
Department of Computer SieneUniversity of CopenhagenSubmitted: November 30, 2006Advisers: Jyrki Katajainen and Per HøghMaster thesis for the and. sient. degree in omputer siene
Jaob de Fine SkibstedStephan Lynge Herlev Larsen

Distributing usage of bandwidthfor on-demand streaming

AbstratThis thesis seeks to distribute the overall bandwidth onsumption in a lient-server networkproviding video on-demand streaming. This goal is reahed by designing and implementing aprotool whih employs methods resembling those used in peer-to-peer networks.A protool spei�ation whih enables forwarding of data between lients in order to lowerthe bandwidth onsumption of the server has been developed. The data stream is divided inin order to enable multiple lients to send a part of the data stream to a single reeiver andat the same time o�er the full funtionalities of on-demand streaming suh as pause and skip.Finally, the primary funtionalities of the protool spei�ation has been implemented andused in a set of test appliations.We have sueeded in designing a protool whih an distribute the overall bandwidth in alogial network o�ering video on-demand streaming. Thus, the bandwidth usage of the entralserver has been lowered. Based on the design a fully operational implementation has beendeveloped. Calulation of the atual savings is still an open question as this will need a largesale real life usage of the protool in order to obtain empirial measurements.The following setion ontains a Danish translation of the abstrat.ResuméDette speiale forsøger at distribuere det samlede båndbreddeforbrug i et lient-server netværk,som tilbyder video on-demand streaming. Målet opnås ved design og implementering af enprotokol, som benytter metoder, der ligner dem som anvendes i peer-to-peer netværk.Der er udviklet en protokolspei�kation, som muliggør videresendelse af data mellem klien-ter med det formål at reduere serverens båndbreddeforbrug. Datastrømmen er opdelt forat muliggøre afsendelse af en del af data fra forskellige klienter til den samme modtager ogsamtidig tilbyde den fulde funktionalitet ved on-demand streaming såsom pause og skip. Slut-telig er protokolspei�kationens primære funktionaliteter implementeret og benyttet i et sættestapplikationer.Vi har suesfuldt designet en protokol som kan distribuere det samlede båndbreddeforbrugi et logisk netværk, der tilbyder video on-demand streaming. Således er den entrale serversbåndbreddeforbrug blevet redueret. Baseret på designet er en fuldt funktionsdygtig imple-mentering udviklet. Beregning af den egentlige besparelse er stadig et åbent spørgsmål idetdette vil kræve en egentlig brug af protokollen i stor skala for at opnå empiriske målinger.FormalitiesThis report is the master thesis for the and. sient. degree of Stephan Lynge and Jaob deFine Skibsted at the Department of Computer Siene at the University of Copenhagen. Thethesis was written in the period from the 1st of Deember 2005 to the 30th of November 2006.Initially, we would like to thank our advisers Jyrki Katajainen and Per Høgh for their thor-oughness and ommitment. ii

Contents
1 Introdution . viii1.1 Motivation . ix1.2 Objetives . ix1.3 Report layout . xI Requirements and ideas 12 Fundamental requirements . 22.1 Server bandwidth usage . 22.2 E�ient salability . 22.3 Tra� shaping . 22.4 Design and implementation . 22.5 End-user funtionality . 32.6 System seurity . 32.7 Quality of stream . 43 Fundamental ideas . 53.1 Server bandwidth usage . 53.2 E�ient salability . 83.3 Tra� shaping . 83.4 Design and implementation . 93.5 End-user funtionality . 103.6 System seurity . 123.7 Quality of stream . 13II Related theory 154 Synthesis . 165 Multimedia oding . 175.1 Video ode . 175.2 Requirements . 17iii

Contents 5.3 Standards . 185.4 MPEG-2 . 195.5 Existing software . 215.6 Video samples . 215.7 Conlusions . 226 Struture of the Internet . 236.1 The elements of the Internet . 236.2 Connetion apaity . 236.3 Connetion stability . 246.4 Routing . 266.5 The Internet of 2006 . 276.6 Network byte-order . 277 Logial network topology . 297.1 Topologial models . 297.2 Client-server relationship . 337.3 Soures of inspiration . 348 Network protool design . 358.1 OSI model . 358.2 TCP/IP protool stak . 378.3 Connetion-oriented versus onnetionless transport 408.4 Network Address Translation (NAT) 438.5 Real-time Transport Protool (RTP) 439 Protool implementation . 459.1 Network layers and interfaes . 459.2 Multithreading . 4510 Bu�ering of data . 4810.1 Bu�ering approah . 4810.2 Physial memory layout . 4910.3 Bu�ering of data . 4911 Seurity . 5111.1 Authorization . 5111.2 Data integrity . 5111.3 Data theft . 51III Protool design 53iv

Contents12 Fundamentals . 5412.1 System ontrol . 5412.2 Data transport . 5412.3 Logial topology . 5612.4 Video identi�ation . 5712.5 Seurity . 5712.6 Protool arhiteture . 5913 Protool state . 6113.1 Server state . 6113.2 Client states . 6614 Mehanisms . 6914.1 Fragmentation of data . 7014.2 Client bu�ering of data . 7314.3 Bandwidth . 8614.4 Calulation of round-trip time . 9114.5 Error detetion . 9414.6 Seletion mehanism . 9515 Underlying protool usage . 9616 Protool phases . 9717 Paket desription . 9917.1 Paket types and �ows . 9917.2 Connetion . 10317.3 Con�guration . 10817.4 Streaming . 11217.5 Interation . 11817.6 Status . 12117.7 Round-trip time alulation . 12417.8 Seurity . 12518 Timers . 12719 Interfae . 128IV Protool implementation 12920 Fundamentals . 13020.1 Main omponents . 13020.2 Memory management . 133v

Contents 20.3 Thread design . 13421 Class design . 13521.1 Pakets . 13521.2 Transport handler . 13721.3 Inoming paket queue . 13721.4 Data bank . 13821.5 Stream engine . 14121.6 Data ontainer . 14221.7 Appliation task queue . 14421.8 Client-side logi . 14521.9 Server-side logi . 14522 Seletion algorithm . 14622.1 Finding the most anti-soial lient . 14822.2 Blok distribution mehanism . 14823 Threading . 15023.1 Reeiving pakages . 15023.2 Inoming paket proessing . 15023.3 Bu�er and ahe . 15023.4 Stream engine . 15123.5 Status thread . 15123.6 Appliation threads . 15123.7 Summarizing . 15124 Interfae . 15324.1 Server interfae . 15324.2 Client interfae . 15725 Our implementation . 16025.1 Limitations . 160V Veri�ation 16326 Veri�ation of the implementation . 16426.1 Test senarios . 16426.2 The test result . 16727 Disussion of the performane . 16827.1 Parameters . 16827.2 Boundaries of the performane . 169vi

ContentsVI Closure 17128 Perspetives . 17229 Conlusion . 175Glossary 177Bibliography 183A Paket table 187B Protool soure �les 189C Client appliation soure �les 323D Server appliation soure �les 337E Sreendump of appliations 341

vii

1. Introdution1 IntrodutionAs omputers have beome inreasingly more powerful the possibility of presenting digitalmedia to the end-user has beome ever more present. Wathing video lips or listening to musithrough the use of omputers is now a part of most end-users everyday usage of omputers.Together with the rapid spreading of the Internet this opens up for opportunities whih willrede�ne how omputers are used in our lives. Listening to radio through the Internet is nowa ommon way of distributing media and every self-respeting radio station now distributesontent through the Internet and some are even based only on the Internet.Distributing videos through the Internet has yet to gain the same level of popularity. This ismainly due to the high requirements to the apaity of the available onnetion of the end-users. During reent years this amount has been growing rapidly and is now reahing a levelwhere wathing a video through the Internet is beoming possible. Thus, renting a video is nolonger a question of venturing into the old, spending time in the rental shop, only to realizethat your favourite video is rented out. In the future the rental video is only a lik awaysitting on your sofa and will never be rented out. But it does not end here. TV viewers willno longer be bound to the TV guide but will be able to deide when to wath their favouritesoap opera.Distributing multimedia ontent through the Internet is normally referred to as streaming.Streaming di�ers from normal download in the sense that streaming tries to optimize the useof bandwidth in the regard of only using the exat amount of bandwidth needed to waththe video. Hene, data will be reeived at the same speed as it is wathed. This has severaladvantages; Firstly, it only uses the needed bandwidth at any time freeing the apaity forother use, thus raising the potential amount of onneted users. Seondly, it is possible tostart wathing a video immediately avoiding the delay it would impose if the end user wouldhave to wait for a omplete download. Finally, it helps proteting the opyrights of the ownersine only the urrently displayed fration of video needs to be present at the lient.This thesis fouses solely upon streaming of video as streaming of sound is not assoiated withthe same di�ulty as the bandwidth requirements when streaming sound are small enoughnot to represent a problem neither to the streaming server nor the lient. Thus, streaming ofvideo at high quality represents a problem whih will have to be solved before the video rentalsenario above beomes reality.Desribing the ultimate goal of this thesis alls for a lari�ation of the di�erent approaheswhen streaming video:Live streaming: This term refers to a method of streaming video �live� to the end-user. Theuser reeives a stream of video without the ability to fast forward, rewind or pause thestream. This is analogous to a regular TV-signal transmitting a football math or anews broadast. Thus, only one stream of data is transmitted to all end users.On-demand streaming: This term is applied to an approah whih tries to resemble thefuntionality of the VCR or DVD player. The user reeives a stream of video �on-viii

1. Introdutiondemand� meaning that the user ontrols the ontent of the stream. Thus the userdeides when the stream is dispathed and is able to fast forward, rewind, or pause thestream.Near on-demand streaming: This term is used for a system using a hybrid of live stream-ing and on-demand streaming. Using this approah a new opy of the same stream isdispathed with a ertain interval. The user signs up for the stream and waits untilthe stream is dispathed. Thus the user is partly in ontrol of when the stream is dis-pathed, and an only fast forward, rewind or pause the stream by jumping to a hanneldispathed with a di�erent time o�set.The fous of this thesis will be on-demand streaming resting upon the above de�nition om-bined with the requirement of distributing bandwidth usage. Distribution is referred to asdispersing the bandwidth usage among several network links, instead of the typial setupwhere the link to the main server arries the highest load. The total sum of needed band-width remains the same, but a more even usage is obtained as the sum is distributed amongmany links, reduing the required bandwidth apaity of the server.1.1 MotivationDuring earlier work [7℄ we have been onfronted with the fat that the largest part of the ostsinvolved when streaming video over the Internet are bandwidth expenses. This is due to theenormous amounts of data transports inurred when streaming video.Transporting large amounts of data has always been an issue in omputer siene. Solvingthis type of problem sometimes ends up presenting a distributed system using a peer-to-peermodel. This an be seen in �le sharing environments like BitTorrent [1℄ or eDonkey [8℄.Thus, ombining streaming of video with the advantages and ideas taken from peer-to-peerlike networks is the primary motivation for this thesis. Using tehnologies and ideas of thistype, the wish is to reate a system whih o�ers on-demand video streaming with the abilityto redue the needed bandwidth of the server.As the required bandwidth for streaming of high quality video is only just starting to beomeeasily aessible to the average onsumer, no real de-fato standard or o�-the-shelf produthas yet been developed. Only time will tell whih diretion this tehnology will take but bythis thesis we hope to make a small ontribution to this development.1.2 ObjetivesThe main objetive is to reate a system whih an be used to minimize the bandwidth of thestreaming server when streaming video on-demand.This thesis is omprised of multiple parts eah de�ning their own objetives:ix

1. IntrodutionDesign of a protool: As the system will onstitute server and lient entities a networkprotool to failitate ommuniation between these will have to be designed.Implementation of the protool: The protool spei�ation should be implemented withrespet to the spei�ation requirements. Furthermore, the implementation should bemade modularly.Implementing of appliations: One or more appliations should be implemented as a proofof priniple possibly a server and a lient.Validation: The design should be validated to reate a proof of onept.The thesis will fous upon the designed and implemented version of the protool. Thus,the design and implementation will be doumented thoroughly with the result as the mainobjetive.1.3 Report layoutThis report has been typeset using LATEX2e. The report has been written using the Oxfordstyle English language. Thus, synhronize is for instane deliberately spelled using the -izeending.The struture of this report illustrates the hronologial work proess used during this projet.The report is divided into the following hapters:I Requirements and solutions: This hapter dives deeper into the subjet de�ning theformal requirements. We desribe the requirements from a less tehnial perspetivenarrowing down the theoretial areas whih will have to be examined by the study. Weoutline a rough solution to the given problems based on initial ideas and thoughts. Thesesolutions will be used as referene to the set of problems until the �nal design is laidout.II Related theory: In this hapter we analyse the found literature. The areas de�ning thistheory are for the main part omputer networks, multimedia oding and appliationdevelopment. The seletion of these areas takes its starting point in the requirementsand solutions found in the latter hapter. The main purpose of this hapter is to examineimportant parts of the theory, thus giving a foundation for the design of the system.III Protool design: This hapter analyses the requirements given in Chapter I and basedupon the theory examined in Chapter II the design of the system is aounted for. Thishapter will be the �nal result of several iterative passes aiming at larifying the �awsand ambiguities of the design.IV Protool implementation: This hapter desribes the implementation of the protooland its omponents developed during the ourse of this thesis. This will also inlude ashemati view of the omponents of the implementation.x

1. IntrodutionV Veri�ation: This hapter seeks to verify the protool design and the implementation. Inthe hapter pratial tests will be onduted to validate the protool implementation.Furthermore, the hapter inludes a disussion of the ahieved bandwidth onsumption.VI Closure: This hapter dives into the perspetives of the thesis and onludes upon theahieved goals.These hapters illustrate the phases when working with the thesis. All hapters are of ourserevisited iteratively after the ompletion of every phase.This report is written for students at a similar level as the authors or the like.The thesis aims at realizing a design of a distributed on-demand streaming network and willtherefore ontain a thorough desription of this design. Readers an skip to this in ChapterIII if the underlying theory is of little or no relevane.As the report ontains a olletion of spei� tehnial terms, a glossary is provided on page177. Throughout the report these terms, whenever appearing for the �rst time, will be writtenin italis and a desription is given in the glossary.

xi

1. Introdution

xii

I
Chapter IRequirements and ideas

In this hapter we will present the basi requirements for the system listed by overall areas. Forthe reader to get a general idea of how these issues an be solved, this hapter furthermoreontains a setion whih skethes a solution to eah of the listed requirements. Thus thishapter serves as means of getting the reader aquainted with the fundamental elements ofthe system before the theoretial foundation an be aounted for.

1

I. Requirements and ideas 2. Fundamental requirements2 Fundamental requirementsThis setion desribes the main requirements to the system. These requirements are a resultof our expetations to a system of this type, our tehnial knowledge ombined with a wishfor reating a usable outome.2.1 Server bandwidth usageAs desribed earlier the primary objetive of the system is to lower the bandwidth usage ofthe server. Fundamentally, this means that the bandwidth usage at the server must not riselinearly with the number of onneting lients. For instane, if a server has a apaity of 100Mbit/s and is streaming a video requiring 2 Mbit/s this would result in a maximum apaity of50 streams. This is exatly the problem whih we wish to solve by raising the above apaityof 50 streams without inreasing the bandwidth apaity of the server of 100 Mbit/s.2.2 E�ient salabilityThe protool should be salable to onnet a large number of lients. Thus the number ofonneted lients should not be limited by the protool design. The salability is de�ned withrespet to the number of onneted lients ompared to the bandwidth usage of the server.2.3 Tra� shapingIt should be possible to ontrol and prioritize the individual data streams sent to all partsof the network. We refer to this as tra� shaping although this may not be in ompleteaordane with the traditional de�nition of the term. For instane, if a servie providerwishes to enfore a minimum usage of a spei� network link, it should be possible to satisfythis wish.2.4 Design and implementationThe protool should be designed using a modular approah o�ering easy extension of futuredesign. The spei�ation of the protool should be thoroughly doumented.Furthermore, a server appliation and a lient appliation should be designed and imple-mented, whih demonstrate the usage of the protool implementation. This will be part ofour proof of onept verifying that the idea works as intended.An enlosed implementation of the protool spei�ation should be reated, whih o�ers an2

I. Requirements and ideas 2. Fundamental requirementseasy-to-use interfae, enabling developers to implement their own appliations using the pro-tool implementation.The protool must be implemented using standard libraries and omponents and be based onthe TCP/IP stak. This ensures that the implementation is usable on the Internet and willbe portable as required by the objetives.For the sake of lari�ation, we stress that our implementation will be developed for a standardomputer with no regard to speialized hardware devies.2.5 End-user funtionalityTo ful�ll the demands for reating an on-demand video system the end user will need to havea ertain degree of ontrol of the video stream. This involves instant play bak, pause and gobakward/forward in the video, as seen on a ommon VCR. Media interation an be brokendown into two types [41℄, ontinuous and disontinuous funtions. The �rst ategory omprisesfast forward and rewind known from analogous media. The seond one, omprises skippingfrom one part to another as known from digital media like DVDs and CDs.The system should further support that all end users do not neessarily have the same band-width available both regarding upstream and downstream. This will re�et the urrent sit-uation on the Internet as will be seen in Setion 6. As many users of the Internet are usingasynhronous bandwidth it is not feasible to exlude lients with an upstream bandwidth notsu�ient enough to forward the stream � this would simply exlude too large a part ofpotential users.2.6 System seurityThe design of the system should invite implementation of a robust seurity poliy. To obtainthis, di�erent aspets of seurity must be aounted for. Therefore seurity issues an bedivided into three main parts:Authorization: The system should verify and grant or deny aess to newly onnetingusers.Data integrity: No end-user should be able to tamper with the data stream and thus in�u-ene the ontent of the stream sent to other users.Data theft: No end-user should be able to steal data from the system, e.g. reeive a videostream without being aknowledged by the system. This does not ensure that lientsannot send the video stream to unaknowledged lients outside the system.It is unlikely that all of these items will be solved with all seurity details in mind. The maingoal is to design a version of the protool enabling future development to bene�t from thedesign. 3

I. Requirements and ideas 2. Fundamental requirements2.7 Quality of streamTo reate a usable system, it should deliver a stable stream of data ensuring that the videois shown without disruptions. Also, partial network disruptions should not a�et delivery ofdata. Of ourse, larger network disruptions suh as a link breakdown or a system rash at aentral point will have to be aepted as a non-reoverable failure whih an potentially a�etother users.

4

I. Requirements and ideas 3. Fundamental ideas3 Fundamental ideasBased upon the requirements desribed in the previous setion we illustrate the solutions andtehnial details of the fundamental ideas. For eah of the requirements a rough solution willbe outlined. These rough solutions will help identify areas of theory whih will be studiedfurther to reate a theoretial foundation for this thesis. We emphasize that the solutionsoutlined in this setion are only a sketh and will not be �nalized until the design phase isompleted.3.1 Server bandwidth usageTo ful�ll the requirements onerning minimization of the server's bandwidth, it is obviousthat sending a stream of data to every lient is not appliable. This approah will result ina bandwidth onsumption inreasing linearly ompared to the number of onneted lients asillustrated in Figure 1.

Figure 1: Star topology.Another approah is to let the server send data to a number smaller than the total numberof lients in the network. This ombined with the lients forwarding data to eah other willreate a network with a topology resembling a tree or a mesh as seen in Figure 2. This willreah a bandwidth usage whih may be lower than the simple solution using one stream perlient. This solution will be referred to as bandwidth sharing.
5

I. Requirements and ideas 3. Fundamental ideas

Figure 2: Tree of lients.However, these two models annot be diretly ompared unless we take the following mainissue into aount: The �rst model opens up for the ability to stream any data to any lient atany given time. The other model is limited by the fat that a lient reeiving data from anotherlient is restrited to reeive data available at the sender. Hene, on-demand streaming is notdiretly possible, as it will result in all lients wathing the same point of time in the video.The solution to this problem is to introdue a bu�er at the lient ontaining a ertain portionof the video. Thus lient A depited in Figure 2 ould wath one portion of the video whilelient B and attahed lients wath another portion. The lients attahed to lient B do nothave to wath the exat same point of time in the video but has to lie within the portion of thevideo held by the bu�er og lient B. Client A ould even be wathing a ompletely di�erentvideo than lient B and its subtree, hene eah di�erent video or di�erent setion of a videoresult in its own subtree.Conneting lients to the network represents two senarios. One is the newly onneting lientrequesting to reeive the video from the starting point. The other is the lient requesting thestream from a given point of time in the video. The latter senario ould represent a lientwishing to resume the stream after pausing it earlier on.Both of these senarios are solved by the network seleting the optimal entry point to theonneting lient. This �optimal� hoie is taken by the server seleting a lient whih at thetime holds the orret part of the stream requested by the onneting lient. If the serverannot �nd any suitable lient, it an either rejet the lient or stream the video diretly tothe lient. Splitting the video into x parts and enabling the lients to bu�er an entire part, willresult in the need for, at most, x available streams per movie at the server. All other lientswould reeive the stream from a lient onneted to the server. Introduing this funtionalitywe an ompare the two models.Furthermore ensuring basi on-demand streaming funtionality suh as instant start-up, paus-ing, fast forward and rewind represent a di�erent and more ompliated hallenge.6

I. Requirements and ideas 3. Fundamental ideasAlso lient or line break down will have to be handled di�erently as a lient break down inFigure 1 will not e�et more than one user.3.1.1 Multiple serversExtending the �rst model in Figure 1 ould be done using multiple servers � a senario whihhas been pratied with ommerial suess in other areas of omputer networks. In spite ofthis, the senario still sales in a linear form based on the number of lients. This solutionshould by no means be negleted, but this approah has no value to the spei� senarioswhih are treated in this thesis sine it would not result in any further bandwidth redutionin total.The seond model, see Figure 2 ould also be repliated to use multiple servers, as shown inFigure 3.

Figure 3: Joined servers.Adding multiple servers to any of the models does not ontribute to a theoretial lowering ofbandwidth usage but due to the struture of the Internet, the use of multiple servers ouldontribute to signi�ant savings regarding bandwidth ost and rapid extension of the server'sapaity. In order to onnet multiple servers another protool is needed whih will have amain task of distributing data among the servers.This struture permits that transportation of data in the ore of a network an be done at a lowost due to the high apaity onnetions linking the entral network loations. Furthermore,the struture an also have a single string onnetion to a geographial point from where ondata are distributed to a number of nodes. This senario ould also bene�t from a multipleserver setup avoiding starvation of a single onnetion.On the edge of the network, where the end-user is typially situated the onnetions usually
7

I. Requirements and ideas 3. Fundamental ideashave a lower apaity. Taking a loser look at the market1 for end-user onnetions revealsa palette of di�erent options. Most ommon are the asynhronous onnetions for instaneADSL or Cable. A typial onnetion has a maximum downstream rate of 2048 Kbit/s anda maximum upstream rate of 512 Kbit/s. These onnetions are widely spread and faster areoften seen, as will be elaborated upon in Setion 6. Furthermore, the trend is that onnetionsare getting even faster.Obviously, we hoose a model based upon the seond senario (Figure 2). The model uses asingle server ommuniating with an arbitrary number of onneted lients. Combining the twosenarios to yield a multiple server setup ould be done by implementing the ommuniationhannel between the servers. As the fous of the thesis is upon the lient-server ommuniationthe server-to-server ommuniation is left as further work.3.2 E�ient salabilityAs previously stated the maximum number of onneted lients in the �rst model sales linearlywith respet to the maximum bandwidth apaity of the server. The seond model obviouslyhas the ability to sale beyond this point. The theoretial number of onneted lients usingthe seond model may seem in�nite as the load upon the bandwidth is taken away from theserver. Of ourse, this property introdues ompliated issues whih will be dealt with in therest of this thesis.Thus the demand for salability is ful�lled solely by hoosing the seond model.3.3 Tra� shapingAs desribed in Setion 3.1.1 it an be an advantage if data an be routed by a spei� path. Itmight be preferred to limit the use of spei� links based on di�erent auses, e.g. low apaity,high arrier prie, long delay, or other fators.An example ould be an island with only one link to the mainland with limited apaity.Should two lients on the island be onneted, it would be more e�ient to onnet these toeah other and only one of these to the mainland. This would distribute the bandwidth usageaway from the server and furthermore take the load o� the link to the mainland resulting intra� shaping.Expanding this example, it ould be the ase that the users on the island are wathing a lotof videos. Hene it ould be an advantage to plae a server on the island as referred to inSetion 3.1.1.1As this thesis does not treat the market or eonomy for end user onnetions we onentrate upon themarket in the western world. This is due to the high availability of Internet onnetions and the massivepresene of the entertainment industry.
8

I. Requirements and ideas 3. Fundamental ideas3.4 Design and implementationThe design and implementation of the appliations using the protool will be done with regardto the previously mentioned requirements given in Setion 2. Exept for the requirementsregarding the enlosed solution the other requirements do not need further explanation.The implementation of the protool presented in this thesis will fous upon simpliity and willbe implemented for standard omputers.Enlosing the solution refers to a design whih enourages an implementation of a simpleinterfae enlosing the logi in the protool. This will enable developers using the protool toimplement appliations easily. To give a general idea of the system, Figure 4 illustrates themain omponents of the design. The left side illustrates the server side of the protool, whilethe right side illustrates the lient side. The middle layer de�nes the protool and its generalomponents. The protool interfaes downwards with Appliation Programming Interfaes(API) provided by the operating system failitating network ommuniation. Upwards, theprotool provides an API used by appliations. These appliations will from this point bereferred to as server appliations and lient appliations. Aordingly, the server side of theprotool will be referred to as server protool or just server while the lient side will be referredto as lient protool or just lient. The term 'protool' will be used when referring to both.The API provided by the operating system is the lower part of the drawing. The protoollayer is oloured green, indiating that this part will be designed and implemented in thisthesis. The implementation of the server and lient appliations will only be done to illustratethe funtionality of the protool, with no onsideration to e�ieny or salability.

9

I. Requirements and ideas 3. Fundamental ideas

Figure 4: Arhitetural overview of the system3.5 End-user funtionalityThe system should o�er the-end user funtionalities similar to what is expeted of on-demandvideo regarding display of the video stream. It should be possible to forward/rewind andpause the stream. Apart from this, the user should have the possibility of stopping the videoaltogether without any e�et upon other lients dependent on data sent from the lient. Hene,stopping and pausing the stream resembles eah other losely, as pausing and stopping thestream has the same e�et upon lients reeiving data from the interating lient. Finally,instant start-up of the stream is an issue to be examined.3.5.1 StopWhen a lient interats with the system to stop the stream, the system needs to selet an-other lient from whih all lients reeiving data from the interating lient must now reeivedata. If the interating lient has no lients onneted, it leaves the network without furtherompliations.The system should be able to detet a link or lient failure. This event is opposite to the userstopping the video as there will be no interation from the lient. In the event of interationthe lient will notify the server that the user has stopped the video. In the event of a line or10

I. Requirements and ideas 3. Fundamental ideaslient failure this will have to be deteted in another way. Clients reeiving data from anotherlient whih is failing will at some point onlude that the sender has stopped transmittingdata.3.5.2 PausePausing the video ould result in a similar behaviour as stopping the movie � attahed lientsneed to be reloated in the network. When the stream is resumed, the system needs to attahthe resuming lient to another lient whih holds relevant data. Hene, starting and pausingare losely related, as the only di�erene is that the resuming lient resumes the stream at anarbitrary point in the video stream.3.5.3 Fast forward/rewinding the streamThe traditional VCR player o�ers the user possibilities of fast forwarding or rewinding thevideo. To introdue a true video on-demand system it is important to present funtionalitieswhih resemble this.Advaning the video stream in a speedy manner involves reeiving the stream at for exampledouble rate and likewise playing the video at double rate. This injets a heavy load ontoboth the sender of data and the lient advaning the video onerning omputing power andbandwidth usage. Alternatively, a saled down ontent of the stream ould be sent inludingonly a subset of the frames ontained in the stream. This would remove the bandwidth loadfrom both sender and reeiver but the sender would instead have to analyse the stream andextrat a subset of the frames and send these aordingly. This would instead raise otherompliations whih would have to be handled.Instead of trying to resemble the VCR player another approah as argued in [45℄ whih suggeststhat the pereption of interating with analog media di�ers from digital. Hene, there is aneed for hanging the pereption of the end-user. If the system had the ability to skip toan arbitrary sequene of the movie, this ould onstitute and replae the fast forward/rewindfuntionality of the VCR. Hene, ombining the solutions of the ability of the lients to stopand start the video at any point, we see that the problem of skipping to an arbitrary sequeneof the video is solved.Thus, the solution to the issue, will be to implement disontinuous interative funtions whihwill onstitute the funtionalities of ontinuous interation. The funtionality will from hereon be referred to as �skip to another sequene�.3.5.4 Asynhronous lient bandwidthAs required in Setion 2.5, lients equipped with an Internet onnetion using asynhronousbandwidth should be able to partiipate in the network. In pratie this means that a lient an11

I. Requirements and ideas 3. Fundamental ideashave a downstream apaity su�ient for reeiving a video stream but not enough upstreamapaity to send data to the next lient.This problem an be solved in di�erent ways. A solution to this problem is to let lients witha low upstream to send only a portion of the data and hene let a lient reeive data fromseveral soures. This will also imply that a lient with a large upload bandwidth ould senddata to multiple lients.3.6 System seurityCreating a system with a seurity so robust that no one in any way an bypass the system, isonly possible by unplugging the network able. Realizing that a system an only be seuredto a ertain degree is important when designing it. The main goal when designing a seuritysystem is to make it extremely di�ult to bypass even for highly skilled individuals with a�rm knowledge of the area.3.6.1 AuthorizationAuthorization is a well-known area within omputer siene. Hene, lots of di�erent ap-proahes an be used to solve this problem. One way is to let onneting lients reeive atoken from the server and use this to aess the network. Another solution is to let the servergrant aess to new lients and inform all other lients. These are just examples of di�erentapproahes useful when designing an authorization mehanism. Common to both of thesesolutions are that they are based upon a entral register maintaining information about usersand aess rights. Thus, no lient an grant others aess without going through the server.This basi priniple will be the ornerstone of the design of the authorization mehanism inthis system.3.6.2 Data integrityConstruting a network of this type implies that lients have the opportunity to orrupt databefore passing it on to the next lient as other lients an be ompletely dependent upon thebehaviour of other lients in the system. For this reason the lient must be able to verify thatdata reeived from other lients are valid. This an, for instane, be done using a heksum.3.6.3 Data theftThe issues disussed in this setion are losely related to authorization. When the lient isauthorized, the server annot know how data are handled by the lient. The lient ould passdata on to other lients without the knowledge of the server and thus ompromise seurity. Thedesign should be extendable with seurity mehanisms ensuring that data are only passed on12

I. Requirements and ideas 3. Fundamental ideasto authorized lients. One way of doing this is to enrypt data with erti�ates sent at intervalsby the server. This solution is more safe but will never safeguard the system ompletely � themaliious lient will always be able to derypt the stream and pass data on in unenryptedform or even exhange erti�ates. For instane, it will still be possible for the end user toreord the stream using an old-fashion VCR or even a hand-held video reording of the sreen.All of these issues are out of the sope of this thesis. The system will only be responsible forthe seurity until the stream is delivered to the reeiving unit whether being a sreen or astreaming appliation. From here on, other seurity mehanisms must be brought into use.Complete seuring of data are out of the sope of this thesis. No matter how tight theseurity is it will always be possible to onstrut maliious ode. This is espeially truewhen working with an open spei�ation available to anyone. Designing the system using anenlosed spei�ation neither ontributes as any piee of software an be reverse engineered.The solution is therefore to make it troublesome for maliious lients to ompromise dataseurity. This an be done by letting the lients reeive vital information about the videostream from the server at di�erent points in time.This report will ontain theory, whih outlines di�erent ways of proteting digital data, butonly a very limited fration of this will atually be implemented.3.7 Quality of streamOne of the key points when seuring a ontinuous stream of data is to read data into a bu�erbefore play bak. The size of the bu�er should not be larger than neessary but still largeenough to deliver a stable media stream even if the data stream should be delayed in shorterintervals. If the sending lient pauses the stream, the bu�er on the reeiving lient should belarge enough to leave time for the server to elet a new sending lient and initiate the transfer.

13

I. Requirements and ideas 3. Fundamental ideas

14

II
Chapter IIRelated theory

In this hapter we will over the basi theory needed for the design. Some of these setionsmay seem unneessary, but as the topi of this report overs many domains, we �nd it onlyfair to provide a theoretial overview of the areas whih are used in this report. Furthermore,the degree of detail provided in the various setions of the hapter will only be taken to a levelsu�ient enough for the design of the system.

15

II. Related theory 4. Synthesis4 SynthesisIn order to map to di�erent kinds of theory needed in this thesis a synthesis will be outlinedin this setion. This synthesis will serve as a tool to determine the di�erent domains whihshould be overed in the following setions.Multimedia enoding: A basi requirement onerning streaming of video is a survey intotheory regarding multimedia enoding. This is needed to determine the nature of mul-timedia standards and formats, how they work, and whih of these should be supportedby the protool.The Internet: As the goal is to send multimedia via the Internet a analysis of the possibilitiesand weaknesses of the Internet is needed. Streaming the large quantities of data usedin multimedia requires a ertain degree of Internet onnetion stability. Thus, we mustover the stability of Internet onnetions, and how to handle the issues arising from thelak of stability.Network topology: Building a logial network suitable for streaming multimedia data in-volves an analysis of di�erent topologial models, their advantages, and disadvantages.This analysis will partly be based upon existing theory and partly upon solutions alreadydesribed by various artiles.Protool design: Clearly, we must over theory regarding the priniples of designing networkprotools. This should over how protools are strutured and designed, the usage ofunderlying protools, and the advantages and disadvantages of these.Protool implementation: Having designed a network protool, theory regarding the im-plementation of this should be overed. This will inlude basi software implementationissues whih an be spei�ally applied when implementing protools.Data bu�ering: As desribed in Setion 3.1 the need for injeting a bu�er in eah lient isevident. Therefore we must over theory regarding bu�ering of data.Seurity: To ful�ll the seurity given in Setion 2.6 we need to over theory and methodsrelated to this.

16

II. Related theory 5. Multimedia oding5 Multimedia odingStreaming of multimedia normally involves enoding and deoding the ontent. This setionprovides the basi theory regarding this subjet. The main foal point of this setion is togive an introdution to the area in order for the reader to beome familiar with the subjet.5.1 Video odeThe term video standard is used in this thesis referring to the struture of how piture andsound1 is organized. A standard does not explain the proess of organizing data or how it isrereated again. These proesses are known as enoding and deoding and are done by theode.Code is an abbreviation for Coder/Deoder and is basially a piee of software or hardware,whih is both responsible for ompressing the raw material and deompressing it again. Theode is designed to onform with the video standard whih it is oder/deoder for. Aspreviously stated, a standard does not speify how data is onverted (enoded and deoded),hene many varieties of odes implementing the same video standard are available.5.2 RequirementsThis setion desribes the minimum features whih a usable video standard will need tosupport, should it be able to be transported by our protool. These requirements are no morethan a tehnial extension of the previous ideas and assumptions found in Setion 3.Streaming: The video standard must be suitable for streaming. A standard whih, forinstane, requires that the entire �le is available loally before play bak, annot betransported by the protool.Controllability: Sine one of the primary goals is to provide the end user with the abilityto interat with the play bak of the video, the standard must support pausing andskipping. A standard needs to support a way to implement these funtions.Splitting and joining the stream: Another goal of this projet is the ability to distributethe stream among several lients. In order to do this, the video standard must be apableof being transported in smaller entities so that data an be divided and reassembledagain. Thus, an arbitrary part of the data �le must be transportable by the protooland hereafter delivered to the multimedia player. How this arbitrary part is handledis ompletely up to the ode. Thus, the protool relies upon the ode to be strongenough to handle this.1From this point on referred to as frames and audio, whih are the expressions normally used in theliterature. 17

II. Related theory 5. Multimedia odingThe last requirement is by far the most important. Furthermore, it is obvious that if thisrequirement an be ful�lled, the remaining ones an be negleted. This beomes evident asskipping an be made by jumping from one part of the video to another. Pausing is just done byhalting the display of the video sequene and restarting it again at the same position. Finally,streaming is possible if the ode has the ability to play any part of the video independentlyof the rest.Two main issues are important. First, the video standard must support the requirementsgiven above. But apart from this, the ode used when oding/deoding the material mustnot hange the ability of the standard to ful�ll these requirements. Thus, if a standard supportsontrollability, the ode must not be implemented, so that the data stream does not possessthis property any longer. Hene, when using the protool, measures should be taken to verifythat the ode does not onstrain the funtionalities of the standard.5.3 StandardsDue to the existene of the large variety of di�erent video standards, some of whih havebeome more or less aepted, a brief introdution is in plae. The best known group ofstandards is the MPEG-standards made by Motion Pitures Expert Group [27℄. This groupwas begun in 1988 aiming to develop a set of standards regarding multimedia formats. Therest of this setion will mainly involve standards developed by this group, as they have moreor less beome a de-fato standard.The �rst standard released by the group was alled MPEG-1. This was mostly based uponwell-known tehniques used in areas of omputer siene, for instane ompression of stillimages in the JPEG format. The MPEG-1 standard was designed to use a bit-rate of 1.2Mbit/s. Thus it had beome possible to ompress a omplete video to a relatively small sizeompared to, for instane, a DVD. This high ompression rate of ourse meant losing quite abit of quality.Later ame the MPEG-2 standard whih is similar to the MPEG-1 standard but designed todeal with higher resolutions. This was originally designed for broadasting video at a bit-rateof 4 to 6 Mbit/s. The MPEG-2 standard is today known as the standard used by DVDs.Work was also started on an MPEG-3 standard whose primary target was High De�nitionTele Vision (HDTV). It was later disovered that the MPEG-2 standard ould be hanged toover this and therefore the work was inorporated into the MPEG-2 standard and work onMPEG-3 stopped.Finally, the MPEG-4 standard was reated with Internet multimedia appliations as the maintarget. The MPEG-4 standard is losely related to the well-known DIVX ;-) [si℄ and DIVXstandards made to resolve liensing issues and patent rights. MPEG-4 is designed for heavyompression whih it does rather suessfully. This has made the standard popular togetherwith the DIVX standards. The tehnology used to ompress data is di�erent from what is usedby MPEG-1 and MPEG-2. Quality is said to be not quite as good in DIVX as in MPEG-2espeially when using large resolutions and with a lot of hanging frames in for instane ation18

II. Related theory 5. Multimedia odingmovies. This is due to the method used when ompressing frames.Another standard whih deserves mention is Windows Media Video (WMV) � Mirosoft'sattempt to design a speialized version of the MPEG-4 standard. Unfortunately, the latestversions of this standard are no longer ompatible with the original MPEG-4 standard. As aside remark it should be mentioned that the �rst DIVX standard (the DIVX ;-)) was a hakedversion of the WMV standard and by today the WMV is still not an open standard.5.3.1 Choosing a video standardAt this point it should be emphasized that the goal of this projet is not to build a systembound to a spei� video standard. The system should rather be used with any standardas long as it ful�lls the requirements as stated in setion 5.2. Despite this, an introdutionto MPEG-2 is in plae as this standard was our initial target, sine it o�ers high qualityvideo known from HDTV whih we believe will beome standard requirements to streamingof video.5.4 MPEG-2The MPEG-1 and MPEG-2 standards have a ertain amount of shared struture. This setionontains a quik overview of the two standards and their di�erenes.Most literature is foused on either oding of frames or audio. Obviously these two are themain omponents of multimedia oding but far from the only parts. To give a piture of this,at the time of writing the MPEG-2 standard ontains nine di�erent parts, with more underway and only a few of them onerning frames and audio. A third very important part isalled system, whih ats like the 'glue' between frames and audio.The following setion will ontain a quik overview of frames, audio and system in MPEG-1and MPEG-2.5.4.1 FramesClearly, one of the main elements in a stream of video are the frames of the video. Videoan be onsidered as a ontinual stream of pitures shown at a �xed interval, for instane 25frames per seond (referred to as the frame rate). Hene, another often used name for videois moving pitures.A very simple approah for implementing moving pitures is to display a stream of JPEGpitures2. The only problem is that the ompression fator is normally around 10-20 for aJPEG piture. Therefore the size of the video will be substantial. More important, a large2This video format is alled MJPEG 19

II. Related theory 5. Multimedia odingamount of the information in the stream would have no relevane as only a small part of theframes in a typial movie hanges from one frame to another. This advantage is used in theMPEG-1 and MPEG-2 standards. Instead of sending a omplete frame every time, the mainidea in MPEG-1 and MPEG-2 is to send a omplete frame every now and then and in betweensend enough information to maintain an appropriate appearane of the piture.For example: In a movie sequene, a person might only move his or her head, but the sur-rounding bakground stays more or less the same during the sequene. Instead of sending aseries of full frames, eah ontaining only small hanges, the idea is to send the �rst full frameand then a number of frames orreting the appearane to re�et hanges. Every now andthen a omplete frame is sent, both to ensure that orretions stay synhronized and beauseeventually, a big part of the piture has hanged anyway, that it might as well use a ompletepiture.5.4.2 AudioMPEG-2 audio standard is an extension of the MPEG-1 audio standard whih operated onlywith mono and stereo. MPEG-2 audio supports a total of �ve hannels used to reate surroundsound. The MPEG-2 audio standard is further extended in some ases to support bettersampling rates to improve sound quality. Last but not least the MPEG-2 audio standard isbakward ompatible with the MPEG-1 audio standard. Hene, an MPEG-2 video streamould use MPEG-1 audio.The main idea in ompression of audio data in MPEG-1, and hene also in MPEG-2, is tout o� all frequenies and parts of the sound whih annot be heard by the human ear. TheMPEG-1 audio format is divided into three di�erent layers sharing the same layout onsistingof a sequene of audio frames with a header and sound data using onstant frame rate. Oneof the better-known layers of the MPEG-1 standard is MPEG-1 layer 3, also known as MP3.Finally, a standard alled MPEG-2 AAC has been reated. This standard is more advanedand builds upon the same priniples as those found in MPEG-1 layer 3 standard but withsome improvements. It is beyond the sope of this projet to look further into this standardand we will for the time being just aknowledge that it exists.5.4.3 SystemThis part of the MPEG standards is onerned with ombining frames, audio and other datastreams into one or more streams. A typial video sequene ontains both images and soundand ould furthermore ontain data like subtitles. The system handles the task of putting theseelements together. Synhronizing frames and audio together into one is alled multiplexing.Doing so, one ends up with one ontinuous �le, where the piture and the sound has beensynhronized. The opposite of multiplexing is alled demultiplexing.A typial MPEG-1 or MPEG-2 �le has been multiplexed (frames and audio is the same �le),20

II. Related theory 5. Multimedia odingand when the �le is shown using a multimedia player, the data is demultiplexed and handledseparately as desribed above.5.5 Existing softwareTo investigate further, we did a set of experiments to examine di�erent implementations ofmultimedia players and odes. As a key element of the system is to reate a protool whihinterfaes with a lient embedding a multimedia player, the �rst fous was set upon di�erentimplementations of players. The three main requirements to a player are that the playershould be available upon a windows platform. Seondly, the player must be able to be usedas a omponent embedded in a Windows appliation. Lastly, the player must be able toplay videos using the MPEG standards. Quikly this was narrowed down to either Apple'sQuiktime or Mirosoft's Windows Media Player.To hoose between these, we onduted a test to see how robust the used multimedia playerswere. A number of media �les were played seeking to stress the player. These media �les wereedited using standard text editors, and random text was inserted at random plaes. Thesemedia �les were played aordingly using the same odes and the behaviour of the player wasnoted. Depending upon the amount of damage in�ited to the media �le both players wouldin some ases stall for a while, san forth in the �le, until valid data was found. In some asesthe player would just jump to the next valid frame. Both players seemed quite robust, withthe main di�erene that Apple has hosen a more open soure like approah when designingQuiktime. Contrary to this, Windows Media Player has a more enlosed struture. Thisultimately has led to the hoie of using Quiktime as the player.5.6 Video samplesThis setion tries to show a few examples of typial videos, their sizes and bit-rate providinga foundation for further disussion and give the reader some formal numbers to refer to. Allof the shown numbers are based on 90 minutes (5400 seonds) of video.Type Quality Size (MB) Bit-rate (Kbytes/s)MPEG1 Low/Medium 200 ≈ 38MPEG4/(DIVX) Medium/High 800 ≈ 152MPEG2 High (DVD) 4000 ≈ 760Table 1: Typial streaming �gures for movie typesTable 1 illustrates typial examples of videos and their respetive bit-rates. The examplesillustrate only video enoded using onstant bit-rate (CBR) as the size of a video enodedusing variable bit-rate (VBR) is dependent on the ontent of the video stream.21

II. Related theory 5. Multimedia oding5.7 ConlusionsWe aknowledge that the �eld of multimedia oding is omprehensive. Thus, we have hosenonly to elaborate upon the MPEG-2 standards as this was the initial target of the protool.In addition to this the video stream an be onsidered as binary data of any type. Beauseof this, only limited time will be spent in the rest of this projet regarding video oding andinstead fousing upon the main objetives of the projet.Furthermore, using MPEG fores the need for only using �les enoded using CBR, as streamingof data enoded with VBR further ompliates the task. Obviously, streaming ontent enodedwith VBR represents a �eld in itself, as some parts of the movie suddenly beome more timeritial than others.

22

II. Related theory 6. Struture of the Internet6 Struture of the InternetThe Internet as we know it today has been developed over the last ouple of deades. Todaythe Internet onsists of millions of hosts and an equally large amount of onnetions betweenthese hosts.All of this has developed along the years and has brought life to new standards and tehnolo-gies, some of whih have beome the Internet's main harateristis.6.1 The elements of the InternetThe Internet onsists of a large amount of nodes, where the term node overs a large varietyof equipment: PCs, servers, routers, swithes et. Equipment like routers and swithes aredesigned for the purpose of onneting network segments together but in overall the term nodeis used for all the mentioned items. Two logially interonneted PCs on the Internet aredenoted hosts while the onnetion may span aross a number of physial hops interonnetedby nodes.The nodes transport entities alled pakets whih ontain the di�erent informations exhangedbetween the nodes. These pakets inlude a header ontaining various ontrol information.All of these nodes are interonneted by a wide range of di�erent onnetions. As the type ofonnetion is of no relevane to this projet, no further elaboration will be given on this subjetsine it makes no di�erene to this projet what type of media is used for data transport. Theonly thing whih is worth notie is that these onnetions have individual apaity, measuredin the amount of data whih an be transported per seond. Furthermore, sending data arossthe onnetion may involve a delay, typially measured in milliseonds.6.2 Connetion apaityA node loated on the Internet is equipped with some kind of onnetion. This onnetionhas di�erent harateristis suh as apaity, measured as the amount of data whih an betransmitted per seond. This apaity is usually guaranteed by the servie provider, but onlyfrom the end user to another point in the network of the servie provider. The apaityobtained between two users on the Internet using di�erent servie providers is usually notguaranteed. Thus, a user annot always rely upon the apaity advertised by the servieprovider, when exhanging data with another segment of the Internet. Other properties, suhas delay, are assoiated with the same problems, as the delay between two hosts is a resultof the number of hops between the hosts and the bandwidth available at eah hop. A morethorough desription of the problems enountered when trying to determine the availableresoures of a link, is found in following setion.Throughout the rest of this thesis, we refer to the apaity of an Internet onnetion as either23

II. Related theory 6. Struture of the Internetapaity or bandwidth.6.3 Connetion stabilityAs mentioned in Setion 1 streaming of video is a bandwidth ritial subjet. Thus, it isruial that onnetion stability is maintained. The �utuations of the Internet onerningreeival of pakages out of order or the oasional dropping of pakets during transport willbe examined in Setion 8.3. What remains onerning onnetion stability is to onsider theimpat of exhanging time ritial data when onnetion bandwidth is not guaranteed. Inother words: How do we know that a onneting lient an reeive data, possibly from severallients, at a speed high enough to satisfy the bit-rate of the video? And how do we ensurethat this lient an pass data on to another lient, possibly in onjuntion with several otherlients?Bandwidth between hosts is de�ned as the amount of data, whih an be transferred betweentwo hosts. Observing a set-up with two hosts logially onneted to eah other, as shown inFigure 5, indiates that there are three fators whih ontribute to the determination of thebandwidth between the lients. These fators are lient A's ability to send data, lient B'sapability to reeive data and �nally the amount of data whih an be transferred throughthe onnetion. As seen in Figure 5 the physial onnetions between two nodes form a logialend-to-end onnetion whih determines the available bandwidth between the two lients.

Figure 5: Bandwidth between two hosts.As the network onsists of a large number of interonneted nodes any of these an poten-tially break down, get ongested or in other ways prevent data from passing through. Thisunfortunate property makes it hard to predit whih route a paket will follow, how long timeit will take for a paket to reah its destination and hene the alulated bandwidth availablebetween two lients.The large number of end-users and relatively small number of network providers have shapedthe Internet with high bandwidth network onnetions in the ore of the network and thinneronnetions to the end user. This means that the onnetion to the end-user (last mile aess)is often the bottlenek in the network. This observation tells us that under normal onditions24

II. Related theory 6. Struture of the Internetit is safe to use the end user's advertised bandwidth as a foreast to how muh data the lientmay transmit. This observation is of ourse only valid, if the other end of the onnetionis plaed in the `thik part of the Internet' like a server at an Internet Provider. If theonnetion, is plaed at another end-user, then the apability of that onnetion has to betaken into aount too.6.3.1 Guaranteeing onnetion stabilityThe Internet's quality of servie (QoS) is simply 'best e�ort'. This means that a onnetionbetween two hosts tries to send as muh as possible as fast as possible. All tra� is treatedidentially with no regard as to where and from whom the tra� originates and to whom itis destined.Guaranteeing the bandwidth between two arbitrary nodes loated upon the Internet is simplynot possible. Hene, an Internet Servie Provider annot sell a spei� bandwidth and guar-antee that it will be available to an end-to-end onnetion if one part of the onnetion liesoutside the network of the servie provider. This has been one of the Internet's main issuesduring its lifetime and is apparently hard to solve.The solution to the problem must aount for a range of issues:
• Users need to be guaranteed that the advertised bandwidth is always available.
• Users need to be guaranteed that lateny times will never rise above a ertain point.
• Users need to be guaranteed that paket loss will not our.
• Servie providers need to be able to di�erentiate tra�.In a sense the last item must be a onsequene of the three �rst, as the last item will givethe means to solve the �rst three items. Thus, di�erentiating tra� is the key-point of thesolution.A variety of solutions has been proposed. Some of these have never been used in pratieand others are only of limited use. We identify a subset of these to illustrate the variety ofsolutions that has been presented over time:Label swithing/MPLS: MPLS is not traditionally used to ensure QoS but an be used toenfore the route of pakets sent between two hosts. Thus MPLS an be used to enforethe route, but not ensure that pakets do not get lost during transport.Integrated servies: Integrated servies is a �ne grained QoS system aiming at seuringQoS at appliation level. Integrated servies uses the Resoure ReSerVation Protool(RSVP) whih must be implemented in all nodes along the route between two hosts.All nodes must send a message to its neighbours at a given time interval identifying25

II. Related theory 6. Struture of the Internetwhether the node is apable of sending QoS data. Thus, the routers in the network willbe able to identify the existene of a path between two hosts, whih supports integratedservies.Di�erentiated Servies: Di�erentiated servies is a oarse grained QoS system designed topartition the Internet into di�erentiated servie regions grouping di�erentiated serviesdomains together. Hene, an ISP ould implement di�erentiated servies in its owndomain and have a Servie Level Agreement (SLA) with a number of other ISPs whihalso implement di�erentiated servies. These ISPs will together form a region whih bythe use of SLAs an guarantee di�erentiated quality of servie the domains in betweenThe domains are in turn implemented using edge nodes whih lassify all inomingand outgoing tra� aording to the SLAs. Tra� will be direted through a tra�onditioner whih meters and shapes the tra�.Common to all QoS systems is the need for implementing the systems aross the boundariesof Internet servie providers. This restrition has the onsequene, that all measures taken bythe protool to ensure QoS are useless unless provided by all Internet servie providers alongthe route between two lients. Therefore no further measures will be taken by the protool toensure QoS.6.4 RoutingA paket sent from one host to another normally has to pass through several nodes in order toreah its destination. As the Internet is made up of a large amount of nodes it is evident thatmore than one path may exist whih an be used to exhange data between the two hosts.Finding the right path to pass data between the two hosts is known as routing.Many aspets an be taken into onsideration when hoosing the route a spei� paket shouldfollow: eonomy, seurity and geography are all aspets whih an be taken into onsideration.But even though a route has been seleted it an be altered quikly if a node detets a problem,in whih ase the end-to-end path from one host to another an hange from one moment toanother. Routing is performed by the lower network layers as stated in Setion 8.When a paket is sent, it usually reahes its end-point, but in some ases it may be lostunderway. If more pakets are sent to a node than it an handle, the node starts to dropthe pakets whih it is unable to send. If more pakets are sent through a network than itsapaity allows, the networks starts to ongest. Congestion happens as the network only hasa ertain apaity. One this apaity is exhausted the only option is to drop the pakets. Inthis situation, the only solution is to send less data through the network as the situation willonly worsen until one or more senders stop sending data for a given period of time.
26

II. Related theory 6. Struture of the Internet6.5 The Internet of 2006Today the Internet has reahed a level where a typial end-user seldom observes any break-downs. Often a breakdown will result in the data being routed another way in the networkand therefore the user will not notie anything. The end-user is typially plaed in the edge ofthe network and hene on the lines with the lowest bandwidth. The apaity is muh highernear the ore of servie provider and their network providers, alled bakbone providers. Thisstruture means that the bottlenek from the end-users perspetive is 'the last aess mile'(the users' 'own' onnetions) both regarding bandwidth and breakdown. If this part of thenetwork is down, the end-user is ut o� from the entire network whereas a breakdown in themore 'entral' part of the network often is solved temporarily by routing data through anothernetwork onnetion.Researh [49℄ indiates that end-to-end onnetions along an Internet path often remainsstable for a period of time, where period is de�ned as several minutes. But this period an beexpeted to be several hours or even days. This property ensures that the expeted bandwidthof a onnetion does not vary muh over time rendering it possible to test the onnetion anddisover the bandwidth available.Commonly available tehnologies for end-users are DSL, Cable and �Community Shared Net-work� (CSN).3 These provide a di�erent range of bandwidth as shown in Table 2.Tehnology type Downstream UpstreamADSL 256 Kbit/s - 8 Mbit/s 128 Kbit/s - 1 Mbit/sADSLv2 256 Kbit/s - 24 Mbit/s 128 Kbit/s - 1.5 Mbit/sCable 128 Kbit/s - 4 Mbit/s 64 Kbit/s - 1 Mbit/s�CSN� 10 Mbit/s - 100 Mbit/s 10 Mbit/s - 100 Mbit/sTable 2: Typial Internet onnetions and the assoiated bandwidth.As the table indiates, the variation of end-user onnetion is wide, but a typial onnetionis ADSL with 2048/512 Kbit/s. As the example shows, the bandwidth is often asynhronousas is the ase with ADSL. There are several reasons for this, but one of them is that thetypial use of the Internet involves far more download than upload and therefore most InternetServie Providers (ISP) o�er a larger range of produts whih o�er a higher downstream thanupstream.6.6 Network byte-orderOne of the speial properties of the Internet is the way bytes are ordered from host-to-host.Consider a 16 bit integer, whih is made up from two bytes. Interpreting the 16 bit number3In some ountries it has beome inreasingly popular to form ommunities onsisting of several end-users,whih together have the resoures to buy Internet onnetions with larger bandwidth, whih then an be sharedamong the users. 27

II. Related theory 6. Struture of the Internetan either be done by viewing the value starting from the high-order address, known as bigendian or starting from the low order address, known as little endian. This is illustrated inFigure 6. The terms LSB and MSB is an abbreviation of Least Signi�ant Bit and MostSigni�ant Bit, respetively.

