// button2

//

this->button2->Enabled = false;

this->button2->Location = System::Drawing::Point (15, 114);
this->button2->Name = L"button2";

this->button2->Size = System::Drawing::Size(75, 23);
this->button2->TabIndex = 1;

this->button2->Text = L"Stop";
this->button2->UseVisualStyleBackColor = true;
this->button2->Click += gcnew System::EventHandler(this, &Forml::button2_Click);
//

// labell

//

this->labell->AutoSize = true;

this->labell->Location = System::Drawing::Point (12, 19);
this->labell->Name = L"labell";

this->labell->Size = System::Drawing::Size(78, 13);
this->labell->TabIndex = 2;

this->labell->Text = L"Local CCP port";

//

// label2

//

this->label2->AutoSize = true;

this->label2->Location = System::Drawing::Point (12, 59);
this->label2->Name = L"label2";

this->label2->Size = System::Drawing::Size(76, 13);
this->label2->TabIndex = 3;

this->label2->Text = L"LocalDCP port";

//

// tbxLocalCCPport

//

this->tbxLocalCCPport->Location = System::Drawing::Point (109, 16);
this->tbxLocalCCPport->Name = L"tbxLocalCCPport";
this->tbxLocalCCPport->Size = System::Drawing::Size (100, 20);
this->tbxLocalCCPport->TabIndex = 4;

this->tbxLocalCCPport->Text = L'"20000";

//

// tbxLocalDCPport

//

this->tbxLocalDCPport->Location = System::Drawing::Point (109, 56);

339

D. Server application source files

this->tbxLocalDCPport->Name = L"tbxLocalDCPport";
this->tbxLocalDCPport->Size = System::Drawing::Size (100, 20);
this->tbxLocalDCPport->TabIndex = 5;
this->tbxLocalDCPport->Text = L"21000";

//

// Forml

//

this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
this->AutoScaleMode = System::Windows::Forms::AutoScaleMode: :Font;
this->ClientSize = System::Drawing::Size (267, 170);
this->Controls->Add (this->tbxLocalDCPport) ;
this->Controls->Add (this->tbxLocalCCPport) ;
this->Controls->Add(this->label2);
this->Controls->Add(this->labell);

this->Controls->Add (this->button2);
this->Controls->Add(this->buttonl);

this->Name = L"Forml";

this->Text = L"Server";

this->ResumeLayout (false);

this->PerformLayout () ;

}

#pragma endregion

private: System::Void buttonl_Click(System::0bject~ sender, System::EventArgs~ e) {
buttonl->Enabled = false;

int localDCPport = Convert::ToInt32(tbxLocalDCPport->Text);
int localCCPport = Convert::ToInt32(tbxLocalCCPport->Text);

my_server = new vod_server(localDCPport, localCCPport);
my_server->open() ;

//dt = new data_thread(my_server);

button2->Enabled = true;
}

private: System::Void button2_Click(System::0Object
button2->Enabled = false;

sender, System::EventArgs~

my_server->close() ;
delete my_server;

buttonl->Enabled = true;
}
};
}

340

e)

APPENDIX E

Screendump of applications

ECTER (0]]
Lecal CCF ot |2uuun
LecalCCP port: |2'| oo

Stap |

—ioix

¥ Client

—Seltings -

Sereer |2 IW
Server Porl: Iw
Chent TORFat [10000
Clieal UWOPPart: [11300

M 1D | 1 Eaniect I

Imfarrnalion:

Comel
Play. I Tota time: | 137178 Currenttime: | 121864 Renain time: | 13612
Bauze | <& Sk ||‘|_ S-kii::n | Stop |

341

	Introduction
	Motivation
	Objectives
	Report layout

	Requirements and ideas
	Fundamental requirements
	Server bandwidth usage
	Efficient scalability
	Traffic shaping
	Design and implementation
	End-user functionality
	System security
	Quality of stream

	Fundamental ideas
	Server bandwidth usage
	Efficient scalability
	Traffic shaping
	Design and implementation
	End-user functionality
	System security
	Quality of stream

	Related theory
	Synthesis
	Multimedia coding
	Video codec
	Requirements
	Standards
	MPEG-2
	Existing software
	Video samples
	Conclusions

	Structure of the Internet
	The elements of the Internet
	Connection capacity
	Connection stability
	Routing
	The Internet of 2006
	Network byte-order

	Logical network topology
	Topological models
	Client-server relationship
	Sources of inspiration

	Network protocol design
	OSI model
	TCP/IP protocol stack
	Connection-oriented versus connectionless transport
	Network Address Translation (NAT)
	Real-time Transport Protocol (RTP)

	Protocol implementation
	Network layers and interfaces
	Multithreading

	Buffering of data
	Buffering approach
	Physical memory layout
	Buffering of data

	Security
	Authorization
	Data integrity
	Data theft

	Protocol design
	Fundamentals
	System control
	Data transport
	Logical topology
	Video identification
	Security
	Protocol architecture

	Protocol state
	Server state
	Client states

	Mechanisms
	Fragmentation of data
	Client buffering of data
	Bandwidth
	Calculation of round-trip time
	Error detection
	Selection mechanism

	Underlying protocol usage
	Protocol phases
	Packet description
	Packet types and flows
	Connection
	Configuration
	Streaming
	Interaction
	Status
	Round-trip time calculation
	Security

	Timers
	Interface

	Protocol implementation
	Fundamentals
	Main components
	Memory management
	Thread design

	Class design
	Packets
	Transport handler
	Incoming packet queue
	Data bank
	Stream engine
	Data container
	Application task queue
	Client-side logic
	Server-side logic

	Selection algorithm
	Finding the most anti-social client
	Block distribution mechanism

	Threading
	Receiving packages
	Incoming packet processing
	Buffer and cache
	Stream engine
	Status thread
	Application threads
	Summarizing

	Interface
	Server interface
	Client interface

	Our implementation
	Limitations

	Verification
	Verification of the implementation
	Test scenarios
	The test result

	Discussion of the performance
	Parameters
	Boundaries of the performance

	Closure
	Perspectives
	Conclusion

	Glossary
	Bibliography
	Packet table
	Protocol source files
	Client application source files
	Server application source files
	Screendump of applications