Figure 6: Byte ordering.This di�erene in interpreting numbers goes a long way bak, and has been a di�erene inarhiteture. This beomes a problem when data is transmitted over the Internet betweendi�erent arhitetures. Thus, an arhiteture interpreting numbers using big endian will nothave the same understanding of a number as an arhiteture using little endian. To remedythis, the Internet protools use big endian format as network byte-order. This ensures, that allmulti-byte values must be ordered as big endian. This is done using funtionality onvertingmulti-byte values to and from network byte-order. Using these funtions, the ordering of datais irrelevant, as long as data is onverted to network byte-order upon dispath and to hostbyte-order upon reeival.

28

II. Related theory 7. Logial network topology7 Logial network topologyThis setion tries to summarize the di�erent approahes whih an be applied when designinga network distributing multimedia ontent. The physial topology de�ned by the underlyingnetwork layer is predetermined by the struture of the Internet as given in Setion 6 and istherefore not an issue to examine. On top of the network layer a multimedia network de�ningits own logial topology an be plaed. Before a topology is deided upon a walk through thedi�erent approahes is therefore in plae.The topologies outlined in this setion are not de�ned by their traditional sense but ratherdi�erent approahes used when designing a logial network extending the apabilities of theInternet. These topologies are the foal point of this setion. We desribe the di�erenttopologial models, and in what way our design an bene�t from them. We desribe therelationship between the server and lients in a network and their roles.7.1 Topologial modelsBuilding a network onsisting of one or possibly more servers onneted to a number of lientsinvolves seleting a referene model depiting the network topology best suited for the purpose.As stated in Setion 3.1 two di�erent approahes an be taken when streaming multimediaontent to a number of lients. Thus, the server an either send data to every lient or toa number less than the total number of lients, referred to as bandwidth sharing as de�nedin Setion 3.1. Separating the two approahes an be di�ult as the ut between these twoapproahes is not neessarily well-de�ned. Therefore this setion desribes these approahesand a subset of the variations that have been proposed in the literature. As this literaturehas beome quite omprehensive within reent years the models desribed in this setion area seletion whih is of relevane and interest to our design thus de�ning a theoretial basisupon whih the �nal design of the network topology will rest.7.1.1 UniastUniasting data to lients is traditionally de�ned as a simple physial network topology whereall onneted lients are attahed to a single ommon point. This point is usually a swith ora router, possibly exhanging data with another segment of a larger network. This approahbuilds a network onsisting of one or more interonneted stars. Data exhanged between twolients will pass through the entral point, enabling the network to entralize ontrol with thelients.Applying this topology to a logial network struture suitable for streaming multimedia on-tent ould yield a simple set-up where all lients onnet to a entral server whih will distributeontent separately to all lients as seen in Figure 1.The solution is simple as it requires a one-to-one onnetion between the server and eah of29

II. Related theory 7. Logial network topologythe lients. If one would distribute a multimedia stream whih requires the lients to have abandwidth of 4 Mbit/s, the bandwidth requirements for the server would be the number ofonneted lients multiplied by the required bandwidth. Deriving from this, the bandwidthrequirements of the server sale linearly as more lients are onneting.As desribed this topology an onsist of one or possibly more interonneted stars. This aneasily be projeted to a network for streaming multimedia ontent leading to a senario usingmultiple servers as desribed in Setion 3.The advantage of using a star topology is that user interation apabilities an be implementedeasily. When the user interats with the video, e.g. pauses, the server an be diretly noti�ed,and no other lients will be in�uened. Opposed to this, the disadvantage is poor salabilitydue to the high load injeted upon the bandwidth apaity of the server.7.1.2 The proxy approahInstead of the naive solution desribed above, other approahes has been developed aiming tostream video ontent to a larger number of lients. The approah partitions the network intosmaller parts, eah with a server distributing ontent to a smaller number of lients. Theseproxies will eah at as server to the lients but as lients to the main server. This way therequirements of the bandwidth of the main server is lowered and the proxies an be set up instrategial plaes in the network as visualized in Figure 7.

Figure 7: The proxy approah.Another variant has been proposed in [5℄, using a hierarhial proxy system aiming to inreasethe salability. In this system the main server distributes ontent to one level of proxies whih30

II. Related theory 7. Logial network topologyin turn distributes ontent to the next level of proxies and so forth. This solution resolves theproblem of saling the system as more levels of proxies an be added as the system grows.Using proxies has the advantage that the original funtionalities of the old VCR player aremaintained as every lient has a separate onnetion to the server whih distributes the ontent.Thus fast start-up, pausing and fast forward/rewind is easily implementable.Unfortunately, using proxies involves greater osts as more lients are onneting. Saling thenetwork will inrease the number of partitions as eah proxy is only apable of serviing aertain number of lients. Thus, the salability of a system of proxies is better than the simpleapproah but the demand for bandwidth is only distributed to a small number of proxies.The main server's bandwidth is thus lowered whih is the goal of this thesis but the sum ofbandwidth onsumed by the set of servers will still rise linearly.7.1.3 MultiastingThe multiast approah aims at distributing ontent to a number of lients at the same timeas proposed in [24℄. The main server streams ontent to a router whih dupliates pakets andforwards them to a number of lients. As a result, lients are olleted in bathes sharing thesame stream of data. Clients are olleted until a time-out has been reahed and the streamis dispathed from the server as visualized in Figure 8. In its simplest form, this methodresembles live streaming and is also referred to as �near video on demand� [40℄, as desribedin Setion 1.

Figure 8: Multiasting.
31

II. Related theory 7. Logial network topology7.1.4 PathingPathing is originally a multiasting tehnique proposed in [11℄ where the server tries to pakas many lients in one multiast stream as possible. New lients onneting will reeive datafrom the main stream together with data from a �path� stream. Data reeived from the mainstream will point to some point in the video while data reeived on the �pathing� streamwill point to the beginning of the movie. Data from the main stream will be bu�ered whiledata from the �pathing� stream will be displayed immediately. When the pathing streamreahes the point where the main stream started, the ontents of the bu�er will be displayed.At this point the new lient reeives data from the multiast stream together with the rest ofthe lients and the bandwidth requirements for the server are lowered.Pathing has been further developed [11℄ to a model, alled P2Cast, whih is based uponbandwidth sharing instead of multiasting. P2Cast utilizes a peer-to-peer model to distributevideo ontent enabling lients to reeive ontent from other lients in onjuntion with path-ing. Thus, a newly onneted lient will reeive a stream of data from one lient, and a pathfrom another. When the path stream reahes the starting point of the main stream the lientswithes to the main stream and the path stream is losed.Pathing is an interesting shema for distributing video ontent. The model de�ned by P2Castis both salable, and realizes the goal of distributing the total bandwidth of the system awayfrom the main server. The idea is based upon assumptions of the lients being able to reeivetwo onurrent streams of video (the main stream and the path stream) together with apossible outgoing stream to the next lient. These assumptions put high demands on theavailable bandwidth of the lients. Thus, the problem of lowering the bandwidth osts at theserver has been moved to the lients. As this is the main goal of this thesis, P2Cast serves asa good soure of inspiration. Unfortunately, P2Cast only implements instant start-up and nopausing or skipping.7.1.5 Bandwidth sharingBandwidth sharing uses methodologies from peer-to-peer systems whih rely on the resouresof the peers partiipating in the system. These resoures are shared among the peers to thebene�t of everyone. In its most pure form, a peer-to-peer network exists without any form ofentral server. Information vital to the survival of the network, suh as login information, isshared among the peers to ensure that no element of the network represents a single point offailure.Extending these ideas to the area of multimedia ontent networks ould lead to a senariowhere the lients reeive a stream delivered from another lient urrently wathing the samevideo instead of reeiving the video stream diretly from a main server. As a result the overallbandwidth used in the network is distributed among all lients taking the load away from themain server.As stated in Setion 7.1.4, bandwidth sharing has already been adopted in theory. Further-32

II. Related theory 7. Logial network topologymore, systems resembling pure peer-to-peer systems have also been proposed as in [13℄ withthe onstrution of PROMISE. PROMISE relies ompletely upon the resoures of the peersin the network operating without a entral server. Thus, there is no way to ontrol what datais distributed among the lient raising problems onerning opyright to the material.These ideas have already been used in pratie. Thus a system alled GridMedia [48℄ hasbeen developed for live streaming of television. The system builds a network strutured asa mesh where all lients have the ability to reeive data from eah other. On top of thisa number of satellite lients is hosen to be onneted diretly to the server. To show thefuntionality of the system it has been set up in China where the system reahed a peak of15.239 simultaneous lients using only one entral server. The setup had 200 satellite lientsreeiving data diretly from the server. This shows that the potential of streaming multimediausing bandwidth sharing tehnologies is indeed high.7.2 Client-server relationshipDesigning a network onsisting of one or possibly more servers and a number of lients involvesde�ning a preise relationship between lient and server entities. This relationship an taketwo di�erent approahes but is usually a hybrid between the two.Deentralized ontrol: Deentralized ontrol between server and lient is a loose-oupledrelationship, in whih the server interats as little as possible. New onneting lients an�nd the aess point in the network by themselves without asking the server. Searhingfor other lients ontaining the multimedia ontent is done by the lients themselveswithout interation from the server. Retrieving relevant parts of the video is done bythe lients requesting eah other for the multimedia ontent. Thus, the server will onlyhave the job of keeping the multimedia data in its whole. This senario an be takeneven further using an o�-oupled approah, using no server as employed in pure peer-to-peer networks. Hene, the server's role of ontaining the omplete video is distributedamong the lients making sure that no data is lost when lients leave the network.Centralized ontrol: Using entralized ontrol, the server is tight-oupled to the lients.The server is in ontrol of where lients are loated topologially in the network, andretains information about the point in the video where all lients are viewing. Request-ing piees of the video passes through the server, ensuring that the server maintainsinformation about the network. In the most extreme ases of entralized ontrol, alldata passes through the server before reahing its destination. Of ourse, this annot beapplied to multimedia streaming as the bandwidth requirements for the server would betoo high.The two extremes an be referred to as router-less networking, and entralized routing net-works. None of them is appliable in the extreme form, but they an be ombined to a routingsheme suitable for streaming networks using bandwidth sharing.33

II. Related theory 7. Logial network topology7.3 Soures of inspirationAs already stated, a pure peer-to-peer network does not have a notion of lients or servers.Most inarnations of peer-to-peer networks use some form of hybrid between traditional lient-server networks and peer-to-peer networks. This is, for instane, the ase with the Napster[28℄ �le sharing system where searhing is done by a server while the data transfer is donebetween lients.Other networks, suh as Gnutella [10℄ use a more pure model, where no entral server exists,but peers an be seleted as �servents� to a spei� set of peers as de�ned in [9℄. This set ofpeers will query the servent for searh results whih in turn will distribute its information toother peers seleted as servents to another groups of peers.The obvious di�erene between the two types of systems is the possibility of entralizingontrol and information. In onjuntion with this, identi�ation of peers an be di�ult whenusing a pure peer-to-peer model, as a user's unique information is at risk of disappearing whenthe user disonnets. On the other hand, this an be an advantage in some environments.The big advantage of the pure peer-to-peer network is the degree of salability. If the designis robust enough, the salability is theoretially in�nite.Some peer-to-peer networks use a bit-for-bit model in whih users have to ontribute a er-tain amount to the ommunity, before utilizing the resoures of the ommunity. Due to theproblems inurred by using asynhronous lient bandwidth this is not a viable solution, whihis also argued in [17℄.

34

II. Related theory 8. Network protool design8 Network protool designBefore venturing into the priniples of network protool design, we give an unambiguousde�nition of the subjet:A network protool is a standardized methodfor exhanging data between two or morenodes loated upon a shared network.A network protool is formally desribed by a doument whih spei�es this standard and triesto unover the ambiguities arising when the network protool is attempted to be implemented.In pratie, a protool is a piee of software whih has the ability to exhange data with otherentities upon a network and possibly pass this data to some other piee of software whihemploys the funtionalities of the protool. Designing a protool is therefore a matter whihdeserves great attention as the strengths and weaknesses are unovered in the design phase.Protools arry pakets, whih are onstruted by a header ontaining various information(�elds) vital to the funtionality of the protool. These �elds ould be the sender and reeiverof the paket alongside with other ontrol �elds but vary from protool to protool. Somepakets have a payload ontaining user data exhanged between some appliations relyingupon the funtionality of the protool.8.1 OSI modelTo build a network system is a omplex task, and is therefore often broken up into layers eahwith their own well-de�ned interfae to reate a modular approah. These layers togetherde�ne a protool stak in whih data is exhanged between the layers through the interfaes.The layers serve as abstrations to the logial entities enountered in the system, hiding theomplexity from the programmer. The interfaes between the layers enable designers of theprotool stak to easily hange vital parts of the system without a�eting the others.Using this approah, eah layer in the protool stak beomes a separate protool with its ownspei�ations and standards. The payload of a paket thus beomes user data employed bythe layer one level higher up in the protool stak.The onstrution of a protool stak has been standardized by the Open Systems Interon-netion (OSI) model. This model breaks the network down into a set of logial entities toonstrut a well-de�ned protool stak. This model is depited in Figure 9.
35

II. Related theory 8. Network protool design

Figure 9: Open Systems Interonnetion (OSI) model.The model de�nes a ommon way for omputers to ommuniate through a media link. Itpartitions the network in seven layers as illustrated in Figure 9.Physial layer: This layer abstrats the network hardware dealing with eletrial signals.The layer transmits bits, the most basi entity manipulated by the network. Eletrialsignals are onverted to bits.Data link layer: The data link layer ollets bits to a stream of data, alled frames. Theframes are entities of the media type, e.g. Ethernet, ATM et. This layer exhangesframes between diretly onneted nodes.Network layer: The network layer transmits pakets between two hosts with possibly manynodes between them. Pakets are olleted from a number of frames reeived from thedata link layer.Transport layer: This layer provides a messaging servie for the session layer and hides theunderlying network from the upper layers. It may need to be very omplex in order todeal with a variety of network harateristis and apabilities.The transport layer an provide a onnetion-oriented or onnetionless servie. In aonnetion-oriented session, a iruit is established through whih pakets �ow to thedestination. In this arrangement, pakets arrive in order and do not require a fulladdress or other information beause the iruit guarantees their delivery to the properdestination. A onnetionless session does not establish iruits or provide reliable datadelivery. Pakets are fully addressed and sent out over the network. The transport36

II. Related theory 8. Network protool designlayer protools at the destination an re-order the pakets whih arrive out of order andrequest retransmission of missing or defetive pakets.Session layer: This layer manages ommuniation sessions between two proesses, namelysession reation and termination.Presentation layer: The layer provides data translation/onversion enabling end-systemsfrom heterogenous environments to exhange information. The aim is to ensure thatthe messages exhanged between two appliation proesses have a ommon meaning �known as shared semantis � to both proesses. The presentation layer is also onernedwith data enryption and data seurity.Appliation layer The purpose of this layer is to serve as a window between orrespondentappliation proesses so that they may exhange information on the open environment.The programs whih use the appliation layer are known as appliation proesses.8.2 TCP/IP protool stakThe OSI model only desribes that interfaes should be presented between software imple-menting one or more layers of the protool stak. How the software implements the layersinternally is not a part of the model. Thus, the OSI model presents a well-de�ned theoretialapproah when implementing a protool stak. Unfortunately this approah has never beenwidely adopted, as another standard, the TCP/IP model has beome the de-fato standardupon the Internet. As this standard has ome to de�ne the Internet itself, we have no hoiebut to base our solution upon this as our protool will be reated for the Internet. Therefore,the TCP/IP model deserves a loser look, whih will be given in this setion and the aspetsrelated to the design of the system at hand will be desribed.The basis for the standard is depited in Figure 10 as it is desribed in [33℄, [34℄ and [32℄.

37

II. Related theory 8. Network protool design

Figure 10: TCP/IP protool stak.8.2.1 Physial layerThis layer uni�es the lower two layers of the OSI model to only one. Thus the physialproperties of the network have been abstrated from. This layer is normally implementedin hardware and is thus hidden by the Networking Interfae Card (NIC). Thus, the type ofphysial network employed between the nodes is hidden by the NIC and an vary from highspeed �ber optial interfae to a standard Point-to-Point Protool (PPP) modem onnetion.The layer operates on these diret physial links onneting the nodes of the network andtransports frames.8.2.2 Internetwork layerThis layer onnets the di�erent physial networks onstituting the Internet into a singlelogial internetwork. Thus, the layer abstrats from the physial links between two nodes,regarding these as logial onnetions between two hosts on a route with one or possibly morehops between them.At the heart of the internetwork layer sits the Internet Protool (IP) binding all the hoststogether abstrating from the node-to-node onnetions. This is done using advaned routingalgorithms employed in this layer at the routers of the Internet providing the host-to-hostpaket delivery.IP binds the di�erent hosts on the Internet together using an unreliable delivery servie de-noted as best-e�ort meaning that the network does not provide any funtionality in regardto lost or orrupt data. Thus IP does not guarantee that data sent from host A to host B isidential upon reahing B. This has the e�et that a onnetion between two hosts annot be38

II. Related theory 8. Network protool designexpeted to be stabile. Finally, pakets are prone to be delivered out of order, as the routebetween two hosts annot be expeted to be the same all the time. All in all, the internetworklayer re�ets the properties of the Internet as disussed in Setion 6.To identify hosts on the Internet, IP uses an IP-address to distinguish them.8.2.3 Transport layerThe transport layer enables appliations loated upon the di�erent hosts to exhange data.Thus, this layer abstrats from the host-to-host onnetion to a proess-to-proess onnetion.The transport layer onsists of two main protools, Transport Control Protool (TCP) andUser Datagram Protool (UDP) whih represent two di�erent ways of exhanging data betweenappliations. UDP is a mere extension of the Internetwork layer providing only onnetionlessbest-e�ort servie for the appliation layer. Thus, UDP provides host-to-host delivery withall the disadvantages that the Internet possesses. TCP is designed as a reliable byte streamprotool aiming to abstrat the properties of the Internet from the appliation programmerdelivering a reliable, onnetion oriented byte-stream.The TCP and UDP protools use a port to identify the proess transporting data throughthe network. Thus, a proess loated upon a host will be identi�ed by the pair (IP-address,port). The protool stak demultiplexes inoming data observing the destination port in theheader, and delivers the data to the relevant proess.8.2.4 Appliation layerThe top layer is where the appliations are loated. Appliations loated upon di�erent hostswill exhange data through the transport layer using a protool de�ned by the appliations.Therefore this layer onstitutes networked appliations reated by appliation programmers.How the interfae between the transport layer and the appliation layer is implemented variesfrom one Operating System (OS) to another. Data is typially exhanged using messagequeues whih are �lled by the transport layer and emptied by the appliation layer.Thus an example with two appliations exhanging data is depited in Figure 11.

39

II. Related theory 8. Network protool design

Figure 11: Two appliations exhanging data using TCP/IP. The two hosts are loated atseparate subnetworks with routers routing data between the subnetworks.8.3 Connetion-oriented versus onnetionless transportThe type of transport hosen for a given task depends on the task at hand, as the properties ofthe two transport types are so distint. Thus, a thorough introdution to these two di�erentways of transporting data is in plae.8.3.1 User Datagram Protool (UDP)As UDP is a mere extension of the host-to-host delivery servie of IP, it ontains all thedisadvantages of the Internetwork layer. UDP is onnetionless meaning that data is not sentthrough a logial onnetion but rather just sent at request by the appliation programmer.If no appliation is listening at the other end of the ommuniation hannel, the sender willnot be noti�ed.As one of the disadvantages of the Internet is that data transport is unreliable, UDP due toits simple extension of IP su�ers from this4. This fat results in a number of drawbaks:Data orruption: As the ommuniation lines of today do not ensure that data is unhangedat reeption, UDP indues the possibility that data an beome orrupt during transport.UDP does inlude a heksum �eld in the header but using this is not mandatory.4In pratie UDP has proven to be more reliable than ommonly thought, as the Internet has beome moreand more reliable during the years. 40

II. Related theory 8. Network protool designTherefore the appliation programmer annot rely upon the ability of the protool stakto orret data.Data displaement: One of the properties of the Internet is its ability to dynamially reroutedata when a link fails. As a result, data an be reeived out-of-order meaning that theorder of whih a series of pakets is sent is not guaranteed to be the same in whih theseries of pakets is reeived. Furthermore, data is not equipped with a sequene num-ber leaving the appliation programmer to take measures when ombining the reeivedpakets to the original series of pakets.Data loss: As the routers upon a route between two nodes on the Internet sometimes drop apaket due to ongestion et. UDP indues the risk of data loss. Again, the appliationprogrammer must take measures to verify that data is reeived if this is relevant.Data dupliation: During transport, a node loated upon the route between two hosts mayerroneously dupliate a paket. Thus, the reeiver will enounter two idential pakets.UDP does not detet this, and appliations using UDP must handle this aordingly.Taking all these drawbaks into aount, a simple question an be raised: Why use UDP?The answer is simply that all these drawbaks beome advantages when reliability is not anissue. Furthermore, when exhanging time ritial data, speed an be more important thandata reliability. As UDP does not implement any logi other than the simple demultiplexingbetween appliation proesses, it possesses the great advantage of high speed. This is due tothe absene of a time onsuming onnetion setup, and the total absene of data reliabilityand most important that no aknowledgment pakets are used.As streaming of multimedia is a time ritial subjet, UDP has traditionally been used inthis ontext. In addition, streaming is not subjet to high sensitivity as to whether data hasbeome orrupt during data transport. Furthermore, it is important that data is reeived atsome point in time, but not too late to be played. Thus, a streaming protool must be ableto undertake retransmissions when possible but avoid late retransmissions.In addition, implementations of UDP generally have the advantage that when the appliationproess initiates a data transfer this is done instantly. Thus the appliation programmer anrely on the fat that data is not queued in the protool stak before being sent. UDP uses amaximum size of data transmission alled MTU of 65 Kbyte. From this must be subtratedthe size of the IP header and the size of the UDP header.8.3.2 Transport Control Protool (TCP)TCP represents another approah when transmitting appliation data on the Internet. Datatransport using TCP o�ers a onnetion oriented reliable byte stream. In other words, TCPo�ers a logial extension of the internet protool.Where the nodes of the physial layer are diretly onneted, TCP uses a logial onnetionbetween the hosts of the Internet. To enable this, an algorithm alled three-way handshake is41

II. Related theory 8. Network protool designused to establish a shared state among two appliation proesses during onnetion establish-ment or termination.TCP uses a sliding window approah to realize reliable transmission. This type of protoolimplements a bu�er between the appliation proess and the underlying network whih absorbsthe irregularities enountered on the Internet. This bu�er is used as a �window� sliding alongthe ontent of the data stream on both the sending and the reeiving side. Data inside thewindow of the sender is either sent but not yet aknowledged by the reeiver or not sentyet (and therefore not yet aknowledged). As data is being aknowledged by the reeiverthe window slides along the data stream �lling up with data whih remains to be sent. Thewindow on the reeiving side is �lled with data whih remains to be reeived, but may possiblybe sent. As data is reeived, aknowledgments are returned to the sender and the windowslides along to inlude new data whih an then be transmitted by the sender. If data is lostduring transfer the reeiver uses timers to ensure that the lost data will be retransmitted.When a time-out ours, the sender will indiate that the paket was not aknowledged. Thistime-out will be raised by an adaptive trigger ensuring that the retransmission will our. Forthis to work, sender and reeiver have to agree on the size of the window. Furthermore theymust both know the loation of the window in the data stream. In addition the window sizean hange to re�et the �utuations of the Internet. An optimal sliding window protoolwill keep the onnetion between the two hosts saturated without over�owing the reeiverand avoiding ongestion on any links between the two hosts. Furthermore TCP uses reditmehanisms inorporated into the sliding window whih modify the sizes of the window ofthe sender and reeiver to aount for the �utuating amount of data whih is regularly sentthrough a TCP onnetion. These properties indue a large overhead, both in terms of datatransmissions, but also in terms of omputing power.Contrary to UDP, TCP does not implement an MTU whih has impat on the appliationproess. Whereas an appliation using UDP annot send portions of data larger than theMTU, TCP itself fragments data into pakets of su�iently small segments. The reeivinghost will ollet the segments to the originally transmitted data and return it to the reeivingappliation proess. As a result TCP may bu�er enough bytes from the sending appliationproess to �ll a segment and send this to the reeiving proess on the destination host. Inother words, data is split into segments rendering the sending appliation proess inapableof relying upon TCP to send data immediately as an internal parameter alled maximumsegment size (MSS) is used to deide when data is to be sent. When enough data is olletedto �ll a segment TCP will send data. In addition some form of time-out is implemented toensure that data will eventually be sent even though a full segment annot be �lled. Thesize of MSS and this timer is usually alulated from fators suh as the the properties of theunderlying network and is therefore unknown to the appliation proess.Furthermore, TCP uses bak-o� as part if its ongestion ontrol mehanism. Thus, if TCPdetets that the onnetion is ongested, it will inorporate a delay before sending any otherpakets.Conluding upon these two types of transport, it beomes evident that TCP is unsuitable fortransporting multimedia data for streaming. This is furthermore justi�ed in the literatureas performane analyti studies have shown �that TCP generally provides good performane42

II. Related theory 8. Network protool designwhen the ahievable TCP throughput is roughly twie the media bitrate� [43℄.8.4 Network Address Translation (NAT)Due to the format and use of of the IP-address, the maximum number of hosts loated onthe Internet is restrited5. This has lead to an address shortage resulting in the need fortehnologies whih enable several hosts to be onneted to the Internet without having totake up an address eah. A newer version of IP, known as IPv6 overomes this problem, buthas yet to gain aeptane.Instead a ommon solution to this problem is Network Address Translation (NAT) sometimesalso alled IP masquerading. This tehnique masquerades a number of hosts behind a NAT-router diretly onneted to the Internet. This router has an external interfae equipped witha global publi IP address, and an internal interfae equipped with a loal private IP address.When a masqueraded host ommuniates with a host on the Internet, data will go throughthe NAT-router whih will know that the two hosts are onneted. Thus data oming fromthe masqueraded hosts will be forwarded to the end hosts, while data from the end hosts willbe forwarded to the masqueraded host. This raises the natural question of how two hosts inthe masqueraded network an be onneted to the same host. This is done by the NAT routeroperating upon the transport layer de-multiplexing the pakets using the port of the transportprotool.Using NAT has the disadvantage that hosts loated upon the Internet annot diretly opena onnetion to hosts masqueraded by a NAT router. Thus, a lient initiating a stream ofdata to another lient may erroneously onlude that the reeiving host is malfuntioning dueto the IP masquerading of a router. Most NAT routers provide funtionality to permanentlyforward data inoming on a spei� transport port to a given host masqueraded by the router.This an be tedious, and many Internet users are unaware of these apabilities.8.5 Real-time Transport Protool (RTP)Speialized protools for data streaming do already exists. One of the most well-known isReal-time Transport Protool (RTP) whih was proposed as a standard bak in 1995. Theprotools' main purpose is to transport real-time data like video and audio.It is divided into two parts a data and a ontrol part. The data part of the protool is verythin and provides the possibility to transport ontinuous data.The protool is original targeted to be used with TCP and UDP but e�orts have been made tomake the protool independent of the transport protool. Although the protool is normallyimplemented into an appliation the protool normally goes under the name as a transport5As the IP address �eld is 32 bit, the maximum number of hosts is 2
32

= 4, 294, 967, 296. However, thisnumber is redued due to speial purposes suh as private networks, multiast addresses and early over-alloation of addresses to some institutions as the number of addresses was thought to be 'in�nite'.43

II. Related theory 8. Network protool designprotool. It does not support any mehanisms for re-sending or error orretion of data.The main reason not to investigate this protool any further is the need for streaming datafrom multiple soures and the use of RTP would not ontribute in any way to solve this issue.

44

II. Related theory 9. Protool implementation9 Protool implementationProtools are often implemented as part of a protool stak as desribed in Setion 8. Com-muniation between these individual protools is arried out using interfaes, de�ning how theprotools interat with eah other. These interfaes and how the protools interat will be thefoal point of this setion.9.1 Network layers and interfaesAs desribed in Setion 8.1, networks are implemented as a series of layers on top of eah other.The main reason behind this is to hide the omplexity of the lower layer together with easyextension. The same tehnology an be used internally in a protool or in any software as sub-dividing software into smaller piees and de�ning preise interfaes among these omponentshelp keep omplexity down and make software more �exible when hanging spei� elements.Thus, one of the most important elements of a protool implementation is to make a sim-ple, unambiguous, solid, and easy-to-use interfae whih o�ers appliation programmers easyimplementation of software using the protool.9.2 MultithreadingImplementing a protool stak usually implies some form of ommuniation between the layers.This an be done using multiprogramming where a number of threads in the protool stakhandles ingoing and outgoing data.Roughly the main disussion on multithreaded programming an be divided in two main issues:Number of threads: What number of threads should be used? Is it best to minimize ormaximize the number? Or is there a more balaned approah?Loation of threads: Where should the threads live (in what area of the ode/system)?and hene who should reate and destroy them?The issues will be treated in the listed order in the following setions but these issues have onething in ommon: there exists plenty of theory about the topis, but none of this has lead toany real onlusion. Hene, a lot of di�erent opinions exists in the area and therefore a largepart of this text will also be based on our personal opinion and experiene.9.2.1 Number of threadsThreads used in a multithreaded appliation are divided into di�erent ategories dependingon the job they are performing: 45

II. Related theory 9. Protool implementation
• thread(s) used for user interation,
• thread(s) used for reading/writing data from/to di�erent types of media.
• thread(s) doing bakground data proessing and alulations.Swithing from one thread to another involves an amount of overhead. The more threads anappliation is using, the more overhead is generated, whih ould speak against using manythreads. On the other hand, using a large number of threads, if used orretly, an lead tobetter performane, sine eah individual thread an perform spei� tasks.Regarding protools, threads are often used to perform bakground jobs at di�erent intervals.If the job does not need to ommuniate and need not be synhronized with other threads,then the job is perfetly suited for its own thread. A proessor intensive task ould also bene�tfrom its own thread. Dividing these tasks among several threads is for example known in aweb-server, where a thread reeives inoming requests and delegates the work to one or morethreads.When ommuniating between omponents in appliation programming suh as layers in pro-tool staks, it may be an advantage to use a thread with the sole purpose of retrieving datafrom another layer, proess it, and enqueue it to the next layer. This is espeially advan-tageous when reeiving data from a network, as the underlying network layer may disardpakets if they are not read fast enough. This may happen due to over�owing of the queuesof the network layer whih normally have a maximum size limiting how muh data it mayontain.A typial role of thumb as desribed in [4℄ is that interation between threads should beminimized, as this involves a lot of synhronization whih in turn will result in lots of time spentwaiting for other threads. Furthermore, a multithreaded appliation needs to be analysedthoroughly to identify the ritial regions of the ode. A ritial region is data aessed bytwo or more threads, possibly at the same time. These ritial regions must be proteted bysemaphores, as an example. Otherwise unpreditable errors may our as one thread may readthe ontents of a variable immediately before being swithed out by another thread updatingthe variable. How many threads and how many ritial regions arise when multi-threading anappliation is thus a question to be analysed.If any onlusion an be drawn from this, it would be that the number of threads should beheld as low as possible with respet to the kind of work that the software should perform.9.2.2 Loation of threadsThe next question, is to solve where the threads embedded in the software should reside.Furthermore this raises the question of where the threads should be reated and destroyed.Most protool implementations enapsulate the logi of the protool and o�er only a simpleinterfae. This means that if a program reates an instane of the protool, it might only46

II. Related theory 9. Protool implementationmake a simple all to a funtion when reeiving data. What happens inside the enapsulatedprotool is hidden from the appliation thread. Thus, if the logi embedded in the protooldeides to wait for a spei� event to our, it might spawn a new thread waiting for a timerto run out.To onlude this subjet, the rule of thumb must be that new threads are reated and destroyedby the enapsulated protool when needed and that the appliation instantiating the protool,only reates one thread running the protool. From here on, it is up to the protool to startnew threads.

47

II. Related theory 10. Bu�ering of data10 Bu�ering of dataAs explained in Setion 3.1, attaining the goal of lowering the bandwidth usage of the serverrequires all lients to bu�er a ertain portion of data. This bu�er serves both the purpose ofenabling lients to realize the goal of providing on-demand video streaming, and absorb the�utuations enountered upon the Internet. This setion will give an introdution to basitheory on data bu�ering but with the above spei� use in mind.10.1 Bu�ering approahAs bu�ering of data has been used to solve many problems in omputer siene, the existeneof a large amount of theory on the topi is evident. Fortunately, the the largest part of thistheory is based on bu�ering data in spei� systems and situations. Beause of this we havesought to �nd literature onerning similar systems and setups but without muh suess.Two artiles did however stand out, both looking at data bu�ering for redistribution in videostreaming systems with similar harateristis as the system we are planning, though both ofthem only resemble it.The authors of [35℄ onludes that a lient should bu�er at least 25 perent of the video inorder to attain a signi�ant bandwidth redution. Obviously, the larger an amount of data alient bu�ers, the more it an transmit to other lients. This is evidently a simpli�ation asit raises other issues, suh as the need for a large amount of bandwidth, otherwise it wouldnot be able to retransmit the data to other lients.On the other hand the authors of [19℄ onlude that, in order to make a good video-on-demandsystem, the amount of memory should be minimized in order to lower user interation responsetime, e.g. fast startup. But this statement is a simpli�ation as well, as it implies a demandfor the bu�er to be full, or at least partly �lled before responding to user interation. Thisdemand an be relieved so only a fration of the bu�er needs to be �lled, before respondingto user interation. This would make sense, as user interation would imply that all lientsreeiving data from the interating lient need to be reloated in the network. Thus, the �rstpurpose of the bu�er an be overlooked, immediately after a user interation, only leavingthe bu�er to resolve the purpose of absorbing network �utuations. When the bu�er is �lled,or partly �lled, the bu�er ould again ful�ll the purpose of ensuring on-demand streaming toother lients.The two artiles learly show the di�ulties in drawing �nal onlusions based on work whihdoes not share the exat same prerequisites.Despite many di�erent types of bu�ering strategies like; 'FIFO' and 'use-it and toss-it'. thesean only be used as a soure of inspiration. Instead of disussing a lot of di�erent strategies,we �nd it more rewarding to de�ne the primary properties needed by the bu�er. The mainproperties of the bu�er ordered by importane should be:48

II. Related theory 10. Bu�ering of data1. Ensure that the lient always has the needed data available.2. Keep as muh data in the bu�er available to transmit to other lients.3. Lower the size of the bu�er to avoid too high memory requirements.The �rst item is a diret onsequene of the time ritial nature of the subjet at hand. Thetwo last items seem to be inonsistent but put into pratie this only means that these twoproperties need to be balaned to �nd a good solution. These properties will be kept in mindwhen designing the bu�er, in Setion 14.2.10.2 Physial memory layoutData bu�ering is usually done in physial memory using two di�erent approahes.Dynami alloation: This approah alloates memory when needed and dealloates it againwhen the need ends. This way only a minimum amount of memory will be alloatedat any given time. The downside of using dynami alloation is the overhead spent onalloating and dealloating memory.Stati alloation: This method means that memory is alloated only one and a �xedamount of memory is available at all times.When implementing software appliations used in personal omputers, dynami alloation isoften preferred as the software should run alongside a range of other programs. Therefore itis preferred if eah individual appliation uses a minimum of resoures.Stati alloation is typially an advantage when an appliation has to run on hardware spe-ially designed with the appliation in mind. This ould be a protool build into hardware,manufatured with a limited amount of memory, and the only purpose of streaming a signalto the television. It also has the advantage that no other appliation an seize some of thememory and hene exhaust important resoures.10.3 Bu�ering of dataUtilizing a bu�er, it beomes obvious that data needs to be read at a ontinuous rate. If thisrate is unable to be satis�ed, the bu�er will be exhausted resulting in a bu�er under�ow. This isindeed important in this ontext, as the video player will halt until data is available resultingin bad user experiene. Furthermore, all lients reeiving data from a lient, the bu�er ofwhih under�ows, will potentially be a�eted in the same way. The opposite senario, whenthe bu�er over�ows is furthermore an important senario, when designing the system. Thissenario may seem avoidable, as bu�er over�ow will intuitively be the result of reeiving data49

II. Related theory 10. Bu�ering of dataat a rate faster than the video player onsumes it. Nevertheless, the senario must not benegleted and aution should be taken to avoid this.In order to guard the bu�er from under- or over�ow it must be possible to inrease or dereasethe speed with whih the bu�er is �lled. In the ase of bu�ering data for on-demand videoit is furthermore important that the parts of the movie an be reeived fast to enable faststartup.

50

II. Related theory 11. Seurity11 SeurityAs already stated the seurity of the protool must over three di�erent areas, namely au-thentiation, data integrity and data theft.11.1 AuthorizationAs desribed in Setion 3.6 validating onnetion requests will be done by the server performingthe authorization proedure. But the proedure of exhanging the information over a sharednetwork may ompromise data. Thus, a maliious user may be eavesdropping on the line andread the ontent of pakets ontaining vital information suh as user name and password.To aount for this problem systems does not exhange vital informations in lear text. Insteadit is enoded using some enoding sheme. This ould, be Publi Key Infrastruture (PKI)where the lient exhanges a publi key with the server before sending user name and password.When the keys have been exhanged the user name and password may be enrypted using thepubli key of the server before being sent to the server.In this way all information �owing between the nodes ould enrypt a small amount of datawhih would have to be derypted and be in aordane with some preset value. If the datadi�ers from this value the sender of data ould be regarded as maliious.11.2 Data integrityTo ensure that data has not been modi�ed by other lients a lient needs to have a mehanismto ensure data integrity. This ould easily, although not bulletproof, be done using a heksumwhih has to be alulated from a portion of data. If this heksum di�ers from a prealulatedheksum, data an be regarded as invalid. But the prealulated heksum must further bereeived from a trusted soure. As no lient an trust another lient, this heksum has to beprealulated and distributed by the server.11.3 Data theftData theft may our on two di�erent levels. Thus, a maliious lient may steal data byeavesdropping on a line or by extrating data from the protool/lient appliation. In the�rst ase a node loated at a entral point may read the ontents of the pakets �owing inthe network. The only way to ut o� the lient from this is to enrypt data in some way.PKI learly annot be used in this ontext as this would involve a lient sending data to otherlients to enrypt data using di�erent publi keys to all onneted lients. This would indeedinjet a substantial load upon the lients as the proess of enrypting and derypting largeamounts of data is proessor intensive. 51

II. Related theory 11. SeurityThe seond ase involves a programmer using the protool to extrat data transferred by theprotool. In this way a user might log on to the network and just read data from the protooland save it to disk.As a remedy to both of these ases some form of Digital Rights Management (DRM) shemeould be undertaken. DRM is used by media publishers to ontrol aess to digital media. Theterm DRM overs a wide �eld but the ore is to protet software and hardware. But as dataneed to be delivered to a lient appliation in a form readable to the appliation, the protoolmust not deliver data in a format unreadable to the appliation. As a result, the server andlient need to have an agreement of how data should be read. But as is the ase when dealingwith seurity the measures these an always be broken. For example the seurity of Apple'sQuiktime AAC proprietary DRM format for streaming multimedia has been broken makingit possible to extrat the raw multimedia format from the stream.

52

III
Chapter IIIProtool design

This hapter aounts for the design of the protool as it is illustrated in Figure 4 in Setion3.4. Thus, the design will aount for the lient-side but also the server-side. The haptershould be regarded as a spei�ation for any implementation of the protool and will thereforenot ontain any diret demands as to how the implementation should be made.

53

III. Protool design 12. Fundamentals12 FundamentalsThis setion treats the fundamental design issues. These issues de�ne the underlying platformfor the design and will therefore be treated individually in the following setions.12.1 System ontrolFollowing the requirements in Setion 2 regarding system seurity, ontrolling the networkneeds to be loated entrally. Thus, the main server will ontrol whih lients an be authen-tiated and where the lients are logially loated in the network. Thus, the server ontrols alllients at any time, and deides when and from where the lient will reeive their data stream.The reason for this hoie is to loate all logi entrally opening up for a design allowingdi�erent implementations to o-exist independently of eah other in the same network. Theobjetive is thus to redue the ativity between the nodes to the essential, namely streamingvideo data.This hoie does not ome without a ost: Centralizing ontrol will injet a high load ontothe server, both onerning bandwidth and proessing power. If the server needs to be awareof the state of all lients at any given time the amount of ontrol information �owing betweenthe server and all lients will rise. Furthermore, reloating lients logially in the networkan require the server to run omplex seletion proedures. Essentially this hoie onstrainssalability. Thus, there is a trade-o� between entralizing ontrol and the seurity gain thismay result in, and deentralizing ontrol and the possibilities of gaining higher salability asseen in more pure peer-to-peer networks.12.2 Data transportEvidently it is neessary to transport two main types of data, namely video and ontrol.Video data inludes the ontent of the data stream, while ontrol data is used by the serverto monitor and ontrol the network, e.g. authentiate lients, reloate lients.As already stated, ontrol data must be delivered to the main server, to attain the desiredentralized ontrol. Thus, ontrol and video data annot share the same data hannel, asvideo data in most ases will be reeived from another lients. This fores the design andimplementation of two di�erent data transmission hannels, one exhanging ontrol data be-tween server and lient, and one exhanging video data between lients. These two hannelswill be implemented as two separate protools due to the diverse harateristis of the twodata hannels. However, these two protools will only be usable together thus in this thesisthey will be referred to as only one. The two protools will from this point on be referred toas Data Communiation Protool (DCP) and Control Communiation Protool (CCP).It is evident that the two protools do not share all properties. Clearly, delivery of video datais a time-ritial issue, whereas ontrol data does not share this property. Furthermore, the54

III. Protool design 12. Fundamentalsintegrity of the CCP is of high importane, as the ontents of messages must not be hangedduring transport. Contrarily, if several bits of a DCP message are hanged, this would nothave great in�uene upon the ability of the video player to reprodue the video. Followingthis, and the onlusions drawn in Setion 8, the DCP will be implemented on top of UDP.This gives the protool the speed of UDP, both onerning data transmission and onnetionsetup/teardown. Conversely, using UDP adds to the omplexity as retransmission of lost datapakets must be handled by the DCP. But intuitively, data must not arrive too late to beplayed - hene, late retransmissions must be avoided.Both protools need to ommuniate using separate ports. The server will use a stati CCPport whih must be known by lients wishing to onnet to the server. Whih ports the lientswill use are deided by the lient and advertised to the server. Thus, no stati ports will beused by the lient protool. Thus, the CCP port will be stati on the server and dynami onthe lient, while the DCP will be dynami on both lient and server sides.12.2.1 Control ommuniation protoolThe CCP will ontrary to the DCP be implemented using TCP. Evidently, it is ruial thatontrol data reah its destination, though not ruial as to when this happens. Of ourseinformation an reah the destination at a point where orreting an error will be too late,but using UDP would not solve this problem in any ase.It is evident that two ommuniation �ows must be established between the server and eahlient. Thus, information must �ow both ways to obtain the required funtionality. Thetransmitted messages will in most ases be request-respond oriented, meaning that either theserver or a lient will request an ation from the other and will aordingly expet a respond.Every lient will therefore have a ontrol onnetion open to the server at all times using thiswhen deemed neessary.This raises the natural question of how muh load the CCP will injet upon the server. Theommuniation with all hosts on the network will require the server and lient to set aside aportion of the available bandwidth to the sole purpose of ontrol ommuniation. Thereforeit is of utmost importane that the use of CCP is lowered as muh as possible. The morebandwidth onsumed by the CCP, the higher expenses will be involved at the server andadditionally a fewer number of lients will be using the servie, as the bandwidth demandswill be higher.It beomes evident that the interval at whih ontrol information is exhanged together withthe size of synhronization data is the major impat upon the bandwidth of server. Thereforethese parameters must be arefully tuned.TCP in itself often uses keep-alive pakets whih periodially probe the other end of theonnetion. This funtionality an however be altered to hange the interval at whih thisprobing is done. This may o�er an advantage to the server whih will be noti�ed if TCPdisovers that a host is down. 55

III. Protool design 12. Fundamentals12.2.2 Data ommuniation protoolAs stated in Setion 3, lients equipped with asynhronous Internet onnetions whih havethe ability to reeive, but not send, the full bit-rate of the video should not be exluded fromthe network. This fat implies that a set of lients an share the task of sending the streamin its entirety to another lient. Limiting how many lients an share this task, or rephrasedas, how many di�erent lients a lient an reeive data from, will be aounted for in Setion14.1.12.3 Logial topologyThe physial network topology of the system is de�ned by the underlying network and therouting algorithms applied in the internetwork layer. Upon this topology, a logial topologyde�ned by the protool must be onstruted.As already mentioned, the protool will be able plae lients so that they reeive data frommultiple soures. This means that small frations of a video an ome from virtually all otherlients wathing the same setion of the video. This setup learly leads to a topology whihwill take shape as a mesh and not a well-strutured shape.As is the ase with routing, seleting a logial topology for the network an either be done usingtwo approahes, namely entrally or de-entrally. Where the �rst model applies a entral unitwhih deides where a lient should be plaed logially, the seond model leaves the deisionto the lient itself. Based on information already present in the network the lient an �nda proper point in the logial network. Due to the requirements given in Setion 2 onerningsystem seurity the �rst approah is used by the protool.Seleting a logial topology for the network used for on-demand streaming involves a knowledgeof the harateristis of the media whih is distributed. One topology might be suitable formedia with little or no interation while another topology might not. Evidently the morelients reeiving data from an interating lient, the more reloations must be performed.Thus, seleting a logial topology requires knowledge about the behaviour of the users. Theonly universal property applying to the topology is that it will form a direted graph whihin some ases will be disonneted as desribed in Setion 14.2.This has the onsequene that the logial topology of the network is not deided on beforehandby the design. This will be done by the server whenever an event ours in the network, e.g.when lient reloation is neessary due to new lients onneting, lients leaving et. Howthis seletion proedure is onstruted will be desribed in Setion 14.6. However, for thisseletion mehanism to funtion the protool may need various information when determiningthe point where a lient an be loated. Traditionally, IP routing applies values like round-triptime and/or numbers of hops between a pair of nodes. Some of these values ould be used bythe seletion algorithm, as a long delay between two lients exhanging data might give rise toompliations. Yet another parameter to be onsidered may be the eonomial ost inurredwhen transmitting data aross a ertain link might be desirable. Lastly, values determined by56

III. Protool design 12. Fundamentalsthe funtionality of the protool an be used. These ould be values like how many times auser has interated with the video stream, e.g. with a pause or a skip or the upload apaityof the lient.Traditional graph theory uses node and edge weights. This an be transferred to the protoolin the sense that a given lient, its ingoing and outgoing onnetions an be assigned weights.The onstrution and assigning of these values an be done using a sheme ombining severalinformation. Subsequently, these weights an be used by the seletion mehanism.These possibilities in onstruting a ompliated seletion mehanism gives the protool great�exibility. Therefore the workings of the seletion mehanism is part of an atual implemen-tation of the design, and no part of the design itself.12.4 Video identi�ationA method of identifying this video must be provided for the server protool to identify arequest for a given video sent from a lient. This identi�ation an either ome from thelient, or the server an provide the lient with a list of videos available at the server.In the �rst ase, the lient might obtain the identi�ation outside the protool, e.g. froma home-page. Thus, the distributor of the video might have a home-page ontaining billinginformation and the identi�ation of the videos. In the seond ase, the lient might requestthe server of a list of the videos available. In this ase, the server protool would request theserver appliation for this list and send it to the lient, whih in turn would selet a given videoand request it. Due to reasons of �exibility and simpliity we hoose the �rst solution. Thus,we assume that the lient may identify a video outside the protool and request this from theserver. This identi�ation will simply be a 64 bit long number ontaining the identi�ation.12.5 SeurityAs mentioned in Setion 2.6 a requirement to the protool is the apability to o�er di�erentelements of seurity. These elements an roughly be divided into four parts all of whih will betreated in the design of the protool. A basi design solving the seurity issues will be madebut not implemented in the protool. Generally, the seurity enhanements of the designare related to issues arising from the funtionality of the protool. Thus, any digital rightsmanagement will be implemented in the appliations using the protool, as desribed in Figure12.12.5.1 AuthentiationTo verify the authentiity of a sender of a paket a lient must be able to be authentiatethe lient whih has sent the paket. This will ensure that no lient an impersonate another.This is done using a set of keys. Two lients exhanging data share a set of keys identifying57

III. Protool design 12. Fundamentalsthe other. These keys are generated when a lient onnets. The server will then generatea unique key identifying the lient, and a key identifying the server to the lient. Only thelient knows about the server key and hene no other lient is apable of sending pakets tothe server and pretend it is another lient. When two lients need to ommuniate, the serverwill distribute their keys to let the lients know the identi�ation of the other.These key pairs an further be used to identify a lient, in regard to IP-address, ommuniationports et. Hene, when a lient onnets, the server will store the information and for the restof the session the lient will be identi�ed by the generated keys. These keys will from thispoint be known as a lient id. Thus, two lients may know the keys of eah other whih willform the key pair desribed in this setion.This proedure resembles the Kerberos [18℄ authentiation mehanism designed to allow in-dividuals ommuniating over an inseure network to prove their identity to one another in aseure manner. As the foal point of this initial version of the protool is not seure authen-tiation of lients this simpli�ed authentiation mehanism has been hosen.12.5.2 AuthorizationTo authorize itself, a lient will need to send a onnetion request to the server ontaining auser name and password. This request should furthermore ontain identi�ation of the desiredvideo the lient would like to wath. The information should not be validated by the protool,but rather handed to the server appliation allowing this to authorize the lient. Hene, it isnot part of the protool to perform this hek. The lient and server appliations should beimplemented using some form of data enryption before handing user name and password tothe protool, as the protool only transports data in lear text.12.5.3 Data integrityTo avoid lients tampering with data before forwarding it to another lient the funtionalityof transporting seurity data is added to the protool. This is done using CCP by sendingseurity data from the server to all lients ontaining data related to some prede�ned seuritymehanism used by the server appliation. Thus, the CCP will also handle data related tothe seurity mehanisms of the server appliation while DCP will handle data related to thevideo stream. Client-side, the seurity data will be delivered to the lient appliation whih inturn will need to verify if the seurity sheme de�ned by the server appliation is respeted.This model is depited in Figure 12. The reason for this hoie of this model is that theseurity part of the protool should not be an integrated part of the protool. As a result,the appliation protool needs a way of notifying the lient protool if the seurity hek fails.This noti�ation should be passed on the the server protool whih an take proper ations.Due to the extra omplexity involved in handling and sending seurity data from the server,only the paket implementing this funtionality will be designed. No attempt will be madeto implement the atual seurity mehanisms. Thus, the pakets will be designed, but not58

III. Protool design 12. Fundamentalshandled.

Figure 12: Copyright protetion.12.5.4 Data theftThis issue of ensuring that maliious lients annot steal data is by far the most importantand di�ult one. Many solutions have been suggested but none have solved the problemof proper protetion against opying of opyright proteted material, whih has also alreadybeen desribed in Setion 11. The solution we have hosen is therefore to make it ompletelyup to the implementer to hoose what to do and hene what level of seurity the protoolimplementation should o�er. The protool will failitate that data related to seurity anbe embedded in the paket failitating digital rights management. Thus, this paket willontain all information related to seurity. The protool design only de�nes one rule relatedto the seurity paket, namely that the lient reeives seurity data from the server withoutrequesting it. Thus the server must keep trak of what data the lient needs and send thisaordingly. How muh data the server sends at a time is unde�ned, meaning that the serveran hoose to send all seurity data related to the video as soon as the lient begins reeivingthe video.12.6 Protool arhitetureTo give a more preise piture of the design of the protool a �gure extending the ontentsof Figure 4 is given in Figure 13. The �gure shows how a server operates with two lients allusing the same uniform interfae. 59

III. Protool design 12. Fundamentals

Figure 13: Detailed arhiteture.

60

III. Protool design 13. Protool state13 Protool stateIn order to determine the validity of inoming pakets a pereption of the state of the two hostsexhanging data is neessary. An analysis of protool state reveals that many pereptions ofthe state an be found:A lient's pereption of itself: The lient itself does not operate with any state enforedby the protool. Hene a lient is free to de�ne its own state. One ould argue that thelient an be in a logged on or logged o� state, but this is evidently impliit, as it doesnot make sense to send anything but a log on request if the lient is not logged on.A lient's pereption of other lients: Again a lient has no real interest in whih stateanother lient is in and therefore no state is de�ned for this purpose either. A lientshould however be able to know when to send data to another lient. Again a state whihdetermines whether a lient is logged on or not ould be used, but ommuniating withanother lient is only possible if a unique id is known, as desribed in Setion 12.5.1.This unique id is provided by the server, and ats as a validation of the other lients.A lient's pereption of the server: As the server binds the lients together in the logialtopology, a lient learly annot regard the server as malfuntioning. If this was thease the topology would be inonsistent. Furthermore, a lient must always abide bythe ommands of the server. As a result, a lient always regards the server as online.Thus, the server does not have any states from the point of view of the lients.The server's pereption of itself: The pereption of the server of its own state is onlyrelevant to the server itself. Clearly, the server may either be on-line or not on-line. Butapart from this, the server may also be streaming data to one or more lients. However,as the server also funtions as a lient to other lients it may be argued if this an beonsidered as the state of the server. As a result we de�ne that the server only has onestate whih is on-line.The server's pereption of lients: As the server ontrols the topology, the pereption ofthe server of all lients is learly the most important. For example, if the server regardsa lient as not on-line, the lient has only one option, whih is to request aess.In the following we examine only the pereption of the server of both the lients and its ownstate. As all ontrol ommuniation passes through the server, the most important aspet ofthe protool is exatly the pereption of the server of the lients and itself.13.1 Server stateAs stated, the pereption of the server of its own state is straightforward. Either the server ison-line or not. This may be simple, but needless to say, the server does perform many ations.The �ow of these ations de�nes the proedures whih should be applied when a ertain ationours. A diagram depiting the state transitions of the server is found in Figure 14. The61

III. Protool design 13. Protool statediagram, simple as it is, does not say anything of the nature of these ations and how theyshould be performed.
O�ineOnline md: Shutdownmd: Startup

Handle ation
Figure 14: Server state diagram.The ations performed by the server all orrespond to ations taken by some of the lientsonneted to the network. Thus, some ation might our on the basis of a lient interationwhih should be handled aordingly. How these ations are performed by the server maybe seen as irrelevant to the design of the protool, but as these ations might spur topologyhanges, the �ow of the ations is needed to to de�ned following in the next setions.13.1.1 Client onnetUpon onnet, the server must initiate the proess of authorizing the new lient. This proessis depited in Figure 15. The proess initially starts by reeiving the onnet request. Thiswill be transferred to the server appliation whih must grant or deny aess to the lientrequesting a given video. The response from the server appliation must provide the serverprotool with the measured bandwidth of the lient as will be given in Setion 14.3. If theserver appliation grants aess to the lient, the protool must seek a spot in the topologyfor the lient. If this annot be found, the protool may seek to reloate other lients to makeroom. This reloation may result in disonneting some other lient, if the onneting lientan provide a higher bandwidth than already onneted lients. Finally, if a spot has beenfound, the internal representation of the topology must be updated, and the set of lients whihare to distribute data to the new lient must be informed. The new lient must furthermorebe informed from whih lients the data stream will ome. Obviously, if the set of lientsinitiate data transfer before the reeiver has been prepared to reeive data, the reeiver willbegin disarding pakets as they will be regarded as invalid. As the reeiver is informed by62

III. Protool design 13. Protool statethe server that it must prepare for reeival, the data reeived from the set of lients streamingdata suddenly beomes valid. But the �rst part of the pakets has been thrown away and thereeiver will now issue a number of requests for resending of data.A solution to this problem might be for the server to wait for an aknowledgment from thereeiver indiating that it has now been prepared for reeival. Thus, the server will need toretrieve the set of lients, inform the reeiver and wait for an aknowledgment. When thishas been reeived, the server may inform the distributors that they should start sending data.However, this solution is not sensible as the nature of streaming, being time ritial, mayresult in the senders not having data available any longer. Hene, the server retrieves a set oflients whih has data available and informs the reeiver. In the interval from this informationis dispathed and to the server reeiving the aknowledgment, some or all of the set of lientsmay not have data available any longer.A seond solution is to let the reeiver and the set of senders set up a mutual agreementaordingly before initiating the stream. But one again, the reeiver ould be ompelled toset up an agreement with a potentially high number of lients before the data transfer anbe initialized. This an result in some of the lients not having data available any longerdue to the long waiting time inurred in setting up an agreement with a high number ofsenders. Furthermore, the only onnetion established between the lients a DCP onnetiontransported by UDP. If some pakets were lost using the unreliable transmission some logiwould be needed to ensure that this was remedied, only to extend the possibility of the lientsnot having data available any longer.To simplify matters, the protool assumes that the reeiver of data will always have hadenough time to prepare itself to reeive data. The simple assumption is thus, that the timespent sending pakets through the network will always be lower that the time spent preparingthe reeiver for data reeival.

63

III. Protool design 13. Protool state

XStart XEnd
Authorize lient ?

Grant lientaess Find senders?Deny lient aess UpdatetopologyNotify senders toto start streamingNotify lientof senders
Reloatelients

?Connetion request Respond GrantedDenied
Found?

FoundReloation possible? None found
YesNo

Figure 15: Connet ation.13.1.2 Client InterationUpon lient interation requests, the server protool must �rst update the internal represen-tation of the topology. If the interation request is a stop ation, this is handled identially tothe disonnet request. Thus, the representation of lient interation in Figure 16 only handlespause and skip. If no reloation is needed, e.g. the lient wishes to pause and no other lientsreeive data from the pausing lient, no further work is done. If, on the other hand, the lientneeds to be reloated, the server protool needs to �nd a new set of lients whih an forwarddata to the lient. If this is not possible, the protool heks if reloation of other lients ispossible, or possibly disonnet other lients to make room for the interating lient. If thisis not possible, the lient is disonneted. Otherwise, a new set of senders is eleted.

64

III. Protool design 13. Protool state

XStart XEnd
Update topology? Find senders ?

Update topologyNotify senders toto start streamingNotify lientof senders
Reloatelients?Disonnet lientInterationReloation needed?Yes Yes

NoNo
Senders found?

Reloation possible? FoundNone found

Figure 16: Client interation ation.13.1.3 Client disonnetWhen the server reeives a disonnet ommand, it must perform the ation depited inFigure 17. The server must hek if a reloation is needed due to lients reeiving data fromthe disonneting lient. If this reloation is needed, the server may either reloate the a�etedlients or disonnet some or all of the a�eted lients if another spot annot be found.

65

III. Protool design 13. Protool state

XStart XEnd
Update topology Disonnet lient ?

Update topology
Reloatelients

?Reloatea�etedlients
Disonneta�eted lients

Disonnet
Reloation needed?

YesNoNo YesReloation possible?
Figure 17: Disonnet ation.13.2 Client statesThe state of a lient is used by the server to identify if some ation requested by the lient isallowed. Thus, the ation will initiate a transition in the state of the lient as it is seen fromthe server. This state transition diagram is depited in Figure 18.The di�erent states the lient an be in are:Not onneted: This state is both the entry and exit state of a lient. Thus, a lient initiatesthe onnet phase as not onneted and if the server disonnets the lient or the lientitself wishes to be disonneted, the state of the lient hanges to not onneted.Connet pending: When the lient has initiated the onnet proedure the lient must waituntil is has been aknowledged or disonneted by the server. In the interval between theonnet request and the response of the server, the lient is in state 'Connet pending'.Conneted, initializing: When aknowledged, the lient must wait until the server haspassed vital information about where the video is to be reeived from before the lientmay initiate play-bak.Bu�ering: Before play-bak an be initialized, the lient must pre-bu�er an amount of data.How large this amount is will be elaborated upon in Setion 14.2.Playing: When the lient has bu�ered the required amount of data, its state hanges toplaying. 66

III. Protool design 13. Protool statePaused: When the lient pauses the video, its state hanges to paused. From here, the lientmay only go to playing state.Skipping: Upon the skip interation, the lient may move to the skipping state. While inthis state, the lient still performs play-bak of the video, while waiting for the serverto selet a new loation in the network. When this loation has been found, the lientmoves to the bu�ering or playing state, depending on the type of skip performed. Thisis elaborated upon in Setion 14.2.Stopping: This state is used either when the lient wishes to stop the video or the videoreahes the end.The state transition diagram found in Figure 18 depits how the lient hanges from one stateto another. The diagram is quite straightforward and therefore needs no further explanation.The key point of the �gure is simply that the lient should obey to the orders sent from theserver. However, it should be notied that many of the state transitions should be equippedwith a timeout whih should assure that the lient annot be stuk in a state transition fromwhih it annot ontinue.

67

III. Protool design 13. Protool stateNot onnetedConnetPendingConnetedInitializingBu�ering
PlayingSkipping Pause Stopping

send: Connetion request rev: Connetion deniedrev: Connetion aept
rev: Info about sendersMinimum amount of data reeived

send: pausesend: skip User interation: Stop
send: disonnet

send: resume
Figure 18: Client state transition diagram.

68

III. Protool design 14. Mehanisms14 MehanismsThis setion desribes the mehanisms whih de�ne the internal logi of the protool. Thesemehanisms will help identify the di�erent paket types whih will be used by the protool toexhange information the nodes in between. Implementations of the protool must onformto the workings of these mehanisms in order to enable o-operation between heterogenousimplementations. To aount for these mehanisms a short desription of these is given here.Fragmenting data: To enable transport of multimedia data, the raw video �le must beparted into smaller bits whih an be transmitted pieewise. This mehanism desribeshow data is fragmented and how the bits must be transmitted.Client bu�ering of data: The solution to the problems onerning user interation whenusing bandwidth sharing is to injet a bu�er on eah lient. How this bu�er must workis therefore an important mehanism of the protool.Bandwidth: This mehanism refers to a set of methods applied when alulating and regulat-ing the bandwidth of a lient. This is needed as the protool must be able to determinehow muh bandwidth a lient has available and how this is to be utilized.Round-trip time detetion: The protool must de�ne a mehanism for alulating theround-trip time between two lients. This must be done to set up test senarios whihan help the protool to identify if errors are ourring.Error detetion: For the protool to identify if errors are ourring, a set of error detetionmehanisms must be present. These mehanisms will be able to detet errors and handlethese aordingly.Seletion mehanism: This entral mehanism is used to �nd the logial position in the net-work of a new or reloated lient. This mehanism is given in its initial state the logialappearane of the network and terminates with a possibly updated logial appearaneof the network. Thus, it will output a possibly empty list of lients identi�ed to streamdata to the new or reloated lient. If this list is empty, no suitable entry point ouldbe found. The mehanism is not a diret part of the protool design, as implementorsof the server-side protool may implement di�erent seletion mehanisms. However, themehanism, regardless of how it is designed is a vital part of the protool, whih is whythis has been inluded in the design. We identify this mehanism as important to thesuess of the protool, as it de�nes a entral point where poor design may lead to lowperformane.
69

III. Protool design 14. Mehanisms14.1 Fragmentation of dataIn order to distribute and stream video as required in Setion 2, the data needs to be bu�eredas desribed in Setion 10. This involves dividing the video into smaller piees of data. Howthis is done is the subjet of this setion.As desribed in Setion 12.2 video data will be transported using UDP whih imposes anupper limit of 65 Kbytes1 for the size of data transmitted in one paket. Thus, the upperlimit on the size of a fragment is limited to the size of one UDP paket. It ould be arguedthat a fragment ould be sized to �t more than one UDP paket, as this size ould in a highquality video equal a single frame or even less and therefore this is not muh data to operatewith. But from reasons of simpliity, one UDP paket will ontain one fragment.Furthermore the funtionalities o�ered by on-demand streaming fore the need to skip betweensequenes of the video, as desribed in Setion 3.5. As skipping between fragments sized 65Kbytes will not be feasible, an entity for grouping fragments is neessary. The size of thisentity has to be substantially larger than a fragment, as this will serve the purpose of skippingin the video. Thus, the following entities will be used:Data Blok: The smallest fragment the stream needs to be divided into will be referred toas a Data Blok (DB). These bloks will be transmitted pieewise using DCP.Bu�er Blok: Grouping of DBs will be done using a Bu�er Blok (BB). BBs onstitute thepiees of the video between whih a skip an our. Following this, a BB will ontain anumber of DBs.Referring to a spei� point in a video is done using the tuple 〈x, y〉 indiating DB y inside BB
x. The further use and size of these bloks will be disussed and determined in the followingsetions.14.1.1 Bu�er BlokThe main purpose of dividing the video into BBs is to de�ne preise points in the video toskip between. There are several things to onsider when deiding how many, and thus howlarge bloks, a video should be split into. This deision is taken in the light of the followingproperties:Distane between skips: As BBs enable skips from one blok to another, the size of a BBwill determine the distane in time between skips.1The maximum size of an UDP paket is 65 Kbytes, but this inludes the IP header and the UDP header.Furthermore, some arhitetures do not support the full size of the UDP paket, whih may lower the sizefurther. 70

III. Protool design 14. MehanismsNumber of streams dispathed from server: Evidently, the more BBs the video is splitinto, the more onseutive streams the server will be able to dispath. Thus, under theassumption that a lient holds at least one BB at a given time it will be able to forwardthis BB to another lient. Therefore, in theory, if the video has been parted into 100BBs, then the maximum number of lients the server needs to stream the video to is100.14.1.2 Data BlokThe DB is the smallest fration a video will be divided into. As stated above, a DB is meantto be ontained in one paket dispathed by the DCP. The property of dividing eah BB intoa number of DBs is a result of the requirements in Setion 2, introduing the need for a lientto reeive data from several soures. Furthermore the time ritial property of multimediastreaming fores a need for a ertain amount of data to be available at the lient at all times.As a result of these two properties, several lients transmitting data to another lient willtransmit one BB at a time, as depited in Figure 19. The �gure depits that a number ofDBs onstitute the ontents of a single BB. This BB is reeived from multiple soures, whereseveral lients eah send a subset of the set of DBs ontained in the BB. Following this, eahlient will transmit a number of DBs of eah BB ausing a full BB to be reeived at a time.This property is of ourse only approximate, as some lients will transmit data faster thanothers, and the reeiver may in pratie end up reeiving data from the next BB before havingreeived the full ontents of the �rst. But absorbing these �utuations is exatly one of thepurposes of the bu�er.

Figure 19: Reeiving data from multiple soures.Determining how many DBs should be ontained in a single BB requires an analysis of twofators, namely:Physial limitations: As already mentioned the DCP will be implemented using UDP,whih indues a limit of 65 Kbytes upon the size of the DB, assuming that a DB should71

III. Protool design 14. Mehanisms�t into a DCP paket. This auses a 65 Kbytes DB of a high quality video to ontain amuh smaller part (in terms of playing time) than a low quality video.Number of onurrent streams: The number of DBs in a BB must be at least the numberof lients from whih a lient an reeive data. This property is a diret result ofenabling a set of lients to send a olleted BB together. Clearly, the number of datasenders annot be higher than the number of DBs ontained in a single BB as this wouldunneessarily ompliate the organization of whih lients should send whih DBs. Asa result, if the protool is setup allowing a lient to reeive data from 10 other lients,a BB should ontain at least 10 DBs. The reason for this demand is merely a designdeision made with the purpose of ensuring that all the lients are sending data to thesame BB, hene one DB is �lled one at a time as desribed above.Brie�y, it beomes lear to the observer that the olleted number of DBs ontained in a video�le is related to the size of the video. A �le oupying 4 Gbytes of spae will thus have aminimum number of 4Gbyte/65Kbyte ≈ 65.527 DBs. How many DBs ontained in a BB thusbeomes a question of how many BBs a video ontains as given by the server appliation. Therelationship between BBs and DBs and how these entities are used in the underlying networkis depited in Figure 20.

Figure 20: Relationship between BBs, DBs and the underlying network.Based on these assumptions and fats it would be impossible to set aurate numbers on theseparameters and therefore these will be made as variables whih an be individually set.14.1.3 Bloks and bu�er size dependenyLogially the bu�er will be divided into BBs. As the BB is only a logial entity, it ould beargued that the bu�er be divided into DBs, but as the BBs are made up of DBs this is merelya matter of de�nition. Furthermore, this graduation enables us to store and delete BBs oneat a time, whih will give better ontrol of what data is available and when, as a small blokwill be written out of memory muh faster then a larger one. Thus, determining whih partsof the video a lient holds in its bu�er is done based on BBs, hene its name bu�er blok.72

III. Protool design 14. MehanismsIt should now be lear that the sizes of the BBs and the DBs are losely related. Hene,hanging one parameter regarding the size of a DB will also a�et the size of a BB. Withrespet to these dependenies we try to onstrut a set of equations whih in a more formalway display these dependenies.sizeof(BB) = sizeof(DB) ∗ numberof(DB in BB) (1)Equation 1 expresses the relation between the sizes of BBs and DBs. Furthermore, the numberof BBs ontained in the video is determined by the server appliation as a relationship betweenthe skip distane in the video and the maximum number of streams dispathed by the server.Thus, the demands for the bu�er beomes a funtion of the BB size and the apaity of thelients as depited in Equation 2.bu�er demands = f(sizeof(BB), capacity) (2)14.2 Client bu�ering of dataIn order to enable redistribution of video ontent to other lients, a lient must bu�er a ertainamount of data. This amount of data is limited by the amount of data available at the lient.As mentioned, an earlier study [35℄ has shown that to render peer-to-peer streaming e�iently,over 50 perent of the video should be bu�ered. But there are several reasons why this is nota preferable solution. Some of the most important reasons are seurity and the osts inurredwhen produing lients implementing the protool in hardware.14.2.1 Bu�er ontentsThe bu�er is oneived logially as a irular bu�er, but in pratie it will be implementedas a stati ontinuous piee of memory. This is implemented by moving a pointer bak to thebeginning of the bu�er one it reahes the end, as depited in Figure 21. This senario showshow the bu�er at time t′ wraps around and overwrites the ontents of the �rst bu�er blok. Inorder to illustrate the funtionality of the bu�er a number of expressions needs to be de�ned.

73

III. Protool design 14. Mehanisms

(a) Bu�er at time t (b) Bu�er at time t
′Figure 21: A irular bu�er.First several pointers need to be de�ned whih determine points inside the bu�er where aertain ativity takes plae:Play Pointer (PP): This pointer indiates the present position of the lient in the videopointing to the data being displayed on sreen. The bu�er blok ontaining the PP willbe referred to as the play blok.Reeive Pointer (RP): This indiates the point where data is being reeived from otherlient(s). The pointer thus indiates where the next DB reeived from the sender willbe written. As data an be reeived from multiple soures, one reeive pointer will beused per sender. The bu�er blok urrently being �lled will be referred to as the reeiveblok.Stream Pointer (SP): This indiates whih DB is urrently being sent to another lient.One pointer will be used for eah lient data is forwarded to.Apart from these pointers, the bu�er is divided into di�erent areas, eah with their spei�purpose. As the bu�er is visualized as a irular memory segment these pointers and areasare moved around the bu�er all the time. Thus, it makes no sense to depit the position ofthese pointers and areas unless it is lear that this an only be viewed at a ertain point intime. As the PP moves into the next blok, the areas slide further along the bu�er.Absorption Area (AA): This area lies ahead of the play blok and ontains data whihmust absorb network �utuations. The size of this area is de�ned individually by eahlient, as network stability varies from lient to lient. Under optimal onditions, thebu�er blok lying immediately after the AA will be the reeive blok. The bu�er is saidto be in a ritial state if the amount of valid data in the AA is below the required74

III. Protool design 14. Mehanismsamount of BBs (AA size). Put in another way there has to be a ertain amount of datato be played in front of the Play Pointer. This amount of data is what under normalirumstanes gives the lient enough time to reat to a line breakdown et. and requestthe server to solve the problem.Reserved Area (RA): This area ontains data whih is not allowed to onnet new lientsinto. The RA lies immediately ahead of the AA and will under normal irumstanesbegin with the reeive blok. A skip outside the bu�er will move the PP into the �rstblok of the RA, hene the reeive blok beomes the play blok and the RA beomesthe AA. Skipping will therefore result in �lling the RA with data from the new point inthe movie where the PP has moved to.Connet Area (CA): Conneting other lients an only be done in a ertain portion of thebu�er. This data has already been played by the media viewer, or is under immediateplay bak. Clients an only be onneted to ontents of the onnet area if data issequential. This entails that if a skip has ourred earlier on and some data in the CAis not sequential in relation to the PP, then lients an only be onneted to the partwhih is sequential in relation to the PP.As the CA of the lients' is used for attahing new or reloated lients into the sizes of thelients CA onstitute the total amount of memory available to the protool. Evidently,the smaller the amount of aggregated memory provided by the lients the higher anamount of lients must be attahed to the server. Therefore, the sizes of the lients CAmust be as high as possible. To assure this, the server must have a way of informingthe lients of the desired size of the CA. But as the memory available to the lients maydi�er this desire may only be pereived as a guideline by the lient. Therefore, lientswhih use a CA smaller than what is advertised by the server are regarded as anti-soial.The reason is that the memory of the lients is regarded as a shared resoure used forbu�ering data and passing this on to other lients. If a lient does not ontribute witha portion of memory large enough to satisfy this demand, the lient will potentiallystarve the data in the system. Being anti-soial does not mean that the lient annotbe onneted, but it means that it has a higher risk of being disonneted and mayexperiene poor servie.Send Area (SA): The send area ontains the area in whih sending data to other lients ispermitted. The area spans the entire bu�er. If data ontained in the bu�er does not liesequential with respet to the reeive pointer of an attahed lient, the lient will stopsending data one the send pointer reahes the invalid data. The attahed lient willhereafter need to ontat the server to be reloated.To further aount for these terms, Figure 22 displays a simple bu�er sized 8 BBs. The sizeof the AA is set to two whih is also the size of the RA. The size of the onnet area is thus4, as no lients an be onneted to data plaed in either the AA or the RA. As the SA spansthe entire bu�er it has size 8.
75

III. Protool design 14. Mehanisms

Figure 22: Visualizing the ontents of the bu�er.As will be desribed in Setion 14.3 when lients are reloated to reeive data from anotherlient due to a skip, this will result in speeding up the rate of whih the video is sent to �llthe AA of the reeiver. Therefore, onneting lients must reeive data at a higher speed thanthe sending lient is viewing the video, possibly resulting in the SP passing the PP. This isno immediate problem as long as the SP does pass the RP. This an only happen if a lientneeds to reeive more BBs at extra rate than the sender has in its AA. As the size of the AAvaries from lient to lient, this ould indeed happen if the reeiver has an AA of higher sizethan the sender. Thus a onstraint must be introdued:A onneting lient annot be attahed to a BBloser to the end of the sender's AA than the size of its own AA.This situation is visualized in Figure 23. A lient wishing to onnet (not displayed in the�gure) to the lient depited in the �gure has an AA of only �ve BBs. From the aboveonstraint, the onneting lient an only onnet into bu�er bloks 28-35 as onneting outsidethis window would result in the need for reeiving data at extra speed for a full �ve bloks,possibly resulting in the send pointer rossing the reeive pointer.
76

III. Protool design 14. Mehanisms

Figure 23: Conneting lients inside the Connet Area (CA).14.2.2 Bu�er sizeAs desribed in Setion 10 the bu�er serves not only the purpose of absorbing network �u-tuation but also forwarding data to other lients. Thus, there is a need for an amount ofdata, both ahead of the lient's playing point (to absorb network �utuations), and behindthe playing point (to forward data to other lients).The size of the bu�er is thus formed by the amount of BBs required, the sizes of the AA,RA, and the CA. How large these portions of data need to be is inherently hard to determine,as they are both dependent upon the stability of the network and the amount of memoryavailable to the lient. These three two sizes will therefore be variables at eah lient. Theolleted bu�er size will thus be made up by:sizeof(Bu�er) = sizeof(AA) + sizeof(RA) + sizeof(CA) (3)Deriving from this equation the minimum bu�er size must thus be 3 BBs. In this ase, theplay blok will follow immediately after the reeive blok, and the play blok will be theonly blok allowed to attah new lients into. In this senario the blok whih is urrentlybeing �lled may wrap into the next blok, whih is in the proess of being played possiblyoverwriting data whih has not been played yet. Thus using a bu�er of size 3 BBs is obviouslynot preferable, yet possible. Using 4 or more bloks would ensure higher stability and the77

III. Protool design 14. Mehanismspossibility of onneting lients into another blok.14.2.3 Initiating play bakUpon initiation of data reeival, the AA will be ompletely empty. Therefore, to ensure smoothplay-bak, the lient ould be fored to wait for the area to be �lled. Depending on the size ofthe AA and the size of a single BB this may sum to a substantial waiting time for the end-userand may not be onsidered instant play-bak. Thus, there is a need for initiating play-bakbefore the AA is �lled. But as streaming in its nature only sends data with the same speed asthe play-bak rate of the video, a lient needs to be able to reeive data faster than the playbak rate. This will be elaborated upon in Setion 14.3.This involves playing the video before a full BB is present. As shown on Figure 24 a lienthas skipped to BB number 51 in a movie, and has reeived only the �rst 4 DBs of this BB.Considering this senario the lient ould potentially start displaying the movie starting fromDB 1 in BB 51. But as di�erent lients may posses di�erent properties as to the quality ofthe Internet onnetion the lient will have to be in ontrol of this. Thus, ontrolling howmany DBs the lient will have to bu�er before play-bak an be initiated is up to the lient.Furthermore, there is a need to reeive a ertain portion of the video, as some video standardsuse a header in the beginning of a multimedia �le whih identi�es media bit-rate, frames perseond et. Thus, the protool must support a way of identifying how many DBs should bereeived before the initial play-bak an be done.
Figure 24: Video playbak immediately after reeival of data.A visualization of how the bu�er is used during initiation of play-bak is found in Figure 25.The senario shows how the bu�er is used during startup with an empty bu�er. When theminimum needed DBs are reeived, the lient starts displaying the video. The data in the playblok lies within the AA until enough data has been reeived to �ll the entire AA. As datais being �lled into the CA other lients an be attahed, provided they ful�ll the onstraintgiven in Setion 14.2.1 regarding the valid onnet area of a lient.

78

III. Protool design 14. Mehanisms

Figure 25: Contents of bu�er at startup.14.2.4 Normal play-bakNormal play-bak is the typial state of the bu�er during a streaming session. The PP hasmade zero or more trips around the bu�er and all the data behind the PP is in sequentialorder meaning that data ontained in the CA is ordered sequentially. The lient reeives datafrom two other lients and forwards data to three other lients. The senario is visualized inFigure 26.

79

III. Protool design 14. Mehanisms

Figure 26: Contents of bu�er at normal playbak.14.2.5 SkippingAs desribed in Setion 3.5 skipping is handled in idential to initiation of play-bak. Thus,when skipping to another sequene, displaying the video instantly should be possible. A deeperanalysis reveals that three types of skips an our:Skip forward inside bu�er: As the name implies, this is a forward skip to a blok whih isalready ontained in the bu�er. Thus the PP will be moved forth to the bu�er ontainingvalid data. To avoid bu�er starvation the AA needs to be �lled quikly resulting in theneed for reeiving data at a higher speed. This will result in the RP moving faster thanthe PP, possibly overwriting data whih is needed by attahed lients. In this eventthe lient must inform the attahed lients that data is unavailable. If dispathing dataneeded by attahed lients annot be satis�ed, these will have to be reloated to otherlients by the server.The senario is depited in Figure 27, where the lient has skipped to blok 19 at time
t′. The result is, that the AA has been redued, but at the same time the CA has beenenlarged. This alls for the need to reeive data at a higher rate to enlarge the AA.

80

III. Protool design 14. Mehanisms

(a) Bu�er at time t (b) Bu�er at time t
′Figure 27: Skipping forwards inside the ontents of the bu�er.Skip bakward inside bu�er: Skipping bakwards inside the bu�er an be done until thereeive blok. In other works a skip an our to all data lying between the RP and thePP. This will result in the PP moving bak to the intended blok. As the PP movesloser to the RA, the CA is redued to �ll as little as only the play blok. Thus, the playblok will follow immediately after the reeive blok minimizing the CA. To enlarge theCA one again reeival of data must therefore be throttled down, until the size of theCA is one again satis�ed. When throttling down speed, there is a risk that attahedlients annot reeive data fast enough, possibly resulting in starvation of the bu�er ofattahed lients. Again this will result in the need for reloating these lients to otherloations in the network by the server.Skipping bakwards inside the bu�er is illustrated in Figure 28. The senario showsthat the lient has skipped bakwards to blok number 13, thus enlarging the AA andshrinking the CA. To aommodate for the highly enlarged AA, the lient will need toreeive data at low rate, to widen the gap between the RA and the PP and thus enlargethe CA.

81

III. Protool design 14. Mehanisms

(a) Bu�er at time t (b) Bu�er at time t
′Figure 28: Skipping bakwards inside the ontents of the bu�er.Skip outside bu�er: If the PP is moved further bak, i.e to a point where it rosses the RP,this would no longer be a skip bakward inside the bu�er as data would not be available.The same applies to a forward skip where the PP rosses the RP, as this is skippingforward outside the bu�er. These senarios are handled identially by overwriting theontents of the reeive blok with data re�eting the new point in the video form whereontent is to be shown. At the same time, the PP is moved to the reeive blok, thusthe blok beomes the play blok and the reeive blok at the same time. This senariolosely resembles initiation of play-bak as no data in the bu�er is valid. Thereforethese two senarios are handled identially, using the same variable whih ontrols howmany DBs should be available before play-bak is initiated. Skipping outside the bu�errenders all data in the bu�er non-sequential, meaning that data lying in the SA is notsequential with respet to the data ontained in the reeive blok. This will result inthe need for reloating attahed lients elsewhere by the sever. The senario is depitedin Figure 29. After the skip, the CA is marked as non-sequential thus resulting in theserver being unable to attah lients into the area until the RP has moved away fromthe PP.

82

III. Protool design 14. Mehanisms

(a) Bu�er at time t (b) Bu�er at time t
′Figure 29: Skipping outside the ontents of the bu�er.14.2.6 PausingAs desribed in Setion 3.5 one of the goals is is to provide a pause funtion similar as to whatis seen on a VCR. This should result in the user experiening a halt in the video stream untilhe or she wishes to ontinue playing. How this is visualized by the lient appliation is of noonern to the protool, but the protool needs to determine what to do.One of the harateristis of a media pause is that the length of the pause is not determinedon beforehand. One ould give an estimate from statistis on the average length of a mediapause, but the type of media distributed by the server might have an impat upon this average.Thus, one type of video ould generally result in shorter pauses than another.What is interesting about the length of a pause, is that a lient attahed to a pausing lientmight not need to be reloated as data transfer an proeed until sending side does not possessrelevant data any longer. As long as this does not happen, the pausing lient ould reeivedata without displaying it and forward it on to other lients as long as the sender does notoverwrite data not displayed by the video player. On the other hand, it might be desirable toantiipate events and at as soon as a lient pauses by reloating all attahed lients.To sum it up, the protool an either hoose to reloate a lient as soon as the sender pauses83

III. Protool design 14. Mehanismsthe stream, or wait until data is unavailable at the sender. Using the �rst approah, theprotool might have greater possibility of avoiding stalls in video play-bak at the reeiver.On the other hand the seond approah exploits the possibility of the sender only pausingthe stream for a short time. After the sender resumes play-bak everything will proeed asnormal. How the protool handles this situation is not part of the protool design but in theimplementation given in this thesis the seond approah is hosen.Evidently, attahing lients to a lient whih is paused is not desired. Attahing a newlient will result in the need for reeiving data at high rate as playbak will need to beginimmediately. Thus, if the paused lient suddenly runs out of bu�er spae as it may overwritedata not displayed by the player yet, data reeival must be brought to a standstill. In thisevent the newly attahed lient might not yet have its AA ompletely �lled but needs tobe reloated. This reloation might take up too muh time, resulting in the player stalling.Hene, there is a need to �rst inform the server of a pause in order to let the server know thatno lients should be attahed before a resume has been performed. Seondly, the lient mustbe able to inform the server that it has run out of bu�er spae and annot hold any more data.In this event, the server needs to reloate all onneted lients and stop transmission to thepaused lient from other lients. In a sense, this will result in the lient still being a part ofthe network, but without any onnetions. Thus, the network will form a disonneted graph.Pausing the video is visualized in Figure 30. At time t, the lient pauses the video and theserver is noti�ed. At time t′ the video has been paused for an amount of time, resulting in theenlargement of the AA. Notie the similarities between skipping bakwards inside the bu�erand pausing. From these similarities it an be onluded that pausing and skipping bakwardsare losely related as the play pointer moves bakwards in time in both ases. This is in fatonsistent with [41℄ whih notes that 'the pause ation belongs to the bakwards interations'.At time t′′ the bu�er has wrapped around and the reeive blok has reahed the play blok.At this time all attahed lients has been reloated and reeival of data has been brought toa standstill.

84

III. Protool design 14. Mehanisms

(a) Bu�er at time t (b) Bu�er at time t
′

() Bu�er at time t
′′Figure 30: Pausing the video stream.

85

III. Protool design 14. Mehanisms14.2.7 ResumeResuming an evidently only be done after a pause has been performed. If the lient stillreeives data from other lients, the lient an play-bak the video without further ado. If thelient on the other hand has informed the server that it has run out of bu�er spae, the lientmust be reloated to some point in the network before data transmission an be initiated.14.3 BandwidthAs already stated bandwidth is referred to as apaity. Obviously, all lients must be able toreeive data at a rate equal to the bit-rate of the video. Put in another way, a lient must beable to reeive data at the same speed as is used when playing bak the video plus the amountbandwidth of needed by the CCP.Unfortunately the ability to reeive data at this rate is not enough. The reason for this isthat, in order to bu�er data, a lient must be able to �ll up a ertain amount of its bu�erahead of the PP in onurrene with displaying the video. Thus, the sender of data will needto raise the speed at whih data is sent. Another approah to this is to let a third lient sendthe extra amount of data in situations where this may be needed. Hene, a lient not usingits upstream bandwidth ould be found to deliver the extra amount of data. But this wouldnot lower the total amount of bandwidth needed, and would greatly add to the omplexity.Therefore the simple approah of demanding that lients an provide an extra amount ofbandwidth is hosen. Furthermore, the lient must be able to throttle down the rate in orderto widen the gap between the PP and the RP in the event of a bakward skip inside the bu�eras desribed in Setion 14.2.5.To onnet a new lient to the network therefore requires a way of �guring out how muhbandwidth the lient an provide.14.3.1 Bandwidth detetionUpon onnet the available bandwidth of the lient needs to be determined. If the systemis ontrolled by an Internet Servie Provider, the bandwidth of its ustomers may easily beavailable. But if the system is used by a third part with no knowledge of the bandwidth ofthe lient, other methods must be applied. The simple way is to let the lients advertise theirbandwidth, but as desribed in Setion 6.3 the struture of the Internet auses the advertisedapaity to be very unreliable. Measuring the available bandwidth is a di�ult subjet. A lotof researh has been done in this area resulting in a large variety of methods and theories asseen for instane in [22℄. This area is by far large enough to be a topi for a master's thesison its own and sine, it does not play an important role to this projet, it will be regarded asout of sope.The assumption is that some other software loated outside the protool handles this measure-ment, but even this assumption has its limits. If the bandwidth an be measured one further86

III. Protool design 14. Mehanismsassumption needs to be made: The apaity from point A to point B is equal to the apaityfrom A to another point C provided that the advertised apaity of C is not lower than theadvertised apaity of B. This enables us to trust the measured apaity of a onneting lientand rely upon the fat that wherever the lient is logially plaed in the network, its speedwill never be lower than the advertised speed. Note that the assumption is not related to therule of mathematial transitivity.This advertised speed has to be provided to the protool and will inlude only the upstreambandwidth. If the downstream bandwidth is too low to reeive the bit-rate of the video, thelient should be rejeted right away. The provided upstream bandwidth should be the realupstream bandwidth, meaning that, the lients ability to reeive data is not a�eted by theamount of data being sent or vie versa. If this is the ase, the downstream bandwidth used toreeive the video should be subtrated. A lient whih annot provide an upstream bandwidthhigh enough to send the omplete video will be regarded as anti-soial. Thus being anti-soialis not only de�ned as providing less memory than what is advertised by the server, as statedin Setion 14.2, but also if lients ontribute less bandwidth than they onsume and heneadd to a potential starvation of the available bandwidth of the network.14.3.2 Bandwidth alulationFor the system to determine how and when data is to be streamed, the server needs to knowthe available bandwidth of all lients. As this information will be supplied from outside of theprotool, the server appliation instantiating the protool must pass these informations to theprotool. Apart from this, information about the video whih is streamed must be availableto the server. This inludes, media bit-rate, the duration in milliseonds and size in bytes,BB size in bytes, and the number of DBs ontained in a single BB. These numbers are usedto alulate how muh data eah lient should and an stream.The main idea in these alulations is to translate the available bandwidth of the lients intothe maximum number of DBs the lient is able to send per seond. To alulate this number,the protool needs to alulate the following units:First the total number of DBs in the video is alulated:numberof(DBsInVideo) =
sizeof(video)sizeof(DB) (4)This number is used to �nd the duration of eah DB based on the total duration of the video.This number is measured in milliseonds, as the rate of whih DBs are sent is expeted to be�nely grained. duration(DB) =

duration(video)numberof(DBsInVideo) (5)87

III. Protool design 14. MehanismsThis number is the time span in seonds in whih the lient onsumes a DB or in other wordsa new DB should be sent to the lient at this interval. Hene, it is possible to �nd the numberof DBs whih should be sent per seond by:DB/se =
1duration(DB) (6)When this number is found we need to look at the maximum upstream bandwidth of thelient. This bandwidth needs to arry more than just the amount of data needed to streamthe video. As already desribed the lient needs to have the ability to transfer extra data inorder to �ll the bu�er of the onneted lient. On top of this, the lient needs some of thebandwidth for ontrol data sent using CCP. Hene the upstream bandwidth available to sendthe video from a given lient is found by solving the following equation:

Bandtotal = Bandavailable − Bandextra − Bandcontrol (7)where Bandtotal denotes the available bandwidth of the lient when data is streamed at normalspeed and Bandextra is the extra amount of bandwidth needed for throttling up the speed.This value of this variable is a portion of the bit-rate. If Bandtotal is equal to or higher thanthe bit-rate of the video, the lient will not be regarded as anti-soial. If the number is lower,it means that the lient is not apable of streaming the entire video on to another lient andhene is regarded as anti-soial.Based on the above formula the protool an determine how muh bandwidth a lient mayontribute. This is alulated as the maximum amount of DBs the lient may send perseond. The alulation is found in Equation 8, where Bandtotal denotes the value omputedin Equation 7. DB/se =
Bandtotalsizeof(DB) (8)This variable is stored by the server protool for eah of the onneted lients. The numbersalulated in equations 4, 5 and 6 are prealulated and stored together with other videoinformation and therefore the only alulations needed during a new lient onnet is those ofEquations 7 and 8.14.3.3 An exampleTo visualize the dependeny between the above alulations a short example will be given inthis setion. The following data is given on beforehand:

• The video is divided into 1000 BBs eah ontaining 100 DBs.88

III. Protool design 14. Mehanisms
• The total playing time of the video is 5,400,000 mse (90 minutes).
• The size of a DB is 40 Kbytes.The duration of a BB is therefore:

5, 400, 000msec

1000
= 5, 400msec = 5.4 sec (9)Thus, the duration of a DB is:

5, 400msec

100
= 54msec (10)The number of DBs a lient needs per seond is:

1000msec

54msec/DB ≈ 18.52DB/sec (11)As given above the size of a DB is 40 Kbytes. Thus the bandwidth used for streaming videodata per seond is:
18.52DB/sec ∗ 40Kbyte ≈ 740.7Kbyte/sec ≈ 6.068Mbit/sec (12)All of the above are alulated one based on the number of DBs the video is divided into.This is done when information about a video is reeived from the server appliation.The following is alulated eah time a lient is onneted. The server is provided the lient'savailable upstream bandwidth, and on top of this the protool uses the following variables:

• ontrol data takes 10 Kbyte/s,
• bandwidth maximum should be 20 % extra,
• bandwidth minimum should be 20 % less.As desribed above the minimum bandwidth whih should be available to a lient, if itshould be able to forward the entire video to another lient must be: (741Kbyte/sec ∗ 1.2) +

10Kbyte/sec = 899.2Kbyte/sec. If a lient an only provide for example a maximum of 300Kbyte/s, we an alulate the bandwidth whih is available to the protool:
(300Kbyte/sec − 10Kbyte/sec)/1.2 = 241.7Kbyte/sec (13)This means that the lient an send only 241.7 Kbyte/se of the olleted bit rate of thevideo. Sine this is below the 741 Kbyte/s needed for the entire video, the lient is marked asanti-soial with the possibility of experiening poor servie.89

III. Protool design 14. MehanismsNow it is interesting to �nd the number of DBs the lient an deliver out of eah BB. Theamount of DBs the lient an deliver per seond is:
241.7Kbyte/sec

40Kbyte/DB = 6.042DB/sec. (14)And �nally the number of DBs the lient an deliver in eah BB is found:
6.042DB/sec ∗ 5.4 sec = 32.63DB. (15)Meaning that 32.63 DBs out of eah BB an be delivered from the lient per seond. Thenumber is always rounded down, e.g. 32 DBs per BB ontaining 100 DBs.Now the server knows that this lient is alulated to be able to assist with 32 DBs in eahBB in normal mode, but it an deliver 32DB/sec ∗ 0.2 ≈ 6DB/sec extra, should the attahedlient(s) need it.Furthermore, if the lient is requested to send e.g. 17 DBs out of eah BB, then the lient analulate how long the interval between sending eah paket should be:
(

100

17

)

∗ 54msec ≈ 317.64msec. (16)whih is be rounded down to an interval of 317 mse. From this we an alulate that if thelient is required to send at maximum speed it would be: 317msec/1.2 = 264.17msec andwith minimum speed it would be: 317msec ∗ 1.2 ≈ 380msec.14.3.4 Adjustment of lient bandwidthAs stated in Setion 14.3.1 the protool will not implement a method for determining thebandwidth of a lient. But another obstale remains: Deiding how to adjust the used band-width of a lient when streaming still needs to be taken are of. The question is simply, howmuh bandwidth should be onsumed by the lient? And what if the lient fails to ontributethe measured bandwidth? Thus, adjusting the bandwidth will be desribed in this setion.Several variables are used to store information about the bandwidth of the lients. Thesevariables will be used to selet the right lient or lients to whom a new lient should beonneted.MEASURED_BANDWIDTH: This parameter is set upon startup when a lient's band-width is measured and handed to the protool. The value is given as in the numberof DBs the lient is able to send per seond. The value ould be higher than what is90

III. Protool design 14. Mehanismsrequired to send the entire video indiating that the lient is apable streaming morethan one full video. Hene, the lient annot be marked as anti-soial as the lient willat least ontribute the same amount of bandwidth as it onsumes. This value is nothanged during the session of a lient and is only alulated upon onnet.EXPECTED_BANDWIDTH: This parameter denotes the expeted bandwidth of a lientand is adjusted during the lient's session. If a lient is alulated to ontribute withmore bandwidth than required by the video, this parameter is set upon startup to onlywhat is required to stream the video. As this parameter is also given in DBs, it wouldfor instane be set to 100 if the rate of the video required is 100 DBs per seond, even ifMEASURED_BANDWIDTH is higher than 100. Afterwards the value may be adjustedup if neessary.Adjusting the value down is done when a reeiver of data noti�es the server that reeivalof data is not done at the advertised speed. The server will then assume that theexpeted bandwidth of the lient has been set too high and aordingly adjust it down.Adjusting the value up is done when bandwidth equilibrium annot be obtained withthe amount of bandwidth available to the network. Thus, if the expeted bandwidthof a lient is below the measured bandwidth, the expeted bandwidth of the lients isadjusted up.The only rule whih applies when adjusting the parameter is that it should never be sethigher than the measured bandwidth. If the expeted bandwidth falls below the rate ofthe video, the lient may be marked anti-soial.USED_BANDWIDTH: This parameter indiates how muh bandwidth is urrently beingonsumed. The value is adjusted during the lient's session and annot be raised higherthan expeted bandwidth, though it may be lower.EXPECTED_UP: This value is a simple ounter used to trak how many times the EX-PECTED_BANDWIDTH has been raised. This is done in order for the server to keeptrak if it ontinues to raise and lower the bandwidth of a lient.EXPECTED_DOWN: This is the ounterpart to EXPECTED_UP.14.4 Calulation of round-trip timeAs the DCP will use the UDP protool, there is a hane the pakets may disappear duringtransport. This unfortunate property raises the simple question of what to do, if a paketgets lost. But answering this question annot be done, before another question is answered,namely, how do we detet if a paket is lost? As already aounted for in Setion 8.3, UDPalso has the unfortunate property that pakets may be reeived out-of-order. Thus if paketseven is reeived before paket six, we annot rely upon the assumption that paket six hasbeen lost � it might simply be delayed underway.The protool ould wait a given time to see if paket six would arrive, and when this time runsout take some ation indiating the assumption that paket six was lost. But how long timeshould the protool wait? As a minimum, it should wait the time it takes for a paket to be91

III. Protool design 14. Mehanismsdispathed from the sender and until it reahes the reeiver. This is known as the round-triptime (RTT), or atually half the round-trip time, as the round-trip time is the amount of timeit takes for a paket to reah its destination and ome bak.Calulating the round-trip time an only be done using some form of synhronization betweenthe two lients. Thus, a lient an send a request, get a response bak, and alulate theround-trip time simply by looking at the time between sending the request and reeiving theresponse as depited in Figure 31.

Figure 31: Round-trip time.This value needs to be updated as it may hange over time. This may either be done by initi-ating a new synhronization proedure or updating the value every time a paket is reeived.Calulating the round-trip time is therefore straightforward:1. Upon initialization of data transfer, a ping paket is sent from the data reeiver to thedata sender.2. The ping paket is responded by a pong paket ontaining a timestamp indiating thetime the paket was sent.3. The data reeiver will then alulate the di�erene between sending the ping and reeiv-ing the pong.4. Furthermore, the data reeiver will alulate the time di�erene between the lients bysubtrating the timestamp given in the pong paket and the time of arrival. This valuewill orrespond to the time di�erene between the lients and the time spent by thepaket before it has arrived. Note that this variable may be below zero. This is dueto the di�erene in time between the lients, as their loks will not be synhronized.Subtrating the time stamps may therefore return a value below zero.5. Conseutively, every time a data paket is reeived, the reeiver an alulate the timedi�erene by looking at the sender's timestamp given in eah data paket. If this dif-ferene has hanged from what was originally alulated, the di�erene will be added to92

III. Protool design 14. Mehanismsa running round-trip time variable. Thus, the protool an maintain a round-trip timefor all lients from whih it reeives data. The proedure is visualized in Figure 32.

Figure 32: Calulating the round-trip time.Finally, the simple question of what to do if pakets arrive out-of-order an be answered. Wenow have a knowledge indiating how long it should take for the paket to reah its destinationunder normal irumstanes. If pakets do not arrive timely, we may now be able to wait anamount of time orresponding to a fator of the round-trip time between the lients beforerequesting a resend of data. The observant reader will now ask: 'what if the ping, or thepong paket is lost?'. The simple answer to this question is to let the data reeiver start outby sending a range of ping pakets. This will serve not only the purpose of assuring thateventually one of the ping pakets will be responded but also as a remedy to alulate a morepreise round-trip time as an average an be alulated from the range of pong pakets.93

III. Protool design 14. Mehanisms14.5 Error detetionProtools ommuniating over a network will eventually enounter situations where an errorhas ourred. Protools loated at di�erent lients must therefore have a mutual understandingof how errors should be handled. As a result, error detetion and handling is a entral part ofthe design of a protool.We identify a number of situations whih we de�ne as erroneous and how these must behandled.Data not available: The sender of data may be asked by the server to distribute data froma ertain point in the video. In the event that the bu�er of the lient has overwritten thedata whih should have been sent, the lient annot send the relevant data. Handlingthis, an either be done by notifying the server that data was not available or simplydoing nothing.Notifying the server would result in a new seletion proess whih would selet a newsubset of lients. But if the lient su�ered from a line failure it would never be able tonotify that data was not available. Furthermore, the request to distribute data mightnever have been reeived. Therefore, the solution to handling the error is simply bydoing nothing. Thus, the reeiver would have to notify the server that no data wasreeived. Additionally, the solution handles the situation identially when the sender ofdata experienes a line failure. Thus, if data reeption stops, regardless of whether thereeiver has been newly reloated to the spot or whether data distribution has been upand running the lient will send the same noti�ation to the server.Data loss: As data transport using UDP may result in data loss, resending pakets must bepossible. But due to the time ritial nature of multimedia streaming late retransmis-sions must be avoided. A late retransmission ours when the data onsumer reeivesretransmitted data at a point in time where the PP has moved to a point beyond the re-transmitted data. Hene, the data reeiver must avoid requesting data if there is hanethat data may be reeived too late. This an be done using the alulated round-triptime whih determines how long time the proedure of dispathing and reeiving theful�lling of a resend request takes. But a resend request may also be reeived too late.This happens when the bu�er of the data sender has overwritten the data requestedby the reeiver. In this event the data sender must notify the reeiver that requesteddata is no longer available. The reeiver may in this event either ignore the lak of datawith the problems this may impose on the video player or request data from somewhereelse. This may be done by notifying the server that data reeival has been brought to astandstill, thus requesting a reloation of the lient. This may not be preferable if theneeded data may only a�et a few data bloks. Therefore, a seond solution if o�ered tothe lient, whih is to send an emergeny request of data to the server. The server mayful�ll this request if possible or ignore it. Thus, the lient annot rely upon the serverto ful�ll the request. Hene, the protool must failitate this funtionality.Data orruption: If data gets orrupted during transport the data reeiver has no meansof identifying this. Therefore the reeiver simply delivers the orrupted data to the94

III. Protool design 14. Mehanismslient appliation. This works in aordane with other implementations of streamingappliations, as data orruption is seldomly seen even though UDP is an unreliable formof transport. Furthermore, the amount of orruption whih might be seen is normallyso small that the impat on the display of the video is bearable.Data dupliation: Data dupliation is simply handled by disarding the dupliate data.Thus, the pakets must have an identi�ation of the ontents whih will enable thereeiver to deide if the paket has already been reeived.Seurity error: If the data reeived fails to omply with the seurity mehanisms used bythe protool, the lient must inform the server that the error has ourred. The servermay hereafter deide how the error should be handled.Connetion error: In the event of a line breakdown, the rate at whih pakets are reeivedlearly drops to zero. Furthermore, if the onnetion su�ers from temporary �utuationsthe rate may also drop. Handling these must be done by notifying the server of the errorand what rate the speed has fallen to.Bu�er over�ow/under�ow In the event of a bu�er under�ow or over�ow the lient willneed to request the sender of data to modify the sending speed. Therefore, if the AA ofthe lient is not ompletely �lled with valid data, the lient will need to reeive data atmaximum speed to avoid bu�er under�ow. Furthermore, the lient will need to requestthe sender of data to lower the speed, if the reeive blok omes too lose to the playblok as an happen in the event of a skip.14.6 Seletion mehanismThis setion desribes the mehanism whih is used to �nd the set of lients seleted to senddata to a newly onneted or reloated lient. The mehanism returns the set of lients andthe speed used for eah of the lients.As stated in Setion 12.3 the onstrution of the seletion mehanism will de�ne the logialappearane of the network. Intuitively, hoosing the entry point for a newly onneted lientwill shape the logial topology. Thus, the onstrution of this mehanism is ruial to theperformane of the topology. Seleting the right topology therefore beomes the design of thismehanism. As written in Setion 12.3, seleting the right topology of the network involvesknowledge about the harateristis of the video among others. Thus, seleting a topologyon beforehand might result in poor performane when distributing one kind of video, whileanother video might obtain good performane. Hene, the seletion mehanism beomes anissue whih must be solved by the implementation of the protool.It should be stressed that the mehanisms an be designed in many ways - hene, designingan optimal solution to these algorithms is not the goal.
95

III. Protool design 15. Underlying protool usage15 Underlying protool usageThis setion desribes the usage of the underlying transport protools. Thus, some of theunertainties of the underlying protools will be leared to avoid ambiguities in the protooldesign.As the protool relies upon TCP the question of how and when the underlying TCP onnetionshould be losed must be answered. Thus, two di�erent events may trigger the down-tearingof the onnetion, namely:1. When the lient sends a disonnet request to the server, the lient must wait until theserver loses the onnetion. This will ensure that the server will not end up maintainingseveral unused onnetions due to malfuntioning lients.2. When the server sends a disonnet request to a lient, the server also loses the TCPonnetion. The server must ensure that all data pending on the onnetion is purgedto ensure that the disonnet eventually reahes the lient.As given in Setion 8.4 several routers loated on the Internet utilizes NAT to masqueradehosts. Designing a protool that an handle lients loated behind masqueraded routers involvea lot of quirks as other hosts annot send data to the lient if the lient has not onneted outthrough the router in advane. For these reasons the protool annot handle masqueradedlients. However, the ports used by the lient protool an be seleted by the lient appliationwhih may, in turn, leave the user to selet whih ports the protool should use. Thus, theuser may selet the ports, and on�gure the router to forward these aordingly.The UDP header inludes a heksum �eld whih an be used by the sender of the paketto speify a heksum for the data ontained in the paket. This �eld ould be used in ourprotool to allow for the reeiver of the paket to hek if data ontained in the paket hasbeen orrupted during transport. However, using this �eld is by no means mandatory in theTCP/IP v.4 UDP protool spei�ation [32℄. Therefore the protool does not rely upon othersenders to speify the heksum.

96

III. Protool design 16. Protool phases16 Protool phasesThe di�erent phases of the protool onstitute the stages whih are used when ommuniatingbetween either the server and a lient or two lients in between. Thus, the phases desribethe logial ommuniation �ows between the network entities whih must be ompleted inprede�ned order.Connetion phase The proedure of onneting lients is done when a new lient wishes toonnet to the network. The lient must �rst issue a onnetion request to the server andwait for an appropriate answer. This either omes as a onnetion granted respond, ora onnetion denied respond. The onnetion request needs to ontain an identi�ationof the video whih is requested by the lient. This is needed by the server appliationto determine if a lient is to be granted aess. Furthermore, the lient needs to handlea timeout if the server does not respond to the request. How long this timeout shouldbe is not part of the protool spei�ation as this would require knowledge about theproperties of the physial onnetion between the server and the lient. Furthermore,the server may be busy doing other tasks, whih may result in a long response time.The onnetion proedure has the responsibility of alloating a key pair as desribed inSetion 12.5.1. This key pair is generated and distributed by the server and is ontainedin the onnetion granted paket. Thus, the server only alloates a key pair for the lientif the server authorizes the lient.Con�guration phase To maintain ontrol of the onneted lients the server needs tools toon�gure all lients. This is needed whenever a hange in the topology ours. When alient has been onneted to the network, it must be loated at some point resulting inthe need for providing some information to the lients whih will need to deliver datato the new lient. Furthermore, the newly onneted lient will need to be informed ofwhat data to expet and from whih lients.Streaming phase One the onnet proedure has been suessfully ompleted and the lienthas been on�gured the video data transfer will begin. This is done using a data paketsent to the stream reeiver from the data sender.Interation phase Performing interation in the video is done by sending a request to eitherpause, resume or skip in the video. As stated in Setion 14.2 pausing the video is doneusing two di�erent methods. When the player pauses the video, a pause video playerpaket is sent. Next, when the bu�er runs full, the lient protool dispathes a pausestream paket. When the player resumes the video a resume paket, ontaining the BBwhih the lient targets for the resume, is dispathed from the lient.Skipping between BBs in the video is done using a skip paket also ontaining the targetof the lient.Status phase For the server to maintain a routing table desribing the topology of the net-work all lients must pass their status at a desired interval. This information is neededwhen the server has to determine the ontents of the bu�er of a lient in the event of areloation. Evidently, lients may have to send their status at di�erent intervals. If a97

III. Protool design 16. Protool phaseslient is well funtioning, and the status of the lient does not hange muh over time,the need for a short interval between status updates disappears. Contrarily a lient mayneed to send updates often if it has proven unstable.To minimize the amount of data sent through the CCP, requesting the lients for statusat this interval is not feasible. Instead the lient will send a status paket at an intervalgiven by the server. Still, the server must be able to request a lient for status. Thisrequest will ontain the interval at whih the lient must send following status updates.As a result, the server will need to monitor all lients to determine if they are providingstatus at the given interval. If they fail to do this, they will ultimately be dropped by theserver protool. This will furthermore serve to investigate if a lient has broken down �if the lient does not respond, it will eventually be erti�ed as dead.Round-trip alulation phase Calulating the network round-trip time between two lientsis done using two di�erent pakets using the method desribed in Setion 14.4.For a lient to suessfully display a video, it must �rst omplete the onnetion phase. Thismust be followed by the on�guration phase whih must be sueeded by the streaming phase.At any given time during the streaming phase the server an fore the lient into the on�g-uration phase again if neessary. If the lient performs an interation during the streamingphase, the interation phase will have to be ompleted, possibly sueeded by the on�gurationphase. Finally the onnetion phase will be exeuted to disonnet the lient.In between these, the status and round-trip alulation phases will be onduted.

98

III. Protool design 17. Paket desription17 Paket desriptionBased upon the purpose of the two protools it is possible to point out the paket types neededby the protools. These types are again divided into di�erent domains identi�ed by the typeof ommuniation and the diretion they handle:Server-to-lient request pakets: These paket types are sent from the server to a lientindiating that the lient needs to take some kind of ation.Server-to-lient respond pakets: These paket types at as a respond to a request sentearlier on by a lient. The server needs to respond with a meaningful answer to therequest.Client-to-server request paket: This paket is sent from a lient to the server as a requestto perform some kind of ation by the server.Client-to-server respond pakets: A lient will reply with this type of paket to satisfy arequest sent from the server to the lient.The di�erent paket types are partitioned into domains representing the di�erent phases ofthe protool as given in Setion 16.17.1 Paket types and �owsThe protool will use a uniform paket header for all paket types. Thus, the header willonly ontain data whih is shared by all paket types ontaining a payload whih onstitutesdata private to the di�erent paket types. Furthermore, a paket may ontain a payload datawhih an ontain a variable length �eld private to the paket types.The uniform paket header ontains the following �elds in the stated order:

99

III. Protool design 17. Paket desriptionName Size DesriptionVERSION 1 byte This �eld ontains a one byte version �eld, in-diating the version of the protool used by thesender. The ontents of this �eld should orre-spond to the design spei�ation of the relevantprotool version.OPTIONS 1 byte This �eld is reserved for future use � is alwaysset to zero in this version of the protool.PACKET_TYPE 1 byte This �eld ontains the type of the paket. Thus,the �eld groups the pakets enabling the reeiverto quikly determine if the paket should be a-epted or disarded.ACTION_TYPE 1 byte Like the PACKET_TYPE this �eld is one byteand ontains the ation type of the paket. Bylooking at this and the previous �eld the reeiveran determine whether the paket is usable.PAYLOAD_LENGTH 4 byte This �eld ontains the length of the trailing pay-load. The size of the header is not inluded inthe �eld.PAYLOAD_DATA_LENGTH 4 byte This �eld ontains the length of the trailing pay-load data. The size of the header and payload isnot inluded in the �eld.RESV_ID 8 byte This �eld ontains the unique ID of the paketreeiver as desribed in Setion 12.5.1.SND_ID 8 byte Contains the unique ID of the sender whih ismathed by the reeiver to validate if the paketis sent from a legal host.This brings the total size of the header to 28 bytes meaning that the total size of a paket is thevalue of the PAYLOAD_LENGTH �eld plus the value of the PAYLOAD_DATA_LENGTH�eld plus 28 bytes.

100

III. Protool design 17. Paket desription

Figure 33: Protool header.The following setions will desribe eah of the pakets used in both the DCP and CCPprotools. All desriptions will ontain the following elements:Protool type: This part ontains the desription of whih protool is used to transport thepaket. This may either be CCP or DCP.Short name: This part ontain the short-name of the paket.Paket type, ation type: This part gives the paket type and the ation type of the paket.Both values are present in the header. The paket type value refers to the type of thepaket, e.g. server request, lient respond et. whereas the ation type refers to theation whih should be triggered by the paket. An easy overview of the paket andation types is given in Appendix A.Usage: This desribes the purpose of the paket.Payload: This part desribes the payload of the paket in a table.Payload data: This part desribes the payload data of the paket.Logi: This part desribes what happens one the paket is reeived and how the logi em-bedded in the protool must reat. This part further desribes the �ow of the paketwhih de�nes whih pakets this should result in being sent from the reeiver. Thisis desribed in words and by a diagram. A spei�ation of the notation used in thediagrams is given in Setion 17.1.1.17.1.1 Diagram notationThis setion ontains a desription of the notation used by the protools paket desriptions.These setions aount for the di�erent paket types and ontain a number of diagrams illus-trating the spei�ation of the paket �ow whih should be initiated by the server and lientupon reeiving a spei� paket. 101

III. Protool design 17. Paket desriptionAll of the diagrams follow the same struture, illustrating the reeption of a paket and howthis should be responded with a range of di�erent pakets, if any. The reeiver an be either alient or the server denoted by an upper ase S or C. In the ase of DCP pakets the notationSR or SS is used, whih is short hand for stream sender and stream reeiver.The diagram below illustrates a senario where the server reeives a paket requesting someation is performed. Subsequently the lient sends a paket to the server responding to theinoming request. The diagram illustrates that the paket reeived by the server has pakettype x1 and ation type y1. The paket is reeived by a lient (upper ase C) and is respondedwith a paket of paket type x2 and ation type y2. The star denotes that zero or more paketsof this type an be sent. If no star is present, exatly one paket must be send.
〈x1, y1〉 C 〈x2, y2〉

*
The next senario shows the server reeiving a paket of paket type x1 and ation type y1.The server responds with two pakets, a paket of paket type x2 and ation type y2. Asidefrom this, the server must send either a paket of paket type x3 or x4. The question markindiates that based on di�erent irumstanes, only one of the two branhes will be followed.

〈x2, y2〉

〈x1, y1〉 S ? 〈x3, y3〉

〈x4, y4〉

Finally, a diagram an illustrate that the reeption of a paket does not result in any furtherdata �ow.
〈x1, y1〉 S void

102

III. Protool design 17. Paket desription17.2 ConnetionThe pakets given in this setion orrespond to the onnetion phase, and inlude a disonnetpaket, whih is sent from the lient upon disonnet.17.2.1 Paket: Request onnetionProtool type: CCPShort name: CONN_REQPaket type, ation type: 〈40,10〉Usage: This paket is dispathed from a lient to the server with the purpose of onnetingthe lient to the server. The paket noti�es the server that the sender wishes to initiatereeiving a spei� video given in the payload.Payload: A total of 140 bytes:Name Size DesriptionCCP_PORT 2 bytes This �eld indiates the TCP port opened by the lient to beused for the CCP.DCP_PORT 2 bytes This �eld indiates the UDP port opened by the lient to beused for the DCP.VIDEO_ID 8 bytes This �eld indiates the video whih the user is requesting aessto.USERNAME 64 bytes A �eld indiating the user name provided by the lient to beauthorized by.PASSWORD 64 bytes A �eld indiating the password provided by the lient to beauthorized by.Payload data: The payload data �eld of this paket is empty.Logi: One this paket is reeived, the server must determine if the lient an be authorized.Furthermore, the server must deide whether the lient an be given aess to wath therequested video. The atual proess of authorizing a lient is not done by the protoolbut is passed to the server appliation whih in turn deides whether the lient an begranted aess. Passing the result of this to the lient must be done by sending eithera onnetion granted paket 〈10,10〉 or a onnetion denied paket 〈10,20〉. Followingthis, the server must �nd the set of lients that will be deployed to stream data to thelient. Seleting these lients will be separated in an enapsulated mehanism as givenin Setion 14.6. This mehanism should �nd and return the lients whih should providedata. This information must both be sent to the lient initiating video play-bak and tothe lients dispathing the data stream.103

III. Protool design 17. Paket desription
〈10, 10〉 〈20, 30〉

〈10, 50〉 〈20, 20〉

〈40, 10〉 S ?
〈10, 20〉

17.2.2 Paket: Connetion grantedProtool type: CCPShort name: CONN_GRANTEDPaket type, ation type: 〈10,10〉Usage: This paket is used to respond to a onnetion request from a lient. The serverdetermines whether the lient is allowed onnetion and responds with this paket ifonnetion is granted. The paket furthermore ontains information spei� to thevideo requested by the lient.Payload: The payload of the paket ontains a total of 310 bytes:

104

III. Protool design 17. Paket desriptionName Size DesriptionCLIENT_ID 8 bytes This 8-byte �eld ontains the unique lient ID gen-erated by the server. The lient ID must be storedand will serve as the identi�ation of the lient un-til disonneted.SERVER_ID 8 bytes This 8-byte �eld ontains the unique server ID or-responding to the id of the lient. This server IDmust be stored and will serve as the identi�ationof the server to the lient until it is disonneted.VIDEO_SIZE 8 bytes The total size of the video in bytes.VIDEO_LEN 4 bytes The duration of the video in milliseonds.BB_TOTAL 2 bytes Number of BBs in the video.DB_TOTAL 2 bytes Number of DBs ontained in eah BB.DB_SIZE 2 bytes Size of DBs in the video in bytes.VIDEO_HEADER_SIZE 4 bytes Minimum number of required DBs of the videobefore playbak an start initially or after a skiphas ourred.RECOM_CA_SIZE 2 bytes Number of reommended BBs in the CA, as givenin Setion 14.2. If this number is not satis�ed, thelient may be tagged as anti-soial.SPEED_LOW 2 bytes This �eld indiates the rate data should be sentwith, when throttling down the speed. The num-ber is measured in milliseonds denoting the max-imum interval at whih a data blok an be sent.The higher this number is, the lower the mini-mum speed is, sine the number illustrates howlong time should pass between eah paket trans-mission.SPEED_NORMAL 2 bytes Denotes the speed data bloks must be sent withat normal speed.SPEED_HIGH 2 bytes Denotes the speed data bloks must be sent withat high speed.SEC_TYPE 2 bytes Determines the type of seurity used.SEC_SIZE 2 bytes Determines the size of a seurity data per datablok.SKIP_DISTANCE 4 bytes The amount of milliseonds in a skip. Equals theduration of a BB.VIDEO_TITLE 256 bytes The title of the video.Payload data: The payload data �eld of this paket is empty.Logi: When a lient reeives a onnetion granted paket it may regard itself as loggedon suessfully to the server. The lient must store the ontents of the payload inan appropriate way. When the lient starts reeiving video data the protool mustnot provide the lient appliation with data until the number of data bloks given in105

III. Protool design 17. Paket desriptionVIDEO_HEADER_SIZE is available. This restrition is enfored sine many multime-dia formats demand that the start of the video is available as it ontains vital informationabout the format whih must be present before play-bak an be initiated. The ontentsof RECOM_CA_SIZE should be taken into onsideration when determining the sizeof the bu�er. If this reommended size is not available, the lient will be tagged asanti-soial and therefore has a higher risk of being disonneted. The pair of identi�a-tion keys whih are ontained in the payload must be available whenever messages areexhanged with the server.
〈10, 10〉 C void

17.2.3 Paket: Connetion deniedProtool type: CCPShort name: CONN_DENIEDPaket type, ation type: 〈10,20〉Usage: This paket is used as a ounterpart to the onnetion granted paket 〈10,10〉. Thepaket indiates that the lient ould not be onneted by the server.Payload: The payload ontains a single �eld.Name Size DesriptionDESCRIPTION 256 bytes Desription with an indiation of why the lient was notallowed to onnet.Payload data: The payload data �eld of this paket is empty.Logi: The server must respond with the onnetion denied if a lient is to be denied aess.The server may inlude a textual response indiating why this has happened. The onlyoption the lient has in this situation is to retry onnet, whih will be regarded asanother session.
〈10, 20〉 C void

106

III. Protool design 17. Paket desription17.2.4 Paket: Connetion losedProtool type: CCPShort name: CONN_CLOSEDPaket type, ation type: 〈10,30〉Usage: This paket is sent from the server to a lient, if the server deides to disonnetthe lient. The lient is not o�ered any possibility to respond, but is immediatelydisonneted from the network.Payload: The payload ontains a single �eld.Name Size DesriptionDESCRIPTION 256 bytes Desription with an indiation of why the lient has beendisonneted.Payload data: The payload data �eld of this paket is empty.Logi: One this paket is reeived from the server, the lient has de�nitively been dison-neted from the network. The lient should update its own state to disonneted. Thepaket an be sent at any given time and is therefore not neessarily a respond to arequest paket. Any respond from the lient must be ignored by the server as the lientis no longer onsidered onneted. The only option for the lient is to reonnet, butthis will be handled as a new session.
〈10, 30〉 C void

17.2.5 Paket: DisonnetProtool type: CCPShort name: DISCONNPaket type, ation type: 〈40,70〉Usage: This paket is used when the lient wishes to stop viewing the movie. One a stophas been issued the lient gets disonneted from the network and hene if it wants tostart playing the movie again, it has to login again.Payload: The payload of this paket is empty.Payload data: The payload data �eld of this paket is empty.107

III. Protool design 17. Paket desriptionLogi: Upon reeption of this paket the server needs to reloate all lients reeiving datafrom the sender of the paket. Furthermore, all lients sending data to the lient mustbe informed to stop sending data. The server must hereafter regard the lient as dison-neted and purge all information onerning the lient.
〈20, 30〉

〈40, 70〉 S 〈20, 20〉

〈10, 50〉

* **
17.3 Con�gurationThe on�guration phase on�gures the lient in regard to where it will reeive data from andto whom it must send data to. Some of the paket types used by the on�guration phase willin their payload data transport a number of elements alled STREAM_INFO. These elementsare used as information sent from the server to notify lients about the properties of a datastream. Thus, a lient will be noti�ed by the server using a STREAM_INFO entity that thelient should send data to another lient. The STREAM_INFO ontains the nature of thatdata stream, suh as whih DBs. The lient whih will reeive the data stream will be sentthe same information using the STREAM_INFO entity. Clearly, the length of this entity isvariable as some lients will send/reeive more DBs than others. This leads to the following�elds:

108

III. Protool design 17. Paket desriptionName Size DesriptionCLIENT_ID 8 bytes The lient ID �eld is used di�erently, depending on the typeof paket the STREAM_INFO is embedded in. If the paketis used to inform a lient that it must send a data streamto another lient, the lient ID identi�es the reeiver of thestream. If the paket is used to inform a lient of the natureof the data stream it should reeive, the �eld indiates thesender of the stream.CLIENT_IP 16 bytes This �eld ontains the IP-address. As with the CLIENT_IDthe �eld either ontains the IP-address from where it reeivesdata or to where it must send data, depending on whihpaket the STREAM_INFO is used in. The �eld has roomfor further extension to enable use of IPv6.CLIENT_PORT 2 bytes This �eld ontains the port number to whih data mustbe sent to the reeiver. The �eld is only used, when theSTREAM_INFO is used in paket 17.3.2.START_BB 2 bytes This �eld ontains the BB starting point in the video fromwhere the data stream should begin.START_DB 2 bytes This 2-byte �eld ontains the DB starting point in the videofrom where the data stream should begin.DB_NO 2 bytes This �eld indiates the number of DBs from eah BB, thedata stream must ontain.DB_RANGE x bytes This variable length �eld spei�es eah DB number thestream will ontain. Thus, this �eld is repeated for eah ofthe number of DBs given in the �eld DB_NO. This olletionof �elds takes up 2 bytes for eah of the spei�ed DBs. TheDBs must be transmitted in the order listed in the entity,starting with the �rst DB given in the START_DB �eld.Visually, a STREAM_INFO is presented in Figure 34.
Figure 34: The STREAM_INFO entity.17.3.1 Paket: Reeive data streamProtool type: CCPShort name: RECV_DATA_STREAM 109

III. Protool design 17. Paket desriptionPaket type, ation type: 〈10,50〉Usage: This paket ontains information about the stream of data a lient is to reeive.Whether this stream will ome from the server, a lient, or a number of lients inonjuntion with eah other will be indiated by this paket. Thus, this paket informsa lient about what data it an expet and from whom it an expet it. This paketis ounterpart to the distribute data paket in the sense that this is sent to the lientproviding the data stream.Payload: The length of the payload of this paket is variable, as the number of lients stream-ing data is variable.Name Size DesriptionCLIENT_NO 2 bytes Indiating the length of trailing data ontaining informationabout eah of the lients whih will send data.CLIENT_RANGE x bytes This variable length �eld ontains a STREAM_INFO en-tity for eah of the lients given in the �eld CLIENT_NOin the payload.Payload data: The payload data of this paket is empty.Logi: When a lient reeives a RECV_DATA_STREAM, it must prepare itself to reeivedata from the lients indiated in the paket. The reeived lient IDs should be storedin a proper way with that in mind that the IDs must be aessed every time a paketis reeived in order to validate the sender. The lient does not respond to this kind ofpaket.The sending speed of eah sending lient is impliitly reeived in this paket as thenumber of DBs reeived from a lient indiates together with the full length of the videoand the total number of BBs, the rate at whih DBs should be reeived. Upon reeption,a mehanism monitoring the speed at whih it reeives data from the lients needs tobe set up.
〈10, 50〉 C void

17.3.2 Paket: Distribute dataProtool type: CCPShort name: SND_DATA_STREAMPaket type, ation type: 〈20,20〉 110

III. Protool design 17. Paket desriptionUsage: This paket is sent to a lient in order for the lient to initiate the video stream toanother lient.Payload: The payload ontains information onerning what to stream, with what speed andto whom. More formally this is:Name Size DesriptionSTREAM_INFO x bytes This �eld ontains a STREAM_INFO entity indiating whatand to whom data must be sent.Payload data: The payload data of this paket is empty.Logi: Upon reeiving a distribute data paket the lient must immediately begin distributingdata to the lient at the speed spei�ed in the payload. This is done using the data pakettransported by the DCP.
〈20, 20〉 C 〈50, 10〉

*
17.3.3 Paket: Stop data distributionProtool type: CCPShort name: STOP_STREAMPaket type, ation type: 〈20,30〉Usage: This paket is sent from the server to a lient with information signifying that thelient must stop streaming data to a spei� lient. Information about why the streamshould be stopped has no relevane and is hene not given in the paket.Payload: The payload ontains a total of 12 bytes.Name Size DesriptionCLIENT_ID 8 bytes The �eld spei�es the lient ID of whih the reeiver muststop streaming data to.STOP_POINT_BB 2 bytes This �eld indiates the stop point in form of a BB. Thelient must stop sending data one it reahes this point.The �eld may be empty whih entails that the lient muststop streaming at one.STOP_POINT_DB 2 bytes A 2 byte �eld indiating the stop point in form of a DB,the �eld is used together with the �eld above.111

III. Protool design 17. Paket desriptionPayload data: The payload data of this paket is empty.Logi: One this paket is reeived by a lient it must stop streaming data to the spei�edlient. If no stop point is de�ned, the lient must stop streaming data immediately.Otherwise, the lient must send data until the given stop point is reahed. The reeptionof this paket does not trigger any respond, but it may stop transmission of data pakets.
〈20, 30〉 C void

17.4 Streaming17.4.1 Paket: DataProtool type: DCPShort name: DATAPaket type, ation type: 〈50,10〉Usage: This paket is used to send a DB to a lient.Payload: The payload of this paket ontains a total of 5 bytes:Name Size DesriptionBLOCK_BB 2 byte The �eld indiates the BB from whih the urrent DB is on-tained.BLOCK_DB 2 byte The �eld indiates the DB of the BB given in the �eldBLOCK_BB ontained in the paket.SPEED_LEVEL 1 byte The 1 byte �eld indiates the speed at whih the data streamis sent from the lient. The value 10 denotes low, 20 denotesnormal and 30 denotes high.Payload data: The payload data of this paket ontains the video data embedded in thepaket:Name Size DesriptionDATA x byte This �eld denotes the data ontained in the fragment of the video givenin the �elds BLOCK_BB and BLOCK_DB in the payload.
112

III. Protool design 17. Paket desriptionLogi: Upon reeival of this paket, the reeiver must hek if it needs the data ontained inthe paket. If the paket is reeived too late, e.g. the play pointer has moved beyond thepoint in the video where the data belongs it should be disarded. Likewise if the lientis already in possession of the data or it does not need it, the data should be disarded.Otherwise the data should be stored in the bu�er.Upon reeival, the reeiver may send a paket indiating that data was reeived out-of-order. Thus, the sender assumes that a paket was lost underway and dispathes arequest for resending the lost paket.
void? 〈60, 10〉

〈50, 10〉 SR ? 〈60, 20〉

void

17.4.2 Paket: Data not availableProtool type: DCPShort name: NO_DATAPaket type, ation type: 〈50,20〉Usage: This paket is sent by the stream sender to inform the stream reeiver that the streamsender does not possess a ertain DB requested by the stream reeiver.Payload: A total of 8 bytes.
113

III. Protool design 17. Paket desriptionName Size DesriptionREQ_BLOCK_BB 2 bytes The �eld indiates the BB whih annot be found at thesender.REQ_BLOCK_DB 2 bytes The �eld indiates the DB whih annot be found at thesender.NEXT_BLOCK_BB 2 bytes This �eld indiates the next BB available following theblok given in the �eld REQ_BLOCK_BB.NEXT_BLOCK_DB 2 bytes This �eld indiates the next BB available following theblok given in the �eld REQ_BLOCK_DB.Payload data: The payload data of this paket is empty.Logi: If a lient reeives this paket it must deide if data ontained between the requestedblok and the next blok an be dispensed with. If this is not the ase, data must eitherbe retrieved from the server by requesting emergeny resending of the data by sendinga request bakup data paket.
〈50, 20〉 SR 〈40, 100〉

17.4.3 Paket: End of dataProtool type: DCPShort name: NO_MORE_DATAPaket type, ation type: 〈50,30〉Usage: This paket is used by the stream sender to inform the stream reeiver that it doesnot have any more of the data whih it have been asked to send.Payload: The payload of this paket is empty.Payload data: The payload data of this paket is empty.Logi: When this paket is reeived the lient knows that it no longer an reeive the datathat it needs from the data sender. The reeiver hereafter informs the server by sendingan error paket indiating that data reeival has been brough to a standstill.
〈50, 30〉 SR 〈40, 80〉114

III. Protool design 17. Paket desription17.4.4 Paket: Request data resendProtool type: DCPShort name: RESEND_DATAPaket type, ation type: 〈60,10〉Usage: This paket is used by the reeiver of video data to ask the sender to resend a paketwhih was lost during transport.Payload: A total of 4 bytes.Name Size DesriptionBLOCK_BB 2 byte This �eld indiates the BB of the blok being requested for re-transmission.BLOCK_DB 2 byte This �eld indiates the DB of the blok being requested for re-transmission.Payload data: The payload data of this paket is empty.Logi: Upon reeption of this paket the lient must send the ontents of the data blokontained in the paket. The lient should send this paket as the next in line, be-fore resuming the data stream. Furthermore, the sending speed should be inreased tomaximum rate to ensure that the bu�er of the reeiver is not starved.
〈50, 10〉

〈60, 10〉 SS ?
〈50, 20〉

17.4.5 Paket: Adjust speedProtool type: DCPShort name: ADJUST_SPEEDPaket type, ation type: 〈60,20〉 115

III. Protool design 17. Paket desriptionUsage: This paket is used by the reeiver of video data to request the sender to adjust thestream aording to the request.Payload: A total of 1 byte.Name Size DesriptionSPEED_LEVEL 1 byte The �eld ontains the value of 10, 20 or 30 whih indiates 10for low, 20 for normal and 30 for high speed.Payload data: The payload data of this paket is empty.Logi: Upon reeption of this paket the sending speed of onseutive data pakets shouldbe inreased/dereased to the value ontained in the SPEED_LEVEL �eld.
〈60, 20〉 SS void

17.4.6 Paket: Error reeiving dataProtool type: CCPShort name: STREAM_ERRORPaket type, ation type: 〈40,80〉Usage: This paket is used to notify the server of a speed failure when data is reeived ata di�erent speed than what is advertised. Thus, if a lient is not reeiving data fromanother lient at the advertised speed, the lient must dispath this paket to the server.Payload: A total of 12 bytes:Name Size DesriptionCLIENT_ID 8 bytes This �eld ontains the lient ID of the failing lient.RATE 2 bytes A rate alulated by the lient indiating the speed of whih datais being reeived from the failing lient. This is alulated as theaverage speed between reeival of eah data blok. 0 indiatesthat no data is being reeived as the sender of data ould notsatisfy the request. Values above are treated as the number ofmilliseonds between onseutive data reeival.BLOCK_NO 2 bytes This �eld ontains information about the BB in the video wherethe error has ourred.116

III. Protool design 17. Paket desriptionPayload data: The payload data of this paket is empty.Logi: Upon reeption of this paket the server needs to determine whether the lient sendingthe paket or the lient reported in the paket is ausing the error. Aordingly the servermay hoose to reloate or drop any or all of the a�eted lients.
〈20, 30〉

〈40, 80〉 S 〈20, 20〉

〈10, 50〉

* **
17.4.7 Paket: Request bakup dataProtool type: CCPShort name: REQ_BACKUP_DATAPaket type, ation type: 〈40,100〉Usage: This paket is used by a lient to inform the server that it needs a spei� part ofthe video stream.Payload: The number of bytes ontained in the payload of this paket is variable:Name Size DesriptionBLOCK_BB 2 bytes This �eld indiates the BB from whih the lient is request-ing data.NUMBER_DB 2 bytes This �eld ontains the number of DBs requested from thegiven BB.DBS n ∗ 2 bytes The �eld ontains the DBs whih the lient wishes to re-eive.Payload data: The payload data of this paket is empty.Logi: Upon reeption it is purely up to the server how the request is handled. Firstly, theserver may ignore the request. This may not be a good solution but it an be neessaryif the server is very busy. Seondly, the server may send one or more of the requestedDBs to the lient. A third solution is to �nd a new lient whih should send data to thelient. This option ould be used if a lient ontinues to ask for data whih should have117

III. Protool design 17. Paket desriptionbeen reeived from another lient. If the lient keeps asking for data, the server may inthe end disonnet the lient.
〈50, 10〉 〈20, 20〉 〈10, 30〉

〈40, 100〉 S ? ?
〈20, 30〉 〈10, 50〉 void

* * **
17.5 Interation17.5.1 Paket: Pause video playerProtool type: CCPShort name: INTERACT_PAUSEPaket type, ation type: 〈40,30〉Usage: This paket is sent when the lient wishes to pause the video. Data distributionfrom/to other lients ontinues exept no data is returned to the lient appliation.One the bu�er is full, the lient noti�es the server that pakets will now be droppedand sends a pause stream paket.Payload: The payload ontains 1 �eld.Name Size DesriptionPP 2 bytes Indiating the urrent play pointer of the lient.Payload data: The payload data of this paket is empty.Logi: Upon reeiving this paket, the server must �ag the lient as paused. Furthermore, theserver stops onneting more lients to the pausing lient. Thus, the lients onnetedto the pausing lient will ontinue to reeive data until the lient's bu�er runs full.Sending this paket must only be done if the server regards the lient as in runningstate. Otherwise the paket will be disarded by the server.

118

III. Protool design 17. Paket desription
〈40, 30〉 S void

17.5.2 Paket: Pause streamProtool type: CCPShort name: INTERACT_PAUSE_STREAMPaket type, ation type: 〈40,40〉Usage: This paket indiates to the server that the lient has run out of bu�er spae whileolleting data in paused state. If this ours, the lient must send this paket to stopother lients from sending data whih will otherwise be disarded.Payload: The payload of this paket is empty.Payload data: The payload data of this paket is empty.Logi: Upon reeption of this paket the server needs to reloate all lients reeiving datafrom the sender of the paket. Furthermore, all lients sending data to the lient mustbe informed to stop sending data. Sending this paket must not be done unless the lienthas previously sent a pause video player paket to set the lient in paused state. If thishas not been done, the server disards the paket as invalid. This paket then informsthe server that the lient has been paused long enough to �ll its bu�er and all lientsshould stop sending data to the lient. Apart from this, the lient may soon run out ofdata whih should be sent to other lients, and these lients (if any) may be reloated.
〈20, 30〉

〈40, 40〉 S 〈20, 20〉

〈10, 50〉

* **
17.5.3 Paket: Resume streamProtool type: CCP 119

III. Protool design 17. Paket desriptionShort name: INTERACT_RESUMEPaket type, ation type: 〈40,50〉Usage: This paket identi�es that a lient wishes to resume the video after a pause has beenarried out.Payload: A total of 2 bytes:Name Size DesriptionTARGET_BLOCK 2 bytes Indiating from whih BB the lient wishes to reeive data.Payload data: The payload data of this paket is empty.Logi: Upon reeiving this paket, the server must determine whether the lient needs tobe reloated. This will only be neessary if the bu�er of the lient has run full and afollowing INTERACT_PAUSE_STREAM paket has been transmitted. In this event,the lient will have stopped reeiving data and needs to be reloated to a new spot inthe network from where it an reeive data. In this event the lient will provide thenext blok whih needs to be �lled in the payload of the paket to identify what datathe lient needs to reeive. If no INTERACT_PAUSE_STREAM has been transmittedthis �eld must be empty as the lient still reeives data and has no need for reloation.Thus, the server only needs to update its internal representation of the lient and markit as playing.
void 〈20, 20〉 void

〈40, 50〉 S ? ?
〈10, 50〉 〈10, 30〉

*
17.5.4 Paket: SkipProtool type: CCPShort name: INTERACT_SKIPPaket type, ation type: 〈40,60〉Usage: This paket is used when the lient performs a skip.120

III. Protool design 17. Paket desriptionPayload: A total of 2 bytes:Name Size DesriptionTARGET_BLOCK 2 bytes A �eld ontaining the BB to whih the lient wishes toskip.SKIP_TYPE 1 byte This �eld indiates whether the skip moves the PP outsidethe bu�er. Thus, zero indiates a skip inside the bu�er.All other values are treated as a skip outside the bu�er.Payload data: The payload data of this paket is empty.Logi: As desribed in Setion 14.2 three di�erent kinds of skips an be performed. This aneither be a skip forward inside the bu�er, a skip bakwards inside the bu�er, or a skipoutside the bu�er.If an INTERACT_SKIP paket is reeived from a lient that is not in playing state,the paket must be disarded. Sending this paket will result in the server either doingnothing or foring the lient to be reloated.
void 〈20, 20〉

〈40, 60〉 S ? 〈10, 50〉

〈20, 30〉

* **
17.6 Status17.6.1 Paket: Request statusProtool type: CCPShort name: STATUS_REQPaket type, ation type: 〈20,10〉Usage: This paket is sent from the server to request a lient of its urrent status. The paketis furthermore used as an 'i am alive' request to whih the lient must respond.Payload: The payload ontains a single �eld:121

III. Protool design 17. Paket desriptionName Size DesriptionSTATUS_RESP_INTERVAL 4 bytes Indiating the interval at whih the lient musttransmit the STATUS_RESP paket. The �elddenotes this interval in milliseonds.Payload data: The payload data of this paket is empty.Logi: A status request paket an be sent from the server at any time. It is ompletely upto the server to probe the lient for its status. Upon reeival of this paket, the lientmust update its relevant timers to re�et the interval given in the paket. If a statusresponse paket is not transmitted aording to this interval, the lient may eventuallybe disonneted by the server.There is no limit in terms of how many or with what interval this paket an be reeived.Neither are there any spei� number of attempts whih the server should ask the lientfor an answer before it is disonneted. Beause of this it is very important for the lientto respond rapidly in order to ensure its onnetion.
〈20, 10〉 C 〈30, 10〉

17.6.2 Paket: Status respondProtool type: CCPShort name: STATUS_RESPPaket type, ation type: 〈30,10〉Usage: This paket is used to notify the server of the present status of a lient. Thus, it isboth used as a respond to a status request paket, dispathed by the server, but also asa paket sent from the lient at any time.Payload: The payload of this paket ontains a number of �elds of a variable length:

122

III. Protool design 17. Paket desriptionName Size DesriptionPLAY_BLOCK 2 bytes This �eld ontains the BB holding the PP of the lientat the time of transmission.CA_SIZE 2 bytes A �eld ontaining the size of the lient's present Con-net Area measured in BBs as desribed in Setion 14.2.AA_SIZE 2 bytes A �eld ontaining the size of the lient's present Ab-sorption Area measured in BBs as desribed in Setion14.2.RA_SIZE 2 bytes A �eld ontaining the size of the lient's present Re-served Area measured in BBs as desribed in Setion14.2.RECV_BLOCK_BB 2 bytes This �eld ontains the last reeived BB whih lies far-thest o� the play blok.RECV_BLOCK_DB 2 bytes This �eld ontains the last reeived DB whih lies far-thest o� the play blok.BUFFER_CONTENT x bytes This variable length �eld ontains the bu�er numbersontained in the bu�er of the lients starting at theplay blok. Eah BB is represented by a 2-byte �eldindiating the video BB number ontained in the �eld.Thus, the total size of the �eld is 2 times the total bu�ersize in BBs.Payload data: The payload data of this paket is empty.Logi: One the server reeives this paket it must store these data. The ontents of thepaket enables the lient to alter the size and distribution of its bu�er during play-bakif neessary. In this initial version of the protool the server will however assume thatthe lient does not alter this.Upon reeival of a status response paket the server must update its internal data-strutures to represent the urrent state of the lient. The server an alulate the totalbu�er size of the lient by adding the �elds CA_SIZE, AA_SIZE and RA_SIZE. Fromthese values the server must alulate the portion of the lient's CA whih may be usedfor attahing lients to, as desribed in Setion 14.2. This will be alulated to the lowestand the highest BB number ontained in the bu�er whih are valid for onnetion.
〈30, 10〉 S void

123

III. Protool design 17. Paket desription17.7 Round-trip time alulation17.7.1 Paket: PingProtool type: DCPShort name: PINGPaket type, ation type: 〈60,30〉Usage: This paket is used to initiate the round-trip time alulation proedure.Payload: The payload of this paket ontains 8 byte.Name Size DesriptionSEND_TIME 8 bytes Indiates the time at whih the paket has been sent. This num-ber must be given in milliseonds sine some prede�ned startingpoint. Whether this is given in unix time or the beginning ofthe session has no relevane. However, it is important that thissame starting point is used whenever pakets are timestamped.Payload data: The payload data of this paket is empty.Logi: Upon reeival of this paket the reeiver must respond with a pong paket.
〈60, 30〉 SS 〈50, 40〉

17.7.2 Paket: PongProtool type: DCPShort name: PONGPaket type, ation type: 〈50,40〉Usage: This paket is used as respond in the round-trip time alulation proedure.Payload: A total of 16 bytes:
124

III. Protool design 17. Paket desriptionName Size DesriptionSEND_TIME 8 bytes This �eld ontains the time whih was given in the pingpaket for whih the pong paket is a respond to.RECEIVE_TIME 8 bytes This �eld ontains a timestamp given in milliseonds indi-ating the time of reeival of the orresponding ping paket.The starting point of this timestamp does not need to bein onordane with the starting point used by the senderof the ping paket whih the pong paket at hand is a re-spond to. However, are should be taken to ensure thatthe same starting point is used to timestamp all onseutivedata pakets.Payload data: The payload data of this paket is empty.Logi: Upon reeival of this paket, the round-trip time between the two lients should bealulated. Hereafter a round trip time should be maintained using the method desribedin Setion 14.4.
〈50, 40〉 SR void

17.8 Seurity17.8.1 Paket: Seurity dataProtool type: CCPShort name: SEC_DATAPaket type, ation type: 〈10,60〉Usage: This paket is used by the server to send seurity data to a lient.Payload: The payload ontains one �eld:Name Size DesriptionBB 2 bytes A number indiating whih BB the ontents of the paket is related to.Payload data: The payload data ontains the data related to the seurity mehanisms usedby the server and lient appliations. 125

III. Protool design 17. Paket desriptionName Size DesriptionDATA x bytes Contains the seurity data.Logi: Upon reeival of this paket the lient must store the info given in the paket. Thedata ontained in the payload data must be stored until the lient appliation requeststhese.
〈10, 60〉 C void

126

III. Protool design 18. Timers18 TimersAn analysis of the protool reveals that several situations may our where the use of timersare important. These timers are used to enable a form of synhronization the server andlients in between.
• The funtionality of the server learly relies upon the ability of the lient to send statusupdates at a regular interval. As already desribed in Setion 16 the server deidesan interval at whih the lients must send a new status update. Whether this intervalis maintained needs to be monitored by the server. This may be done using a timerindiating that when the timer runs out, a status update should have been reeivedfrom some lient.
• As the time ritial nature of video streaming requires data to be reeived at a ontinuousrate, there is an evident need to monitor whether data has been reeived at the requiredspeed. This will need to be done using a timer monitoring all inoming DCP onnetions.This timer will be used in di�erent situations:Request speed hange: If the lient requests the sender to dispath data at anotherrate than the one pakets are reeived at, the lient must wait for the hanges totake plae. Thus, the line of pakets being delivered must be emptied for the speedhange to beome e�etive. The lient must therefore utilize the knowledge aboutthe round-trip time between the lients before issuing a new speed hange request.Request resending of data: Performing request for missing data there are two timingissues to onsider. First it should be deteted when data is missing and seondlywhen the request for resend has gone lost. The �rst value is a parameter whihshould be adjustable from lient to lient and hene may be set through the lientinterfae. Seondly the lient should utilize knowledge about round-trip time beforeissuing a new resend request.
• As opposed to the item above, a lient must also use a timer to dispath pakets at aorret rate, when streaming video data to other lients.

127

III. Protool design 19. Interfae19 InterfaeTo enable appliations to make use of the protool, an interfae must be provided. Thisinterfae must arry ommands dispathed from the appliations and be aordingly handledby the protool.The server interfae should provide the following mehanisms:
• Provide information regarding videos to the protool.
• Authorize new onneting lients and provide the bandwidth available to the lient.
• The server protool must be able to request video data of the server appliation whih,in turn, must provide this to the protool.
• The server protool must be able to request seurity data of the server appliation whih,in turn must provide this to the protool.
• The server appliation must be able to request status from the server protool.Client-side, the interfae must provide the following mehanisms:
• The lient protool must provide the lient appliation with video data when available.
• The lient protool must handle video interation requests from the lient appliation.
• Seurity data must be provided to the lient appliation possibly in the same manneras in the ase of video data.The interfae is depited in Figure 35.

Figure 35: Interfae between protool and appliations.
128

IV
Chapter IVProtool implementation

This hapter ontains a desription of the implementation of the protool. This will be usedwhen implementing the protool. Thus, the implementation skethes an implementation ofthe main funtionality of the protool.

129

IV. Protool implementation 20. Fundamentals20 FundamentalsEvidently, the protool needs to be implemented as a multithreaded library. The protoolould be implemented as a single passive library using only the thread of the appliationinstantiating the protool. This would however, lead to many inonvenienes, as this onethread would need to arry out many separate tasks. As stated in Setion 9.2 the number andloation of these threads is the main issue when implementing multithreaded appliations.To simplify the implementation, the solution is divided into a number of main omponents,eah providing an interfae aessible by the other. Some omponents need to interat witheah other and hene when reated a referene to the other omponents whih it must knowabout must be passed to it. The threads will of ourse at as the driving fore among theseomponents and they will be implemented with a minimum amount of ode to obtain entral-izing all logi in the omponents. This way a omponent an be easily hanged as long as itretains the interfae.To simplify the onstrution of these omponents, C++ used as programming language withan objetive approah is hosen. This may ome with a small prie regarding performanebut enables us to struture the implementation better dividing the di�erent tasks of theimplementation proess. Communiation between the protool instanes running on di�erenthosts will use the soket API.The protool design an in some ases be found ambiguous as it does not always de�ne howthe implementation of the server side protool should at. Thus, the protool design doesnot speify if the server should remain passive until an error ours, or antiipate events andat before the error ours. The implementation ould monitor all lients and from statistialmaterial at when some ation ours, as this normally would trigger an error later on. Tokeep the implementation simple, we hoose only to at only when an error or event ours.20.1 Main omponentsAs both a server-side protool and a lient-side protool will be implemented, identifying themain omponents must be done with are to enable reuse of the omponents on both sides.Thus, tasks whih are shared by both sides of the protool an bene�t from this.Pakets: To failitate ommuniation between the omponents, a standard for exhangingdata must be de�ned. As the interfaes of the omponents may be omplex, due tothe large amount of data whih may �ow between the omponents, this standard mustsimplify the interfaes. As data is sent and reeived as paket entities the nodes inbetween, data �owing from the network layer is represented in a paket. Thus, trans-porting pakets through the interfaes of the omponents is simple. The protool willtherefore embed pakets in a paket omponent whih an easily be transported betweenthe omponents of the protool.Stream Engine: Evidently, streaming of data, either from a lient or from the server will130

IV. Protool implementation 20. Fundamentalsbe done similarly. The di�erene between the server and a lient is simply that lientan stream only one video to a number of lients while the server an stream a numberof di�erent videos to a number of lients. The stream engine will therefore be basedupon streaming of one video, enouraging the need for one streaming entity per videodispathed from the server. This does in fat make sense as streaming of di�erent videosan be seen as having well de�ned boundaries. Hene, a lient will use a single instaneof the stream engine entity, while the server will use one per video distributed by theserver.Data ontainer: Along with a number of streaming engines, the protool will require someform of bu�ering mehanism. This data storage will work di�erently depending uponthe type of protool instane. This does in fat desribe the main di�erene betweenthe server and lient. Thus, a lient stores data whih has been reeived from anotherlient, while the server has all data available through the interfae, see Setion 19, tothe server appliation. As the data ontainer used by the lient side, alled the bu�er,is a entral part of the protool design it has been thoroughly desribed in Setion 14.2.Opposed to this, the server side protool also needs some form of data storage. Thismay ome as a surprise, as data will always be available to the server. But as the serverprotool annot rely upon ahing all data transferred through the interfae some formof data ahe must be implemented. Contrary to the lient-side bu�er, the server-sidedata ontainer, alled data ahe, has not been touhed yet, as the design of the protooldoes not state anything onerning this.As the server will serve many di�erent kinds of videos, the properties of the ontent storedin the data ahe will aordingly be di�erent. Thus, storing data ahed for di�erentvideos will add to the omplexity of the data ahe. As already stated, streaming ofdi�erent videos are di�erent tasks therefore one data ahe will be used per streamengine on the server.Appliation Task Queue: As the server-side protool needs to be servied by the serverappliation aessing data, validating login requests et. the protool needs to be ableto issue tasks for the appliation to perform. Sine the interation between the protooland the appliation involves a number of threads aessing the same data, a queue ofsome kind is needed server-side enqueueing these tasks for the appliation.Inoming Paket Queue: The protool needs the ability to reeive a high number of paketsontinuously. This must be done at a high rate to ensure that all data reeived on thesoket is read and nothing is lost due to small operating system bu�ers et. Thereforethe pakets must be read and pushed into a paket queue.Transport handler: To hide the omplexity of the underlying operating system dependentnetwork funtionality, a transport handler will be implemented. This transport handlerwill wrap the soket layer providing only a simple interfae to send or reeive datathrough. Thus, the omponent will be exhangeable, should the implementation beused in an environment not supporting the soket API. The omponent will be usedon the server-side and on the lient-side, as sending and reeiving data will be handledidentially.Data bank: The protool needs a data struture to hold various information regarding on-neted lients, reeival speed and video harateristis. For this purpose, the protool131

IV. Protool implementation 20. Fundamentalswill use a data bank omponent used both on the server and protool side. On the serverside this data bank will serve to ontain the logial appearane of the network and on-tain all ruial information about eah lient. On the lient side, the data bank will onlyontain information about lients sending and reeiving data to/from the lient. As theserver an funtion as a lient the server will of ourse ontain information about lientsreeiving data from the server.Logi lient/server: Both the lient and the server side of the protool need to embedspeial logi whih is foused on either the server or the lient. The server logi needsa method to deide whih lient (or server) should stream data to a new or reloatedlient. This method will be desribed separately in Setion 22.Gluing the omponents together is best desribed visually. How the server is organized istherefore depited in Figure 36.

Figure 36: Main omponents in the server.Pakets are reeived and sent using the transport handler omponent, whih handles therepresentation of data as it is understood by the soket layer. Inoming pakets are enqueuedin the paket queue omponent and aordingly distributed to the logi whih ontrols thestream engines. The appliation task queue is �lled by the stream engines and the logi, andis emptied by the server appliation through the interfae de�ned in Setion 19.The lient is presented in Figure 37.
132

IV. Protool implementation 20. Fundamentals

Figure 37: Main omponents in the lient.The main di�erenes between the server and the lient are:
• The number of stream engines di�ers from the lient to the server. Where the serveruses multiple (one for eah unique video) the lient always only uses one.
• The server uses a ahe where the lient uses a bu�er.
• The lient does not need to have an appliation queue, sine it does not need to dispathrequests to the appliation. The lient appliation only needs to reeive data and doesnot need to deliver anything bak to the protool exept for user interations whih arehandled by the logi.
• The server needs to hold more information in the data bank regarding all lients whihare onneted where the lient only needs information about the lients to whom it mustsend video data.20.2 Memory managementHandling the amount of data inurred when streaming video data, alls for avoiding dataopying as muh as possible. Needless to say, this restrition only applies to video data, asontrol data only onstitute a small amount of the total data. Thus, minimizing the amount ofvideo data being opied is a must. This is espeially true for the server whih may distributea vast amount of data.As a basi rule the server protool must not opy video data at all. As the server appliationhas the role of reading data from dis et. and supplying it to the protool the memory mustbe alloated by the server appliation and passed through the interfae as a pointer. Thismeans that all data whih is sent by the protool will be held by the server appliation and isonly represented by a pointer to the protool. Thus, the protool needs to be able to notifythe appliation when it is done using the data.133

IV. Protool implementation 20. FundamentalsPassing video data to the lient appliation from the protool works in a di�erent way. Here,opying the memory between the protool and the appliation is possible, as the amount ofmemory transferred to the lient appliation does not have the same size as on the server.Thus, the lient appliation alloates a segment of memory and aesses the protool, whihin turn opies data from the bu�er into the memory segment.At the bottom of the protool, the soket layer will be supplied a pointer to an amount of dataalloated by the protool, and aordingly �lled by the soket layer. This piee of memory willbe represented by a pointer whih will be transported between the various omponents. Onethe protool is done using the data it must dealloate it. Dealloating the memory is thusnot up to the transport handler, as the data is passed to another omponent, even thoughthe transport handler has the job of alloating it. This is the ase both for the server sideprotool and the lient side protool.20.3 Thread designAs already stated, the threads will work as glue between the omponents. Thus, a threadwill for example extrat data from the transport handler and push it to the paket queuewith as little logi as possible. Only the ode whih handles the �ow of data is plaed in thethreads meaning that only the ode whih onnets the di�erent omponents is plaed here.This design has the great advantage that eah of the omponents an be tested and debuggedseparately without having to work with multiple threads and only the �nal assembling willinvolve many threads.

134

IV. Protool implementation 21. Class design21 Class designThis setion ontains a detailed desription of the omponents desribed in Setion 20. Eahomponent will be presented using a UML lass diagram. These diagrams will only displaymember variables and member proedures relevant to the understanding of the implementa-tion. Private members are also presented where it leads to easier understanding.As previously stated the omponents will be reused by both lient and server-side to the extentthat it is possible. This setion will walk through the details of the omponents, and whenneessary desribe the di�erenes between the server and the lient. Furthermore a desriptionof the memory management of eah omponent will be presented.21.1 PaketsAll the paket types desribed in Setion 17 are wrapped in a paket lass. This paket lassis inherited to a number of di�erent lasses, eah representing one of the pakets. Data whihis shared between all paket types are de�ned in the base lass, limited to only the ontents ofthe paket header. Data spei� to eah of the paket types is private to eah of the spei�inherited paket lasses.Internally, data is represented in network byte order, as desribed in Setion 6.6. Thus, allinformation must be onverted to host byte order when aessed by the protool. This givesthe advantage, that when the paket is dispathed from the transport handler, no onversionand no memory opy is needed. Likewise, when data is reeived from the network, data issimply embedded in the paket without any network-to-host data onversion.

135

IV. Protool implementation 21. Class design
packet

header: void*
payload: void*
payload_data: void*

packet(packet_type: int, action_type: int, recv_id: u64, snd_id: u64): packet*
packet(void* header, void* payload, u32 p_len, void* payload_data, u32 p_d_len) : packet*
get_header(): void*
get_payload(): void*

packet_xxxx
xxxx

packet_xxxx
xxx packet_interact_pause

bb: u16

packet_interact_pause(recv_id : u64, snd_id : u64) : packet_interact_pause
set_bb(bb : u16) : void
get_bb() : u16packet_conn_req

video_id: u64
username: char*
password: char*

packet_conn_req(recv_id : u64, snd_id : u64) : packet_conn_req
set_video_id(video_id : u64) : void
get_video_id() : u64
set_username(username : char*) : void
get_username() : char*
set_password(password : char*) : void
get_password() : char*

packet_data
bb: u16

packet_data(recv_id : u64, snd_id : u64) : packet_data
set_bb(bb : u16) : void
get_db() : u16
set_db(db : u16) : void
get_db() : u16
set_speed_level(speed_level : u8) : void
get_speed_level() : u8
set_data(data : void*, len : int) : void
get_data(len : &int) : void*Figure 38: Class design of the pakets.21.1.1 Memory managementAs indiated by Figure 38 the paket ontains three types of data: A header and a payloadwhih are present in all pakets and a payload data whih is only present in a subset of thepakets. The two �rst entities are alloated by the paket one it is instantiated while thethird �eld is set by a pointer to an already alloated area. The advantage of this is that eahof the entities an be dealloated without impat on the others.

136

IV. Protool implementation 21. Class design21.2 Transport handlerThis omponent is embedded in a single transport_handler lass utilizing a library wrappingthe soket API. This library is a simple extension of the soket API whih raises an exeptionwhen an error ours.The transport_handler lass has member funtions used for sending data through eitherCCP or DCP. These funtions take as argument a paket and send the data embedded in thepaket via TCP or UDP. Reeiving data is done via a single member funtion returning the�rst paket available on all hannels regardless of the underlying transport protool. Data isreturned as a paket.
transport_handler

socket sd

transport_handler(local_DCP_port : u16, local_CCP_port : u16) : transport_handler
transport_handler(l_DCP_port : u16, l_CCP_port : u16, r_CCP_port : u16, r_CCP_ip : char*) : transport_handler
initialize() : void
send_DCP(pack : packet*, client client_address*) : bool
send_CCP(pack : packet*, client_id u64) : bool
close_CCP_connection(client_id u64) : void
receive(pack packet*) : u64Figure 39: Class design of the transport handler omponent.The di�erene between the lient-side and the server-side transport_handler, is only theonstrutor of the lass whih takes di�erent arguments. Speial to the transport_handleris, that the lass generates the lient id of new onneting lients on the server side. This is dueto the fat that the lient must be assigned a soket desriptor before the server appliationhas atually granted a onnetion. If the server appliation rejets the lient, the protoolneeds to be able to lose the TCP onnetion by using the lient id.21.2.1 Memory managementSending data through the transport_handler is done without the lass interfering with dataontained in the paket. Thus, the aller of the send proedure must dealloate the paketas aording to Setion 21.1.1.Reeiving pakets is di�erent. Upon reeption of a paket the lass will alloate the neededamount of memory in three piees, one for eah of the three �elds in the paket.21.3 Inoming paket queueIn order to ontrol the amount of memory used by the lient protool, the paket queue will beimplemented using a limit whih ontrols how muh data an be stored in the queue. Aess137

IV. Protool implementation 21. Class designto the queue will be ontrolled by a mutex whih ensure mutual exlusion and by a ountingsemaphore whih will fore the thread retrieving pakets from the queue to wait if the queueis empty.
packet_queue

q : queue

packet_queue(max_size : int) : packet_queue
insert_packet(p : packet*) : void
get_next_packet(): packet*Figure 40: Class design of the paket queue.21.3.1 Memory managementData inserted into the queue is simply a pointer to the reeived paket alloated by thetransport_handler. Hene, no memory is opied during insert and retrieval.21.4 Data bankThe data bank omponent ontains all information needed in relation to lients, their apaity,and the properties of the stream they are reeiving. Hene, the data bank will onstitutea entral point of the implementation, as many omponents will need to aess the dataontained herein.The data bank di�ers from the lient version of the protool to the server version on twodistint points.1. The lient needs information about all other lients urrently attahed to the lient inorder to stream data orretly.2. The server data bank needs information regarding to all onneted lients.Beause of these di�erenes the data bank is divided in two di�erent omponents. As theserver must funtion as a lient in regard to video data dispathing et. all sub-omponentsinluded in the lient data bank, will also be part of the server data bank.21.4.1 Data bank - ClientThe data_bank_lient needs to ontain information about all lients to whom it shouldstream data. The data_bank must have a way of identifying to whom and when the next datapaket should be dispathed. Thus, the stream_engine will use this faility to deide whatdata should be sent next. 138

IV. Protool implementation 21. Class designThe data_bank_lient should also keep trak of where data should be reeived from andwith what rate data must be reeived. Hene the data_bank_lient must ontinuously keeptrak of the time interval in whih data pakets are reeived.
data_bank_client

st : stream_table

data_bank_client() : data_bank_client
initialize(pack: packet_conn_granted*) : void
set_recv_table(pack : packet_recv_data_stream*) : void
add_stream(pack : packet_snd_data_stream*) : void
stop_stream(pack : packet_stop_stream*) : void
resend_block(client_id : u64, BB : u16, DB : u16) : void
get_next_receiver(video_id : u64, client_id : u64&, wait_time : int&, next_bb : u16&, next_db : u16&, ...)

stream_table
si: map<client_id, stream_info>
wait_time : map<system_time, stream_info>

stream_table() : stream_table*
initialize(pack : packet_conn_granted*) : void
add_stream(pack : packet_snd_data_stream*, min : int, norm : int, max : int) : void
stop_stream(pack : packet_stop_stream*) : void
get_next_receiver(client_id : u64&, wait_time : int&, u16& next_bb, u16& next_db, ...)
resend_block(client_id : u64, BB : u16, DB : u16) : bool

stream_info
last_send_time : system_time
time : system_time
pack : packet_snd_data_stream*
next_buffer_block : u16
next_data_block : u16
resend_queue : queue

stream_info(pack : packet_snd_data_stream*, min : int, norm : int, max : int)
get_next_block(BB : u16&, DB : u16&, speed : speed_level&) : bool
add_resend_block(BB : u16, DB : u16) : void
get_client_id() : u64
set_stop_point(BB : u16, DB : u16) : void
get_stop_point(BB : u16&, DB : u16&) : void
set_send_time(time : system_time) : voidFigure 41: Class design of the lient data bank.Internally, the data_bank_lient is strutured using an instane of the stream_table lassutilizing a number of stream_info instanes eah representing the stream of data whih mustbe sent to a lient given in the stream_info instane. If the nature of this stream hanges, e.g..the speed is hanged, or the distribution of data bloks hanges, the stream_info instane issimply hanged by setting the paket sent from the server.

139

IV. Protool implementation 21. Class design21.4.2 Data bank - ServerThe server-side data bank will be strutured using a table ontaining a number of lient_infoinstanes, eah ontaining information related to any onneted lient. Updating this infor-mation is simply done by handling the lient_table a status paket when this is reeivedby the server. As with the lient-side data bank the lass stream_table funtions similarlyby holding a number of stream_info entities. When the server hanges the harateristisof the data stream dispathed to the lient identi�ed by the stream_info, this is simplydone by handling the SND_DATA_STREAM paket, as desribed in Setion 17.3.2, to thestream_info lass whih will update itself aordingly.

140

IV. Protool implementation 21. Class design
data_bank_server

st : stream_table

data_bank_server() : data_bank_server
initialize(pack: packet_conn_granted*) : void
set_recv_table(pack : packet_recv_data_stream*) : void
add_stream(pack : packet_snd_data_stream*) : void
stop_stream(pack : packet_stop_stream*) : void
resend_block(client_id : u64, BB : u16, DB : u16) : void
get_next_receiver(video_id : u64, client_id : u64&, wait_time : int&, next_bb : u16&, next_db : u16&, ...)

stream_table
si: map<client_id, stream_info>
wait_time : map<system_time, stream_info>

stream_table() : stream_table*
initialize(pack : packet_conn_granted*) : void
add_stream(pack : packet_snd_data_stream*, min : int, norm : int, max : int) : void
stop_stream(pack : packet_stop_stream*) : void
get_next_receiver(client_id : u64&, wait_time : int&, u16& next_bb, u16& next_db, ...)
resend_block(client_id : u64, BB : u16, DB : u16) : bool

stream_info
last_send_time : system_time
time : system_time
pack : packet_snd_data_stream*
next_buffer_block : u16
next_data_block : u16
resend_queue : queue

stream_info(pack : packet_snd_data_stream*, min : int, norm : int, max : int)
get_next_block(BB : u16&, DB : u16&, speed : speed_level&) : bool
add_resend_block(BB : u16, DB : u16) : void
get_client_id() : u64
set_stop_point(BB : u16, DB : u16) : void
get_stop_point(BB : u16&, DB : u16&) : void
set_send_time(time : system_time) : void

client_info
pack_status_resp : packet_status_resp*
pack_conn : packet_conn_req*

client_info(pack packet_conn_req*) : client_info*
update_status(pack : packet_status_resp*) : voidFigure 42: Class design of the server data bank.21.5 Stream engineThe stream engine omponent is tied to the funtionality of streaming the ontent of the videoto a number of lients. This funtionality will be embedded in a stream_engine lass, whih141

IV. Protool implementation 21. Class designin itself distributes the data ontained in a video. The server-side protool needs to holdseveral instanes, as one instane only distributes a single video while the lient needs onlyone.As the data bank omponent ontains the information related to eah of the data streamsdispathed from the stream engine omponent, the two omponents must interat diretly.Thus, the stream engine must hold the data related to the video whih it distributes, and theinformation related to the data streams must be aessed through the data bank.To distribute data, the stream engine aesses data held in the data ontainer. This omponentwill be tightly integrated with the stream engine as the stream engine must aess video datadiretly. Deiding what data must be sent will be done by ontinuously alling the data_bankto extrat the next lient whih should reeive data, whih data should be sent, and the delayin milliseonds until data should be sent. The alling thread must wait the given amount oftime before dispathing data to maintain the interval at whih pakets are be sent.The only di�erene between the server-side stream_engine and the lient-side stream_engineis the way that data is stored. Data kept on the lient-side protool is reeived from otherlients and only a part of the video is available. The server also keeps part of the video butdata an always be retrieved from the server appliation. Unifying the funtionality of thestream_engine requires that the data ontainers must provide a uniform interfae whih willhide the di�erenes from the stream_engine lass. A diagram depiting the design of thestream_engine lass is provided in Figure 43.
stream_engine

dc : data_container
video_id : u64

stream_engine(dc : data_container*, video_id : u64, client_id : u64) : stream_engine
get_video_id() : u64
stream(recv_client_id : u64, bb : bb: u16, db: u16, data: void*, len: int): packet*Figure 43: Class design of the stream engine.21.6 Data ontainerThe data ontainer will be onstruted as an abstrat lass providing the uniform interfaewhih all derived lasses must implement. The lasses data_buffer and data_ahe will beonstruted to be used lient and server-side.21.6.1 Data bu�erTo onform to the protool design given in Setion 14.2 regarding bu�ering of data, thedata_buffer lass will be implemented as a irular bu�er. The data_buffer will be �lled142

IV. Protool implementation 21. Class designwith data reeived by the logi, while the stream_engine will retrieve data from the bu�erand send this to the reeivers given in the data bank.21.6.2 Data aheThe server-side data ontainer will be implemented in the lass data_ahe. This lass dif-fers from the lient-side data_buffer in the respet that it must feth data by itself. Theresemblane to paging in modern operating systems is thus immediate. One ould argue thatvideo, being a ontinuous media, prefething of data an never be random, as the protoolwill always know what blok a lient must be provided with next. But the added omplexityinurred when opening up for resending of data, and the role of the server when a lient re-quests emergeny data results in the server having to aess DBs randomly. Under optimalirumstanes, the data_ahe will simply prefeth the next BB if this is not present. Thisimplies that the data_ahe must have a knowledge of what data the reeivers expet. Thus,when data is dispathed, the ahe must hek if the next blok is present and retrieve thisfrom the server appliation if neessary. This raises the simple question of how the protoolhandles a ahe miss. As a starting point, the ahe should not enounter ahe misses, but asalready desribed requesting emergeny or resending of data may our. Furthermore, datamust be requested from the server appliation whih entails that some waiting time may beexpeted. In some ases data may even not be available when needed as the server appliationmay be heavily loaded. Thus, the stream_engine annot rely upon data being ontained inthe ahe when it is needed. Conversely, data must sooner or later reah the data ahe.Thus, if the server appliation fails to provide the protool with data either the appliation isonstruted erroneously, or the hardware utilized by the host is too onstrained. Therefore,the protool assumes that data will reah the data ahe before it is too late.As the name implies, a ahe only ontains part of the data needed by the protool. Thus,as the ahe is being �lled, it will at some point be neessary to overwrite some of the bloksontained in the ahe. This also resembles the workings of a paging system, as some pageswill have to be swapped out when new ones are needed. Paging systems therefore uses di�erentalgorithms to determine whih page should be swapped out before a new one an be read. Inthe senario at hand, a walk through of the workings of these algorithms is far from relevantas this will be out of the sope of this thesis. To simplify the proedure, we note the existeneof two simple ways of determining whih blok should be deleted. The �rst and simplest is todelete the blok whih was last aessed. Thus, when the bloks are used, the protool needsto time stamp the bloks to determine whih blok has been used last. The seond modelexploits, that the server is updated regularly with information from eah lient indiatingwhere the play pointer is situated. Thus, the server knows that when the play pointer of alient has passed a given blok, it will not be requested by the lient exept if a skip shouldour. This would however still require some algorithm whih an deide whih blok shouldbe deleted, as this may be relevant in some ases. Instead a more simple approah is hosen.When the server appliation ful�lls a data request the all through the interfae returns apointer to the data whih has been possibly released by the protool. Thus, the ontrol of thedata has been transferred to the server appliation.143

IV. Protool implementation 21. Class design21.6.3 Class design of the data ontainer
data_container

num_db: int
num_db_in_bb: int

data_container(number_of_bb: int, number_of_db_in_bb: int): data_container
read_db(bb: u16, db: u16, len: int&): void*
write_db(bb: u16, db: u16, data: void*, len: int): void

data_buffer
bb_map : u16*
cbp : u16
pp : u16

data_buffer(number_of_bb : int, number_of_db_in_bb : int) : data_buffer
read_db(bb : u16, db : u16, len : int&) : void*
write_db(bb : u16, db : u16, data : void*, len : int) : void
get_pp() : u16

data_cache
data : void*

data_cache(q : request_queue*, movie_id : u64, num_bb) : data_buffer
read_db(bb : u16, db : u16, len : int&) : void*
write_db(bb : u16, db : u16, data : void*, len : int) : voidFigure 44: Class design of the data ontainer.21.7 Appliation task queueThis omponent is used as the link between the protool and the server appliation. Sine alldata and login validation et. should be handled by the server appliation a ommuniationqueue is needed. In this way the appliation an be implemented as a multithreaded appli-ation listening for the di�erent tasks enqueued by the protool. Thus, when a new task isenqueued by the protool it must signal to the server appliation that a new task is ready.

request_queue
q : queue

request_queue() : request_queue
add_data_request(request : data_struct_req*) : void
get_data_request() : data_struct_req*
count_data_request() : intFigure 45: Class design of the appliation task queue.144

IV. Protool implementation 21. Class design21.8 Client-side logiThe lient-side logi handles the proessing of inoming pakets. These are handed to thelogi whih are handled aording to the logi desribed in eah of the paket de�nitions givenin Setion 17. Evidently, pakets of type 〈10, ∗〉, 〈30, ∗〉, 〈50, ∗〉, and 〈60, ∗〉 are to be handledby the lient-side logi. These four paket types de�ne pakets sent from server to lientand pakets sent from a video data reeiver or sender to a lient. All other pakets must benegleted.Furthermore, the lient-side logi must handle requests from the lient appliation. These willbe passed from the interfae to the lient-side logi omponent responsible for performing therequested task.
logic_client

th : transport_handler

logic_client(video_id : u64, th : transport_handler*) : logic_client*
packet_handler(pack : packet*) : void
connect(buf_size : size_t, login_data client_struct*
disconnect() : int
pause() : int
resume() : int
skip() : intFigure 46: Class design of the lient logi.21.9 Server-side logiAs is the ase with the lient, the main task of the server logi is to handle inoming pakets.The pakets reeived by the server is the remaining part of the pakets whih is not treatedby the lient logi. This fundamental di�erene is the main reason why the logi is dividedin two. Several pakets result in lients being reloated whih is done by the logi using theseletion algorithm as desribed in Setion 22.Ations on the server are triggered by the reeption of pakets with one exeption. The serverneeds to keep trak of whether onneted lients send status paket with the orret interval.Otherwise, a status request must be sent.

logic_server
th : transport_handler

logic_server(th : transport_handler*) : logic_server*
packet_handler(pack : packet*) : voidFigure 47: Class design of the server logi.

145

IV. Protool implementation 22. Seletion algorithm22 Seletion algorithmAs stated in Setion 14.6 the seletion mehanism seeks to build up the logial appearane ofthe network.For the seletion mehanism to funtion a sub-mehanism will be used to serve the purpose ofidentifying the most anti-soial lient. This mehanism will be used in the event of a topologyhange whih will result in the need for disonneting a lient. This may happen when theprotool annot �nd a suitable point for a new or reloated lient whih provides an amount ofbandwidth higher than an already onneted lient. Thus, if equilibrium annot be obtainedwhen attahing the new lient, another lient must be disonneted to make room for the newlient.Furthermore, the seletion mehanism will make use of another sub-mehanism whih is usedto identify whih parts of the video stream a set of lients should send to another lient. Thus,the set of lients will eah send a part of the data stream to onstitute the total stream. Thesub-mehanism distributes the amount of DBs of eah BB between the set of lients whileaounting for the bandwidth available to eah lient. Hene, the sub-mehanism will outputa list identifying whih DBs eah lient must transmit to the reeiver of the data stream.For the mehanisms to funtion, a number of working parameters an be present. Theseparameters an be used as a foundation for the mehanisms to make proper deisions. Theparameters may be given and maintained for eah lient and an be separated into threeategories:Stati data: Variables related to stati information olleted upon onnetion of a lientDynami data: Variables related to information olleted during the ourse of a lient'ssession. The information an be based upon status retrieved from eah lient regardingthe urrent position, bu�er ontents, et.Statistis: Variables related to statistis gathered by the server during the session of eahlient. The statistis an be gathered every time some event ours, e.g. when the lientpauses, skips, or a lient noti�es the server of some error, et. Furthermore, statistisan be gathered from the dynami data, enabling the server to keep a history of thelient's performane.Intuitively, muh information an be gathered to reate a more solid ground for taking de-isions. The more variables used by the algorithm the more omplex and time onsumingit will be although it may also build a more e�ient topology. We note the almost endlesspossibilities in this subjet but hoose only to implement a simple seletion mehanism whihillustrate how the topology may be built. How this is performed is desribed in Figure 48.
146

IV. Protool implementation 22. Seletion algorithmX StartFind list of lientswathing video?Find availablehannel at server Find list oflients ontainingrequested data? Disonnet lientAttah lient toserver
?

Order list bymaximumavailablebandwidth
Extrat �rstlient in list?Add lient to listontaining senders?

Attah lient tolist of senders
XEnd

Distribute bloks
Find anti-soial anddisonnet it

List empty List not empty
Channelavailable Clients available

List is emptyList is non-empty
Senders do notprovide enoughbandwidthSenders provideenough bandwidth

No lientsavailableNo availablehannel Try to on-net again

Figure 48: The seletion algorithm.147

IV. Protool implementation 22. Seletion algorithm22.1 Finding the most anti-soial lientThe purpose of this mehanism is to �nd the most anti-soial lient. This is only needed insituations where new onneting or reloated lients annot be attahed to any lients beauseof bandwidth or bu�er starvation. If the new or reloated lient provides a higher bandwidththan the most anti-soial lient whih an be disonneted in favour of the new lient this isdone. How the most anti-soial lient is seleted is therefore the purpose of this mehanism.We note that there are many possibilities in implementing this mehanism, as the variablesgiven above may be used in �nding the most anti-soial lient. Therefore an example is givenbelow:Step 1: The �rst step of the mehanism is to determine if the new or reloated lient is anti-soial in itself. If this is the ase the lient it self should immediately be hosen anddisonneted and the algorithm �nished.Step 2: Find all andidates wathing the same video as the new or reloated lient.Step 3: From the list of lients found in step 2 all lients that do not ontain the requestedBB in their CA must be removed.Step 4: Remove all andidates whih are not marked anti-soial. These are lients whihprovide at least the same amount of upload apaity whih is required to forward thevideo unassisted.Step 5: Sort the remaining lients by available bandwidth. The �rst lient in this list is bestandidate. If only one lient is found providing the smallest available bandwidth, thislient should be disonneted in favor of the new or reloated lient.Step 6: If more than one lient has been found in the previous step, the lient whih forwardsdata to the lowest number of lients is disonneted in favor of the new or reloated lient.Step 7: If the previous step yields to more than one lient the lient whih has performedthe highest number of user interations is disonneted in favor of the new or reloatedlient.The last three steps de�ne the entral workings of the mehanism. Therefore, these an bevaried in a in�nite number of ways. We note these interesting possibilities but hoose only toimplement a simple mehanism whih will disonnet the �rst lient whih an be substitutedwith the new or reloated lient. Furthermore, lients that provide a bu�er size lower thanwhat is advertised by the server is not onsidered by the mehanism. As being anti-soialis de�ned as not providing su�ient bandwidth or bu�er this should also be part of themehanism.22.2 Blok distribution mehanismThis mehanism seeks to distribute the DBs of eah BB to multiple lients in order to enablemultiple lients sending the total data stream to another lient.148

IV. Protool implementation 22. Seletion algorithmAs an illustration, onsider two lients seleted to send the total stream to another lient. EahBB onsists of 100 DB. The �rst lient an only provide 2 perent of the required bandwidthwhile the seond one 98 perent. Thus, the �rst lient an only send two DB of eah BB whilethe seond will send the remaining 98 DBs.Choosing whih DBs eah of the lients should send may seem trivial. But as DBs shouldbe reeived in an order resembling the order of whih they are distributed throughout theBBs this may not be trivial. Thus, letting the �rst lient send the two �rst DBs of eah BBmay result in the apaity of the sending lient being over used with the impat that data isreeived long after it should have been used. In this example, a better solution would be toonly let the �rst lient send DB 1 and DB 50 of eah BB. Clearly, as the number of lientssending data onurrently to another lient rises, and the more their bandwidth varies, themore omplex the best solution will be. The solution to this, is to onstrut an algorithmwhih traverses all the DBs in a BB and for eah DB deides, whih lient is best suited tosend the urrent DB. This may be done in numerous ways, as the mehanism an, like therest of the seletion mehanism make use of variables olleted by the server. However, wehoose to implement this simple by performing the following steps:Step 1: For eah lient the average distane between onseutive data dispathed is alu-lated. This distane hanges as the number of DBs gets fewer. To illustrate this, if aBB ontains 100 DBs and a lient needs to send 10 of these, the average distane is
100/10. As the DBs are traversed and distributed among the lients this average dis-tane hanges. Thus, when the �rst 5 DB has been traversed and a sender has beenhosen for these, the average distane for this partiular lient beomes 95/10. As thelient is alloated DBs the denominator of the fration falls.Step 2: Based on the above alulated distanes the best suited lient is found for the urrentDB. This is done by looking at the distane of all the lients and seleting the one whihomes losest. This lient is then alloated the blok and the next blok is traversed.The above algorithm will yield a list of lients and the DB numbers of eah BB they mustsend to the lient whih is to reeive the video data stream.

149

IV. Protool implementation 23. Threading23 ThreadingThis setion analyses and desribes how the protool will make use of multi-threaded fun-tionalities. The setion will be based upon the omponents of the implementation aountedfor in Setion 21.23.1 Reeiving pakagesBoth the lient and the server share the same struture in referene to reeption of pakets.All data is reeived by the transport handler and based on the reeived data a paket isinstantiated. The paket is then pushed onto the inoming paket queue.To empty the bu�er of the soket quikly the implementation will make use of a thread whihwill have the sole purpose of extrating pakets from the transport handler and plaing theseon the paket queue. As a large amount of data may be reeived the thread should be oupiedas little as possible with other tasks. Therefore no logi will be applied to the pakets beforethey are pushed onto the queue.23.2 Inoming paket proessingAll pakets queued in the inoming paket queue, must eventually be proessed. A singlethread is su�ient to handle this task. Furthermore this thread will need aess to mostomponents and may therefore require a lot of synhronizing with other threads to avoidaessing ritial regions onurrently. This synhronization may generate a large amount ofoverhead, therefore are must be taken to only aess regions whih are needed by the thread.A single thread is therefore employed whih must pop pakets from the inoming paketqueue and proess these using the logi omponent. The proessing of the pakets an leadto a number of events as given in Setion 13.23.3 Bu�er and aheData is �lled into the bu�er of the lient by the thread whih proesses all inoming pakets.Furthermore, the lient needs to keep trak of the speed at whih data is reeived. At �rstglane one would argue that this ould be done by the thread �lling the bu�er, but learlyif data reeival is brought to a standstill this would never be deteted. Therefore, a separatethread is employed for this task.
150

IV. Protool implementation 23. Threading23.4 Stream engineFor the stream engine to work, a separate thread with the sole purpose of sending video datato all attahed lients will be employed. If data annot be retrieved from the bu�er, eitherbeause of bu�er under�ow or over�ow this thread will also be responsible for sending paketsidentifying that the data request ould not be ful�lled. Thus, eah instantiated stream engineomponent will employ a thread for this purpose.23.5 Status threadFurthermore, the logi needs to send status pakets to the server with a spei�ed interval.This will be done using a separate thread whih will be awakened at an interval spei�ed bythe server.23.6 Appliation threadsInstantiating the protool either as server or lient will result in the onstrutor of the protoolspawning a number of the above threads. When this has been performed, the lass has beenonstruted, and ontrol will be returned to the alling proess. Hereafter, the appliationmay use the interfae as given in Setion 24. Some alls dispathed to the protool may resultin the protool bloking the alling thread until some event has ourred. Thus, the serverappliation needs to all the protool to blok until the protool requests data. Contrarily, thelient appliation needs to all the protool for inoming data whih the lient needs to displayby the video player. Beside this role the lient thread will be responsible for dispathing userinterations to the protool. This means that when the user interats with the video theappliation thread must all the interfae. This all will be handled by the logi whih in turnmay end up transmitting a paket.Whether the appliations handle these tasks using one or more threads is ompletely up tothe implementor and an be done in numerous ways.23.7 SummarizingTo brie�y summerize, the threads present in the protool are:Transport handler thread: This thread reeives pakets and inserts them onto the inom-ing paket queue. The thread will be present both in the server and the lient instaneof the protool.Logi thread: This thread takes one paket at a time from the inoming paket queue andproess them using the logi omponent. The thread is also present in the server andthe lient. 151

IV. Protool implementation 23. ThreadingStream engine thread: This thread has the job of sending video data pakets to attahedlients. The thread is not ative if the lient does not stream data to another lient. Asthe server also funtions as a lient, the thread is present on both sides. Furthermore,one thread is used per instane of the stream_engine lass.Status thread: This thread is used di�erently on the server and lient. On the lient side,the thread is awakened at a spei�ed interval and sends status pakets to the server.On the server side the thread has the job of ensuring that all lients are sending statusrespond pakets at the orret interval.Reeption speed: This thread is only present on the lient and has the job of ensuring thatvideo data pakets are reeived at the orret speed. This thread furthermore ensuresthat data reeption does not ome to a standstill.

152

IV. Protool implementation 24. Interfae24 InterfaeThis setion fouses upon the interfae between appliations and the protool. The interfaeis presented through the lasses vod_server and vod_lient. The interfae is omprised ofthe publily aessible proedures implemented in the lasses. The lasses onform to theinterfae spei�ations as desribed in Setion 19.The interfae will transport lasses and strutures, thus preluding appliations implementedin a programming language whih does not understand the C++ lass onstrut.As the protool provides both funtionality for lients and servers, this setion is divided intwo, one desribing the server side of the implementation and one desribing the lient side.24.1 Server interfaeThe setion desribes the alls whih an be made to the server instane of the protool.
• vod_server* vod_server(int data_port, int ontrol_port);The onstrutor of the lass vod_server returns an instane of the lass. The data_portspei�es the UDP port used by the DCP for transferring video data to onneted lients.The ontrol_port spei�es the TCP port used by the CCP for ommuniating withonneted lients.
• int open();The open all binds the two ports whih have been set in the onstrutor. The openmust be performed onseutively after the lass has been onstruted. Otherwise theopen all will return an error as indiated by a negative return value.
• int lose();The lose all disonnets all onneted lients and loses all open �le handles andsokets. May be alled at any time after the open all has been performed.
• void poll(int& video_data,int& video_data_hp,int& se_data,int& se_data_hp,int& login_req,int& events);After the open all has been performed, the server appliation may start listening for in-oming tasks by using the poll all. Regardless of how many requests ready to be servedthe all will return ontrol to the alling thread immediately. The number and natureof the requests whih are ready to be served is given as referenes used as arguments inthe all: 153

IV. Protool implementation 24. Interfae1. int& video_dataIndiates that a number of data request are ready to be served by the server appli-ation. The number given in the referene orresponds to the number of enqueuedrequests.2. int& video_data_hpIndiates that a number of data request assigned high priority are ready to beserved by the server appliation. The number given in the referene orresponds tothe number of enqueued requests. This may be used in the event of a emergenyresend of data not urrently held by the data ahe.3. int& se_dataIndiates that a number of seurity data request are ready to be served by theserver appliation. The number given in the referene orresponds to the numberof enqueued requests.4. int& se_data_hpIndiates that a number of seurity data requests assigned high priority are ready tobe served by the server appliation. The number given in the referene orrespondsto the number of enqueued requests.5. int& login_reqIndiates that a number of login requests are ready to be served by the serverappliation. The number given in the referene orresponds to the number ofenqueued requests.6. int& eventsIndiates that a number of events are ready to be read by the server appliation.The number given in the referene orresponds to the number of enqueued requests.This queue an be used by the protool to inform the server appliation that someevent has ourred. This should simply be regarded as a log funtionality.After retrieving these values the appliation may serve these requests at will. Requestsplaed in the high priority queues should be served �rst, but this is not a demand.
• int get_data_req(strut data_strut_req& data, DATA_TYPE type);The get_data_req proedure returns the ontent of the next data request of the typegiven in type. The all bloks the alling thread if no request is available. The ontentreturned in the struture data spei�es the o�set and length of the data from a givenvideo needed by the server. In this struture a �eld transation_id spei�es a uniqueid whih must be supplied to the protool when the request is served. This enables theprotool to monitor if a request has been servied.The argument data is de�ned as the strut:strut data_strut_req{ unsigned long video_id;unsigned long byte_offset;size_t len;long transation_id;}; 154

IV. Protool implementation 24. InterfaeThe �eld type is de�ned by:enum DATA_TYPE{ VIDEO_DATA,VIDEO_DATA_HP,SEC_DATA,SEC_DATA_HP};
• int get_login_req(strut login_strut_req& user);The get_login_req proedure returns the ontent of the next onnetion request heldby the protool. The all bloks the alling thread if no request is available. Theontent returned in the struture user spei�es the user and password of the user tryingto onnet. In this struture a �eld transation_id spei�es a unique id whih mustbe supplied to the protool when the request is served. This enables the protool tomonitor if a request has been servied.The argument user is de�ned by the struture:strut login_strut_req{ unsigned long video_id;user_name;password;long transation_id;};
• int get_event(strut event_strut& event);The get_event proedure returns the ontent of the next event held by the protool.The all bloks the alling thread if no request is available. The ontent returned in theargument event spei�es the event enountered by the protool.The event returned by the protool in the argument event is de�ned as:strut event_strut{ EVENT_TYPE event;unsigned long timestamp;har* msg;int msg_len;};With event de�ned as:enum EVENT_TYPE{ // Currently unused}; 155

IV. Protool implementation 24. Interfae
• int get_video_info_req(unsigned long& video_id);The get_video_info proedure returns the ontent of the next video info request heldby the protool. The all bloks the alling thread if no request is available. Theontent returned in the referene video_id spei�es the video whih the protool wishesto retrieve data for.
• data_lass* deliver_data(data_lass* data, DATA_TYPE type);The deliver_data proedure delivers a type of data requested earlier by the protool.The proedure is used by the server appliation, maintaining the three types of data, todeliver whatever data has been requested by the protool. The data_lass onstrut isalloated by the server appliation, and passed to the protool whih then uses it.The proedure returns a pointer to a data_lass instane whih has been releasedby the server protool. Thus, the protool uses this to signal the appliation that itno longer needs the data_lass instane in the ahe. If the return value is NULL noinstane has been released by the protool. This may at �rst seem as a umbersomesolution, but in fat it enables advaned memory management on the appliation side.The solution enables the protool to avoid moving data aross the interfae whih anbe very expensive.Data is thus delivered as a lass de�ned as:lass data_lass{ private:void* data;size_t len;unsigned long video_id;long transation_id;publi:data_lass(unsigned long video_id,long transation_id,void* data,size_t len);void* get_data();size_t get_data_length();unsigned long get_video_id();long get_transation_id();};
• int deliver_login(strut login_strut_resp login);The deliver_login proedure authorizes lients whih try to onnet to the server. Theprotool will math a previous onnetion request by the transation id embedded inthe argument login. This will furthermore ontain the measured upstream apaity ofthe lient measured in available byte/se.login is de�ned as: 156

IV. Protool implementation 24. Interfaestrut login_strut_resp{ long transation_id;boolean login_allow;int upload_bandwidth;};
• int deliver_video_info(strut video_strut_resp video);The deliver_video_info proedure provides the protool with information related toa video. Thus, this all is used to provide information about new videos to the protool.The argument video is de�ned by the struture video_strut_resp given by:strut video_strut_resp{ unsigned long video_id;int bit_rate;har[256℄ title;unsigned long video_len;unsigned long video_duration;unsigned int skip_distane;};24.2 Client interfaeThe lient interfae de�nes the appliations programmers interfae used when programminga lient appliation.
• vod_lient* vod_lient(size_t buf_size,strut lient_address* lient);The onstrutor is given a number of arguments used for initializing the protool. Thesize_t buf_size argument spei�es the maximum amount of memory whih may beused by the internal bu�er of the protool instane. This limit onerns only the bu�eras this will be the the main memory onsumer. The overall memory used by the protoolwill therefore exeed this limit. The argument is measured in bytes.The argument strut lient_address* lient spei�es the address of the loal lientas found in the struture:strut lient_address{ p_port;dp_port;};p_port de�nes the loal TCP port used by the CCP while dp_port de�nes the loalUDP port opened by the DCP. 157

IV. Protool implementation 24. Interfae
• int onnet(unsigned long video_id,strut server_addr* address,strut login_data* lient);This all is performed when a lient wishes to onnet the protool to a given server.This all may be followed by a rev_data all. The arguments are de�ned as followed:1. unsigned long video_id de�nes the video whih the lient wishes to stream. Thisid is of no relevane to the protool and is de�ned by the server appliation. Theid is only used by the protool to identify a video, but its ontents is de�ned bythe server appliation.2. The strut server_addr* address argument de�nes the address of the servero�ering the video material. The all will onnet the lient to the server ontainedin address as de�ned by:strut server_addr{ har* ip_address;int port;};3. strut login_data* lient identi�es the loal lient wishing to onnet to theserver. The argument ontains among others a user name and password whih mustbe authorized by the server appliation before the lient an be granted aess. Theargument is de�ned as:strut login_data{ unsigned long video_id;har[64℄ user_name;har[64℄ password;unsigned int video_len;unsigned int video_duration;unsigned int skip_distane;har[256℄ title;};
• size_t rev_data(void* buf, size_t max_len,unsigned long& offset);from the protool layer. Data returned will be the next data available. Data will beopied into the memory area given in buf at a maximum length of max_len bytes. Theall bloks until data is available and returns the amount of bytes written to buf. Theargument offset identi�es the byte o�set in the video.
• int disonnet();This all disonnets the lient from the server. The all may be regarded as stoppingthe video stream. 158

IV. Protool implementation 24. Interfae
• int pause();The all pauses the data stream until it is resumed. Subsequent alls to rev_data untilthe stream has been resumed will fail.
• int resume();This all resumes the data stream and enables the lient appliation to retrieve data.This all an only be performed after a pause.
• int skip(unsigned long position);The skip all will skip to a given plae on the video. The argument position spei�esthe point in the video where the skip must our to given in milliseonds. This all anonly be performed in playing mode, e.g. the video must not be paused.

159

IV. Protool implementation 25. Our implementation25 Our implementationThis setion desribes our implementation. The setion is therefore meant as doumentationfor the problems inurred in the proess of implementing the protool. Furthermore, thesetion lari�es the shortomings of the implementation and where we have hosen to restrainthe implementation related to the protool design.Initially the protool was implemented using standard C++ on a Linux platform using theBSD POSIX soket API and the BSD pthread implementation. The idea was simply to im-plement the protool using Linux and port the ode to the windows .NET platform, thusompiling a dynami linked library. This library was simply to be inluded when developingthe appliations making use of the protool. This would give us the strength of Linux, whenimplementing the protool and the �exibility of the .NET platform onerning graphial userinterfae. Unfortunately, porting the protool to windows was more problemati than imag-ined. Thus, neither the soket API and the pthread library works seamlessly under windows.Therefore, we deided to move the implementation of the protool to the .NET platform at alate state.The soket implementation used under windows, alled Winsok unfortunately does not pro-vide all of the funtions desribed in the POSIX soket spei�ation. Thus, neither thesendmsg all or the revmsg all are available using Winsok. This fored us to implementreeiving and sending of pakets using expensive opying of memory. Furthermore the imple-mentation of the MSG_PEEK option when reading from onnetionless sokets is unstablewhih is aknowledged by Mirosoft.As stated, the pthread library is not diretly aessible using the .NET platform. However,implementation of the library does exist but these are made by third part providers andnot Mirosoft self. Therefore we hose to use the standard threading libraries provided bythe .NET platform. This, however, aused a lot of frustrations as mixing unproteted andproteted C++ ode when using the Mirosoft .NET ompiler an be quite triky.25.1 LimitationsThe implementation of the protool fouses upon the important parts of the protool de-sign. Thus, the implementation of streaming a single video from the server, and on to otherlients has been the primary goal of the implementation. Hene the following issues remainsunimplemented in this prototype of the protool:
• No seurity mehanisms has been implemented.
• The server protool interfae has been partially implemented.
• No error handling onerning bu�er over�ow or under�ow has been implemented.
• The seletion mehanism of the protool has been implemented simply.160

IV. Protool implementation 25. Our implementation
• The protool does not onsiderate the bandwidth of onneted lients.The above issues has been omitted to fous upon the ore workings of the protool whih hasbeen implemented to work as intended.

161

IV. Protool implementation 25. Our implementation

162

V
Chapter VVeri�ation

This hapter ontains tests and validations of the protool. It is divided in two parts. The�rst part serves as a simple end-to-end test while the seond part ontains a disussion of theperformane obtained by protool.

163

V. Veri�ation 26. Veri�ation of the implementation26 Veri�ation of the implementationThe end-to-end test onsiders a setup using a server onneted to a number of lients. Basedon this we perform a series of tests whih should determine whether the implementationful�lls the basi requirements. In order to do this a lient and server appliations have beendeveloped. Both of these appliations have been developed with this spei� test in mind.Beause of this they are implemented in the simplest manner with no regard to performane.Both appliations are implemented using the Visual Studio 2005 .NET framework. The lientmakes use of the Apple Quiktime omponent in order to enable easy display of a video.Therefore, the video provided by the server appliation must be ompatible with a deoderwhih an be used with Apple Quiktime.In order to minimize the time spent developing the lient a simpli�ation has been made. Asthe quiktime omponent does not support reading diretly from a stream data are written toand streamed from a �le onurrently. Thus, the lient appliation both reads data from theprotool and writes it to a �le on disk, whih is displayed onurrently in the player.The server appliation is simple. One started, a new instane of the server protool is madeand video data is read diretly from the disk. Hene, no attempt has been made to optimizethe performane of the server appliation.26.1 Test senariosIn this setion a set of test senarios will be designed. These will form the base of the test,whih we will perform. The main fous in testing will be one the following ases:Senario 1 - Simple streaming of data: Verify that a lient an onnet to the server andthat the lient reeives data whih an be displayed.Senario 2 - Data onsumption: Verify that the video stream is sent at the orret speed� only the needed amount of data is reeived.Senario 3 - User interation: Verify that user interation requests an be send from thelient and that the server ful�lls the requests orretly.Senario 4 - Connetion of multiple lients: Verify that a lient an send data to a se-ond lient.Senario 5 - Reeiving streams from multiple soures: Verify that a lient an reeivedata from more than one lient hene that a lient is apable of streaming only a partof the video.Senario 6 - Streaming to multiple soures: Verify that a lient or the server an streamto more than one other lient.Senario 7 - Realloate lient: Verify that if a sender of data stops sending, the reeivinglient will be attahed to another lient or the server.164

V. Veri�ation 26. Veri�ation of the implementationThe following setion will desribe how these senarios are tested. All of the senarios areperformed using both a single omputer running the server and one or more lients and onmultiple omputers running only one appliation eah.The tests were performed on 4 laptop omputers eah with a CPU in the range of 2-3 GHzrunning Mirosoft Windows XP. These were onneted using a 100 Mbit Ethernet. The videoemployed in the tests had the following harateristis:Size: 19.64 MB.Bit-rate: 1172 Kbit/se.Duration: 137050 milliseonds.Number of BBs: 45.Number of DBs per BB: 100.Size of lient bu�er: 15 BBs.Media type: MPEG-4.Senario 1 - Simple streaming of dataThis senario veri�es that a single lient an onnet to the server and reeive the video stream.Furthermore, the senario veri�es that the lient is apable of displaying the video.The expeted result is the lients ability to display the video stream ontinuously withoutinterruptions. Furthermore, after play-bak the lient should be logged o� from the server,and the lient should no longer be onsidered onneted.Senario 2 - Data onsumptionThis simple senario an be veri�ed by testing that during the run of senario 2 data must notbe reeived slower and not substantially faster than it is onsumed. This is easily determinedby heking that the onsumed ingoing bandwidth used for transmitting video data does notrise muh above the bit-rate of the video.The expeted result is that data is only sent at a rate slightly faster than the rate at whih itis onsumed. This is done using a paket sni�er appliation whih an monitor all inomingand outgoing pakets.Senario 3 - User interationThis senario veri�es whether the lient an perform a user interation. The test is ondutedby performing a sequene of skips while displaying the video.165

V. Veri�ation 26. Veri�ation of the implementationThe expeted result is that a skip in the video stream will display the orret part of thevideo. Furthermore, skipping outside the bu�er will result in small interruptions as the datadelivery to the lient appliation is done one BB at a time to simplify data deliverane. Henethe multimedia player must wait until a full BB has arrived before viewing an be resumed.Senario 4 - Connetion of multiple lientsThis test is performed by onneting a seond lient meanwhile streaming data to the �rstlient. The seond lient will be attahed to the �rst lient as the data needed by the seondlient is held in the bu�er of the �rst lient.It is expeted that both lients are able to display the video from start to end smoothly.Senario 5 - Reeiving video data from multiple souresSenario 4 is run again. A third lient is now onneted while data is still ontained in thebu�ers of the two �rst lients. Thus, this third lient will be attahed to the two �rst lients.These will eah send only half the data stream to the third lient. This is done due to theworkings of the seletion algorithm.The expeted result is that all three lients will display the video from beginning to endwithout interruptions.Senario 6 - Streaming to multiple lientsSenario 5 veri�es that one lient an send data to two other lients as the �rst lient sendsthe full data stream to the seond lient and half a data stream to the third lient. Continuingthis senario by stopping the seond lient, the server will take over the data stream whihwas dispathed from the seond lient. Thus, the server will still provide the full data streamto the �rst lient, and half the data stream to the third lient.It is expeted that the �rst and third lients display the video in its entirety regardless ofwhere the data stream is reeived from while the seond lient only displays the video until itis stopped.Senario 7 - Realloate lientRealloation will happen in senario 6. One the seond lient stops the third lient will berealloated to the server.It is expeted that when a realloation ours, no interruptions in the video will be seen.
166

V. Veri�ation 26. Veri�ation of the implementation26.2 The test resultGenerally all test senarios were run suessfully and with the expeted result. A simplesreendump of the test is presented in Appendix E. Thus, we an onlude that the imple-mentation and the design works as intended although this �rst and simple implementationdoes not omprise all funtionalities of the design. As a result, the implementation is notalways ompletely stable although in this limited setup this does not a�et the overall resultof verifying that the implementation works as intended. However, some elements disoveredduring the test deserve to be emphasized.As skipping between portions of the video is done using BBs we an onlude that sometimesa skip to a given BB will result in interruptions. This is beause two adjaent BBs may partthe ontents of the elements whih the video standard is divided into.During the test we experiened that the protool did indeed hide all the funtionality for theappliations whih was preisely the goal. However, this did not help to make the test easieras it beame di�ult to determine how the protool reated to di�erent events without digginginto the ode. In addition to this, some of the funtionalities whih were deliberately out outalso ontributed to making the test di�ult. This indiates that the funtionalities of theprotool is tightly oupled together.Finally we an onlude, that the intention of reating reusable omponents whih ould beused both server-side and lient-side has been suessful. Thus, the stream engine, the mainparts of the data bank, and all the pakets were diretly reusable.

167

V. Veri�ation 27. Disussion of the performane27 Disussion of the performaneIn this setion we will disuss the obtained performane of the protool and whether the designatually reahes the overall goal of lowering the bandwidth usage of the server. As part of thiswe try to determine the parameters whih in�uene the performane of the protool leadingto a disussion on the worst ase and best ase senarios.As already desribed in Setion 14.1 it is at least in theory possible to onnet an in�nitenumber of lients. This an be illustrated by dividing into x BBs. Sine all lients an beattahed to another lients BB, the total needed number of hannels provided by the serverwill be x. Clearly, this is a simpli�ation as this obviously requires that all lients are apableof streaming at least one whole video stream. But if a lient does not have the needed amountof bandwidth to forward the data stream the lient is regarded anti-soial possibly resultingin the need for a higher number of hannels available from the server. Thus, the number oflients whih an be onneted beomes dependent upon the sum of bandwidth available inthe network. The extreme situation is if all onneting lients annot provide any upstreambandwidth resulting in a network resembling the uniast model presented in Figure 1.Based on this we an onlude that the bandwidth onsumption of the server is stronglyrelated to the upload apaity of the lients and is linearly dependent on the number of BBsthe movie is divided into.27.1 ParametersArising from this, a number of parameters determine the ability of the protool to lower thenumber of video streams dispathed from the server. Throughout the design and implemen-tation of the protool we have experiened that these parameters are losely linked together.This beame even more true as testing the protool revealed the relationship between these.Thus, it has beome lear that these parameters an be set to an in�nite number of ombina-tions whih makes it extremely di�ult to determine a preise performane gain or loss. Eahof the parameters not only in�uene upon the performane of protool but they also have ahuge impat upon eah other.Client bu�er size: Obviously, the size of the lients bu�er plays an important role to theperformane of the protool. If a lient is able to hold the entire video in its bu�er itlearly has a muh higher hane of providing the needed data of another lient. Butthe size of the bu�er is tightly linked to the amount of bandwidth the lient provides asthere is nothing gained if the lient does not have the bandwidth apaity to distributedata to other lients.Client upload apaity: The upload apaity of the lient has a diret impat on the num-ber of lients whih the lient an stream data to. But if all lients provide enoughbandwidth to at least stream data to one other lient there would always be enoughbandwidth to onnet one more lient. But again, if the lients does not provide a suf-168

V. Veri�ation 27. Disussion of the performane�iently large bu�er, hanes are that all new lients will be attahed to the server asthis will be the only one whih an provide the needed data.Video subdivision: The number of BBs the video is divided into has an e�et on how manystreams are needed by the server to distribute the video. This parameter arises from thedesign of the protool, whih determines that eah lient must have one of the BBs as astarting point. Again if a lient has the spei� BB in its bu�er the lient an stream toa new lient even if its own PP is not at the exat same BB hene this is losely linkedto the lients' bu�er size.CCP onsumption: The amount of overhead used to send ontrol pakets between theserver and eah lient makes it impossible to add an unlimited number of lients sineall lients will need to ommuniate with the server. Thus, the bandwidth of the serverwill at some point be exhausted e�etively bloking the onnetion of any new lients.The question is therefore how muh bandwidth the CCP onsumes. Measuring theindividual sizes of the pakets is of ourse possible but determining how many and howoften these pakets are sent is simply not possible. The reason is simply that the intervalbetween onseutive sending of these paket is dependent upon the users behaviour.User/network behaviour: This type of parameters is learly impossible to estimate. Oneould argue that the users' behaviour hanges depending on the type of video � indeedthis is supported by [20℄ whih notes that videos an be separated into di�erent ategoriesaording to the behaviour of the user. Therefore estimating this would require a surveyolleting and analysing data in order to determine this. The result of this survey wouldbe based on averages and would therefore only be useful in large setups. Furthermore asthe protool is vulnerable to the amount of user interations one ould argue that basedupon the result of this survey the used seletion algorithm should be modi�ed.The network behaviour learly have the same impat. Simulating or olleting statistisdetermining the behaviour of the Internet is a large and ompliated subjet whih is a�eld of omputer siene in itself. Again the statistis and knowledge gathered in thisarea ould be used to modify the seletion algorithm to employ mehanisms to handlenetwork problems.The above desriptions have revealed the di�erent parameters are tightly linked and none ofthem an be assigned a spei� value whih is more orret than any other.Based upon the analysis of the behaviour of these parameters we an onlude that to set upformal alulations of the performane of the protool is extremely di�ult. Furthermore, if aformal alulation was made, this would be assoiated with muh unertainty as the behaviourof eah user and their onnetion is almost unpreditable. However, the worst ase and bestase senarios for the performane an be identi�ed.27.2 Boundaries of the performaneIn this setion we will based on the above disussed parameters try to determine the limits ofthe performane of the protool by assigning values to these parameters.169

V. Veri�ation 27. Disussion of the performane27.2.1 Worst ase senarioClearly the worst ase senario involves that all onneting lients do not have the abilityto forward the video to other lients. Furthermore, if the lients do not have a su�ientlylarge bu�er to hold at least a signi�ant part of the video hanes are that the lients will noteven be able to utilize the bandwidth whih is available. Thus, all hannels dispathed by theserver will only have one lient attahed eah, resulting in the simple uniast model. Indeedthis senario represents worse performane than traditional uniasting as the inlusion of datatransported by CCP will raise the bandwidth requirements of the server.27.2.2 Best ase senarioThe best ase senario involves onneting a lient whih provides a very high apaity anda bu�er su�ient enough to hold the entire video. This lient would then forward data toa number of lients whih had the apaity of forwarding data on to the next lient. If thelients furthermore have a bu�er apaity of the whole video and none is performing any userinteration, the server would need to send data to only a single lient. This senario is ofourse unrealisti in pratie but never the less it beomes the best ase senario.27.2.3 ConlusionBased on the above assertions we an onlude that the bandwidth usage an be lowered usingour protool as long as ertain onditions are ful�lled. Most important the lients need to bein possession of a signi�ant amount of bandwidth.An important remark is that eah time a lient is onneted a new CCP onnetion is needed.This onnetion is not taken into aount in the above senarios. This means that eventhough the best ase senario suggests that if all the onneting lients have at least apaityto forward the video an in�nite number of lients ould be onneted. The only problem isthat eah lient takes up a onstant amount of the bandwidth of the server to maintain a CCPonnetion and hene the in�nite number of lients does not hold in pratie.

170

VI
Chapter VIClosure

This hapter ontains our �nal remarks on the thesis. This inludes the perspetives and the�nal onlusion.

171

VI. Closure 28. Perspetives28 PerspetivesTo widen the aspets of the thesis, this setion presents some of the perspetives of the designedprotool, its usage, and how this initial implementation an be extended.It should be evident, that designing and implementing a protool failitating video on-demandusing bandwidth sharing is a large projet. Therefore the protool design has gone throughmany ideas and extensions. Some of these ideas, although favourable, have been kept out ofthe thesis in order to impose a limit on the amount of work.Server-to-server protool: As desribed in Setion 3 implementing a streaming network foron-demand video may easily require more than one entralized server. Thus, extendingthe protool to also implement a server side protool used between a number of serverswhih may balane the load equally and ensure that a video is available on the rightserver when requested by a lient may prove to be of great value. This would furthermorebene�t from senarios where servers are geographially dispersed. Thus, a protoolenabling multiple servers to exhange data would bring higher e�ieny. Furthermorea setup resembling the proxy system desribed in Setion 7.1.2 may be deployed usinga entralized server ontrolling a number of �super lients� loated at di�erent plaes.These �super lients� would only have to be slightly modi�ed lients and should providehigh bandwidth.Seurity: One of the main obstales for using a protool whih distributes video by the useof bandwidth sharing is seuring opyright to the distributed material. But due to theproblems inurred this �eld has been partially left out of the protool. Therefore, oneof the main perspetives of the protool is to ensure digital rights management. Asgiven in setion 11 this �eld is a large subjet, whih is why this has been limited inthis thesis. Implementing a proper seurity sheme in the server and lient appliationswould surely remedy this and widen the perspetives of the protool. Fortunately, thisis already part of the protool design.Simulator: Even though the test and validation of the protool have given good hints aboutthe usefulness of the protool a variety of other tests may be performed. In order totest the protool with a large number of lients a simulator ould be developed. Thesimulator ould be built with the purpose of testing the main issues:
• The protool's ability to onnet and distribute video data to a large number oflients.
• The protool's ability to handle network interruptions and other failures.
• The protool's ability to handle user interations like skip and pause.
• Test of the di�erent seletion algorithms to �nd the best suitable solution.The protool ould be simulated without any regard to the network layer of the operatingsystem. This would simulate a 'perfet' network, where no network interruptions oronnetion �utuations would our. 172

VI. Closure 28. PerspetivesAs the protool does not de�ne whih ports are used by the lients, it is possible to runa large number of instanes of the protool on the same omputer. Hene a simulatorould use the implemented protool by instantiating a server and a number of lientsloally. Next, the instanes of the lient protools ould onnet loally to the serverand eah perform various ations to test the performane of the protool.Complete implementation: A key point of the future work of the protool obviously is toimplement all the features of the design. This will serve to retify all funtionalities.Furthermore, the protool ould be implemented using other programming languagessuh as Java opening up for the implementation of di�erent lient and server appliations.Extending the seletion algorithm: The seletion algorithm used to selet the set of lientswhih are to stream data to a new or reloated lient ould be implemented in a numberof ways. Varying this implementation may result in many performane gains as desribedin Setion 22. Therefore the implementation of the algorithm an be made very omplexand may depend on a wide range of parameters. One ould for instane add weights tothe edges of the network and use these to determine how the topology should be built.These weights ould be based on the lients' upload apaity or their physial loation.Another parameter ould be a redit system whih assigned eah lient a number ofpoints whih would then be used by the algorithm. This ould be used ommerially byassigning points to ustomers aording to the amount of money they had paid to see thevideo. Furthermore, the more bandwidth the ustomer provided, the more points wouldbe given. As an illustration of the almost endless possibilities in onstruting an e�ientseletion algorithm we present three approahes whih present di�erent paradigms whenonstruting the topology whih we have worked with throughout this thesis:Dense network: This algorithm will seek to onstrut the network as densely as pos-sible. This means that when a lient logs on, the server will attah the lient toa lient whih is already streaming to other lients. Thus, the algorithm tries toattah as many lients as possible to lients already streaming data. The main ideawhen using this approah is to utilize all of the bandwidth present at some lient,before extending to another lient. Thus, if a lient providing high bandwidth on-nets, the protool will seek to use all the bandwidth of the lient before anotherlient is used.Sparse network: This algorithm works opposite a dense network, aiming to onstruta sparse topology where all lients, regardless of their provided bandwidth use apart of their bandwidth. Thus, the network will be shaped as a sparse graph aimingto distribute resoures as evenly as possible.Reliability: This algorithm will work based on the statistis gathered by the server.The server will try to determine whih lient is the most stable, in terms of errorourrene rate, user interation, et.Appliations: Even though the appliations have not been the fous of this thesis someissues need to be addressed if one should wish to implement new appliations. Thelient appliation ould of ourse be built in a variety of ways and will not be subjet toany further disussion. The server appliation on the other hand has one key elementwhih should be addressed if one wishes to implement a strong appliation. This is the173

VI. Closure 28. Perspetivesway data is fethed from dis. The protool failitates that the server appliation anbe implemented with an advaned algorithm when retrieving data. Streamed data isobviously sequential and this property ould be used in implementing algorithms whihfor instane prefeth data from dis and keep it ready in a bu�er pool ready to hand itto the protool upon request.The fething of data from dis ould beome a bottle nek and therefore onsiderationshave been put into the protool design in order to make it possible to build more advanedserver appliations.

174

VI. Closure 29. Conlusion29 ConlusionThe main goal of the thesis was to lower the amount of onsumed bandwidth of a entralon-demand video streaming server by designing and implementing a network protool for thispurpose. The result is a omprehensive design spei�ation whih enables the developmentof heterogenous implementations operating alongside eah other in a network. The spei�a-tion should further be onsidered as an evidene of the large amount of onsiderations anddisussions whih have gone into the �nal design of the protool.The protool has been designed to enable delivery of a stable stream of data guaranteeing thata video stream is delivered without disruptions. Furthermore, the protool has the ability tohandle partial network disruptions ensuring that the delivery of data is not a�eted. Inaddition, the protool enables user interations suh as skipping and pausing whih is exatlythe harateristis of video on-demand. As these properties were among the primary goals ofthe thesis we an onlude that we have designed a protool whih ful�lls the expetations.The amount of seurity mehanisms built into the protool has been limited to only grantingor denying lients aess. The protool has been designed to enable appliations using theprotool to employ seurity measures as needed. Thus, the appliations may ensure thatlients annot hange the ontent of the data stream before it is forwarded to another lientand ensure that lients annot reeive video data without being aknowledged by the server.The implementation of the protool has been arried out with the primary fous of illustratingthe ore funtionality of the protool design. Thus, the implementation is meant as a proof ofonept whih veri�es that the protool design works as intended. The implementation de�nesan interfae whih enables appliations to utilize the embedded funtionality of the protool.The protool implementation may be ported to other platforms though not as straightforwardas intended beause of the diversities of the implementations of C++ in di�erent operatingsystems.An analysis of the designed protool has shown that distribution of the overall bandwidthonsumption is possible. Thus, we have suessfully minimized the bandwidth onsumptionof the server hene making it possible to maximize the number of lients whih an onurrentlyreeive the video stream. The thesis has shown that the ability to undertake a alulation ofthe onserved bandwidth is extremely di�ult. Estimates an be performed, but these willbe based upon several unknown variables assoiated with high inauray aused by networkreliability and human behaviour. Therefore no exat alulation proving the e�ieny of theprotool has been made. However, a �rm understanding of the relationship between theseunknowns has been aounted for. The onlusion on this subjet is that to get a more preiseindiation of the e�ieny of the protool a simulation and/or empirial results obtainedthrough pratial usage must be performed.In spite of the hallenges experiened throughout the implementation of a multithreadedand memory intensive protool we have onstruted an operational implementation whihdemonstrates all the key aspets of the design. Through a series of test senarios, we haveproven that this implementation works as intended.175

VI. Closure 29. ConlusionOn a more personal level we have learned that the ompletion of this thesis has overed manysubjets within omputer siene. Thus, one of the most di�ult subjets has been to studyand ombine these. The development of the thesis has learly shown that a substantial amountof further development ould be put into our work. However, we have sueeded in produinga solid foundation even though it has been di�ult to set the right limitations and at the sametime produe a omplete thesis. Furthermore, our initial beliefs onerning lients' ability andwillingness to share bandwidth may be doubtful. Hene a stronger use of servers loated atadvaned points in the network may be feasible. However, the developed protool an easily bemodi�ed to support this method and the knowledge aquired through this thesis still applies.At last we an onlude that we have sueeded in designing and implementing a networkprotool whih largely ful�lls the main goals of this thesis as was initially set in the synopsis.Thus, we have sueeded in onstruting an alternative to the simple uniast model o�eringall the funtionalities expeted from a video on-demand system.

176

Glossary
AAppliation Programming Interfae (API): An API de�nes the interfae that softwareprovides in order to allow requests for funtionality implemented in the software to bemade by other omputer programs.Anti-soial: A lient is regarded anti-soial if at least one of two things apply. First, if alient does not have the bandwidth apaity to send at least one whole video. Seondly,if a lient has a onnet area (CA) whih is less then the size advertised by the server.Appliation proesses: A proess whih resides in the appliation holding an instane ofeither the server or lient protools.Asynhronous bandwidth: Is de�ned as bandwidth where the maximum upstream di�ersfrom maximum downstream. Thus, a lient ould have a maximum downstream band-width of 2048 Kbit/se but only 512 Kbit/se upstream � a typial spei�ation of todaysADSL lines. As downstream speed is often assigned higher priority than upstream speedInternet users will often have higher downstream speed at their disposal.Asynhronous onnetion: An Internet onnetion equipped with asynhronous bandwidth.BBakbone providers: Companies whih deliver networks onnetions used by Internet Ser-vie Providers (ISP).Bandwidth: There is no single universal de�nition of bandwidth but normally the term isused as a measurement of a frequeny range. More reently the word has been usedwhen desribing the apaity in networks (and the Internet) where it is used to denotethe amount of data whih an be transferred through a onnetion.Bandwidth sharing: This term refers to a type of network where the bandwidth of the usersis a shared resoure.Big endian: Refers to a way of storing multi-byte values in memory where the most signi�-ant bit is loated in the high order byte in terms of memory address spae.177

GLOSSARY GlossaryBit-rate: Is the number of bits whih is onsumed during a given interval. In the ase ofdigital video it de�nes the amount of data onsumed per seond while displaying thevideo.Best-e�ort: This term refers to the quality of servie of an Internet onnetion. Basiallythis means that the onnetion will try to send as muh data as possible as fast aspossible.CClient appliation: Refers to an appliation whih holds an instane of the lient protool.Client protool: The lient side of the protool or a spei� instane of the protool in lientmode.Connet area (CA): The area of the lients bu�er where new lients an be attahed, alsoknow as CA.Connetionless: The term is used about protools whih do not require a onnetion to beestablished before data an be transmitted. A lassi example is UDP.Connetion-oriented: Opposite of onnetion-less. A lassi example is TCP.Constant bit-rate: In aordane to video the term means that the bit-rate of the video isonstant. Abbreviation: CBR.Critial state: The lient enters a ritial state if the Absorption Area (AA) of the bu�er isnot ompletely �lled with relevant data.DDeoder: Referring to video, deoding is the proess of onverting data to its original format.De-fato standard De fato is Latin for "in fat" or "in pratie". A de fato standardis a tehnial standard that is so dominant that everybody follows it as an authorizedstandard.EEnoder: Opposite of deoder.
178

GLOSSARY GlossaryFFrame rate: The rate at whih a video is displayed e.g. the number of frames per seond.Frames: A video is build up of a series of still images alled frames.HHDTV: Is short for High-De�nition TeleVision. HDTV o�ers signi�antly higher resolutionthan traditional formats like NTSC and PAL.Header: In omputer networks the header of a paket is a sort of ontrol data whih isplaed in the beginning of the paket. The header may ontain information about howthe paket should be handled.Hop: One step, from one node to the next, on the path of a paket on an Internet Protool(IP) network.Hosts: A network attahed devie whih ommuniates over the network. In this thesis itrefers to both a lient or a server.Host byte-order: Refers to the byte-order (big endian or little endian) of a given host.Whether this is big endian or little endian is deided by the arhiteture of the host.IIP-address: An IP address (Internet Protool address) is a unique number that is used byhosts on networks using the Internet Protool (IP).LLateny: The term refers to the delay experiened in network ommuniation.Little endian: Refers to a way of storing multi-byte values in memory where the most sig-ni�ant bit is loated in the low order byte in terms of memory address spae.NNetwork byte-order: Refers to the byte-order (big endian or little endian) used in a net-work. Upon the Internet the used byte-order is big endian.179

GLOSSARY GlossaryNon-sequential: The term is used in this thesis regarding the irular bu�er of the lient.Data is said to be sequential if data ontained in the bu�er is sequential in terms of theorder of whih the BBs are plaed in the bu�er from the Play Pointer (PP) and bakto a spei�ed point. Non-sequential is the opposite and will our when then lient hasperformed a skip outside it bu�er area.Node: Refers to an entity on the Internet. This may be either a omputer, router, swith, orother equipment along an Internet path.OOut-of-order: In relation to network ommuniations this term is used when data is reeivedin a di�erent order than the one in whih it was sent.PPaket: In omputer networks a paket is a formatted blok of data whih is transferred overthe network.Payload: The payload is the data part of a paket whih is being transported by the layerresting on top of the protool.Peer-to-peer: A type of network in whih eah host has equivalent apabilities and respon-sibilities. This di�ers from the lient/server arhitetures, where some omputers aredediated to serving others. Abbreviation: P2P.Play blok: This term is used to desribe the Bu�er Blok in the lients bu�er from wherethe lient is urrently viewing the video.Port: In the TCP and UDP transport protools a port number is used to multiplex betweendi�erent appliations. Thus, the pair (ip-address, port) is used to identify an appliationupon the Internet.Protool: In omputers, a protool is a onvention on how data is transferred between twohosts on a shared network. This onvention an besides the data transfer, inlude howthe onnetion is established, synhronization of the onnetion et.Protool stak: The term protool stak refers to a olletion of protools 'pakaged' in astak to o�er easy interhangeability of the individual protools of the stak.QQuality of Servie: In the �eld of omputer networking, the term Quality of Servie (QoS)refers to the probability of the network meeting a given ontrat. In many ases it is180

GLOSSARY Glossaryused to refer to the probability of a paket sueeding in passing through the networkwithin a desired lateny period.RReeive blok: The reeive blok is the Bu�er Blok (BB) in the data bu�er of the lientwhih holds the urrent bu�er blok being reeived.Reliable byte stream: The term is used in onnetion with network protools if the protoolimplements mehanisms whih ensures that the bytes whih emerge from the ommu-niation hannel at the reipient are exatly the same, and in the exat same order, asthe sender inserted them into the hannel.SServer appliation: Refers to an appliation whih holds an instane of the server sideprotool.Server protool: The server side of the protool or a spei� instane of the protool inserver mode.Session: The term session is used throughout this thesis regarding the time from where alient onnets until it disonnets. This interval is referred to as the lients session.Streaming: In omputer networking, a stream is suession of data elements made availableover time. The term video streaming is referred to a method of transferring data at thespeed at whih it is onsumed.TThree-way handshake: This term is used for the way some protools reate a onnetion.First the onneting host sends a onnet request and the ounterpart sends a onnetrespond bak and �nally the onnetion lient sends an aknowledgment bak.Tra� shaping: This term refers to a way of attempting to ontrol omputer network tra�in order to guarantee performane, lateny, and bandwidth.Threads: Threads are a method of dividing software into several simultaneously runningtasks sharing the same resoures. Although threads are said to run simultaneously, theyare run in a round-robin like manner assigned only a portion of exeution time usingtime slies. 181

GLOSSARY GlossaryUUnix time: Unix time, or POSIX time is the number of seonds elapsed sine midnight UTCon the morning of January 1, 1970.VVariable bit-rate: In aordane to digital video the term means that the bit-rate of thevideo is variable from frame to frame. Abbreviation: VBR.Video standard: A standard whih desribes how frames and audio are strutured and om-bined into a video.

182

Bibliography
[1℄ BitTorrent, In., Bittorrent, Website aessible at http://www.bittorrent.om (2006).[2℄ S. Blake, D. Blak, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An Arhiteture forDi�erentiated Servie, RFC 2475 (Informational) (1998). Updated by RFC 3260.[3℄ Y. Cai and K.A. Hua, An e�ient bandwidth-sharing tehnique for true video on demandsystems, Proeedings of the Seventh ACM International Conferene on Multimedia (Part1), ACM Press, New York, USA (1999), 211�214.[4℄ P.C. Chapin, pthread tutorial (2005).[5℄ F. Cores, A. Ripoll, and E. Luque, A fully salable and distributed arhiteture for video-on-demand, PROMS 2001: Proeedings of the 6th International Conferene on Protoolsfor Multimedia Systems, Springer-Verlag, London, UK (2001), 59�73.[6℄ Y. Cui and K. Nahrstedt, Layered peer-to-peer streaming, NOSSDAV '03: Proeedingsof the 13th international workshop on Network and operating systems support for digitalaudio and video, ACM Press, New York, USA (2003), 162�171.[7℄ J. de Fine Skibsted, S. Lynge, and et al., eXstream � High performane multimediastreaming server (2005).[8℄ eDonkey, edonkey2000 � overnet, Website aessible at http://www.edonkey.om (2006).[9℄ Gnutella �le sharing and distribution network, Gnutella proto-ol development, Worldwide Web Doument (2006). Available athttp://rf-gnutella.soureforge.net/developer/stable/index.html.[10℄ Gnutella, Gnutella.org, Website aessible at http://www.gnutella.org (2006).[11℄ Y. Guo, K. Suh, J. Kurose, and D. Towsley, P2ast: peer-to-peer pathing sheme forvod servie, WWW '03: Proeedings of the 12th international onferene on World WideWeb, ACM Press, New York, USA (2003), 301�309.[12℄ F. Halsall, Multimedia Communiation, Addison-Wesley (2001).[13℄ M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, Promise: peer-to-peer me-dia streaming using olletast, MULTIMEDIA '03: Proeedings of the eleventh ACMinternational onferene on Multimedia, ACM Press, New York, USA (2003), 45�54.183

http://www.bittorrent.com
http://www.edonkey.com
http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://www.gnutella.org

GLOSSARY Glossary[14℄ M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, Promise: peer-to-peer mediastreaming using olletast, Proeedings of the eleventh ACM international onferene onMultimedia, ACM Press, New York, USA (2003), 45�54.[15℄ M. Hofmann and L.R. Beaumont, Content Networking: Arhiteture, Protools, andPratie, First Edition, Morgan Kaumann (2005).[16℄ K.A. Hua, Y. Cai, and S. Sheu, Pathing: a multiast tehnique for true video-on-demand servies, Proeedings of the sixth ACM international onferene on Multimedia,ACM Press, New York, USA (1998), 191�200.[17℄ Y. hua Chu, J. Chuang, and H. Zhang, A ase for taxation in peer-to-peer streamingbroadast, PINS '04: Proeedings of the ACM SIGCOMM workshop on Pratie andtheory of inentives in networked systems, ACM Press, New York, USA (2004), 205�212.[18℄ MIT Kerberos, Kerberos: The network authentiation protool, Website aessible athttp://web.mit.edu/kerberos/ (2006).[19℄ S.H. Lee, K.Y. Whang, Y. S. Moon, and I.Y. Song, Dynami bu�er alloation in video-on-demand systems, Proeedings of the 2001 ACM SIGMOD International Conferene onManagement of Data, ACM Press, New York (2001), 343�354.[20℄ F.C. Li, A. Gupta, E. Sanoki, L. wei He, and Y. Rui, Browsing digital video, CHI '00:Proeedings of the SIGCHI onferene on Human fators in omputing systems, ACMPress, New York, USA (2000), 169�176.[21℄ T. Liu and S. Nelakuditi, Disruption-tolerant ontent-aware video streaming, Proeedingsof the 12th Annual ACM International Conferene on Multimedia, ACM Press, New York(2004), 420�423.[22℄ C. Logg, L. Cottrell, and J. Navratil, Experienes in traeroute and available bandwidthhange analysis, NetT '04: Proeedings of the ACM SIGCOMM workshop on Networktroubleshooting, ACM Press, New York, USA (2004), 247�252.[23℄ D. Loguinov, A. Kumar, V. Rai, and S. Ganesh, Graph-theoreti analysis of struturedpeer-to-peer systems: routing distanes and fault resiliene, Proeedings of the 2003 Con-ferene on Appliations, Tehnologies, Arhitetures, and Protools for Computer Com-muniations, ACM Press, New York, USA (2003), 395�406.[24℄ H. Ma and K.G. Shin, Multiast video-on-demand servies, SIGCOMM Comput. Com-mun. Rev. 32,1 (2002), 31�43.[25℄ H. Ma and K.G. Shin, Multiast video-on-demand servies, SIGCOMM Comput. Com-mun. Rev. 32,1 (2002), 31�43.[26℄ F. Mittelbah and M. Goossens, The LATEXCompanion, Seond Edition, Addison-Wesley(2004).[27℄ Moving Piture Experts Group (MPEG), MPEG home page, Website aessible athttp://www.hiariglione.org/mpeg/ (2006).[28℄ Napster, Napster.om, Website aessible at http://www.napster.om (2006).184

http://web.mit.edu/kerberos/
http://www.chiariglione.org/mpeg/
http://www.napster.com

GLOSSARY Glossary[29℄ Y. Okada, M. Oguro, J. Katto, and S. Okubo, A new approah for the onstrution ofalm trees using layered video oding, Proeedings of the ACM workshop on Advanes inPeer-to-Peer Multimedia Streaming, ACM Press, New York, USA (2005), 59�68.[30℄ W.B. Pennebaker and J. L. Mithell, JPEG Still image data ompression standard, VanNostrand Reinhold (1993).[31℄ L. L. Peterson and B. S. Davie, Computer Networks, Seond Edition, Morgan Kaufmann(2000).[32℄ J. Postel, RFC 768: User Datagram Protool (1980).[33℄ J. Postel, RFC 791: Internet Protool (1981).[34℄ J. Postel, RFC 793: Transmission Control Protool (1981).[35℄ M. Roha, M. Maia, I. Cunha, J. Almeida, and S. Campos, Salable media streamingto interative users, Proeedings of the 13th annual ACM international onferene onMultimedia, ACM Press, New York, USA (2005), 966�975.[36℄ W. Shi and S. Ghandeharizadeh, Bu�er sharing in video-on-demand servers, SIGMET-RICS Perform. Eval. Rev. 25,2 (1997), 13�20.[37℄ R. Sinha and C. Papadopoulos, An adaptive multiple retransmission tehnique for on-tinuous media streams, NOSSDAV '04: Proeedings of the 14th international workshopon Network and operating systems support for digital audio and video, ACM Press, NewYork, USA (2004), 16�21.[38℄ W.R. Stevens, B. Fenner, and A.M. Rudo�, UNIX Network Programming: The SoketsNetworking API, Third Edition, Addison-Wesley (2004).[39℄ W.R. Stevens, B. Fenner, and A.M. Rudo�, UNIX Network Programming: The SoketsNetworking API, Third Edition, Addison-Wesley (2004).[40℄ A. S. Tanenbaum, Computer Networks, Third Edition, Addison-Wesley (1996).[41℄ M.A. Tantaoui, K.A. Hua, and S. Sheu, Interation with broadast video, Proeedingsof the tenth ACM international onferene on Multimedia, ACM Press, New York, USA(2002), 29�38.[42℄ D.A. Tran, K.A. Hua, and T.T. Do, Salable media streaming in large peer-to-peernetworks, Proeedings of the tenth ACM international onferene on Multimedia, ACMPress, New York, USA (2002), 247�250.[43℄ B. Wang, J. Kurose, P. Shenoy, and D. Towsley, Multimedia streaming via tp: ananalyti performane study, Proeedings of the 12th annual ACM international onfereneon Multimedia, ACM Press, New York, USA (2004), 908�915.[44℄ B. Wang, J. Kurose, P. Shenoy, and D. Towsley, Multimedia streaming via tp: ananalyti performane study, Proeedings of the 12th annual ACM international onfereneon Multimedia, ACM Press, New York, USA (2004), 908�915.185

BIBLIOGRAPHY Bibliography[45℄ K. Wittenburg, C. Forlines, T. Lanning, A. Esenther, S. Harada, and T. Miyahi, Rapidserial visual presentation tehniques for onsumer digital video devies, UIST '03: Pro-eedings of the 16th annual ACM symposium on User interfae software and tehnology,ACM Press, New York, USA (2003), 115�124.[46℄ C. Wu and B. Li, Optimal peer seletion for minimum-delay peer-to-peer streaming withrateless odes, Proeedings of the ACM Workshop on Advanes in Peer-to-Peer Multime-dia Streaming, ACM Press, New York (2005), 69�78.[47℄ C. Wu and B. Li, Optimal peer seletion for minimum-delay peer-to-peer streaming withrateless odes, P2PMMS'05: Proeedings of the ACM workshop on Advanes in peer-to-peer multimedia streaming, ACM Press, New York, USA (2005), 69�78.[48℄ M. Zhang, L. Zhao, Y. Tang, J.G. Luo, and S.Q. Yang, Large-sale live media streamingover peer-to-peer networks through global internet, Proeedings of the ACM Workshop onAdvanes in Peer-to-Peer Multimedia Streaming, ACM Press, New York (2005), 21�28.[49℄ Y. Zhang and N. Du�eld, On the onstany of internet path properties, Proeedings ofthe 1st ACM SIGCOMM Workshop on Internet Measurement, ACM Press, New York,USA (2001), 197�211.

186

A
Appendix APaket table

Paket name Protool Short name 〈P type,A type〉 Presented inConnetion granted CCP CONN_GRANTED 〈10,10〉 17.2.2 (p. 104)Connetion denied CCP CONN_DENIED 〈10,20〉 17.2.3 (p. 106)Connetion losed CCP CONN_CLOSED 〈10,30〉 17.2.4 (p. 107)Reeive data stream CCP RECV_DATA_STREAM 〈10,50〉 17.3.1 (p. 109)Seurity data CCP SEC_DATA 〈10,60〉 17.8.1 (p. 125)Request status CCP STATUS_REQ 〈20,10〉 17.6.1 (p. 121)Distribute data CCP SND_DATA_STREAM 〈20,20〉 17.3.2 (p. 110)Stop data distribution CCP STOP_STREAM 〈20,30〉 17.3.3 (p. 111)Status respond CCP STATUS_RESP 〈30,10〉 17.6.2 (p. 122)Request onnet CCP CONN_REQ 〈40,10〉 17.2.1 (p. 103)Pause video player CCP INTERACT_PAUSE 〈40,30〉 17.5.1 (p. 118)Pause stream CCP INTERACT_PAUSE_STREAM 〈40,40〉 17.5.2 (p. 119)Resume stream CCP INTERACT_RESUME 〈40,50〉 17.5.3 (p. 119)Skip CCP INTERACT_SKIP 〈40,60〉 17.5.4 (p. 120)Disonnet CCP DISCONN 〈40,70〉 17.2.5 (p. 107)Error reeiving data CCP STREAM_ERROR 〈40,80〉 17.4.6 (p. 116)Request bakup data CCP REQ_BACKUP_DATA 〈40,100〉 17.4.7 (p. 117)Data DCP DATA 〈50,10〉 17.4.1 (p. 112)Data not available DCP NO_DATA 〈50,20〉 17.4.2 (p. 113)End of data DCP NO_MORE_DATA 〈50,30〉 17.4.3 (p. 114)Pong DCP PONG 〈50,40〉 17.7.2 (p. 124)Request data resend DCP RESEND_DATA 〈60,10〉 17.4.4 (p. 115)Adjust speed DCP ADJUST_SPEED 〈60,20〉 17.4.5 (p. 115)Ping DCP PING 〈60,30〉 17.7.1 (p. 124)

187

A. Paket table

188

B
Appendix BProtool soure �les

data_bank_lient.h#ifndef DATA_BANK_CLIENT#define DATA_BANK_CLIENT#inlude "../inlude/paket.h"#inlude "../inlude/paket_rev_data_stream.h"#inlude "../inlude/paket_snd_data_stream.h"#inlude "../inlude/paket_stop_stream.h"#inlude "../inlude/stream_table.h"#inlude "../inlude/paket_onn_granted.h"#inlude "../inlude/types.h"#inlude "../inlude/enum.h"lass data_bank_lient {bool v_initialized;// Paket ontaining video information regarding bitrate, bb size, et.paket_onn_granted* v_video_info_pak;// Paket ontaining info about the nature of from who, where and when// video data is reeived.paket_rev_data_stream* v_rev_table;// Table ontaining info about to who, and when we must send datastream_table* v_streams;publi:data_bank_lient();~data_bank_lient();// Initialize the lassvoid initialize(paket_onn_granted* pak);// Set reeive table. Sets the paket ontainint// information regarding the ontents of the ingoing// data stream.void set_rev_table(paket_rev_data_stream* pak);// Add a stream to the data bankvoid add_stream(paket_snd_data_stream* pak);189

B. Protool soure �les// Stop a streamvoid stop_stream(paket_stop_stream* pak);// Resend a blok to a lientvoid resend_blok(u64 lient_id, u16 BB, u16 DB);// Adjust speedvoid adjust_speed(u64 lient_id, speed_level level);// Get the next reeiver in linebool get_next_reeiver(u64 video_id,u64& lient_id,int& wait_time,u16& next_bb,u16& next_db,speed_level& level,u64& ip_addr,u16& port);// Get the length of the video in milliseondsu64 get_video_duration();// Get the length of the video in bytesu64 get_video_length();// Get the skip distane of the videou64 get_skip_distane();// Get the total number of db in the videou32 get_num_of_bb();};#endifdata_bank_lient.pp#inlude "stdafx.h"#inlude "../inlude/data_bank_lient.h"//***// Construtor//***data_bank_lient::data_bank_lient(){ v_initialized = false;v_streams = new stream_table();v_video_info_pak = NULL;v_rev_table = NULL;}//***// destrutor//***190

B. Protool soure �lesdata_bank_lient::~data_bank_lient(){ delete v_video_info_pak;delete v_rev_table;delete v_streams;}//***// Initialize//***void data_bank_lient::initialize(paket_onn_granted* pak){ if (!v_initialized) {// Initialize the stream_table. Do we need the pak information in the// stream_table element?v_streams->initialize(pak);v_video_info_pak = pak;v_initialized = true;}else throw new data_bank_exeption("Error: databank already initialized!");}//***// Set reeive table//***void data_bank_lient::set_rev_table(paket_rev_data_stream* pak){ if (v_initialized) {v_rev_table = pak;}else throw new data_bank_exeption("Error: databank aessed before it was initialized!");}//***// Add a stream to the data bank//***void data_bank_lient::add_stream(paket_snd_data_stream* pak){ if (v_initialized) {try {int fa = (int) ((v_video_info_pak->get_db_total() /v_video_info_pak->get_bb_total()) / pak->get_number_of_db());v_streams->add_stream(pak, v_video_info_pak->get_speed_low() * fa,v_video_info_pak->get_speed_normal() * fa,v_video_info_pak->get_speed_high() * fa);}ath (stream_table_exeption* ex) {throw ex;}}elsethrow new data_bank_exeption("Error: databank aessed before it was initialized!");} 191

B. Protool soure �les//***// Stop stream//***void data_bank_lient::stop_stream(paket_stop_stream* pak){ if (v_initialized) {v_streams->stop_stream(pak);}elsethrow new data_bank_exeption("Error: databank aessed before it was initialized!");}//***// Resend blok to lient//***void data_bank_lient::resend_blok(u64 lient_id, u16 BB, u16 DB){ if (v_initialized) {v_streams->resend_blok(lient_id, BB, DB);}elsethrow new data_bank_exeption("Error: databank aessed before it was initialized!");}//***// Adjust speed of a lient//***void data_bank_lient::adjust_speed(u64 lient_id, speed_level level){ if (v_initialized) {v_streams->adjust_speed(lient_id, level);}elsethrow new data_bank_exeption("Error: databank aessed before it was initialized!");}//***// Get the next reeiver//***bool data_bank_lient::get_next_reeiver(u64 video_id,u64& lient_id,int& wait_time,u16& next_bb,u16& next_db,speed_level& level,u64& ip_addr,u16& port){ if (v_initialized) {return v_streams->get_next_reeiver(lient_id,wait_time,next_bb,192

B. Protool soure �les next_db,level,ip_addr,port);}elsethrow new data_bank_exeption("Error: databank aessed before it was initialized!");}//***// Return the duration of the video//***u64 data_bank_lient::get_video_duration(){ return v_video_info_pak->get_video_duration();}//***// Return the length of the video in bytes//***u64 data_bank_lient::get_video_length(){ return v_video_info_pak->get_video_size();}//***// Return the skip distane of the video//***u64 data_bank_lient::get_skip_distane(){ return v_video_info_pak->get_skip_distane();}//**// get the number of data bloks in total//**u32 data_bank_lient::get_num_of_bb(){ return v_video_info_pak->get_bb_total();}data_bank_server.h#ifndef DATA_BANK_SERVER#define DATA_BANK_SERVER//#inlude "../inlude/paket_video_init_resp.h"#inlude "../inlude/stream_table.h"#inlude "../inlude/types.h" 193

B. Protool soure �les#inlude "../inlude/enum.h"#inlude "../inlude/paket_status_resp.h"#inlude "../inlude/paket_onn_req.h"#inlude "../inlude/lient_info.h"#inlude "../inlude/paket_interat_skip.h"#inlude <map>// Constantsonst u16 C_BB_TOTAL = 45 ;onst u16 C_DB_PER_BB = 100;onst u64 C_VIDEO_SIZE = 20690708; // bytesonst int C_VIDEO_DURATION = 137000; // mseonst u32 C_DB_TOTAL = C_BB_TOTAL * C_DB_PER_BB;onst u16 C_DB_SIZE = 4598; // byteonst u32 C_BB_SIZE = C_DB_SIZE * C_DB_PER_BB; // byteonst int C_BB_DURATION = C_VIDEO_DURATION / C_BB_TOTAL; // mseonst int C_VIDEO_HEADER_SIZE = 2; // amount of db'sonst int C_RECOM_CA_SIZE = 45; // amount of bb'sonst int C_SPEED_LOW = 40; // mseonst int C_SPEED_NORMAL = 30; // mseonst int C_SPEED_HIGH = 25; // msetypedef std::map<u64, lient_info*>::onst_iterator iterator_lient;lass data_bank_server{private:bool v_initialized;// Private variable defining to who and when the server should stream datastream_table* v_streams;// Map ontaining all logged in lientstd::map<u64, lient_info*> v_lients;publi:// Construtordata_bank_server();// Destrutor~data_bank_server();// Initialize the lassvoid initialize();// Get the next reeiver in-linebool get_next_reeiver(u64 video_id,u64& lient_id,int& wait_time,u16& next_bb,u16& next_db,speed_level& level,u64& ip_addr,u16& port); 194

B. Protool soure �lesu64 get_server_id(u64 lient_id);u64 get_video_id();// Fill onn_granted paket with info related to videovoid get_movie_info(u64 get_video_id, paket_onn_granted* p);// Update the status of a lient given in the paketvoid update_status(paket_status_resp* pak);bool add_streams(u16* db_list, u64 video_id);// Add new stream to internal stream tablebool add_new_stream(paket_snd_data_stream* pak);// Remove a stream from data bankvoid remove_stream(u64 lient_id);// Update the ontents of a given streambool update_stream(paket_snd_data_stream* pak);// Ad newe lient to internal lient tablebool add_new_lient(paket_onn_req* pak);// Remove a lient from data bankvoid remove_lient(u64 lient_id);// Set lient posotionbool skip_stream(u64 lient_id, u16 BB);// Find lient whih an attah a lient into DB, BBbool find_lients(u16 BB, u16 DB, u64*& lients, int& lient_length);// Get the ip address of a given lient idu64 get_ip_address(u64 lient_id) ;// Get the dp port of a given lient idu16 get_dp_port(u64 lient_id);// Attah a stream to some lientvoid add_stream_to_lient(u64 lient_id, paket_snd_data_stream* pak);// Get attahed lients of a given lientpaket_snd_data_stream* get_attahed_lients(u64 lient_id);// Get the urrent status of a lientpaket_status_resp* get_lient_status(u64 lient_id);u16 get_num_of_bb(u64 video_id);u32 get_size_of_bb(u64 video_id);u32 get_num_of_db(u64 video_id);u16 get_size_of_db(u64 video_id);u64 get_video_size(u64 video_id);u16 get_num_of_db_in_bb(u64 video_id);};#endif
195

B. Protool soure �lesdata_bank_server.pp#inlude "stdafx.h"#inlude "../inlude/data_bank_server.h"//***// Construtor//***data_bank_server::data_bank_server(){ v_streams = new stream_table();v_streams->initialize(NULL);v_initialized = true;}//***// destrutor//***data_bank_server::~data_bank_server(){}//***// Initialize//***void data_bank_server::initialize(){ return;}//***// Get the next reeiver in-line//***bool data_bank_server::get_next_reeiver(u64 video_id,u64& lient_id,int& wait_time,u16& next_bb,u16& next_db,speed_level& level,u64& ip_addr,u16& port){ return v_streams->get_next_reeiver(lient_id,wait_time,next_bb,next_db,level,ip_addr,port);}//***// Return dummy server-id//***196

B. Protool soure �lesu64 data_bank_server::get_server_id(u64 lient_id){ return 0;}//***// Return dummy video id//***u64 data_bank_server::get_video_id(){ return 0;}//***// Get movieinfo. Write data to paket.//***void data_bank_server::get_movie_info(u64 get_video_id, paket_onn_granted* p){ //p->set_video_id(1);p->set_video_size(C_VIDEO_SIZE);//p->set_video_len(C_VIDEO_DURATION);p->set_bb_total(C_BB_TOTAL);p->set_db_total(C_DB_TOTAL);p->set_db_size(C_DB_SIZE);p->set_video_header_size(C_VIDEO_HEADER_SIZE);p->set_reon_a_size(C_RECOM_CA_SIZE);p->set_speed_low(C_SPEED_LOW);p->set_speed_normal(C_SPEED_NORMAL);p->set_speed_high(C_SPEED_HIGH);p->set_se_type(0);p->set_skip_distane(C_BB_DURATION);// p->set_video_title(NULL);}//***// Add_streams//***bool data_bank_server::add_streams(u16* db_list, u64 video_id){ return true;}//***// Update status of a given lient//***void data_bank_server::update_status(paket_status_resp* pak){ lient_info* lient = v_lients[pak->lient_id℄;lient->update_status(pak);}//**// Add new lient.//**bool data_bank_server::add_new_lient(paket_onn_req* pak){ lient_info* lient = new lient_info(pak);197

B. Protool soure �lesv_lients[pak->lient_id℄ = lient;return true;}//**// Add new lient whih should reeive data from server.//**void data_bank_server::remove_lient(u64 lient_id){ lient_info* i = v_lients[lient_id℄;if(i == NULL) {return;}else {v_lients.erase(lient_id);delete i;}return;}//**// Add new lient whih should reeive data from server.//**bool data_bank_server::add_new_stream(paket_snd_data_stream* pak){v_streams->add_stream(pak, C_SPEED_LOW, C_SPEED_NORMAL, C_SPEED_HIGH);return true;}//**// delete lient whih are reeiving data from server.//**void data_bank_server::remove_stream(u64 lient_id){ v_streams->remove_stream(lient_id);}//**// Update the propeties of a stream//**bool data_bank_server::update_stream(paket_snd_data_stream* pak){ return v_streams->update_stream(pak);}//**// Set the position of a given stream//**bool data_bank_server::skip_stream(u64 lient_id, u16 BB){ return v_streams->skip(lient_id, BB);}//**// Add new lient whih should reeive data from server.//**u16 data_bank_server::get_num_of_bb(u64 video_id)198

B. Protool soure �les{ return C_BB_TOTAL;}//**// get the size of a bb//**u32 data_bank_server::get_size_of_bb(u64 video_id){ return C_BB_SIZE;}//**// get the number of data bloks per in total//**u32 data_bank_server::get_num_of_db(u64 video_id){ return C_DB_TOTAL;}//**// get the size of a db//**u16 data_bank_server::get_size_of_db(u64 video_id){ return C_DB_SIZE;}//**// get the total length of the video//**u64 data_bank_server::get_video_size(u64 video_id){ return C_VIDEO_SIZE;}//**// get the total length of the video//**u16 data_bank_server::get_num_of_db_in_bb(u64 video_id){ return C_DB_PER_BB;}//**// Find lient ontaining given data in onnet area//**bool data_bank_server::find_lients(u16 BB, u16 DB, u64*& lients, int& lient_length){ iterator_lient it;lients = (u64*) mallo(sizeof(u64) * v_lients.size());int next = 0;lient_info* info;for (it = v_lients.begin(); it != v_lients.end(); it++) {info = it->seond;// We should hek if lient ontains the right data in the buffer199

B. Protool soure �leslients[next℄ = info->get_lient_id();next++;}if (next == 0) {lient_length = 0;return false;}else {lient_length = next;return true;}}//**// Get the ip address of a lient//**u64 data_bank_server::get_ip_address(u64 lient_id){ return v_lients[lient_id℄->get_lient_ip4();}//**// Get the DCP port of a lient//**u16 data_bank_server::get_dp_port(u64 lient_id){ return v_lients[lient_id℄->get_lient_dp_port();}//**// Add a stream to a lient//**void data_bank_server::add_stream_to_lient(u64 lient_id, paket_snd_data_stream* pak){ lient_info* lient = v_lients[lient_id℄;if (!lient == NULL)lient->add_stream(pak);}//**// Get whatever lients are attahed to a given lient//**paket_snd_data_stream* data_bank_server::get_attahed_lients(u64 lient_id){ paket_snd_data_stream* rv = NULL;lient_info* lient = v_lients[lient_id℄;if (!lient == NULL)rv = lient->get_attahed_lients();return rv;}//**// Get the status of a given lient//**paket_status_resp* data_bank_server::get_lient_status(u64 lient_id){ 200

B. Protool soure �lespaket_status_resp* rv = NULL;lient_info* lient = v_lients[lient_id℄;if (!lient == NULL)rv = lient->get_lient_status();return rv;}data_bu�er.h#ifndef DATA_BUFFER#define DATA_BUFFER#inlude <string.h>#inlude "../inlude/data_ontainer.h"lass data_buffer : publi data_ontainer {private:u32 v_min_start_up_db;u16 v_db_size;u16* bb_map;u8* signal_map;u16 bp;u16 pp;int v_num_bb;int v_num_db_in_bb;data_element** v_data;HANDLE v_semaphore_buffer;publi:data_buffer(int number_of_bb,int number_of_db_in_bb,u16 db_size,u32 min_start_up_db);void* read_db(u16 bb, u16 db, int& len);void write_db(u16 bb, u16 db, void* data, int len);u16 get_pp();void set_pp(u16 new_pp);size_t read_data(void* buf, size_t max_len, unsigned int& offset);};#endif
201

B. Protool soure �lesdata_bu�er.pp#inlude "stdafx.h"#inlude "../inlude/data_buffer.h"//***// Construtor// Creates the new buffer and mallos the needed spae.//***data_buffer::data_buffer(int number_of_bb,int number_of_db_in_bb,u16 db_size,u32 min_start_up_db){ // Save variablesv_db_size = db_size;v_min_start_up_db = min_start_up_db;v_num_bb = number_of_bb;v_num_db_in_bb = number_of_db_in_bb;// Create semaphorev_semaphore_buffer = CreateSemaphore(NULL, 0, 10000, NULL);// Alloate memorybb_map = (u16*)mallo(sizeof(u16) * v_num_bb);ZeroMemory((void*)bb_map, (sizeof(u16) * v_num_bb));signal_map = (u8*)mallo(sizeof(u8) * v_num_bb);ZeroMemory((void*)signal_map, (sizeof(u8) * v_num_bb));v_data = (data_element**) mallo((v_num_bb * v_num_db_in_bb) * sizeof(data_element*));ZeroMemory((void*)v_data, v_num_bb * v_num_db_in_bb * sizeof(data_element*));// play pointerpp = 0;bp = 0;}//***// Reads a speifi db from the buffer if it exists.//***void* data_buffer::read_db(u16 bb, u16 db, int& len){ int pos = -1;for(int i = 0; i < v_num_bb; i++) {if(bb_map[i℄ == bb) {pos = i;break;}}if(pos == -1) {len = 0;return NULL; 202

B. Protool soure �les}else {len = v_data[(pos * v_num_db_in_bb) + db℄->data_len;return v_data[(pos * v_num_db_in_bb) + db℄->data;}}//***// Writes a speifi db to the buffer (only if the right db is in the buffer).//***void data_buffer::write_db(u16 bb, u16 db, void* data, int len){ int pos = -1;for(int i = 0; i < v_num_bb; i++) {if(bb_map[i℄ == bb) {pos = i;break;}}if(pos == -1) {bp = (bp + 1) % v_num_bb;pos = bp;bb_map[pos℄ = bb;signal_map[pos℄ = 0;ZeroMemory((void*)(&(v_data[pos * v_num_db_in_bb℄)),v_num_db_in_bb * sizeof(data_element*));System::Diagnostis::Debug::WriteLine("Start new BB: " + bb);}if(bb == 9 && db == 1)System::Diagnostis::Debug::WriteLine("STOP");data_element* e = (data_element*) mallo(sizeof(data_element));e->data_len = len;e->data = data;v_data[(pos * v_num_db_in_bb) + db℄ = e;// Chek if full BB then signal dataint ompleted = 0;if(signal_map[pos℄ == 0) {ompleted = 1;for(int i = 0; i < v_num_db_in_bb; i++) {if(v_data[(pos * v_num_db_in_bb) + i℄ == NULL) {ompleted = 0;break;}}}if(ompleted) {signal_map[pos℄ = 1;ReleaseSemaphore(v_semaphore_buffer, 1, NULL);System::Diagnostis::Debug::WriteLine("Signal data ready for BB: " + bb_map[pos℄);} 203

B. Protool soure �les}//**// Returns and updates the urrent postition of the PP//**u16 data_buffer::get_pp(){ return pp;}void data_buffer::set_pp(u16 new_pp){ pp = new_pp;}//**// Reads data and returns it bak to the buffer//**size_t data_buffer::read_data(void* buf, size_t max_len, unsigned int& offset){ DWORD wait_result_sema = WaitForSingleObjet(v_semaphore_buffer, INFINITE);int rv = 0;data_element* d;int pos = -1;for(int i = 0; i < v_num_bb; i++) {if(bb_map[i℄ == pp) {pos = i;break;}}for(int i = 0; i < v_num_db_in_bb; i++) {d = (v_data[(pos * v_num_db_in_bb) + i℄);if(d != NULL) {//mempy((void*)(((har*)buf)+(i * d->data_len)), d->data, d->data_len);mempy((void*)(((har*)buf)+(i * 4598)), d->data, d->data_len);rv += d->data_len;}}System::Diagnostis::Debug::WriteLine("BB delivered to lient: " + pp);offset = pp * v_num_db_in_bb * v_db_size;pp++;if(pp == 45)System::Diagnostis::Debug::WriteLine("BB delivered to lient: " + pp);return rv;} 204

B. Protool soure �lesdata_ahe.h#ifndef DATA_CACHE#define DATA_CACHE#inlude "../inlude/types.h"#inlude "../inlude/request_queue.h"lass data_ahe : publi data_ontainer {private:u64 v_movie_id;u16 v_num_bb;u32 v_size_bb;u16 v_db_in_bb;u16 v_size_db;u64 v_video_size;void* read_data;request_queue* v_request_queue;data_element** v_ahe_array;publi:data_ahe(request_queue* queue,u64 movie_id,u16 num_bb,u32 size_bb,u16 num_db,u16 size_db,u64 video_size);void* read_db(u16 BB, u16 DB, int& len);void write_db(u16 bb, u16 db, void* data, int len);void write_bb(u16 bb, void* data, int len);void data_not_sent(u64 lient_id, u16 bb, u16 db);};#endifdata_ahe.pp#inlude "stdafx.h"#inlude "../inlude/data_ahe.h"// **// Construtor// **data_ahe::data_ahe(request_queue* queue,u64 movie_id,u16 num_bb,u32 size_bb,u16 num_db, 205

B. Protool soure �lesu16 size_db,u64 video_size){ v_request_queue = queue;v_movie_id = movie_id;v_num_bb = num_bb;v_size_bb = size_bb;v_db_in_bb = num_db / num_bb;v_size_db = size_db;v_video_size = video_size;read_data = NULL;v_ahe_array = (data_element**)mallo(num_bb * sizeof(data_element*));ZeroMemory(v_ahe_array, num_bb);}// **// Read a db from ahe// **void* data_ahe::read_db(u16 bb, u16 db, int& len){ // In this version the file is read diretly from the dis.if(read_data == NULL) {ifstream fs (":\\movie.mov", ios::in | ios::binary);read_data = mallo(v_video_size);if(!fs.read((har*)read_data, v_video_size))System::Diagnostis::Debug::WriteLine("Could not read data from file.");fs.lose();}// Calulate if we have reahed end-of-streamif (bb == v_num_bb - 1 && db == v_db_in_bb - 1)len = v_video_size % v_size_db;elselen = v_size_db;har* rv = ((har*)read_data) + ((bb * v_size_db * v_db_in_bb) + (db * v_size_db));return (void*) rv;}// **// Write a db to ahe// **void data_ahe::write_db(u16 bb, u16 db, void* data, int len){}// **// Write a bb to ahe// **void data_ahe::write_bb(u16 bb, void* data, int len){ 206

B. Protool soure �lesdata_element* d = new data_element;d->data = data;d->data_len = len;v_ahe_array[bb℄ = d;}data_ontainer.h#ifndef DATA_CONTAINER#define DATA_CONTAINER#inlude <stdlib.h>#inlude "../inlude/types.h"strut data_element {int data_len;void* data;};lass data_ontainer {publi:virtual void* read_db(u16 bb, u16 db, int& len) = 0;virtual void write_db(u16 bb, u16 db, void* data, int len) = 0;};#endifglobal_funtions.h#ifndef GLOBAL_FUNCTIONS#define GLOBAL_FUNCTIONS//#inlude <sys/time.h>//#inlude <time.h>#inlude <stdlib.h>#inlude <sys/timeb.h>#inlude <time.h>strut system_time {long se;long mse;};void get_system_time(system_time* time);bool operator<(onst system_time t1, onst system_time t2);207

B. Protool soure �lesbool operator>(onst system_time t1, onst system_time t2);system_time operator-(onst system_time t1, onst system_time t2);system_time operator+(onst system_time t1, onst system_time t2);bool operator==(onst system_time t1, onst system_time t2);system_time operator+(onst system_time t1, int use);int to_mse(onst system_time t1);#endifglobal_funtions.pp#inlude "stdafx.h"#inlude "../inlude/global_funtions.h"//***// Get urrent time and reate a timestamp//***void get_system_time(system_time* time){ _timeb timebuffer;_ftime64_s(&timebuffer);time->se = timebuffer.time;time->mse = timebuffer.millitm;}//***// Compares (<) two timestamps//***bool operator<(onst system_time t1, onst system_time t2){ if (t1.se == t2.se) {return t1.mse < t2.mse;}else {return t1.se < t2.se;}}//***// Compares (>) two timestamps//***bool operator>(onst system_time t1, onst system_time t2){ if (t1.se == t2.se) {return t1.mse > t2.mse;}else {return t1.se > t2.se;}} 208

B. Protool soure �les//***// Addition of two timestamps//***system_time operator+(onst system_time t1, onst system_time t2){ strut system_time rv;int new_mse = t1.mse + t2.mse;// Calulate remainderint remainder = new_mse % 1000;rv.mse = remainder;// Calulate arryint arry = (int) new_mse / 1000;rv.se = t1.se + t2.se + arry;return rv;}//***// Subtration of two timestamps//***system_time operator-(onst system_time t1, onst system_time t2){ strut system_time rv;int new_mse = t1.mse - t2.mse;if (new_mse < 0) {rv.se = t1.se - t2.se - 1;rv.mse = 1000 - abs(new_mse);}else {rv.se = t1.se - t2.se;rv.mse = t1.mse - t2.mse;}return rv;}//***// Compare (==) two timestamps//***bool operator==(onst system_time t1, onst system_time t2){ return (t1.se == t2.se) && (t1.mse == t2.mse);}//***// Converts timestamp to mse.//***int to_mse(onst system_time t1){ return ((t1.se*1000) + t1.mse);} 209

B. Protool soure �les//***// Add mse. to a timestamp//***system_time operator+(onst system_time t1, int mse){ strut system_time rv;int new_mse = mse + t1.mse;// Calulate remainderint remainder = new_mse % 1000;rv.mse = remainder;// Calulate arryint arry = (int) new_mse / 1000;rv.se = t1.se + arry;return rv;}logi_lient.h#ifndef LOGIC_CLIENT#define LOGIC_CLIENT#inlude "../inlude/transport_handler.h"#inlude "../inlude/data_bank_lient.h"#inlude "../inlude/stream_engine.h"#inlude "../inlude/data_buffer.h"#inlude "../inlude/paket_queue.h"#inlude "../inlude/stream_engine_thread.h"#inlude "../inlude/status_thread.h"#inlude "../inlude/enum.h"#inlude "../inlude/paket_onn_granted.h"#inlude "../inlude/paket_status_req.h"#inlude "../inlude/paket_onn_req.h"#inlude "../inlude/paket_status_resp.h"#inlude "../inlude/paket_data.h"#inlude "../inlude/paket_stop_stream.h"#inlude "../inlude/paket_disonn.h"#inlude "../inlude/paket_stream_error.h"#inlude "../inlude/paket_end_of_data.h"#inlude "../inlude/paket_handler.h"#inlude "../inlude/paket_interat_pause.h"#inlude "../inlude/paket_interat_pause_stream.h"#inlude "../inlude/paket_interat_resume.h"#inlude "../inlude/paket_interat_skip.h"#inlude "../inlude/paket_no_data.h"#inlude "../inlude/paket.h"#inlude "../inlude/paket_adjust_speed.h"#inlude "../inlude/paket_req_bakup_data.h"#inlude "../inlude/paket_onn_losed.h"#inlude "../inlude/paket_resend_data.h"#inlude "../inlude/paket_onn_denied.h" 210

B. Protool soure �les#inlude "../inlude/paket_snd_data_stream.h"lass logi_lient {private:u64 v_video_id;size_t v_buf_size;transport_handler* v_transport_handler;data_bank_lient* v_data_bank;stream_engine* v_stream_engine;data_buffer* v_data_buffer;paket_queue* v_paket_queue;DWORD v_stream_thread_id;HANDLE v_stream_thread;DWORD v_status_thread_id;HANDLE v_status_thread;int hatten;int v_state;u64 v_lient_id;u64 v_server_id;void onn_granted(paket_onn_granted* pak);void onn_denied(paket_onn_denied* pak);void onn_losed(paket_onn_losed* pak);void rev_data_stream(paket_rev_data_stream* pak);void status_req(paket_status_req* pak);void snd_data_stream(paket_snd_data_stream* pak);void stop_stream(paket_stop_stream* pak);void data(paket_data* pak);void no_data(paket_no_data* pak);void end_of_data(paket_end_of_data* pak);int logi_lientmovie_info();void resend_data(paket_resend_data* pak);void adjust_speed(paket_adjust_speed* pak);bool hek_data_reeption(u64 snd_lient_id,u16 bb,u16 db);publi:logi_lient(u64 video_id, transport_handler* th, paket_queue* pq);void paket_handler(paket* pak);int onnet(size_t buf_size, strut login_data* lient, u16 p_port, u16 dp_port);211

B. Protool soure �lessize_t poll();size_t rev_data(void* buf, size_t max_len, unsigned int& offset);int disonnet();int pause();int resume();int skip(unsigned int distane);int movie_info();u64 get_video_duration();u64 get_video_length();u64 get_skip_distane();};#endiflogi_lient.pp#inlude "stdafx.h"#inlude "../inlude/logi_lient.h"//***// Construtor// Sets the referene to transport_handler and paket_queue//***logi_lient::logi_lient(u64 video_id, transport_handler* th, paket_queue* pq){ v_video_id = video_id;v_stream_engine = NULL;v_transport_handler = th;v_paket_queue = pq;v_data_bank = new data_bank_lient();}//***// Funtion alled to onnet lient to server, waits for// respond on onnet request.//***int logi_lient::onnet(size_t buf_size,strut login_data* lient,u16 p_port, 212

B. Protool soure �les u16 dp_port){ paket_onn_req* snd_p = new paket_onn_req(0,0);snd_p->set_video_id(1234);snd_p->set_p_port(p_port);snd_p->set_dp_port(dp_port);v_transport_handler->send_CCP(snd_p, 0);// Wait for respond on onnet paket - always a paket_onn_granted in this versionpaket* rev_p = v_paket_queue->get_next_paket();paket_handler(rev_p);lient->skip_distane = ((paket_onn_granted*)rev_p)->get_skip_distane();lient->video_duration = ((paket_onn_granted*)rev_p)->get_video_duration();lient->video_size = ((paket_onn_granted*)rev_p)->get_video_size();v_data_bank->initialize((paket_onn_granted*) rev_p);return 0;}//***// Returns data from the buffer to the lient.//***size_t logi_lient::rev_data(void* buf, size_t max_len, unsigned int& offset){ return v_data_buffer->read_data(buf, max_len, offset);}//***// Returns data from the buffer to the lient.//***int logi_lient::disonnet(){ // If a stream engine exists it must be stoppedif(v_stream_engine != NULL) {TerminateThread(v_stream_thread, 0);// Delete objetsdelete(v_stream_engine);}// Delete status threadTerminateThread(v_status_thread, 0);paket_disonn* p = new paket_disonn(v_server_id, v_lient_id);v_transport_handler->send_CCP(p, v_server_id);return 0;}//***// Funtion is alled duing a skip.//***int logi_lient::skip(unsigned int distane){ 213

B. Protool soure �lespaket_interat_skip* p = new paket_interat_skip(v_server_id, v_lient_id);v_data_buffer->set_pp(distane);p->set_target_blok(distane);v_transport_handler->send_CCP(p, v_server_id);return 0;}//***// The paket handler is alled upon reeption of a paket.//***void logi_lient::paket_handler(paket* pak){ swith(pak->get_paket_type()) {// Server to lient respase 10:swith(pak->get_ation_type()) {ase 10: // CONN_GRANTEDonn_granted((paket_onn_granted*) pak);break;ase 20: // CONN_DENIEDbreak;ase 30: // CONN_CLOSEDbreak;ase 50: // RECV_DATA_STREAMrev_data_stream((paket_rev_data_stream*) pak);break;}break;// Server to lient reqase 20:swith(pak->get_ation_type()) {ase 10: // STATUS_REQbreak;ase 20: // SND_DATA_STREAMsnd_data_stream((paket_snd_data_stream*) pak);break;ase 30: // STOP_STREAMstop_stream((paket_stop_stream*) pak);break;}break;// Client rev. to lient sndase 50:swith(pak->get_ation_type()) {ase 10: // DATAdata((paket_data*) pak);break;ase 20: // NO_DATAbreak;ase 30: // END_OF_DATAbreak;}break; 214

B. Protool soure �les// Client snd to lient rev.ase 60:swith(pak->get_ation_type()) {ase 10: // RESEND_DATAresend_data((paket_resend_data*) pak);break;ase 20: // AJUST_SPEEDadjust_speed((paket_adjust_speed*) pak);break;}break;}}//***// Called upon reeption of onn_granted, sets lient and// server id and reates the buffer. (Private funtion).//***void logi_lient::onn_granted(paket_onn_granted* pak){ v_lient_id = pak->get_lient_id();v_server_id = pak->get_server_id();v_state = 1;v_data_buffer = new data_buffer(pak->get_reon_a_size(),pak->get_db_total() / pak->get_bb_total(),pak->get_db_size(),pak->get_video_header_size());// Startup the status threadstatus_params* args = (status_params*) mallo(sizeof(status_params));args->v_data_buffer = this->v_data_buffer;args->v_transport_handler = this->v_transport_handler;args->v_server_id = v_server_id;args->v_lient_id = v_lient_id;v_status_thread = CreateThread(NULL,0,(LPTHREAD_START_ROUTINE) status_thread,(void*) args,0,&v_status_thread_id);}//***// Called upon reeption of rev_data_stream paket, sets// from whom the lient will reieve data. (Private funtion).//***void logi_lient::rev_data_stream(paket_rev_data_stream* pak){ v_data_bank->set_rev_table(pak);} 215

B. Protool soure �les//***// Called upon reeption of rev_data_stream paket, sets// to whom the lient must send. (Private funtion).//***void logi_lient::status_req(paket_status_req* pak){ paket_status_resp* status_pak = new paket_status_resp(v_server_id, v_lient_id);status_pak->set_pp(v_data_buffer->get_pp());v_transport_handler->send_CCP(status_pak, v_server_id);delete(status_pak);}//***// Called upon reeption of snd_data_stream paket, sets// to whom the lient must send data and starts a stream-// engine if one is not already running. (Private funtion).//***void logi_lient::snd_data_stream(paket_snd_data_stream* pak){ v_data_bank->add_stream(pak);if(v_stream_engine == NULL) {v_stream_engine = new stream_engine(v_data_buffer,v_video_id,v_lient_id);stream_params* args = (stream_params*) mallo(sizeof(stream_params));args->v_data_bank = this->v_data_bank;args->v_transport_handler = this->v_transport_handler;args->v_stream_engine = this->v_stream_engine;;v_stream_thread = CreateThread(NULL,0,(LPTHREAD_START_ROUTINE) stream_thread,(void*) args,0,&v_stream_thread_id);}}//***// Upon reeption of stop_stream the stream-engine is// informed to stop streaming. (Private funtion).//***void logi_lient::stop_stream(paket_stop_stream* pak){ v_data_bank->stop_stream(pak);}//**// Returns aditional info about the movie//**int logi_lient::movie_info() 216

B. Protool soure �les{ return 0;}//**// Handles data pakets//**void logi_lient::data(paket_data* pak){ // Chek if paket is ok before insert into bufferif(hek_data_reeption(pak->get_snd_lient_id(),pak->get_bb(),pak->get_db())) {int data_len;void* data_pointer = pak->get_data(data_len);v_data_buffer->write_db(pak->get_bb(),pak->get_db(),data_pointer,data_len);}}//**// Cheks reeived data//**bool logi_lient::hek_data_reeption(u64 snd_lient_id,u16 bb,u16 db){ return true;}//**// Funtion to resend data to a lient//**void logi_lient::resend_data(paket_resend_data* pak){ v_data_bank->resend_blok(pak->get_snd_lient_id(),pak->get_bb(),pak->get_db());v_data_bank->adjust_speed(pak->get_snd_lient_id(), HIGH);}//**// Handles speed adjustment//**void logi_lient::adjust_speed(paket_adjust_speed* pak){ v_data_bank->adjust_speed(pak->get_snd_lient_id(),(speed_level) pak->get_speed_level());} 217

B. Protool soure �les//**// Returns video duration from the databank//**u64 logi_lient::get_video_duration(){ return v_data_bank->get_video_duration();}//***// Returns the length of the video from the databank//***u64 logi_lient::get_video_length(){ return v_data_bank->get_video_length();}//***// Returns the video skip distane from the databank//***u64 logi_lient::get_skip_distane(){ return v_data_bank->get_skip_distane();}logi_lient_thread.h#ifndef LOGIC_CLIENT_THREAD#define LOGIC_CLIENT_THREAD#inlude "../inlude/logi_lient.h"#inlude "../inlude/paket_queue.h"strut logi_params{ paket_queue* v_paket_queue;logi_lient* v_logi_lient;};void logi_thread(void* args);#endiflogi_lient_thread.pp#inlude "stdafx.h"#inlude "../inlude/logi_lient_thread.h"//***// Thread whih pops pakets from the inomming queue and218

B. Protool soure �les// handes them to the logi.//***void logi_thread(void* args){ paket_queue* v_paket_queue = ((logi_params*)args)->v_paket_queue;logi_lient* v_logi_lient = ((logi_params*)args)->v_logi_lient;int foo = 0;for(;;) {paket* pak = v_paket_queue->get_next_paket();v_logi_lient->paket_handler(pak);}return;}logi_server.h#ifndef LOGIC_SERVER#define LOGIC_SERVER#inlude "../inlude/vod_server.h"#inlude "../inlude/transport_handler.h"#inlude "../inlude/stream_engine.h"#inlude "../inlude/data_ahe.h"#inlude "../inlude/stream_engine_server_thread.h"#inlude "../inlude/request_queue.h"#inlude "../inlude/enum.h"#inlude "../inlude/paket_onn_granted.h"#inlude "../inlude/paket_status_req.h"#inlude "../inlude/paket_onn_req.h"#inlude "../inlude/paket_status_resp.h"#inlude "../inlude/paket_data.h"#inlude "../inlude/paket_stop_stream.h"#inlude "../inlude/paket_disonn.h"#inlude "../inlude/paket_stream_error.h"#inlude "../inlude/paket_end_of_data.h"#inlude "../inlude/paket_handler.h"#inlude "../inlude/paket_interat_pause.h"#inlude "../inlude/paket_interat_pause_stream.h"#inlude "../inlude/paket_interat_resume.h"#inlude "../inlude/paket_interat_skip.h"#inlude "../inlude/paket_no_data.h"#inlude "../inlude/paket.h"#inlude "../inlude/paket_adjust_speed.h"#inlude "../inlude/paket_req_bakup_data.h"#inlude "../inlude/paket_onn_losed.h"#inlude "../inlude/paket_resend_data.h"#inlude "../inlude/paket_onn_denied.h"#inlude "../inlude/paket_snd_data_stream.h"lass logi_server { 219

B. Protool soure �lesprivate:int hakvar;transport_handler* v_transport_handler;stream_engine* v_stream_engine;data_ahe* v_data_ahe;data_bank_server* v_data_bank;request_queue* v_request_queue;stream_params args;DWORD v_stream_thread_id;HANDLE v_stream_thread;int v_state;// Handle status respond paketvoid status_resp(paket_status_resp* pak);// Handle onnetio request paketvoid onn_req(paket_onn_req* pak);// Handle pausing of the lietns video playervoid interat_pause(paket_interat_pause* pak);// Handle pausing of the video streamvoid interat_pause_stream(paket_interat_pause_stream* pak);// Handle resending of datavoid resend_data(paket_resend_data* pak);// Handle adjustment of speedvoid adjust_speed(paket_adjust_speed* pak);// Handle disonnet paketvoid disonnet(paket_disonn* pak);// Handle skip paketvoid skip(paket_interat_skip* pak);// Start new stream enginevoid start_stream_engine(u64 video_id);// Attah a lient to the loal servervoid attah_lient_to_server(paket_onn_req* pak);// Attah a lient to a set of lientsvoid attah_lient_to_streamers(u64* sender_lients, int lient_length, paket_onn_req* pak);// Fil a paket snd data stream paketvoid fill_paket_snd_data_stream(paket_snd_data_stream* pak, int spreading);publi:// Construtorlogi_server(transport_handler* th);// Handle inoming paketvoid paket_handler(paket* pak);// Get the next data request. Called from server appliationint get_data_req(strut data_strut_req& data, data_type type);// Deliver data. Called from server appliation220

B. Protool soure �lesint deliver_data(data_lass* data, data_type type);};#endiflogi_server.pp#inlude "stdafx.h"#inlude "../inlude/logi_server.h"//***// Construtor//***logi_server::logi_server(transport_handler* th){ v_stream_engine = NULL;v_state = 0;v_transport_handler = th;v_data_bank = new data_bank_server();v_request_queue = new request_queue();System::Diagnostis::Debug::WriteLine("Logi Created");hakvar = 0;}//***// Paket handler//***void logi_server::paket_handler(paket* pak){ swith(pak->get_paket_type()) {// Client to server respase 30:swith(pak->get_ation_type()) {ase 10: // STATUS_RESPstatus_resp((paket_status_resp*) pak);break;}break;// lient to server reqase 40:swith(pak->get_ation_type()) {ase 10: // CONN_REQonn_req((paket_onn_req*) pak);break;ase 30: // INTERACT_PAUSEinterat_pause((paket_interat_pause*) pak);break;ase 40: // INTERACT_PAUSE_STREAMinterat_pause_stream((paket_interat_pause_stream*) pak);break;ase 60: // INTERACT_SKIPskip((paket_interat_skip*) pak);221

B. Protool soure �lesbreak;ase 70: // DISCONNECTdisonnet((paket_disonn*) pak);break;}break;// Client snd to lient rev.ase 60:swith(pak->get_paket_type()) {ase 10: // RESEND_DATAresend_data((paket_resend_data*) pak);break;ase 20: // AJUST_SPEEDadjust_speed((paket_adjust_speed*) pak);break;}break;}}//***// Client to server resp//***void logi_server::status_resp(paket_status_resp* pak){ v_data_bank->update_status(pak);}//***// Handle onnetion request paket//***void logi_server::onn_req(paket_onn_req* pak){ // We should add lient to appliationtask queue to// validate lient. Thi is not implemented. We simply// verify the lient.// Extrat lient id oming from transport_handleru64 lient_id = pak->lient_id;u64 video_id = v_data_bank->get_video_id();// Create paket onn-granted paketpaket_onn_granted* p;p = new paket_onn_granted(pak->lient_id, v_data_bank->get_server_id(lient_id));v_data_bank->get_movie_info(video_id, p);v_transport_handler->send_CCP(p, lient_id);// Find appropriate lientsu64* sender_lients = NULL;int lient_length = 0;bool rv = v_data_bank->find_lients(0,0, sender_lients, lient_length);if (rv)attah_lient_to_streamers(sender_lients, lient_length, pak);elseattah_lient_to_server(pak); 222

B. Protool soure �les// If stream engine has not been instantiated yet, do so.if(v_stream_engine == NULL)start_stream_engine(video_id);}//***// Attah a lient to server. The new or// reloated lient is given in the pak argument.//***void logi_server::attah_lient_to_server(paket_onn_req* pak){ // Add lient to databank;// We should hek if lient already existsv_data_bank->add_new_lient(pak);u64 lient_id = pak->lient_id;u64 server_id = v_data_bank->get_server_id(lient_id);// Create paket paket_snd_data_stream to store in databankpaket_snd_data_stream* stream_pak;stream_pak = new paket_snd_data_stream(lient_id, server_id);fill_paket_snd_data_stream(stream_pak, 0);stream_pak->lient_CCP_port = pak->get_p_port();stream_pak->lient_DCP_port = pak->get_dp_port();stream_pak->lient_id = pak->lient_id;stream_pak->lient_ip = pak->lient_ip;stream_pak->set_lient_id(pak->lient_id);stream_pak->set_lient_ip4(pak->lient_ip);stream_pak->set_lient_port(pak->get_dp_port());v_data_bank->add_new_stream(stream_pak);}//***// Attah a lient to some other lient(s)// The senders of data (lients, whih the new or// reloated lient is to be attahed to) is given// in sender. The new or reloated lient is given// in the pak argument.//***void logi_server::attah_lient_to_streamers(u64* sender_lients,int lient_length,paket_onn_req* pak){ // Add lient to databank;// We should hek if lient already existsv_data_bank->add_new_lient(pak);u64 lient_id = pak->lient_id;u64 server_id = v_data_bank->get_server_id(lient_id);// Create paket ontaining senders of data223

B. Protool soure �lesif (lient_length == 1) {paket_snd_data_stream* stream_pak;stream_pak = new paket_snd_data_stream(sender_lients[0℄, server_id);fill_paket_snd_data_stream(stream_pak, 0);stream_pak->lient_CCP_port = pak->get_p_port();stream_pak->lient_DCP_port = pak->get_dp_port();stream_pak->lient_id = pak->lient_id;stream_pak->lient_ip = pak->lient_ip;stream_pak->set_lient_ip4(pak->lient_ip);stream_pak->set_lient_port(pak->get_dp_port());stream_pak->set_lient_id(pak->lient_id);// Update internal representation of networkv_data_bank->add_stream_to_lient(sender_lients[0℄, stream_pak);// Send paketv_transport_handler->send_CCP(stream_pak, sender_lients[0℄);}else {for (int i = 0; i < lient_length; i++) {paket_snd_data_stream* stream_pak;stream_pak = new paket_snd_data_stream(sender_lients[i℄, server_id);fill_paket_snd_data_stream(stream_pak, i+1);stream_pak->lient_CCP_port = pak->get_p_port();stream_pak->lient_DCP_port = pak->get_dp_port();stream_pak->lient_id = pak->lient_id;stream_pak->lient_ip = pak->lient_ip;stream_pak->set_lient_ip4(pak->lient_ip);stream_pak->set_lient_port(pak->get_dp_port());stream_pak->set_lient_id(pak->lient_id);// Update internal representation of networkv_data_bank->add_stream_to_lient(sender_lients[i℄, stream_pak);// Send paketv_transport_handler->send_CCP(stream_pak, sender_lients[i℄);}}}//***// Fill paket_snd_data_stream with databloks//***void logi_server::fill_paket_snd_data_stream(paket_snd_data_stream* pak, int spreading){ int length ;void* db_list;int dbnum = 0;int num_of_dbs = v_data_bank->get_num_of_db_in_bb(0);swith (spreading) {ase 0:pak->init(num_of_dbs);db_list = mallo(sizeof(u16) * num_of_dbs);pak->set_start_bb(0); 224

B. Protool soure �lespak->set_start_db(0);for (int i = 0; i < num_of_dbs; i++) {((u16*)db_list)[i℄ = i;}pak->set_db_list((u16*) db_list);break;ase 1:pak->init((int) num_of_dbs / 2);db_list = mallo(sizeof(u16) * (int) num_of_dbs / 2);pak->set_start_bb(0);pak->set_start_db(0);for (int i = 0; i < num_of_dbs; i = i+2) {((u16*)db_list)[dbnum℄ = i;dbnum++;}pak->set_db_list((u16*) db_list);break;ase 2:pak->init((int) num_of_dbs / 2);db_list = mallo(sizeof(u16) * (int) num_of_dbs / 2);pak->set_start_bb(0);pak->set_start_db(1);for (int i = 1; i < num_of_dbs ; i = i+2) {((u16*)db_list)[dbnum℄ = i;dbnum++;}pak->set_db_list((u16*) db_list);break;default:break;}}//***// Instantiate new stream engine, and start// stream engine thread//***void logi_server::start_stream_engine(u64 video_id){ v_data_ahe = new data_ahe(v_request_queue,video_id,v_data_bank->get_num_of_bb(video_id),v_data_bank->get_size_of_bb(video_id),v_data_bank->get_num_of_db(video_id),v_data_bank->get_size_of_db(video_id),v_data_bank->get_video_size(video_id));// Create new stream-engine objetv_stream_engine = new stream_engine((data_ontainer*)v_data_ahe,video_id,false); // Don't start sending// We should request first portion of video data from server appliation// if this is not ontained in data ahe. 225

B. Protool soure �les// Paramsargs.v_data_bank = this->v_data_bank;args.v_transport_handler = this->v_transport_handler;args.v_stream_engine = this->v_stream_engine;// Start stream engine threadv_stream_thread = CreateThread(NULL,0,(LPTHREAD_START_ROUTINE) stream_thread,(void*) &args,0,&v_stream_thread_id);}//***// Handle pause interation//***void logi_server::interat_pause(paket_interat_pause* pak){// v_data_bank->pause_lient(pak);}//***// Handle pause stream//***void logi_server::interat_pause_stream(paket_interat_pause_stream* pak){ //v_data_bank->pause_lient(pak);}//***// Client snd to lient resv.//***void logi_server::resend_data(paket_resend_data* pak){}//***// Adjust speed of lient//***void logi_server::adjust_speed(paket_adjust_speed* pak){ //v_data_bank->adjust_speed(pak->get_snd_lient_id(),// (speed_level) pak->get_speed_level());}//***// Handle disonnet paket from lient// This proedure should ollet all lients whih// are reeiving data from the disonneting lient and// reloate these.// Furthermore all lient whih are streaming data to the226

B. Protool soure �les// disonneting lient should stop sending data.//***void logi_server::disonnet(paket_disonn* pak){ paket_snd_data_stream* reeiver = v_data_bank->get_attahed_lients(pak->lient_id);if (!reeiver == NULL) {paket_status_resp* status = v_data_bank->get_lient_status(reeiver->get_lient_id());// Set the next bloks to be reeived to what has been fethed from status paket.reeiver->set_start_bb(status->get_pp());reeiver->set_start_db(0);// Attah lient to server. We should reloate lient to better suited lients.v_data_bank->add_new_stream(reeiver);v_transport_handler->lose_CCP_onnetion(pak->lient_id);v_data_bank->remove_stream(pak->lient_id);v_data_bank->remove_lient(pak->lient_id);}}//***// Handle disonnet paket from lient//***void logi_server::skip(paket_interat_skip* pak){ v_data_bank->skip_stream(pak->lient_id, pak->get_target_blok());// Chek if we need to reloate any lients// These should be reloated know}//***// Return next data request to server appliation//***int logi_server::get_data_req(strut data_strut_req& data,data_type type){ swith(type) {// Client to server respase VIDEO_DATA:v_request_queue->get_data_request(data);return 0;break;defualt:// Not implmentet in this versionbreak;}return 1;}//***// Deliver data from server appliation to protool.//***int logi_server::deliver_data(data_lass* data, data_type type){ 227

B. Protool soure �lesswith(type) {// Client to server respase VIDEO_DATA:v_data_ahe->write_bb((u16)(data->get_transation_id()), data->get_data(), data->get_data_length());return 0;break;defualt:// Not implmentet in this versionbreak;}return 1;}
logi_server_thread.h#ifndef LOGIC_SERVER_THREAD#define LOGIC_SERVER_THREAD#inlude "../inlude/logi_server.h"#inlude "../inlude/paket_queue.h"strut logi_params{ paket_queue* v_paket_queue;logi_server* v_logi_server;};void logi_thread(void* args);#endiflogi_server_thread.pp#inlude "stdafx.h"#inlude "../inlude/logi_server_thread.h"//***// Main proedure.//***void logi_thread(void* args){ paket_queue* v_paket_queue = ((logi_params*)args)->v_paket_queue;logi_server* v_logi_server = ((logi_params*)args)->v_logi_server;for(;;) {paket* pak = v_paket_queue->get_next_paket();v_logi_server->paket_handler(pak);} 228

B. Protool soure �lesreturn;}paket_adjust_speed.h#ifndef PACKET_ADJUST_SPEED#define PACKET_ADJUST_SPEED#inlude "../inlude/paket.h"#define _adjust_speed_paket_type 60#define _adjust_speed_ation_type 20#define _adjust_speed_payload_len 1lass paket_adjust_speed : publi paket{publi:paket_adjust_speed(u64 rev_id, u64 snd_id);~paket_adjust_speed();void set_speed_level(u8 speed_level);u8 get_speed_level();};#endifpaket_adjust_speed.pp#inlude "stdafx.h"#inlude "../inlude/paket_adjust_speed.h"//***// Construtor//***paket_adjust_speed::paket_adjust_speed(u64 rev_id, u64 snd_id): paket(_adjust_speed_paket_type, _adjust_speed_ation_type, rev_id, snd_id){ v_payload = mallo(_adjust_speed_payload_len);set_payload_len(_adjust_speed_payload_len);}//***// Deonstrutor//***paket_adjust_speed::~paket_adjust_speed(){ free(v_payload);} 229

B. Protool soure �les//***// Get or set the speed level//***void paket_adjust_speed::set_speed_level(u8 speed_level){ set_value_u8(speed_level, v_payload, 0);}u8 paket_adjust_speed::get_speed_level(){ return get_value_u8(v_payload, 0);}paket_onn_losed.h#ifndef PACKET_CONN_CLOSED#define PACKET_CONN_CLOSED#inlude "../inlude/paket.h"#define _onn_losed_paket_type 10#define _onn_losed_ation_type 30#define _onn_losed_payload_len 256lass paket_onn_losed : publi paket{publi:paket_onn_losed(u64 rev_id, u64 snd_id);~paket_onn_losed();void set_message(har* message);har* get_message();};#endifpaket_onn_losed.pp#inlude "stdafx.h"#inlude "../inlude/paket_onn_losed.h"//***// Construtor//***paket_onn_losed::paket_onn_losed(u64 rev_id, u64 snd_id): paket(_onn_losed_paket_type, _onn_losed_ation_type, rev_id, snd_id){ v_payload = mallo(_onn_losed_payload_len);set_payload_len(_onn_losed_payload_len);} 230

B. Protool soure �les//***// Deonstrutor//***paket_onn_losed::~paket_onn_losed(){ free(v_payload);}//***// Get or set the error message//***void paket_onn_losed::set_message(har* message){ strnpy(((har*)v_payload), message, 255);if(strlen(message) > 255)((har*)v_payload)[255℄ = '\0';}har* paket_onn_losed::get_message(){ return (har*)v_payload;}paket_onn_denied.h#ifndef PACKET_CONN_DENIED#define PACKET_CONN_DENIED#inlude "../inlude/paket.h"#define _onn_denied_paket_type 10#define _onn_denied_ation_type 20#define _onn_denied_payload_len 256lass paket_onn_denied : publi paket{publi:paket_onn_denied(u64 rev_id, u64 snd_id);~paket_onn_denied();void set_message(har* message);har* get_message();};#endifpaket_onn_denied.pp#inlude "stdafx.h"#inlude "../inlude/paket_onn_denied.h" 231

B. Protool soure �les//***// Construtor//***paket_onn_denied::paket_onn_denied(u64 rev_id, u64 snd_id): paket(_onn_denied_paket_type, _onn_denied_ation_type, rev_id, snd_id){ v_payload = mallo(_onn_denied_payload_len);set_payload_len(_onn_denied_payload_len);}//***// Deonstrutor//***paket_onn_denied::~paket_onn_denied(){ free(v_payload);}//***// Get or set the error message//***void paket_onn_denied::set_message(har* message){ strnpy(((har*)v_payload), message, 255);if(strlen(message) > 255)((har*)v_payload)[255℄ = '\0';}har* paket_onn_denied::get_message(){ return (har*)v_payload;}paket_onn_granted.h#ifndef PACKET_CONN_GRANTED#define PACKET_CONN_GRANTED#inlude "../inlude/paket.h"#define _onn_granted_paket_type 10#define _onn_granted_ation_type 10#define _onn_granted_payload_len 308lass paket_onn_granted : publi paket{publi:paket_onn_granted(u64 rev_id, u64 snd_id);~paket_onn_granted();void set_lient_id(u64 lient_id);u64 get_lient_id(); 232

B. Protool soure �lesvoid set_server_id(u64 server_id);u64 get_server_id();void set_video_size(u64 video_size);u64 get_video_size();void set_video_duration(u32 video_duration);u32 get_video_duration();void set_bb_total(u16 number_of_bb);u16 get_bb_total();void set_db_total(u16 number_of_db);u16 get_db_total();void set_db_size(u16 size_of_db);u16 get_db_size();void set_video_header_size(u32 video_header_size);u32 get_video_header_size();void set_reon_a_size(u16 reon_a_size);u16 get_reon_a_size();void set_speed_low(u16 speed_low);u16 get_speed_low();void set_speed_normal(u16 speed_normal);u16 get_speed_normal();void set_speed_high(u16 speed_high);u16 get_speed_high();void set_se_type(u16 se_type);u16 get_se_type();void set_skip_distane(u32 skip_distane);u32 get_skip_distane();void set_video_title(har* movie_title);har* get_video_title();};#endifpaket_onn_granted.pp#inlude "stdafx.h"#inlude "../inlude/paket_onn_granted.h"//***// Construtor 233

B. Protool soure �les//***paket_onn_granted::paket_onn_granted(u64 rev_id, u64 snd_id): paket(_onn_granted_paket_type, _onn_granted_ation_type, rev_id, snd_id){ v_payload = mallo(_onn_granted_payload_len);set_payload_len(_onn_granted_payload_len);}//***// Deonstrutor//***paket_onn_granted::~paket_onn_granted(){ free(v_payload);}//***// Get/set lient id//***void paket_onn_granted::set_lient_id(u64 lient_id){ set_value_u64(lient_id, v_payload, 0);}u64 paket_onn_granted::get_lient_id(){ return get_value_u64(v_payload, 0);}//***// Get/set server id//***void paket_onn_granted::set_server_id(u64 server_id){ set_value_u64(server_id, v_payload, 8);}u64 paket_onn_granted::get_server_id(){ return get_value_u64(v_payload, 8);}//***// Get/set video length in bytes//***void paket_onn_granted::set_video_size(u64 video_size){ set_value_u64(video_size, v_payload, 16);}u64 paket_onn_granted::get_video_size(){ return get_value_u64(v_payload, 16);}//***// Get/set video duration in mse//***void paket_onn_granted::set_video_duration(u32 video_duration)234

B. Protool soure �les{ set_value_u32(video_duration, v_payload, 24);}u32 paket_onn_granted::get_video_duration(){ return get_value_u32(v_payload, 24);}//***// Get/set total number of bb in the video//***void paket_onn_granted::set_bb_total(u16 number_of_bb){ set_value_u16(number_of_bb, v_payload, 28);}u16 paket_onn_granted::get_bb_total(){ return get_value_u16(v_payload, 28);}//***// Get/set total number of db in the video//***void paket_onn_granted::set_db_total(u16 number_of_db){ set_value_u16(number_of_db, v_payload, 30);}u16 paket_onn_granted::get_db_total(){ return get_value_u16(v_payload, 30);}//***// Get/set the size of the db (bytes)//***void paket_onn_granted::set_db_size(u16 size_of_db){ set_value_u16(size_of_db, v_payload, 32);}u16 paket_onn_granted::get_db_size(){ return get_value_u16(v_payload, 32);}//***// Get/set the video_header_size, the DBs needed// before playbak an begin duing startup and skip//***void paket_onn_granted::set_video_header_size(u32 video_header_size){ set_value_u32(video_header_size, v_payload, 34);}u32 paket_onn_granted::get_video_header_size(){ return get_value_u32(v_payload, 34);} 235

B. Protool soure �les//***// Get or set the reommended a size//***void paket_onn_granted::set_reon_a_size(u16 reon_a_size){ set_value_u16(reon_a_size, v_payload, 38);}u16 paket_onn_granted::get_reon_a_size(){ return get_value_u16(v_payload, 38);}//***// Get or set the rate of the low speed level//***void paket_onn_granted::set_speed_low(u16 speed_low){ set_value_u16(speed_low, v_payload, 40);}u16 paket_onn_granted::get_speed_low(){ return get_value_u16(v_payload, 40);}//***// Get or set the rate of the normal speed level//***void paket_onn_granted::set_speed_normal(u16 speed_normal){ set_value_u16(speed_normal, v_payload, 42);}u16 paket_onn_granted::get_speed_normal(){ return get_value_u16(v_payload, 42);}//***// Get or set the rate of the high speed level//***void paket_onn_granted::set_speed_high(u16 speed_high){ set_value_u16(speed_high, v_payload, 44);}u16 paket_onn_granted::get_speed_high(){ return get_value_u16(v_payload, 44);}//***// Get or set the seurity mehanisms type//***void paket_onn_granted::set_se_type(u16 se_type){ set_value_u16(se_type, v_payload, 46);}u16 paket_onn_granted::get_se_type() 236

B. Protool soure �les{ return get_value_u16(v_payload, 46);}//***// Get or set the skip distane//***void paket_onn_granted::set_skip_distane(u32 skip_distane){ set_value_u32(skip_distane, v_payload, 48);}u32 paket_onn_granted::get_skip_distane(){ return get_value_u32(v_payload, 48);}//***// Get or set the video title//***void paket_onn_granted::set_video_title(har* movie_title){ strnpy(&(((har*)v_payload)[52℄), movie_title, 256);if(strlen(movie_title) > 256)((har*)v_payload)[(52 + 256)℄ = '\0';}har* paket_onn_granted::get_video_title(){ return &(((har*)v_payload)[52℄);}paket_onn_req.h#ifndef PACKET_CONN_REQ#define PACKET_CONN_REQ#inlude "../inlude/paket.h"#define _onn_req_paket_type 40#define _onn_req_ation_type 10#define _onn_req_payload_len 140lass paket_onn_req : publi paket{publi:paket_onn_req(u64 rev_id, u64 snd_id);~paket_onn_req();void set_p_port(u16 p_port);u16 get_p_port();void set_dp_port(u16 dp_port);u16 get_dp_port(); 237

B. Protool soure �lesvoid set_video_id(u64 video_id);u64 get_video_id();void set_username(har* username);har* get_username();void set_password(har* password);har* get_password();};#endifpaket_onn_req.pp#inlude "stdafx.h"#inlude "../inlude/paket_onn_req.h"//***// Construtor//***paket_onn_req::paket_onn_req(u64 rev_id, u64 snd_id): paket(_onn_req_paket_type, _onn_req_ation_type, rev_id, snd_id){ v_payload = mallo(_onn_req_payload_len);set_payload_len(_onn_req_payload_len);}//***// deonstrutor//***paket_onn_req::~paket_onn_req(){ free(v_payload);}//***// get or set the CCP port//***void paket_onn_req::set_p_port(u16 p_port){ set_value_u16(p_port, v_payload, 0);}u16 paket_onn_req:: get_p_port(){ return get_value_u16(v_payload, 0);}//***// get or set the DCP port//***void paket_onn_req::set_dp_port(u16 dp_port){ set_value_u16(dp_port, v_payload, 2); 238

B. Protool soure �les}u16 paket_onn_req::get_dp_port(){ return get_value_u16(v_payload, 2);}//***// get or set the video id//***void paket_onn_req::set_video_id(u64 video_id){ set_value_u64(video_id, v_payload, 4);}u64 paket_onn_req::get_video_id(){ return get_value_u64(v_payload, 4);}//***// get or set the username//***void paket_onn_req::set_username(har* username){ strnpy(&(((har*)v_payload)[12℄), username, 64);if(strlen(username) > 64)((har*)v_payload)[(12 + 64)℄ = '\0';}har* paket_onn_req::get_username(){ return &(((har*)v_payload)[12℄);}//***// get or set the password//***void paket_onn_req::set_password(har* password){ strnpy(&(((har*)v_payload)[76℄), password, 64);if(strlen(password) > 64)((har*)v_payload)[(76 + 64)℄ = '\0';}har* paket_onn_req::get_password(){ return &(((har*)v_payload)[76℄);}paket.h#ifndef PACKET#define PACKET#inlude <string.h> 239

B. Protool soure �les//#inlude "winsok2.h"#inlude <stdlib.h>#inlude <iostream>#inlude "../inlude/types.h"#inlude "../inlude/global_funtions.h"#define _header_len 28lass paket {proteted:void* v_header;void* v_payload;u32 v_payload_len;void* v_payload_data;u32 v_payload_data_len;system_time v_reate_time;void set_value_u64(u64 value, void* target, int pos);u64 get_value_u64(void* soure, int pos);void set_value_u32(u32 value, void* target, int pos);u32 get_value_u32(void* soure, int pos);void set_value_u16(u16 value, void* target, int pos);u16 get_value_u16(void* soure, int pos);void set_value_u8(u8 value, void* target, int pos);u8 get_value_u8(void* soure, int pos);void set_value_s32(s32 value, void* target, int pos);s32 get_value_s32(void* soure, int pos);publi:paket(u16 paket_type, u16 ation_type, u64 rev_id, u64 snd_id);paket(void* header, void* payload, u32 payload_len, void* payload_data, u32 payload_data_len);paket(void* header);~paket();u8 get_paket_type();u8 get_ation_type();void* get_header();void set_payload(void* payload, u32 payload_len);void* get_payload();void set_payload_len(u32 payload_len);u32 get_payload_len();void set_payload_data(void* payload_data, u32 payload_data_len);240

B. Protool soure �lesvoid* get_payload_data();void set_payload_data_len(u32 payload_data_len);u32 get_payload_data_len();long wait_time_use();void print();unsigned int get_size();u64 get_rev_lient_id();u64 get_snd_lient_id();// Old lient_strut_addru64 lient_ip;u16 lient_DCP_port;u16 lient_CCP_port;u64 lient_id;SOCKET sd;};#endifpaket.pp#inlude "stdafx.h"#inlude "../inlude/paket.h"paket::paket(u16 paket_type, u16 ation_type, u64 rev_id, u64 snd_id){ v_reate_time.se = 0;v_reate_time.mse = 0;get_system_time(&v_reate_time);v_header = mallo(_header_len);v_payload_len = 0;v_payload_data_len = 0;set_value_u8(1, v_header, 0); // Version numberset_value_u8(0, v_header, 1); // Optionset_value_u8(paket_type, v_header, 2); // Paket typeset_value_u8(ation_type, v_header, 3); // Ation typeset_value_u32(0, v_header, 4); // payload sizeset_value_u32(0, v_header, 8); // payload_data sizeset_value_u64(rev_id, v_header, 12);set_value_u64(snd_id, v_header, 20);}paket::paket(void* header, 241

B. Protool soure �lesvoid* payload,u32 payload_len,void* payload_data,u32 payload_data_len){ v_reate_time.se = 0;v_reate_time.mse = 0;get_system_time(&v_reate_time);v_header = header;v_payload = payload;v_payload_len = payload_len;v_payload_data = payload_data;v_payload_data_len = payload_data_len;}paket::paket(void* header){ v_reate_time.se = 0;v_reate_time.mse = 0;get_system_time(&v_reate_time);v_header = header;v_payload_len = 0;v_payload_data_len = 0;}// Deonstrutorpaket::~paket(){ free(v_header);}void* paket::get_header(){ return v_header;}u8 paket::get_paket_type(){ return get_value_u8(v_header, 2);}u8 paket::get_ation_type(){ return get_value_u8(v_header, 3);} 242

B. Protool soure �les// set/get payloadvoid paket::set_payload(void* payload, u32 payload_len){ v_payload = payload;set_payload_len(payload_len);}void* paket::get_payload(){ return v_payload;}// set/get payload lenvoid paket::set_payload_len(u32 payload_len){ v_payload_len = payload_len;set_value_u32(v_payload_len, v_header, 4); // payload size}u32 paket::get_payload_len(){ return get_value_u32(v_header, 4);}// set/get payload datavoid paket::set_payload_data(void* payload_data, u32 payload_data_len){ v_payload_data = payload_data;set_payload_data_len(payload_data_len);}void* paket::get_payload_data(){ return v_payload_data;}// set/get payload_data lenvoid paket::set_payload_data_len(u32 payload_data_len){ v_payload_data_len = payload_data_len;set_value_u32(v_payload_data_len, v_header, 8); // payload data size}u32 paket::get_payload_data_len(){ return get_value_u32(v_header, 8);}// Get and set 8 bytevoid paket::set_value_u64(u64 value, void* target, int pos){ *((u64*)&(((har*)target)[pos℄)) = htonl(value);243

B. Protool soure �lesif(sizeof(u64) == 4)*((u64*)&(((har*)target)[(pos+4)℄)) = 0;}u64 paket::get_value_u64(void* soure, int pos){ return ntohl(*((u64*)(&((har*)soure)[pos℄)));}// Get and set 4 byte (unsigned int)void paket::set_value_u32(u32 value, void* target, int pos){ *((u32*)&(((har*)target)[pos℄)) = htonl(value);}unsigned int paket::get_value_u32(void* soure, int pos){ return ntohl(*((u32*)(&((har*)soure)[pos℄)));}// Get and set 2 byte (unsigned short)void paket::set_value_u16(u16 value, void* target, int pos){ *((u16*)(&((har*)target)[pos℄)) = htons(value);}u16 paket::get_value_u16(void* soure, int pos){ return ntohs(*((u16*)(&((har*)soure)[pos℄)));}// Get and set 1 byte (unsigned short)void paket::set_value_u8(u8 value, void* target, int pos){ ((har*)target)[pos℄ = (har)value;}u8 paket::get_value_u8(void* soure, int pos){ return (u8)(((har*)soure)[pos℄);}// Get and set 4 byte (int)void paket::set_value_s32(s32 value, void* target, int pos){ *((s32*)(&((har*)target)[pos℄)) = htonl(value);}s32 paket::get_value_s32(void* soure, int pos){ return ntohl(*((s32*)(&((har*)soure)[pos℄)));} 244

B. Protool soure �les
// Print funtionvoid paket::print(){ std::out << "Header length: " << _header_len << std::endl;for(unsigned int i = 0; i < _header_len; i++)std::out << (int)((har*)v_header)[i℄ << std::endl;std::out << std::endl;std::out << "Payload length: " << v_payload_len << std::endl;for(unsigned int i = 0; i < v_payload_len; i++)std::out << (int)((har*)v_payload)[i℄ << std::endl;std::out << std::endl;std::out << "Payload data length: " << v_payload_data_len << std::endl;for(unsigned int i = 0; i < v_payload_data_len; i++)std::out << (int)((har*)v_payload_data)[i℄ << std::endl;}long paket::wait_time_use(){ system_time urrent_time = {0,0};get_system_time(&urrent_time);long result = ((v_reate_time.se - urrent_time.se) * 1000) +(v_reate_time.mse - urrent_time.mse);if(result > 600000000 && result < 0)result = -1;return result;}unsigned int paket::get_size(){ return (_header_len + (unsigned int)v_payload_len + (unsigned int)v_payload_data_len);}u64 paket::get_rev_lient_id(){ return get_value_u64(v_header, 10);}u64 paket::get_snd_lient_id(){ return get_value_u64(v_header, 18);} 245

B. Protool soure �lespaket_data.h#ifndef PACKET_DATA#define PACKET_DATA#inlude "../inlude/paket.h"#define _data_paket_type 50#define _data_ation_type 10#define _data_payload_len 5lass paket_data : publi paket{publi:paket_data(u64 rev_id, u64 snd_id);~paket_data();void set_bb(u16 bb);u16 get_bb();void set_db(u16 db);u16 get_db();void set_speed_level(u8 speed_level);u8 get_speed_level();void set_data(void* data, int len);void* get_data(int &len);};#endifpaket_data.pp#inlude "stdafx.h"#inlude "../inlude/paket_data.h"//***// onstrutor//***paket_data::paket_data(u64 rev_id, u64 snd_id): paket(_data_paket_type, _data_ation_type, rev_id, snd_id){ v_payload = mallo(_data_payload_len);set_payload_len(_data_payload_len);}//***// deonstrutor//***paket_data::~paket_data(){ 246

B. Protool soure �lesfree(v_payload);}//***// Get or set the bb number//***void paket_data::set_bb(u16 bb){ set_value_u16(bb, v_payload, 0);}u16 paket_data::get_bb(){ return get_value_u16(v_payload, 0);}//***// Get or set the db number//***void paket_data::set_db(u16 db){ set_value_u16(db, v_payload, 2);}u16 paket_data::get_db(){ return get_value_u16(v_payload, 2);}//***// Get or set the speed level//***void paket_data::set_speed_level(u8 speed_level){ set_value_u8(speed_level, v_payload, 4);}u8 paket_data::get_speed_level(){ return get_value_u8(v_payload, 4);}//***// Get or set the video data//***void paket_data::set_data(void* data, int len){ set_payload_data(data, (u32)len);}void* paket_data::get_data(int &len){ len = get_payload_data_len();return get_payload_data();}
247

B. Protool soure �lespaket_disonn.h#ifndef PACKET_DISCONN#define PACKET_DISCONN#inlude "../inlude/paket.h"#define _disonn_paket_type 40#define _disonn_ation_type 70#define _disonn_payload_len 0lass paket_disonn : publi paket{publi:paket_disonn(u64 rev_id, u64 snd_id);~paket_disonn();};#endifpaket_disonn.pp#inlude "stdafx.h"#inlude "../inlude/paket_disonn.h"//***// Construtor//***paket_disonn::paket_disonn(u64 rev_id, u64 snd_id): paket(_disonn_paket_type, _disonn_ation_type, rev_id, snd_id){ set_payload_len(_disonn_payload_len);}//***// Deonstrutor//***paket_disonn::~paket_disonn(){ free(v_payload);}
paket_end_of_data.h#ifndef PACKET_END_OF_DATA#define PACKET_END_OF_DATA 248

B. Protool soure �les#inlude "../inlude/paket.h"#define _end_of_data_paket_type 50#define _end_of_data_ation_type 30#define _end_of_data_payload_len 0lass paket_end_of_data : publi paket{publi:paket_end_of_data(u64 rev_id, u64 snd_id);~paket_end_of_data();};#endifpaket_end_of_data.pp#inlude "stdafx.h"#inlude "../inlude/paket_end_of_data.h"//***// Construtor//***paket_end_of_data::paket_end_of_data(u64 rev_id, u64 snd_id): paket(_end_of_data_paket_type, _end_of_data_ation_type, rev_id, snd_id){ set_payload_len(_end_of_data_payload_len);}//***// Deonstrutor//***paket_end_of_data::~paket_end_of_data(){}paket_interat_pause.h#ifndef PACKET_INTERACT_PAUSE#define PACKET_INTERACT_PAUSE#inlude "../inlude/paket.h"#define _interat_pause_paket_type 40#define _interat_pause_ation_type 30#define _interat_pause_payload_len 2lass paket_interat_pause : publi paket{ 249

B. Protool soure �lespubli:paket_interat_pause(u64 rev_id, u64 snd_id);~paket_interat_pause();void set_play_blok(u16 play_blok);u16 get_play_blok();};#endifpaket_interat_pause.pp#inlude "stdafx.h"#inlude "../inlude/paket_interat_pause.h"//***// Construtor//***paket_interat_pause::paket_interat_pause(u64 rev_id, u64 snd_id): paket(_interat_pause_paket_type, _interat_pause_ation_type, rev_id, snd_id){ v_payload = mallo(_interat_pause_payload_len);set_payload_len(_interat_pause_payload_len);}//***// Deonstrutor//***paket_interat_pause::~paket_interat_pause(){ free(v_payload);}//***// Get or set the play blok//***void paket_interat_pause::set_play_blok(u16 play_blok){ set_value_u16(play_blok, v_payload, 0);}u16 paket_interat_pause::get_play_blok(){ return get_value_u16(v_payload, 0);}paket_interat_pause_stream.h#ifndef PACKET_INTERACT_PAUSE_STREAM#define PACKET_INTERACT_PAUSE_STREAM 250

B. Protool soure �les#inlude "../inlude/paket.h"#define _interat_pause_stream_paket_type 40#define _interat_pause_stream_ation_type 40#define _interat_pause_stream_payload_len 0lass paket_interat_pause_stream : publi paket{publi:paket_interat_pause_stream(u64 rev_id, u64 snd_id);~paket_interat_pause_stream();};#endifpaket_interat_pause_stream.pp#inlude "stdafx.h"#inlude "../inlude/paket_interat_pause_stream.h"//***// Construtor//***paket_interat_pause_stream::paket_interat_pause_stream(u64 rev_id, u64 snd_id): paket(_interat_pause_stream_paket_type, _interat_pause_stream_ation_type, rev_id, snd_id){ set_payload_len(_interat_pause_stream_payload_len);}//***// Deonstrutor//***paket_interat_pause_stream::~paket_interat_pause_stream(){ free(v_payload);}
paket_interat_resume.h#ifndef PACKET_INTERACT_RESUME#define PACKET_INTERACT_RESUME#inlude "../inlude/paket.h"#define _interat_resume_paket_type 40#define _interat_resume_ation_type 50#define _interat_resume_payload_len 2 251

B. Protool soure �leslass paket_interat_resume : publi paket{publi:paket_interat_resume(u64 rev_id, u64 snd_id);~paket_interat_resume();void set_target_blok(u16 target_blok);u16 get_target_blok();};#endifpaket_interat_resume.pp#inlude "stdafx.h"#inlude "../inlude/paket_interat_resume.h"//***// Construtor//***paket_interat_resume::paket_interat_resume(u64 rev_id, u64 snd_id): paket(_interat_resume_paket_type, _interat_resume_ation_type, rev_id, snd_id){ v_payload = mallo(_interat_resume_payload_len);set_payload_len(_interat_resume_payload_len);}//***// Deonstrutor//***paket_interat_resume::~paket_interat_resume(){ free(v_payload);}//***// Get or set the target blok//***void paket_interat_resume::set_target_blok(u16 target_blok){ set_value_u16(target_blok, v_payload, 0);}u16 paket_interat_resume::get_target_blok(){ return get_value_u16(v_payload, 0);}
252

B. Protool soure �lespaket_interat_skip.h#ifndef PACKET_INTERACT_SKIP#define PACKET_INTERACT_SKIP#inlude "../inlude/paket.h"#define _interat_skip_paket_type 40#define _interat_skip_ation_type 60#define _interat_skip_payload_len 2lass paket_interat_skip : publi paket{publi:paket_interat_skip(u64 rev_id, u64 snd_id);~paket_interat_skip();void set_target_blok(u16 target_blok);u16 get_target_blok();};#endifpaket_interat_skip.pp#inlude "stdafx.h"#inlude "../inlude/paket_interat_skip.h"//***// Construtor//***paket_interat_skip::paket_interat_skip(u64 rev_id, u64 snd_id): paket(_interat_skip_paket_type, _interat_skip_ation_type, rev_id, snd_id){ v_payload = mallo(_interat_skip_payload_len);set_payload_len(_interat_skip_payload_len);}//***// Deonstrutor//***paket_interat_skip::~paket_interat_skip(){ free(v_payload);}//***// Get or set the target blok//***void paket_interat_skip::set_target_blok(u16 target_blok){ set_value_u16(target_blok, v_payload, 0); 253

B. Protool soure �les}u16 paket_interat_skip::get_target_blok(){ return get_value_u16(v_payload, 0);}paket_no_data.h#ifndef PACKET_NO_DATA#define PACKET_NO_DATA#inlude "../inlude/paket.h"#define _no_data_paket_type 50#define _no_data_ation_type 20#define _no_data_payload_len 8lass paket_no_data : publi paket{publi:paket_no_data(u64 rev_id, u64 snd_id);~paket_no_data();void set_req_blok_bb(u16 bb);u16 get_req_blok_bb();void set_req_blok_db(u16 db);u16 get_req_blok_db();void set_next_blok_bb(u16 bb);u16 get_next_blok_bb();void set_next_blok_db(u16 db);u16 get_next_blok_db();};#endifpaket_no_data.pp#inlude "stdafx.h"#inlude "../inlude/paket_no_data.h"//***// Construtor//***paket_no_data::paket_no_data(u64 rev_id, u64 snd_id): paket(_no_data_paket_type, _no_data_ation_type, rev_id, snd_id)254

B. Protool soure �les{ v_payload = mallo(_no_data_payload_len);set_payload_len(_no_data_payload_len);}//***// Deonstrutor//***paket_no_data::~paket_no_data(){ free(v_payload);}//***// Get or set the request bb//***void paket_no_data::set_req_blok_bb(u16 bb){ set_value_u16(bb, v_payload, 0);}u16 paket_no_data::get_req_blok_bb(){ return get_value_u16(v_payload, 0);}//***// Get or set the request db//***void paket_no_data::set_req_blok_db(u16 db){ set_value_u16(db, v_payload, 2);}u16 paket_no_data::get_req_blok_db(){ return get_value_u16(v_payload, 2);}//***// Get or set the next bb//***void paket_no_data::set_next_blok_bb(u16 bb){ set_value_u16(bb, v_payload, 4);}u16 paket_no_data::get_next_blok_bb(){ return get_value_u16(v_payload, 4);}//***// Get or set the next db//***void paket_no_data::set_next_blok_db(u16 db){ set_value_u16(db, v_payload, 6);}u16 paket_no_data::get_next_blok_db() 255

B. Protool soure �les{ return get_value_u16(v_payload, 6);}paket_queue.h#ifndef PACKET_QUEUE#define PACKET_QUEUE#inlude <queue>#inlude "../inlude/paket.h"#inlude "../inlude/vod_exeption.h"using namespae std;lass paket_queue {private:int foo;queue<paket*> v_queue;unsigned int v_max_size;unsigned int v_used_spae;HANDLE v_mutex;HANDLE v_semaphore;publi:paket_queue(unsigned int max_size);void insert_paket(paket* p);paket* get_next_paket();};#endifpaket_queue.pp#inlude "stdafx.h"#inlude "../inlude/paket_queue.h"//***// Construtor//***paket_queue::paket_queue(unsigned int max_size){ v_max_size = max_size;v_used_spae = 0;v_mutex = CreateMutex(NULL, false, NULL);v_semaphore = CreateSemaphore(NULL, 0, 100000, NULL);} 256

B. Protool soure �les//***// Insert a paket into queue//***void paket_queue::insert_paket(paket* p){ DWORD wait_result = WaitForSingleObjet(v_mutex, INFINITE);if(wait_result == WAIT_OBJECT_0) {if(v_max_size < v_used_spae + p->get_size()) {System::Diagnostis::Debug::WriteLine("Paket queue is full.");}else {v_queue.push(p);v_used_spae += p->get_size();}}ReleaseMutex(v_mutex);ReleaseSemaphore(v_semaphore, 1, NULL);}//***// Get the next paket awaiting in queue//***paket* paket_queue::get_next_paket(){ paket* rv = NULL;DWORD wait_result_sema = WaitForSingleObjet(v_semaphore, INFINITE);if(wait_result_sema == WAIT_OBJECT_0) {DWORD wait_result = WaitForSingleObjet(v_mutex, INFINITE);if(wait_result == WAIT_OBJECT_0) {if(!v_queue.empty()) {rv = v_queue.front();v_queue.pop();v_used_spae -= rv->get_size();}ReleaseMutex(v_mutex);}}return rv;}paket_rev_data_stream.h#ifndef PACKET_RECV_DATA_STREAM#define PACKET_RECV_DATA_STREAM 257

B. Protool soure �les#inlude "../inlude/paket.h"#inlude "../inlude/vod_exeption.h"#define _rev_data_stream_paket_type 10#define _rev_data_stream_ation_type 50#define _rev_data_stream_payload_len 2 // Not inluding the DB'slass paket_rev_data_stream : publi paket{private:bool v_initialized;int al_offset(int lient_num);publi:paket_rev_data_stream(u64 rev_id, u64 snd_id);~paket_rev_data_stream();void init(u16 number_of_lients, u32 number_of_db_in_video);void set_lient_id(int lient_num, u64 lient_id);u64 get_lient_id(int lient_num);void set_lient_ip4(int lient_num, s32 lient_ip4);s32 get_lient_ip4(int lient_num);void set_lient_port(int lient_num, u16 lient_port);u16 get_lient_port(int lient_num);void set_start_bb(int lient_num, u16 start_bb);u16 get_start_bb(int lient_num);void set_start_db(int lient_num, u16 start_db);u16 get_start_db(int lient_num);u16 get_number_of_db(int lient_num);void set_db_list(int lient_num, u16* db_list);u16 get_db(int lient_num, int offset);};#endifpaket_rev_data_stream.pp#inlude "stdafx.h"#inlude "../inlude/paket_rev_data_stream.h"//***// Construtor//***paket_rev_data_stream::paket_rev_data_stream(u64 rev_id, u64 snd_id): paket(_rev_data_stream_paket_type, _rev_data_stream_ation_type, rev_id, snd_id)258

B. Protool soure �les{ set_payload_len(0);v_initialized = false;}//***// Deonstrutor//***paket_rev_data_stream::~paket_rev_data_stream(){ if(v_payload_len > 0)free(v_payload);}//***// Initialize paket//***void paket_rev_data_stream::init(u16 number_of_lients, u32 number_of_db_in_video){ if(v_initialized)throw new paket_exeption("Paket is already initialized");else {// Calulates the total size of the paketv_payload_len = _rev_data_stream_payload_len +(12 * number_of_lients) +number_of_db_in_video;v_payload = mallo(v_payload_len);set_value_u16(number_of_lients, v_payload, 0);v_initialized = true;}}//***// get/set lient_id//***void paket_rev_data_stream::set_lient_id(int lient_num, u64 lient_id){ set_value_u64(lient_id, v_payload, 0 + al_offset(lient_num));}u64 paket_rev_data_stream::get_lient_id(int lient_num){ return get_value_u64(v_payload, 0 + al_offset(lient_num));}//***// get/set lient_ip//***void paket_rev_data_stream::set_lient_ip4(int lient_num, s32 lient_ip4){ set_value_s32(lient_ip4, v_payload, 8 + al_offset(lient_num));}s32 paket_rev_data_stream::get_lient_ip4(int lient_num){ return get_value_s32(v_payload, 8 + al_offset(lient_num));}//***259

B. Protool soure �les// get/set lient_port//***void paket_rev_data_stream::set_lient_port(int lient_num, u16 lient_port){ set_value_u16(lient_port, v_payload, 24 + al_offset(lient_num));}u16 paket_rev_data_stream::get_lient_port(int lient_num){ return get_value_u16(v_payload, 24 + al_offset(lient_num));}//***// get/set start_bb//***void paket_rev_data_stream::set_start_bb(int lient_num, u16 start_bb){ set_value_u16(start_bb, v_payload, 26 + al_offset(lient_num));}u16 paket_rev_data_stream::get_start_bb(int lient_num){ return get_value_u16(v_payload, 26 + al_offset(lient_num));}//***// get/set start_db//***void paket_rev_data_stream::set_start_db(int lient_num, u16 start_db){ set_value_u16(start_db, v_payload, 28 + al_offset(lient_num));}u16 paket_rev_data_stream::get_start_db(int lient_num){ return get_value_u16(v_payload, 28 + al_offset(lient_num));}//***// get number_of_db//***u16 paket_rev_data_stream::get_number_of_db(int lient_num){ return get_value_u16(v_payload, 30 + al_offset(lient_num));}//***// get/set dbs//***void paket_rev_data_stream::set_db_list(int lient_num, u16* db_list){ for(int i = 0; i < (int)(get_value_u16(v_payload, 30 + al_offset(lient_num))); i++) {set_value_u16(db_list[i℄,v_payload,(32 + al_offset(lient_num)) + (i * sizeof(u16)));}} 260

B. Protool soure �lesu16 paket_rev_data_stream::get_db(int lient_num, int offset){ return get_value_u16(v_payload, 32 + ((al_offset(lient_num)) * sizeof(u16)));}//***// Calulate offset. Private.//***int paket_rev_data_stream::al_offset(int lient_num){ int pos = 30;for(int i = 0; i < lient_num; i++) {pos += (get_value_u16(v_payload, pos) * 2) + 30;}pos = pos - 30;return pos;}paket_req_bakup_data.h#ifndef PACKET_REQ_BACKUP_DATA#define PACKET_REQ_BACKUP_DATA#inlude "../inlude/paket.h"#define _req_bakup_data_paket_type 40#define _req_bakup_data_ation_type 100#define _req_bakup_data_payload_len 4lass paket_req_bakup_data : publi paket{publi:paket_req_bakup_data(u64 rev_id, u64 snd_id);~paket_req_bakup_data();void set_bb(u16 bb);u16 get_bb();void set_db(u16 db);u16 get_db();};#endifpaket_req_bakup_data.pp#inlude "stdafx.h" 261

B. Protool soure �les#inlude "../inlude/paket_req_bakup_data.h"//***// Construtor//***paket_req_bakup_data::paket_req_bakup_data(u64 rev_id, u64 snd_id): paket(_req_bakup_data_paket_type, _req_bakup_data_ation_type, rev_id, snd_id){ v_payload = mallo(_req_bakup_data_payload_len);set_payload_len(_req_bakup_data_payload_len);}//***// Deonstrutor//***paket_req_bakup_data::~paket_req_bakup_data(){ free(v_payload);}//***// get or set bb//***void paket_req_bakup_data::set_bb(u16 bb){ set_value_u16(bb, v_payload, 0);}u16 paket_req_bakup_data::get_bb(){ return get_value_u16(v_payload, 0);}//***// get or set db//***void paket_req_bakup_data::set_db(u16 db){ set_value_u16(db, v_payload, 2);}u16 paket_req_bakup_data::get_db(){ return get_value_u16(v_payload, 2);}
paket_resend_data.h#ifndef PACKET_RESEND_DATA#define PACKET_RESEND_DATA#inlude "../inlude/paket.h" 262

B. Protool soure �les#define _resend_data_paket_type 60#define _resend_data_ation_type 10#define _resend_data_payload_len 4lass paket_resend_data : publi paket{publi:paket_resend_data(u64 rev_id, u64 snd_id);~paket_resend_data();void set_bb(u16 bb);u16 get_bb();void set_db(u16 db);u16 get_db();};#endifpaket_resend_data.pp#inlude "stdafx.h"#inlude "../inlude/paket_resend_data.h"//***// Construtor//***paket_resend_data::paket_resend_data(u64 rev_id, u64 snd_id): paket(_resend_data_paket_type, _resend_data_ation_type, rev_id, snd_id){ v_payload = mallo(_resend_data_payload_len);set_payload_len(_resend_data_payload_len);}//***// Deonstrutor//***paket_resend_data::~paket_resend_data(){ free(v_payload);}//***// Get or set the bb//***void paket_resend_data::set_bb(u16 bb){ set_value_u16(bb, v_payload, 0);}u16 paket_resend_data::get_bb(){ 263

B. Protool soure �lesreturn get_value_u16(v_payload, 0);}//***// Get or set the db//***void paket_resend_data::set_db(u16 db){ set_value_u16(db, v_payload, 2);}u16 paket_resend_data::get_db(){ return get_value_u16(v_payload, 2);}paket_snd_data_stream.h#ifndef PACKET_SND_DATA_STREAM#define PACKET_SND_DATA_STREAM#inlude "../inlude/paket.h"#inlude "../inlude/vod_exeption.h"#define _snd_data_stream_paket_type 20#define _snd_data_stream_ation_type 20#define _snd_data_stream_payload_len 32 // Not inluding the DB'slass paket_snd_data_stream : publi paket{private:bool v_initialized;publi:paket_snd_data_stream(u64 rev_id, u64 snd_id);~paket_snd_data_stream();void init(u16 number_of_db);void set_lient_id(u64 lient_id);u64 get_lient_id();void set_lient_ip4(s32 lient_ip4);s32 get_lient_ip4();void set_lient_port(u16 lient_port);u16 get_lient_port();void set_start_bb(u16 start_bb);u16 get_start_bb();void set_start_db(u16 start_db); 264

B. Protool soure �lesu16 get_start_db();u16 get_number_of_db();void set_db_list(u16* db_list);u16 get_db(int offset);};#endifpaket_snd_data_stream.pp#inlude "stdafx.h"#inlude "../inlude/paket_snd_data_stream.h"//***// Construtor//***paket_snd_data_stream::paket_snd_data_stream(u64 rev_id, u64 snd_id): paket(_snd_data_stream_paket_type, _snd_data_stream_ation_type, rev_id, snd_id){ set_payload_len(0);v_initialized = false;}//***// Deonstrutor//***paket_snd_data_stream::~paket_snd_data_stream(){ if(v_payload_len > 0)free(v_payload);}//***// Initialize paket//***void paket_snd_data_stream::init(u16 number_of_db){ if(v_initialized)throw new paket_exeption("Paket is already initialized");else {v_payload_len = _snd_data_stream_payload_len + (number_of_db * 2);v_payload = mallo(v_payload_len);set_payload_len(v_payload_len);set_value_u16(number_of_db, v_payload, 30);v_initialized = true;}}//***// get/set lient_ip//***void paket_snd_data_stream::set_lient_ip4(s32 lient_ip4)265

B. Protool soure �les{ set_value_s32(lient_ip4, v_payload, 0);}s32 paket_snd_data_stream::get_lient_ip4(){ return get_value_s32(v_payload, 0);}//***// get/set lient_port//***void paket_snd_data_stream::set_lient_port(u16 lient_port){ set_value_u16(lient_port, v_payload, 16);}u16 paket_snd_data_stream::get_lient_port(){ return get_value_u16(v_payload, 16);}//***// get/set lient_id//***void paket_snd_data_stream::set_lient_id(u64 lient_id){ set_value_u64(lient_id, v_payload, 18);}u64 paket_snd_data_stream::get_lient_id(){ return get_value_u64(v_payload, 18);}//***// get/set start_bb//***void paket_snd_data_stream::set_start_bb(u16 start_bb){ set_value_u16(start_bb, v_payload, 26);}u16 paket_snd_data_stream::get_start_bb(){ return get_value_u16(v_payload, 26);}//***// get/set start_db//***void paket_snd_data_stream::set_start_db(u16 start_db){ set_value_u16(start_db, v_payload, 28);}u16 paket_snd_data_stream::get_start_db() 266

B. Protool soure �les{ return get_value_u16(v_payload, 28);}//***// get number_of_db//***u16 paket_snd_data_stream::get_number_of_db(){ return get_value_u16(v_payload, 30);}//***// get/set dbs//***void paket_snd_data_stream::set_db_list(u16* db_list){ for(int i = 0; i < (int)(get_value_u16(v_payload, 30)); i++)set_value_u16(db_list[i℄, v_payload, 32 + (i * sizeof(u16)));}u16 paket_snd_data_stream::get_db(int offset){ return get_value_u16(v_payload, 32 + (offset * sizeof(u16)));}paket_status_req.h#ifndef PACKET_STATUS_REQ#define PACKET_STATUS_REQ#inlude "../inlude/paket.h"#define _status_req_paket_type 20#define _status_req_ation_type 10#define _status_req_payload_len 4lass paket_status_req : publi paket{publi:paket_status_req(u64 rev_id, u64 snd_id);~paket_status_req();void set_status_interval(u32 status_interval);u32 get_status_interval();};#endif
267

B. Protool soure �lespaket_status_req.pp#inlude "stdafx.h"#inlude "../inlude/paket_status_req.h"//***// Construtor//***paket_status_req::paket_status_req(u64 rev_id, u64 snd_id): paket(_status_req_paket_type, _status_req_ation_type, rev_id, snd_id){ v_payload = mallo(_status_req_payload_len);set_payload_len(_status_req_payload_len);}//***// Deonstrutor//***paket_status_req::~paket_status_req(){ free(v_payload);}//***// Get or set the interval//***void paket_status_req::set_status_interval(u32 status_interval){ set_value_u32(status_interval, v_payload, 0);}u32 paket_status_req::get_status_interval(){ return get_value_u32(v_payload, 0);}paket_status_resp.h#ifndef PACKET_STATUS_RESP#define PACKET_STATUS_RESP#inlude "../inlude/paket.h"#define _status_resp_paket_type 30#define _status_resp_ation_type 10#define _status_resp_payload_len 2lass paket_status_resp : publi paket{publi:paket_status_resp(u64 rev_id, u64 snd_id);~paket_status_resp(); 268

B. Protool soure �lesvoid set_pp(u16 bb);u16 get_pp();};#endifpaket_status_resp.pp#inlude "stdafx.h"#inlude "../inlude/paket_status_resp.h"//***// Construtor//***paket_status_resp::paket_status_resp(u64 rev_id, u64 snd_id): paket(_status_resp_paket_type, _status_resp_ation_type, rev_id, snd_id){ v_payload = mallo(_status_resp_payload_len);set_payload_len(_status_resp_payload_len);}//***// Deonstrutor//***paket_status_resp::~paket_status_resp(){ free(v_payload);}//***// Get or set the playpointer//***void paket_status_resp::set_pp(u16 bb){ set_value_u16(bb, v_payload, 0);}u16 paket_status_resp::get_pp(){ return get_value_u16(v_payload, 0);}paket_stop_stream.h#ifndef PACKET_STOP_STREAM#define PACKET_STOP_STREAM#inlude "../inlude/paket.h"#define _stop_stream_paket_type 20 269

B. Protool soure �les#define _stop_stream_ation_type 30#define _stop_stream_payload_len 12lass paket_stop_stream : publi paket{publi:paket_stop_stream(u64 rev_id, u64 snd_id);~paket_stop_stream();void set_lient_id(u64 lient_id);u64 get_lient_id();void set_stop_bb(u16 stop_bb);u16 get_stop_bb();void set_stop_db(u16 stop_db);u16 get_stop_db();};#endifpaket_stop_stream.pp#inlude "stdafx.h"#inlude "../inlude/paket_stop_stream.h"//***// Construtor//***paket_stop_stream::paket_stop_stream(u64 rev_id, u64 snd_id): paket(_stop_stream_paket_type, _stop_stream_ation_type, rev_id, snd_id){ v_payload = mallo(_stop_stream_payload_len);set_payload_len(_stop_stream_payload_len);}//***// Deonstrutor//***paket_stop_stream::~paket_stop_stream(){ free(v_payload);}//***// Get or set lient id//***void paket_stop_stream::set_lient_id(u64 lient_id){ set_value_u64(lient_id, v_payload, 0);}u64 paket_stop_stream::get_lient_id() 270

B. Protool soure �les{ return get_value_u64(v_payload, 0);}//***// Get or set stop bb//***void paket_stop_stream::set_stop_bb(u16 stop_bb){ set_value_u16(stop_bb, v_payload, 8);}u16 paket_stop_stream::get_stop_bb(){ return get_value_u16(v_payload, 8);}//***// Get or set stop db//***void paket_stop_stream::set_stop_db(u16 stop_db){ set_value_u16(stop_db, v_payload, 10);}u16 paket_stop_stream::get_stop_db(){ return get_value_u16(v_payload, 10);}paket_stream_error.h#ifndef PACKET_STREAM_ERROR#define PACKET_STREAM_ERROR#inlude "../inlude/paket.h"#define _stream_error_paket_type 40#define _stream_error_ation_type 80#define _stream_error_payload_len 12lass paket_stream_error : publi paket{publi:paket_stream_error(u64 rev_id, u64 snd_id);~paket_stream_error();void set_lient_id(u64 lient_id);u64 get_lient_id();void set_rate(u16 rate);u16 get_rate();void set_bb(u16 bb); 271

B. Protool soure �lesu16 get_bb();};#endifpaket_stream_error.pp#inlude "stdafx.h"#inlude "../inlude/paket_stream_error.h"paket_stream_error::paket_stream_error(u64 rev_id, u64 snd_id): paket(_stream_error_paket_type, _stream_error_ation_type, rev_id, snd_id){ v_payload = mallo(_stream_error_payload_len);set_payload_len(_stream_error_payload_len);}paket_stream_error::~paket_stream_error(){ free(v_payload);}void paket_stream_error::set_lient_id(u64 lient_id){ set_value_u64(lient_id, v_payload, 0);}u64 paket_stream_error::get_lient_id(){ return get_value_u64(v_payload, 0);}void paket_stream_error::set_rate(u16 rate){ set_value_u16(rate, v_payload, 8);}u16 paket_stream_error::get_rate(){ return get_value_u16(v_payload, 8);}void paket_stream_error::set_bb(u16 bb){ set_value_u16(bb, v_payload, 10);}u16 paket_stream_error::get_bb() 272

B. Protool soure �les{ return get_value_u16(v_payload, 10);}request_queue.h#ifndef REQUEST_QUEUE#define REQUEST_QUEUE#inlude <queue>#inlude "../inlude/vod_server.h"strut data_strut_req {unsigned long movie_id;unsigned long byte_offset;size_t len;long transation_id;};using namespae std;lass request_queue {private:queue<data_strut_req*> v_queue;unsigned int v_ount_data;HANDLE v_mutex_data;HANDLE v_semaphore_data;publi:request_queue();void add_data_request(data_strut_req* request);void get_data_request(strut data_strut_req& request);int ount_data_request();};#endifrequest_queue.pp#inlude "stdafx.h"#inlude "../inlude/request_queue.h"//***// Construtor//***request_queue::request_queue(){ 273

B. Protool soure �lesv_ount_data = 0;v_mutex_data = CreateMutex(NULL, false, NULL);v_semaphore_data = CreateSemaphore(NULL, 0, 100, NULL);}//***// Add request to queue//***void request_queue::add_data_request(data_strut_req* request){ DWORD wait_result = WaitForSingleObjet(v_mutex_data, INFINITE);if(wait_result == WAIT_OBJECT_0) {v_queue.push(request);v_ount_data++;}ReleaseMutex(v_mutex_data);ReleaseSemaphore(v_semaphore_data, 1, NULL);}//***// Get the next data request from queue//***void request_queue::get_data_request(strut data_strut_req& request){ data_strut_req* temp = NULL;DWORD wait_result_sema = WaitForSingleObjet(v_semaphore_data, INFINITE);if(wait_result_sema == WAIT_OBJECT_0) {DWORD wait_result = WaitForSingleObjet(v_mutex_data, INFINITE);if(wait_result == WAIT_OBJECT_0) {if(!v_queue.empty()) {temp = v_queue.front();v_queue.pop();v_ount_data--;mempy((void*)&request, temp, sizeof(data_strut_req));delete(temp);}ReleaseMutex(v_mutex_data);}}}//***// Return the number of awaiting requests.//***int request_queue::ount_data_request(){ int rv; 274

B. Protool soure �lesDWORD wait_result = WaitForSingleObjet(v_mutex_data, INFINITE);if(wait_result == WAIT_OBJECT_0)rv = v_ount_data;ReleaseMutex(v_mutex_data);return rv;}soket_utils.h#ifndef SOCKET_UTILS#define SOCKET_UTILS#inlude "../inlude/paket_data.h"#inlude <sys/types.h>#inlude "winsok2.h"//#inlude <sys/selet.h>//#inlude <sys/time.h>#inlude <errno.h>#inlude <stdio.h>#inlude <string.h>#inlude <iostream>//#inlude <unistd.h>#inlude <fntl.h>#inlude "../inlude/vod_exeption.h"strut iove {void *iov_base; /* Pointer to data. */size_t iov_len; /* Length of data. */};strut msghdr {void *msg_name; /* Address to send to/reeive from. */int msg_namelen; /* Length of address data. */strut iove *msg_iov; /* Vetor of data to send/reeive into. */size_t msg_iovlen; /* Number of elements in the vetor. */void *msg_ontrol; /* Anillary data (eg BSD filedes passing). */size_t msg_ontrollen; /* Anillary data buffer length. */int msg_flags; /* Flags on reeived message. */};SOCKET Soket(int family, int type, int protool);275

B. Protool soure �lesint Bind(SOCKET sokfd, onst strut sokaddr* myaddr, int addrlen);SOCKET Aept(SOCKET sokfd, strut sokaddr* myaddr, int* addrlen);void Listen(SOCKET fd, int baklog);int Close(SOCKET fd);int Sendmsg(SOCKET sd, strut msghdr *msg, int flags);int Revmsg(SOCKET sd, strut msghdr *msg, int flags);int Selet(int, fd_set*, fd_set*, fd_set*, timeval*);int Connet(SOCKET sokfd, onst strut sokaddr* serveraddr, int addrlen);size_t Send(SOCKET sokfd, onst void *buf, size_t len, int flags);int Read(SOCKET fd, void* buf, size_t len);size_t Revfrom(SOCKET sd,void* buf,size_t len,int flags,strut sokaddr* from,int* fromlen);void setnblk(SOCKET sd);int set_so_reuseable(SOCKET sd);har* produe_error(onst har*);#endifsoket_utils.pp#inlude "stdafx.h"#inlude "../inlude/soket_utils.h"// **// Wrap the soket all// **SOCKET Soket(int family, int type, int protool){ int n = soket(family, type, protool);if (n < 0) {throw new transport_exeption(produe_error("Error reating soket: "));}else {return n;}} 276

B. Protool soure �les// **// Wrap the bind all// **int Bind(SOCKET sokfd, onst strut sokaddr* myaddr, int addrlen){ int n = bind(sokfd, myaddr, addrlen);if (n < 0) {throw new transport_exeption(produe_error("Error binding port: "));}else {return n;}}// **// Wrap the aept all// **SOCKET Aept(SOCKET sokfd, strut sokaddr* myaddr, int* addrlen){ SOCKET n = aept(sokfd, myaddr, addrlen);if (n == SOCKET_ERROR) {throw new transport_exeption(produe_error("Error aepting new onnetion: "));}else {return n;}}// **// Wrap the send all// **size_t Send(SOCKET sokfd, onst void *buf, size_t len, int flags){ int n = send(sokfd, (onst har*) buf,len, flags);if (n < 0) {throw new transport_exeption(produe_error("Error sending data to remote host: "));}else {return n;}}// **// Wrap the read all// **int Read(SOCKET sokfd, void *buf, size_t len){ int n = rev(sokfd, (har*) buf, len, 0);if (n < 0) {Close(sokfd);//throw new transport_exeption(produe_error("Error sending data to remote host: "));}else {return n; 277

B. Protool soure �les}}// **// Wrap the revfrom all// **size_t Revfrom(SOCKET sd,void* buf,size_t len,int flags,strut sokaddr* from,int* fromlen){ int n = revfrom(sd, (har*) buf, len, flags, from, fromlen);return n;}// **// Wrap the onnet all// **int Connet(SOCKET sokfd, onst strut sokaddr* serveraddr, int addrlen){ int n = onnet(sokfd, serveraddr, addrlen);if (n < 0) {throw new transport_exeption(produe_error("Error onneting to remote host: "));}else {return n;}}// **// Wrap the listen all// **void Listen(SOCKET fd, int baklog){ if ((listen(fd, baklog) < 0)) {throw new transport_exeption(produe_error("Error listening on soket: "));}else {return;}}// **// Wrap the lose all// **int Close(SOCKET fd){ int rv = losesoket(fd);if (rv < 0) {throw new transport_exeption(produe_error("Error losing soket: "));}else {return rv; 278

B. Protool soure �les}}// **// Wrap the selet all// **int Selet(int maxfdp1,fd_set* read_set,fd_set* write_set,fd_set* exept_set,timeval* timeout){ int n = selet(maxfdp1,read_set, write_set, exept_set, timeout);if (n < 0) {throw new transport_exeption(produe_error("Error alling selet: "));}else {return n;}}// **// Wrap the sendmsg all// **int Sendmsg(SOCKET sd, strut msghdr *msg, int flags){ int bufsize = 0;int offset = 0;har* buf = NULL;// Loop through all iovetors in msghdrfor(int i = 0; i < msg->msg_iovlen; i++) {bufsize += msg->msg_iov[i℄.iov_len;}buf = (har*) mallo(bufsize);for(int i = 0; i < msg->msg_iovlen; i++) {// Do expensive memopy due to the unavailable sendmsg allmempy(buf + offset, msg->msg_iov[i℄.iov_base, msg->msg_iov[i℄.iov_len);offset = offset + msg->msg_iov[i℄.iov_len;}return sendto(sd, buf, bufsize, 0, (sokaddr*) msg->msg_name, msg->msg_namelen);}// **// Wrap the revmsg all// **int Revmsg(SOCKET sd, strut msghdr *msg, int flags){ int loop = msg->msg_iovlen;int readlen = 0;int read = 0;har hat;sokaddr sok; 279

B. Protool soure �lesint soklen = sizeof(sok);// Loop through all iovetors in msghdrfor(int i = 0; i < loop; i++) {readlen += msg->msg_iov[i℄.iov_len;}void* buf = mallo(readlen);Revfrom(sd, buf, readlen, 0, &sok, &soklen);int offset = 0;for(int i = 0; i < loop; i++) {// Do expensive memopy due to the unavailable revmsg allmempy(msg->msg_iov[i℄.iov_base, (void*)(((har*) buf)+offset), msg->msg_iov[i℄.iov_len);offset += msg->msg_iov[i℄.iov_len;}free(buf);return read;}// **// Set a file desriptor nonbloking// **void setnblk(SOCKET sd){ int opts;u_long iMode = 1;iotlsoket(sd, FIONBIO, &iMode);int sndsize = 200000;int err = setsokopt(sd, SOL_SOCKET, SO_RCVBUF, (har *)&sndsize, (int)sizeof(sndsize));return;}// **// Set a soket desriptor reusable// **int set_so_reuseable(SOCKET sd){ int optval = 1;int rv = setsokopt(sd, SOL_SOCKET, SO_REUSEADDR, (har*) &optval, sizeof(optval));if (rv < -1)throw new transport_exeption(produe_error("Error setting SO_REUSEADDR soket option: "));elsereturn rv;}// **// Read error from errno and return// **har* produe_error(onst har* errmsg){ har* err = strerror(errno);har* ptr = (har*) mallo(strlen(err) + strlen(errmsg) + 1);280

B. Protool soure �lesmempy(ptr, errmsg, strlen(errmsg));mempy(ptr + strlen(errmsg), err, strlen(err) + 1);return ptr;}stream_engine.h#ifndef STREAM_ENGINE#define STREAM_ENGINE#inlude "../inlude/types.h"#inlude "../inlude/enum.h"#inlude "../inlude/paket.h"#inlude "../inlude/paket_data.h"#inlude "../inlude/data_ontainer.h"lass stream_engine {private:data_ontainer* v_data_ontainer;u64 v_snd_lient_id;u64 v_video_id;bool v_streaming;publi:stream_engine(data_ontainer* d, u64 video_id, u64 lient_id);stream_engine(data_ontainer* d, u64 video_id);u64 get_video_id();paket* stream(u64 rev_lient_id, u16 bb, u16 db, speed_level speed);};#endifstream_engine.pp#inlude "stdafx.h"#inlude "../inlude/stream_engine.h"//**// Construtor//**stream_engine::stream_engine(data_ontainer* d,u64 video_id,u64 lient_id){ v_data_ontainer = d;v_snd_lient_id = lient_id; 281

B. Protool soure �lesv_video_id = video_id;}//**// Construtor//**stream_engine::stream_engine(data_ontainer* d,u64 video_id){ v_data_ontainer = d;v_snd_lient_id = 0; // All data from the server has lient-id 0 in this versionv_video_id = video_id;}u64 stream_engine::get_video_id(){ return v_video_id;}//**// Retrieve a speifi paket//**paket* stream_engine::stream(u64 rev_lient_id, u16 bb, u16 db, speed_level speed){ // Retrive dataint data_len = 0;void* data = v_data_ontainer->read_db(bb, db, data_len);// Cahe / buffer missif(data == NULL)return NULL;// Building data paketpaket_data* pak = new paket_data(rev_lient_id, v_snd_lient_id);pak->set_bb(bb);pak->set_db(db);pak->set_speed_level((u8) speed);pak->set_data(NULL, 0);pak->set_payload_data(data, data_len);return pak;}stream_engine_server_thread.h#ifndef STREAM_ENGINE_SERVER_THREAD#define STREAM_ENGINE_SERVER_THREAD#inlude "../inlude/transport_handler.h"#inlude "../inlude/stream_engine.h"#inlude "../inlude/data_bank_server.h"strut stream_params 282

B. Protool soure �les{ data_bank_server* v_data_bank;stream_engine* v_stream_engine;transport_handler* v_transport_handler;};void stream_thread(void* args);#endifstream_engine_server_thread.pp#inlude "stdafx.h"#inlude "../inlude/stream_engine_server_thread.h"//**// Main proedure//**void stream_thread(void* args){ data_bank_server* v_data_bank = ((stream_params*)args)->v_data_bank;stream_engine* v_stream_engine = ((stream_params*)args)->v_stream_engine;transport_handler* v_transport_handler = ((stream_params*)args)->v_transport_handler;u64 rev_lient_id;int wait_time;u16 next_bb;u16 next_db;speed_level speed;u64 ip_addr;u16 port;for(;;) {wait_time = 0;// get the next reeiver in lineif(v_data_bank->get_next_reeiver(v_stream_engine->get_video_id(),rev_lient_id,wait_time,next_bb,next_db,speed,ip_addr,port)) {if(wait_time > 0) {//System::Diagnostis::Debug::WriteLine("Sleeping: " + wait_time);System::Threading::Thread::Sleep(wait_time);}if (!(next_bb > (v_data_bank->get_num_of_bb(0)) - 1)) {paket* pak = v_stream_engine->stream(rev_lient_id,next_bb,next_db,speed);283

B. Protool soure �lesif(pak == NULL) {// If ahe miss - inform data_bank}else {lient_address v_lient_address;v_lient_address.lient_ip = ip_addr;v_lient_address.lient_DCP_port = port;v_transport_handler->send_DCP(pak, &v_lient_address);}}}else {delete v_stream_engine;v_stream_engine = NULL;break;}}return;}stream_engine_thread.h#ifndef STREAM_ENGINE_THREAD#define STREAM_ENGINE_THREAD#inlude "../inlude/transport_handler.h"#inlude "../inlude/stream_engine.h"#inlude "../inlude/data_bank_lient.h"strut stream_params{ data_bank_lient* v_data_bank;stream_engine* v_stream_engine;transport_handler* v_transport_handler;};void stream_thread(void* args);#endifstream_engine_thread.pp#inlude "stdafx.h"#inlude "../inlude/stream_engine_thread.h"// **// Main streaming thread proedure// **284

B. Protool soure �lesvoid stream_thread(void* args){ data_bank_lient* v_data_bank = ((stream_params*)args)->v_data_bank;stream_engine* v_stream_engine = ((stream_params*)args)->v_stream_engine;transport_handler* v_transport_handler = ((stream_params*)args)->v_transport_handler;u64 rev_lient_id;int wait_time;u16 next_bb;u16 next_db;speed_level speed;u64 ip_addr;u16 port;for(;;) {wait_time = 0;// get the next reeiver in lineif(v_data_bank->get_next_reeiver(0, rev_lient_id,wait_time,next_bb,next_db,speed,ip_addr,port)) {if(wait_time > 0) {// System::Diagnostis::Debug::WriteLine("Sleeping: " + wait_time);System::Threading::Thread::Sleep(wait_time);}if (!(next_bb > (v_data_bank->get_num_of_bb()) - 1)) {if(next_db == 0 || next_db == 1)System::Diagnostis::Debug::WriteLine("Sender BB: " + next_bb);paket* pak = v_stream_engine->stream(rev_lient_id,next_bb,next_db,speed);if(pak == NULL) {// Data ould not be found in buffer.// We should send error paket to reeiver.System::Diagnostis::Debug::WriteLine("Data was not found in buffer!");}else {lient_address v_lient_address;v_lient_address.lient_ip = ip_addr;v_lient_address.lient_DCP_port = port;v_transport_handler->send_DCP(pak, &v_lient_address);} }}elsebreak;}return; 285

B. Protool soure �les}stream_info.h#ifndef STREAM_INFO#define STREAM_INFO#inlude "../inlude/paket_snd_data_stream.h"#inlude "../inlude/global_funtions.h"#inlude "../inlude/enum.h"#inlude <queue>strut resend_blok {u16 bb;u16 db;};lass stream_info {// Client id assoiated to the given lientu64 v_lient_id;// Variable defining if we have started streamingbool started;// Timestamp indiating the last time a paket was sentsystem_time v_last_send_time;// Timestamp indiating the next time a paket should be sentsystem_time v_next_send_time;// The next buffer blok a paket should be sent fromu16 v_next_buffer_blok;// The next data blok to be sentu16 v_next_data_blok;// last index ofint v_last_index;// The amount of millisonds between onseutive paket dispathesint v_low_speed_interval;int v_normal_speed_interval;int v_high_speed_interval;// The speed level of the onneted lientspeed_level v_speed;// The point in the movie where the stream should be stoppedu16 v_stop_point_db;u16 v_stop_point_bb;// Queue ontaining all bloks to be resendstd::queue<strut resend_blok> v_resend_queue;// Get the next timestamp of data dispath 286

B. Protool soure �lessystem_time update_send_time();publi:// Paket ontaining information about the ontents of the streampaket_snd_data_stream* v_pak;// Construtorstream_info(paket_snd_data_stream* pak, int min, int norm, int max);// Destrutor~stream_info();// Get the next blok for sendingbool get_next_blok(u16& BB, u16& DB, speed_level& speed);// Add a resend blok to internal resend queuevoid add_resend_blok(u16 BB, u16 DB);// Adjust the speedvoid adjust_speed(speed_level new_speed);// Return the lient id assoiated with the stream info.xu64 get_lient_id();// Set the stop point of the streamvoid set_stop_point(u16 BB, u16 DB);// Get the stop point of the streamvoid get_stop_point(u16& BB, u16& DB);// Set the given point to play fromvoid set_play_point(u16 BB);// Set the next sending timevoid set_send_time(system_time t);// get the next sinding timesystem_time get_send_time();};#endifstream_info.pp#inlude "stdafx.h"#inlude "../inlude/stream_info.h"//***// Construtor//***stream_info::stream_info(paket_snd_data_stream* pak, int min, int norm, int max){ 287

B. Protool soure �lesv_pak = pak;v_next_buffer_blok = 0;v_next_data_blok = 0;v_lient_id = pak->get_lient_id();v_low_speed_interval = min;v_normal_speed_interval = norm;v_high_speed_interval = max;system_time now;system_time last = {0,0};get_system_time(&now);v_next_send_time = now;v_last_send_time = last;v_stop_point_bb = 44;v_stop_point_db = 99;v_last_index = 0;v_speed = HIGH;started = false;}//***// Construtor//***stream_info::~stream_info(){ delete v_pak;// We should loop through all elements of v_resend_queue and delete these}//***// update_send_time//***system_time stream_info::update_send_time(){ int time_inrease = 0;swith (v_speed) {ase LOW:time_inrease = v_low_speed_interval;break;ase NORMAL:time_inrease = v_normal_speed_interval;break;ase HIGH:time_inrease = v_high_speed_interval;break;default:break;}v_next_send_time = v_next_send_time + time_inrease;return v_next_send_time;} 288

B. Protool soure �les//***// get_next_blok//***bool stream_info::get_next_blok(u16& BB, u16& DB, speed_level& speed){ u16 latest_BB = v_next_buffer_blok;u16 latest_DB = v_next_data_blok;// Start heking if any resend bloks are queued.if (!v_resend_queue.empty()) {resend_blok blok;blok = v_resend_queue.front();v_resend_queue.pop();BB = blok.bb;DB = blok.db;this->adjust_speed(HIGH);speed = v_speed;update_send_time();return true;}// Chek if we have reahed stop point.if (latest_BB > v_stop_point_bb) {// We have rossed the stop point. Done sending data.return false;}if (!started) {// We are at beginning of stream. Send start blokBB = v_pak->get_start_bb();DB = v_pak->get_start_db();v_next_data_blok = v_pak->get_start_bb();v_next_buffer_blok = v_pak->get_start_bb();speed = v_speed;update_send_time();started = true;return true;}else {// Normal data dispathingu16 number_of_dbs = v_pak->get_number_of_db();if (v_last_index == number_of_dbs - 1) {v_last_index = 0;v_next_buffer_blok = latest_BB + 1;}else {v_last_index++;}v_next_data_blok = v_pak->get_db(v_last_index);BB = v_next_buffer_blok;DB = v_next_data_blok;speed = v_speed;update_send_time();return true; 289

B. Protool soure �les}}//***// Add a blok to the resend queue//***void stream_info::add_resend_blok(u16 BB, u16 DB){ resend_blok blok = {BB,DB};v_resend_queue.push(blok);}//***// Adjust the speed of the stream//***void stream_info::adjust_speed(speed_level new_speed){ v_speed = new_speed;}//***// Return lient assoiated with the stream_info//***u64 stream_info::get_lient_id(){ return v_lient_id;}//***// Return lient assoiated with the stream_info//***void stream_info::set_stop_point(u16 BB, u16 DB){ v_stop_point_bb = BB;v_stop_point_bb = DB;}//***// Return lient assoiated with the stream_info//***void stream_info::get_stop_point(u16& BB, u16& DB){ BB = v_stop_point_bb;DB = v_stop_point_bb;}//***// Return lient assoiated with the stream_info//***void stream_info::set_send_time(system_time t){ v_next_send_time = t;}//***// Set the urrent play point//***290

B. Protool soure �lesvoid stream_info::set_play_point(u16 BB){ v_next_buffer_blok = BB;v_last_index = -1;}//***// Return lient assoiated with the stream_info//***system_time stream_info::get_send_time(){ return v_next_send_time;}stream_table.h#ifndef STREAM_TABLE#define STREAM_TABLE#inlude <map>#inlude "../inlude/global_funtions.h"#inlude "../inlude/enum.h"#inlude "../inlude/types.h"#inlude "../inlude/paket_snd_data_stream.h"#inlude "../inlude/paket_stop_stream.h"#inlude "../inlude/stream_info.h"#inlude "../inlude/paket_onn_granted.h"typedef std::map<strut system_time, stream_info*>::onst_iterator CIT;lass stream_table {bool v_initialized;// Internal representation of the paket struture ontaining information// about the videopaket_onn_granted* v_pak;// Internal map representing the streams dispathedstd::map<u64, stream_info*> v_streams;std::map<strut system_time, stream_info*> v_wait_times;publi:// Construtorstream_table();// Destrutor~stream_table();// Initializervoid initialize(paket_onn_granted* pak);// Add a stream to the stream_tablevoid add_stream(paket_snd_data_stream* pak, int min, int norm, int max);291

B. Protool soure �les// Delete a given stream from stream tablevoid stop_stream(paket_stop_stream* pak);// Get next reeiver in line. This will return the next reeiver// in terms of the minimum delay before the reeiver should reeive// the next data blok. The delay is given in wait_time. Note that// this may be negative.bool get_next_reeiver(u64& lient_id,int& wait_time,u16& next_bb,u16& next_db,speed_level& speed,u64& ip_addr,u16& port);// Adjust the speed of a given lient.bool adjust_speed(u64 lient_id, speed_level new_speed);// Resend a blok to a lient.bool resend_blok(u64 lient_id, u16 BB, u16 DB);// Remove streamvoid remove_stream(u64 lient_id);// / Update ontents of a streambool update_stream(paket_snd_data_stream* pak);// Skip to a given point in a streambool skip(u64 lient_id, u16 BB);};#endifstream_table.pp#inlude "stdafx.h"#inlude "../inlude/stream_table.h"using namespae std;//***// onstrutor//***stream_table::stream_table(){ v_initialized = false;v_pak = NULL;}//***// Initializer//***void stream_table::initialize(paket_onn_granted* pak)292

B. Protool soure �les{ if (! v_initialized) {v_pak = pak;v_initialized = true;}else {throw new stream_table_exeption("Error: stream_table already initialized");}}//***// destrutor//***stream_table::~stream_table(){ delete v_pak;v_streams.lear();v_wait_times.lear();// We should lean up all referenes to stream_info lasses in maps}//***// Add a stream//***void stream_table::add_stream(paket_snd_data_stream* pak, int min, int norm, int max){ if (v_initialized) {stream_info* stream = new stream_info(pak, min, norm, max);// First paket should be sent immidiatelysystem_time now;get_system_time(&now);stream->set_send_time(now);// Insert stream into mapsv_streams[pak->get_lient_id()℄ = stream;v_wait_times[now℄ = stream;}else {throw new stream_table_exeption("Error: stream_table not initialized!");}}//***// stop stream//***void stream_table::stop_stream(paket_stop_stream* pak){ if (v_initialized) {u64 lient_id = pak->get_lient_id();stream_info* si = v_streams[lient_id℄;if (pak->get_stop_bb() == 0 && pak->get_stop_db() == 0) {// Delete entry from mapsv_wait_times.erase(si->get_send_time());v_streams.erase(lient_id); 293

B. Protool soure �lesdelete si;}else {si->set_stop_point(pak->get_stop_bb(), pak->get_stop_db());}}else {throw new stream_table_exeption("Error: stream_table not initialized!");}}//***// get_next_reeiver//***bool stream_table::get_next_reeiver(u64& lient_id,int& wait_time,u16& next_bb,u16& next_db,speed_level& speed_level,u64& ip_addr,u16& port){ if (v_initialized) {wait_time = 0;lient_id = 0;next_bb = 0;next_db = 0;system_time now;get_system_time(&now);system_time t1 = {0,0};CIT i = v_wait_times.lower_bound(t1);stream_info* info;if (i == v_wait_times.end()) {return false;}else {info = i->seond;system_time next_send_time = info->get_send_time();if (!info->get_next_blok(next_bb, next_db, speed_level)) {// There is no more data to send. Delete stream_info instanev_wait_times.erase(i->first);v_streams.erase(lient_id);delete info;wait_time = 0;return true;}else {lient_id = info->get_lient_id();wait_time = to_mse(next_send_time - now);ip_addr = info->v_pak->get_lient_ip4();port = info->v_pak->get_lient_port();// Remove data from the wait times mapv_wait_times.erase(i->first); 294

B. Protool soure �les// Insert data again with updated send timev_wait_times[info->get_send_time()℄ = info;return true;}}}else {throw new stream_table_exeption("Error: stream_table not initialized!");}}//***// Adjust the speed of a given lient//***bool stream_table::adjust_speed(u64 lient_id, speed_level new_speed){ if (v_initialized) {stream_info* info = v_streams[lient_id℄;if (info == NULL) {return false;}else {info->adjust_speed(new_speed);return true;}}else {throw new stream_table_exeption("Error: stream_table not initialized!");}}//***// Resend a data blok (enqueues) the data blok// into the resend queue of the lient.//***bool stream_table::resend_blok(u64 lient_id, u16 BB, u16 DB){ if (v_initialized) {stream_info* info = v_streams[lient_id℄;if (info == NULL) {return false;}else {info->add_resend_blok(BB, DB);return true;}}else {throw new stream_table_exeption("Error: stream_table not initialized!");}}//***// Remove stream//***void stream_table::remove_stream(u64 lient_id)295

B. Protool soure �les{ stream_info* si = NULL;si = v_streams[lient_id℄;if (si != NULL) {v_wait_times.erase(si->get_send_time());v_streams.erase(lient_id);delete si;}}//***// Update stream//***bool stream_table::update_stream(paket_snd_data_stream* pak){ stream_info* si = v_streams[pak->lient_id℄;if (si == NULL)return false;elsereturn true;}//***// Skip to a given point in the video//***bool stream_table::skip(u64 lient_id, u16 BB){ stream_info* si = v_streams[lient_id℄;if (si == NULL)return false;elsesi->set_play_point(BB);}thread_lient.h#ifndef THREAD_CLIENT#define THREAD_CLIENT#inlude "../inlude/transport_handler.h"#inlude "../inlude/stream_engine.h"#inlude "../inlude/data_bank_lient.h"#inlude "../inlude/logi_lient.h"#inlude "../inlude/paket_queue.h"strut thread_params{ data_bank_lient* v_data_bank;stream_engine* v_stream_engine;transport_handler* v_transport_handler;paket_queue* v_paket_queue;logi_lient* v_logi_lient;}; 296

B. Protool soure �lesvoid reeive_thread(void* args);void stream_thread(void* args);void logi_thread(void* args);#endifthread_lient.pp#inlude "stdafx.h"#inlude "../inlude/thread_lient.h"void reeive_thread(void* args){ paket_queue* v_paket_queue = ((thread_params*)args)->v_paket_queue;transport_handler* v_transport_handler = ((thread_params*)args)->v_transport_handler;paket* pak = NULL;strut lient_address addr;for(;;) {v_transport_handler->reeive(pak, addr);u64 lient_id = 1234;if (pak == NULL) {v_transport_handler->lose_CCP_onnetion(lient_id);break;} else {v_paket_queue->insert_paket(pak);}}return;}void stream_thread(void* args){ data_bank_lient* v_data_bank = ((thread_params*)args)->v_data_bank;stream_engine* v_stream_engine = ((thread_params*)args)->v_stream_engine;transport_handler* v_transport_handler = ((thread_params*)args)->v_transport_handler;u64 rev_lient_id;int wait_time;u16 next_bb;u16 next_db;speed_level speed;u64 ip_addr;u16 port;for(;;) {wait_time = 0; 297

B. Protool soure �lesif(v_data_bank->get_next_reeiver(v_stream_engine->get_video_id(),rev_lient_id,wait_time,next_bb,next_db,speed,ip_addr,port)) {if(wait_time == 0) {paket* pak = v_stream_engine->stream(rev_lient_id,next_bb,next_db,speed);lient_address v_lient_address;v_lient_address.lient_ip = ip_addr;v_lient_address.lient_DCP_port = port;v_transport_handler->send_DCP(pak, &v_lient_address);}else {System::Threading::Thread::Sleep(wait_time / 1000);}}elsebreak;}return;}void logi_thread(void* args){ paket_queue* v_paket_queue = ((thread_params*)args)->v_paket_queue;logi_lient* v_logi_lient = ((thread_params*)args)->v_logi_lient;for(;;) {paket* pak = v_paket_queue->get_next_paket();v_logi_lient->paket_handler(pak);} return;}transport_handler.h#ifndef TRANSPORT_HANDLER#define TRANSPORT_HANDLER#inlude "../inlude/paket_data.h"#inlude "../inlude/vod_exeption.h" 298

B. Protool soure �les#inlude "../inlude/soket_utils.h"#inlude "../inlude/paket.h"#inlude "../inlude/types.h"//#inlude <arpa/inet.h>#inlude <string.h>//#inlude <netinet/in.h>#inlude <map>#inlude <errno.h>//#inlude "winsok2.h"enum NODE_TYPE{CLIENT = 0,SERVER = 1};strut lient_address {u64 lient_ip;u16 lient_DCP_port;u16 lient_CCP_port;u64 lient_id;SOCKET sd;};typedef std::map<int, lient_address*>::onst_iterator CI;lass transport_handler{ int foo;void fill_addr_lient_values(paket*&, lient_address* lient_addr);// Variable indiating if the lass is initializedbool v_initialized;// The type of the transport_handler instaneNODE_TYPE v_type;// Soket desriptor for the CCP soketSOCKET v_CCP_sd;// SOket desriptor for the DCP soketSOCKET v_DCP_sd;// value indiating the CCP port either opened// loally on the server or onneted to remotely from the lientu16 v_CCP_port;// Value indiating the DCP port opened by the transport_handleru16 v_DCP_port;// Hash ontaining soket desriptors and lient id'sstd::map<int, lient_address*> v_lients;// number indiating the highest soket numberint v_high_sok;// variable indiating the highest fd whih is ready for reading.299

B. Protool soure �lesint v_high_sok_ready;// fd set ontaining list of all soket desriptors usedfd_set v_sok_list;// Strut ontaining information about the// loal opened port used by DCP. Used on lient and serverstrut sokaddr_in v_loal_DCP_addr;// Strut ontaining information about the loal opened port// used by CCP. Used by server to open a speifi port loally,// and by lient to bind a loal port.strut sokaddr_in v_loal_CCP_addr;// Strut ontaining the remote CCP server. Used only by lient.strut sokaddr_in v_remote_CCP_addr;//initializer funtions.void initialize_DCP();void initialize_CCP();// Funtion resetting all file desriptors in fd_setvoid reset_desriptors();// Generate new unique id from soket desriptoru64 generate_id(int);// Handle new onneting CCP lientvoid handle_new_CCP_req();// Read a inoming DCP paketvoid read_DCP_paket(paket*&, lient_address&);// Read a inoming DCP paketvoid read_CCP_paket(paket*&, SOCKET sd);publi:// onstrutorstransport_handler(u16, u16);transport_handler(u16, u16, u16, har*);// destrutor~transport_handler();// Initialize the lassvoid initialize();// send data through the DCP hannel. May throw a transport_exeption*.bool send_DCP(paket*, lient_address*);// send data through the CCP hannel. May throw a transport_exeption*.bool send_CCP(paket*, u64);// reeive. May throw a transport_exeption*.u64 reeive(paket*&);// Close an open onnetion. May throw a transport_exeption*.void lose_CCP_onnetion(u64);};#endif 300

B. Protool soure �lestransport_handler.pp#inlude "stdafx.h"#inlude "../inlude/transport_handler.h"using namespae std;//***// Construtor.// Initializes the transport_handler as server//***transport_handler::transport_handler(u16 loal_DCP_port, u16 loal_CCP_port){ foo = 0;v_initialized = false;v_DCP_port = loal_DCP_port;v_CCP_port = loal_CCP_port;v_type = SERVER;v_high_sok = 0;v_high_sok_ready = 0;FD_ZERO(&v_sok_list);// initialize variables to zeroZeroMemory(&v_loal_DCP_addr, sizeof(v_loal_DCP_addr));ZeroMemory(&v_loal_CCP_addr, sizeof(v_loal_CCP_addr));ZeroMemory(&v_remote_CCP_addr, sizeof(v_remote_CCP_addr));v_loal_CCP_addr.sin_family = AF_INET;v_loal_CCP_addr.sin_addr.s_addr = htonl(INADDR_ANY);v_loal_CCP_addr.sin_port = htons(loal_CCP_port);v_loal_DCP_addr.sin_family = AF_INET;v_loal_DCP_addr.sin_addr.s_addr = htonl(INADDR_ANY);v_loal_DCP_addr.sin_port = htons(loal_DCP_port);}//***// Construtor.// Initializes the transport_handler as lient//***transport_handler::transport_handler(u16 loal_DCP_port,u16 loal_CCP_port,u16 remote_CCP_port,har* remote_CCP_ip){ foo = 0;v_initialized = false;v_DCP_port = loal_DCP_port;v_CCP_port = remote_CCP_port;v_type = CLIENT; 301

B. Protool soure �lesv_high_sok = 0;v_high_sok_ready = 0;FD_ZERO(&v_sok_list);// initialize variables to zeroZeroMemory(&v_loal_DCP_addr, sizeof(v_loal_DCP_addr));ZeroMemory(&v_loal_CCP_addr, sizeof(v_loal_CCP_addr));ZeroMemory(&v_remote_CCP_addr, sizeof(v_remote_CCP_addr));v_remote_CCP_addr.sin_family = AF_INET;v_remote_CCP_addr.sin_port = htons(remote_CCP_port);v_remote_CCP_addr.sin_addr.S_un.S_addr = inet_addr(remote_CCP_ip);v_loal_CCP_addr.sin_family = AF_INET;v_loal_CCP_addr.sin_addr.s_addr = htonl(INADDR_ANY);v_loal_CCP_addr.sin_port = htons(loal_CCP_port);v_loal_DCP_addr.sin_family = AF_INET;v_loal_DCP_addr.sin_addr.s_addr = htonl(INADDR_ANY);v_loal_DCP_addr.sin_port = htons(loal_DCP_port);}//***// Destrutor//***transport_handler::~transport_handler(){ try {Close(v_CCP_sd);Close(v_DCP_sd);WSACleanup();// Loop through all onneted lients and lose soket desriptorCI a = v_lients.begin();strut lient_address* lient;while (a != v_lients.end()) {lient = a->seond;a++;Close(lient->sd);}}ath(transport_exeption* ex) {throw ex;}}//***// Initializer funtion//***void transport_handler::initialize(){ if (!v_initialized) { 302

B. Protool soure �lesWSADATA wsaData;int iResult = WSAStartup(MAKEWORD(2,2), &wsaData);if (iResult == NO_ERROR) {initialize_DCP();initialize_CCP();v_initialized = true;}elsev_initialized = false;}elsethrow new transport_exeption("Error: transport_handler was already initialized.");}//***// Initialize the Data Communiation Client//***void transport_handler::initialize_DCP(){ try {// Open dp soketv_DCP_sd = Soket(AF_INET, SOCK_DGRAM, 0);// set the soket nonblokingsetnblk(v_DCP_sd);Bind(v_DCP_sd, (strut sokaddr*) &v_loal_DCP_addr, sizeof(v_loal_DCP_addr)) ;}ath (transport_exeption* ex) {throw ex;}}//***// Initialize the Control Communiation server//***void transport_handler::initialize_CCP(){ try {// Open soketv_CCP_sd = Soket(AF_INET, SOCK_STREAM,0);// bind soket to loal portset_so_reuseable(v_CCP_sd);Bind(v_CCP_sd, (strut sokaddr*) &v_loal_CCP_addr, sizeof(v_loal_CCP_addr)) ;if (v_type == CLIENT) {// Connet to serverConnet(v_CCP_sd, (onst sokaddr*) &v_remote_CCP_addr, sizeof(v_remote_CCP_addr));setnblk(v_CCP_sd);}else {setnblk(v_CCP_sd);// Listen with a queue lenght of 5Listen(v_CCP_sd, 5);}}ath (transport_exeption* ex) { 303

B. Protool soure �leslosesoket(v_CCP_sd);throw ex;}}//***// Reset file desriptors in fd set//***void transport_handler::reset_desriptors(){ FD_ZERO(&v_sok_list);FD_SET(v_CCP_sd, &v_sok_list);FD_SET(v_DCP_sd, &v_sok_list);v_high_sok_ready = 0;v_high_sok = 0;lient_address* lient;for (CI i = v_lients.begin(); i != v_lients.end(); ++i){lient = i->seond ;FD_SET(lient->sd, &v_sok_list) ;}}//***// Close a soket desriptor assoiated with a given lient id//***void transport_handler::lose_CCP_onnetion(u64 lient_id){ int sd;lient_address* lient;try {// Retrieve soket handler from lient idlient = v_lients[lient_id℄;v_lients.erase(lient_id);FD_CLR(lient->sd, &v_sok_list);Close(lient->sd);delete lient;}ath (transport_exeption* ex) {out << "Caught exeption: " << ex->get_message() << endl;}}//***// Send data through CCP//***bool transport_handler::send_CCP(paket* pak, u64 lient_id){ if (v_initialized) {size_t rv;SOCKET sd; 304

B. Protool soure �leslient_address* lient;void* header;// We mallo an iove of size 3 (maximum size)iove* msg_parts = (iove*) mallo(sizeof(iove) * 3);try {if (v_type == CLIENT)sd = v_CCP_sd;else {lient = v_lients[lient_id℄;sd = lient->sd;}// Send data// Create msghdr strutmsghdr msg;// Fill soket addr indiating reeiver of paketmsg.msg_name = NULL;msg.msg_namelen = 0;// Fill msg_iov field// Set iovetor in msghdr to msg_partsmsg.msg_iov = msg_parts;msg.msg_iovlen = 0;// Fill vetormsg_parts[0℄.iov_base = pak->get_header();msg_parts[0℄.iov_len = _header_len;msg.msg_iovlen++;if (pak->get_payload_len() > 0) {msg_parts[1℄.iov_base = pak->get_payload();msg_parts[1℄.iov_len = pak->get_payload_len();msg.msg_iovlen++;}if (pak->get_payload_data_len() > 0) {msg_parts[2℄.iov_base = pak->get_payload_data();msg_parts[2℄.iov_len = pak->get_payload_data_len();msg.msg_iovlen++;}msg.msg_ontrol = (void*) NULL;msg.msg_ontrollen = 0;msg.msg_flags = 0;// Send messageSendmsg(sd, &msg, 0);delete msg_parts;}ath (transport_exeption* ex) {delete msg_parts;throw ex;}}elsethrow new transport_exeption("Error: transport_handler send was305

B. Protool soure �les alled before the lass was inititalized.");}//***// Send data through DCP//***bool transport_handler::send_DCP(paket* pak, lient_address* lient){ if (v_initialized) {// We mallo an iove of size 3 (maximum size)iove* msg_parts = (iove*) mallo(sizeof(iove) * 3);ZeroMemory((void*) msg_parts, sizeof(iove) * 3);try {// Create msghdr strutmsghdr msg;ZeroMemory((void*) &msg, sizeof(msg));// Fill soket addr indiating reeiver of paketsokaddr_in reeiver;reeiver.sin_family = AF_INET;reeiver.sin_port = htons(lient->lient_DCP_port);reeiver.sin_addr.S_un.S_addr = lient->lient_ip;msg.msg_name = (void*) &reeiver;msg.msg_namelen = sizeof(reeiver);// Fill msg_iov field// Set iovetor in msghdr to msg_partsmsg.msg_iov = msg_parts;msg.msg_iovlen = 0;// Fill vetormsg_parts[msg.msg_iovlen℄.iov_base = pak->get_header();msg_parts[msg.msg_iovlen℄.iov_len = _header_len;msg.msg_iovlen++;if (pak->get_payload_len() > 0) {msg_parts[msg.msg_iovlen℄.iov_base = pak->get_payload();msg_parts[msg.msg_iovlen℄.iov_len = pak->get_payload_len();msg.msg_iovlen++;}if (pak->get_payload_data_len() > 0) {msg_parts[msg.msg_iovlen℄.iov_base = pak->get_payload_data();msg_parts[msg.msg_iovlen℄.iov_len = pak->get_payload_data_len();msg.msg_iovlen++;}msg.msg_ontrol = (void*) NULL;msg.msg_ontrollen = 0;msg.msg_flags = 0;// Send messageint res = Sendmsg(v_DCP_sd, &msg, 0);delete msg_parts;}ath (transport_exeption* ex) {delete msg_parts; 306

B. Protool soure �lesthrow ex;}}elsethrow new transport_exeption("Error: transport_handler.send was alled beforethe lass was inititalized.");}//***// Reeive data from soket and return data wrapped in a paket//***u64 transport_handler::reeive(paket* &pak){ SOCKET sd;pak = NULL;lient_address lient_addr;if (v_initialized) {try {for (;;){ // Loop until data has arrivedreset_desriptors();// Perform selet all on all soket desriptors with no time-outv_high_sok_ready = Selet(v_high_sok + 1, &v_sok_list, NULL, NULL, NULL);if (FD_ISSET(v_CCP_sd, &v_sok_list)) {if (v_type == SERVER) {// Handle new onneting CCP lient. This an only happen as serverhandle_new_CCP_req();}else {// lient got ontrol message from serverread_CCP_paket(pak, v_CCP_sd);if(pak != NULL)fill_addr_lient_values(pak, &lient_addr);return 0;}}if (FD_ISSET(v_DCP_sd, &v_sok_list)) {// Read inoming DCP paketread_DCP_paket(pak, lient_addr);fill_addr_lient_values(pak, &lient_addr);return 0;}// Loop through all onneted lients to see if soket desriptor is set.CI a = v_lients.begin();strut lient_address* lient;while (a != v_lients.end()) {//we extrat the file desriptorlient = a->seond ;// we inrement the iterator as it might be deletedif (FD_ISSET(lient->sd, &v_sok_list)){lient_addr.lient_id = lient->lient_id;lient_addr.lient_ip = lient->lient_ip;307

B. Protool soure �lesread_CCP_paket(pak, lient->sd);if(pak != NULL)fill_addr_lient_values(pak, &lient_addr);return lient->lient_id;}a++ ;}}} ath (transport_exeption* ex) {throw ex;}}elsethrow new transport_exeption("Error: transport_handler.reeive alledbefore the lass was inititalized.");}//***// Read new paket from DCP port//***void transport_handler::read_DCP_paket(paket* &pak, strut lient_address &lient){ size_t n_bytes;void* header = (void*) mallo(_header_len);strut sokaddr_in sender;int len = sizeof(sokaddr_in);void* payload_data = NULL;void* payload = NULL;try {// First we must peek to see how muh data awaits on soket// This is done, as alling reeive on an UDP soket WILL// disard all data belonging to the datagram awaiting in// soket no matter how muh of the data is read. Thus alling// reeive MUST be done one on all data awaiting to be read.n_bytes = Revfrom(v_DCP_sd,header,_header_len,MSG_PEEK,(strut sokaddr*) &sender,&len);pak = new paket(header);int bytes_to_read = _header_len +pak->get_payload_len() +pak->get_payload_data_len();// Now we onstrut msg header for the revmsg allmsghdr msg;// We mallo an iove of size 3 (maximum size)iove* msg_parts = (iove*) mallo(sizeof(iove) * 3);308

B. Protool soure �les// Fill soket addr to indiate sender of paketsokaddr_in sender;ZeroMemory((void*) &sender, sizeof(sender));msg.msg_name = (void*) &sender;msg.msg_namelen = sizeof(sender);// Fill msg_iov field// Set iovetor in msghdr to msg_partsmsg.msg_iov = msg_parts;msg.msg_iovlen = 0;// Fill vetor// Set paket headermsg_parts[msg.msg_iovlen℄.iov_base = header;msg_parts[msg.msg_iovlen℄.iov_len = _header_len;msg.msg_iovlen++;// Set payload headerif (pak->get_payload_len() > 0) {msg_parts[msg.msg_iovlen℄.iov_base = mallo(pak->get_payload_len());msg_parts[msg.msg_iovlen℄.iov_len = pak->get_payload_len();payload = msg_parts[msg.msg_iovlen℄.iov_base;msg.msg_iovlen++;}if (pak->get_payload_data_len() > 0) {msg_parts[msg.msg_iovlen℄.iov_base = mallo(pak->get_payload_data_len());msg_parts[msg.msg_iovlen℄.iov_len = pak->get_payload_data_len();payload_data = msg_parts[msg.msg_iovlen℄.iov_base;msg.msg_iovlen++;}msg.msg_ontrol = (void*) NULL;msg.msg_ontrollen = 0;msg.msg_flags = 0;n_bytes = Revmsg(v_DCP_sd, &msg, 0);pak->set_payload(payload, pak->get_payload_len());pak->set_payload_data(payload_data, pak->get_payload_data_len());}ath (transport_exeption* ex) {throw ex;}}//***// Read new paket from CCP port//***void transport_handler::read_CCP_paket(paket* &pak, SOCKET sd){ size_t n_bytes;void* header = (void*) mallo(_header_len);try {n_bytes = Read(sd, header, _header_len);309

B. Protool soure �lesif (n_bytes == 0) // Got eof - hannel should be losedpak = NULL;else {pak = new paket(header);// Read payloadif (pak->get_payload_len() > 0) {void* payload = (void*) mallo(pak->get_payload_len());n_bytes = Read(sd, payload, pak->get_payload_len());pak->set_payload(payload, n_bytes);}if (pak->get_payload_data_len() > 0) {void* payload_data = (void*) mallo(pak->get_payload_data_len());n_bytes = Read(sd, payload_data, pak->get_payload_data_len());pak->set_payload_data(payload_data, n_bytes);}}}ath (transport_exeption* ex) {throw ex;}}//***// Handle new onnetion on CCP port//***void transport_handler::handle_new_CCP_req(){ SOCKET new_sd;strut sokaddr_in new_lient;int addr_len;if (v_type == SERVER) {try {// Aept the new inoming onnetion and set soket non blokingaddr_len = sizeof(new_lient);new_sd = Aept(v_CCP_sd, (strut sokaddr *) &new_lient, &addr_len);setnblk(new_sd);// Generate lient id and store this in hash with new file desriptoru64 lient_id = generate_id(new_sd);strut lient_address* lient = (lient_address*) mallo(sizeof(lient_address));lient->lient_ip = new_lient.sin_addr.S_un.S_addr;lient->lient_CCP_port = new_lient.sin_port;lient->lient_id = lient_id;lient->sd = new_sd;v_lients[lient_id℄ = lient;System::Diagnostis::Debug::WriteLine("Conneted lient" + lient_id);}ath (transport_exeption* ex) {throw ex;}}elsethrow new transport_exeption("Error: got new onnetion on DCP hannel as lient.");} 310

B. Protool soure �les//***// Generate new lient id from feile desriptor//***u64 transport_handler::generate_id(int fd){ return fd;}void transport_handler::fill_addr_lient_values(paket* &pak,lient_address* lient_addr){ pak->lient_ip = lient_addr->lient_ip;pak->lient_DCP_port = lient_addr->lient_DCP_port;pak->lient_CCP_port = lient_addr->lient_CCP_port;pak->lient_id = lient_addr->lient_id;pak->sd = lient_addr->sd;}transport_handler_thread.h#ifndef TRANSPORT_HANDLER_THREAD#define TRANSPORT_HANDLER_THREAD#inlude "../inlude/transport_handler.h"#inlude "../inlude/paket_queue.h"strut reeive_params{ paket_queue* v_paket_queue;transport_handler* v_transport_handler;};void reeive_thread(void* args);#endiftransport_handler_thread.pp#inlude "stdafx.h"#inlude "../inlude/transport_handler_thread.h"//**// Main proedure//**void reeive_thread(void* args){ paket_queue* v_paket_queue = ((reeive_params*)args)->v_paket_queue;transport_handler* v_transport_handler = ((reeive_params*)args)->v_transport_handler;311

B. Protool soure �lespaket* pak = NULL;for(;;) {u64 lient_id = v_transport_handler->reeive(pak);if (pak == NULL) {v_transport_handler->lose_CCP_onnetion(lient_id);break;} else {v_paket_queue->insert_paket(pak);}}return;}vod_lient.h#ifndef VOD_CLIENT#define VOD_CLIENT#inlude "../inlude/define.h"#inlude "../inlude/types.h"#inlude "../inlude/logi_lient.h"#inlude "../inlude/logi_lient_thread.h"#inlude "../inlude/paket_queue.h"#inlude "../inlude/transport_handler.h"#inlude "../inlude/transport_handler_thread.h"#inlude "../inlude/paket_onn_req.h"// Strut used to lients portsstrut lient_addr {int dp_port;int p_port;};// Strut ontaining servers addressstrut server_addr {har* ip_address;int port;};// Strut ontaining lients login-datastrut login_data {har user_name[64℄;har password[64℄;unsigned int video_size;unsigned int video_duration;unsigned int skip_distane;};// Strut ontaining info needed for the lient312

B. Protool soure �lesstrut video_info {unsigned long skip_distane;unsigned long video_duration;unsigned long video_length;};lass vod_lient {private:size_t v_buf_size;lient_addr* v_lient_addr;server_addr* v_server_address;logi_lient* v_logi_lient;transport_handler* v_transport_handler;paket_queue* v_paket_queue;DWORD v_logi_thread_id;HANDLE v_logi_thread;DWORD v_reeive_thread_id;HANDLE v_reeive_thread;bool onnet_status();void lean_up();logi_params args1;reeive_params args2;publi:// Construtorvod_lient(size_t buf_size, strut lient_addr* lient);// Connet to serverint onnet(unsigned long video_id, strut server_addr* address, strut login_data* login);// Reeive data from lient's buffersize_t rev_data(void* buf, size_t max_len, unsigned long& offset);// Disonnet from serverint disonnet();// User interation, puaseint pause();// User interation, resumeint resume();// User interation, skipint skip(unsigned long distane);// Returns movie infovoid video_info(strut video_info* info);};#endif 313

B. Protool soure �lesvod_lient.pp#inlude "stdafx.h"#inlude "../inlude/vod_lient.h"//***// Construtor.// Sets the buffer size and lient address//***vod_lient::vod_lient(size_t buf_size, strut lient_addr* address){ v_buf_size = buf_size;v_lient_addr = new lient_addr;mempy(v_lient_addr, address, sizeof(lient_addr));}//***// Connets the lient to the server.//***int vod_lient::onnet(unsigned long movie_id,strut server_addr* address,strut login_data* login){ v_server_address = new server_addr;mempy(v_server_address, address, sizeof(server_addr));// Create paket-queuev_paket_queue = new paket_queue(_paket_queue_size_lient);// Create transport handlerv_transport_handler = new transport_handler(v_lient_addr->dp_port,v_lient_addr->p_port,address->port,address->ip_address);v_transport_handler->initialize();// Create logiv_logi_lient = new logi_lient((u64)movie_id,v_transport_handler,v_paket_queue);// Create transport-handler threadargs2.v_paket_queue = v_paket_queue;args2.v_transport_handler = v_transport_handler;v_reeive_thread = CreateThread(NULL,0,(LPTHREAD_START_ROUTINE) reeive_thread,(void*) &args2,0,&v_reeive_thread_id);// Tries to loginv_logi_lient->onnet(v_buf_size, login,v_lient_addr->p_port,v_lient_addr->dp_port); 314

B. Protool soure �les// Create lient-logi threadargs1.v_paket_queue = v_paket_queue;args1.v_logi_lient = v_logi_lient;v_logi_thread = CreateThread(NULL,0,(LPTHREAD_START_ROUTINE) logi_thread,(void*) &args1,0,&v_logi_thread_id);return 0;}//***// Reeive data from protool//***size_t vod_lient::rev_data(void* buf, size_t max_len, unsigned long& offset){ size_t rv = 0;if(v_logi_lient != NULL) {rv = v_logi_lient->rev_data(buf, max_len, (unsigned int&)offset);if(!this->onnet_status())lean_up();}return rv;}//***// Disonnet lient//***int vod_lient::disonnet(){ int rv = v_logi_lient->disonnet();lean_up();return rv;}//***// Pause lient//***int vod_lient::pause(){ return 0;}//***// Resume lient//***int vod_lient::resume(){ return 0;} 315

B. Protool soure �les//***// Skip//***int vod_lient::skip(unsigned long distane){ return v_logi_lient->skip(distane);}//***// Retrieve video info//***void vod_lient::video_info(strut video_info* info){ info->skip_distane = v_logi_lient->get_skip_distane();info->video_duration = v_logi_lient->get_video_duration();info->video_length = v_logi_lient->get_video_length();}//***// Get the onnete status//***bool vod_lient::onnet_status(){ return true;}//***// Clean up//***void vod_lient::lean_up(){ // Send anel to threadsTerminateThread(v_logi_thread, 0);TerminateThread(v_reeive_thread, 0);// Delete objetsdelete(v_logi_lient);delete(v_paket_queue);//delete(v_transport_handler);}vod_exeption.h#ifndef VOD_EXCEPTION#define VOD_EXCEPTION#inlude <string.h>#inlude <stdlib.h>lass vod_exeption{private:har* v_err_msg; 316

B. Protool soure �lespubli:vod_exeption(onst har*);onst har* get_message();};lass transport_exeption : publi vod_exeption{publi:transport_exeption(onst har*);};lass paket_exeption : publi vod_exeption{publi:paket_exeption(onst har*);};lass paket_queue_exeption : publi vod_exeption{publi:paket_queue_exeption(onst har*);};lass data_bank_exeption : publi vod_exeption{publi:data_bank_exeption(onst har*);};lass stream_table_exeption : publi vod_exeption{publi:stream_table_exeption(onst har*);};#endifvod_exeption.pp#inlude "stdafx.h"#inlude "../inlude/vod_exeption.h"vod_exeption::vod_exeption(onst har* msg){ v_err_msg = (har*) mallo(strlen(msg) + 1);strpy(v_err_msg, msg);}onst har* vod_exeption::get_message(){ return (onst har*) v_err_msg; 317

B. Protool soure �les}// Transport exeptiontransport_exeption::transport_exeption(onst har* msg): vod_exeption(msg){}// Paket exeptionpaket_exeption::paket_exeption(onst har* msg): vod_exeption(msg){}// Paket_queue exeptionpaket_queue_exeption::paket_queue_exeption(onst har* msg): vod_exeption(msg){}// Paket_queue exeptionstream_table_exeption::stream_table_exeption(onst har* msg): vod_exeption(msg){}// data bank exeptiondata_bank_exeption::data_bank_exeption(onst har* msg): vod_exeption(msg){}vod_server.h#ifndef VOD_SERVER#define VOD_SERVER#inlude "../inlude/define.h"#inlude "../inlude/types.h"#inlude "../inlude/enum.h"#inlude "../inlude/logi_server.h"#inlude "../inlude/logi_server_thread.h"#inlude "../inlude/paket_queue.h"#inlude "../inlude/transport_handler.h"#inlude "../inlude/transport_handler_thread.h"#inlude "../inlude/data_ontainer.h"#inlude "../inlude/request_queue.h"strut login_strut_req {long video_id;har user_name[32℄; 318

B. Protool soure �leshar password[32℄;long transation_id;};enum event_type {x,y};strut event_strut {event_type event;};lass vod_server {private:logi_params args1;reeive_params args2;logi_server* v_logi_server;transport_handler* v_transport_handler;paket_queue* v_paket_queue;DWORD v_logi_thread_id;HANDLE v_logi_thread;DWORD v_reeive_thread_id;HANDLE v_reeive_thread;int v_data_port;int v_ontrol_port;request_queue* v_request_queue;publi:vod_server(int data_port, int ontrol_port);int open();int lose();void poll(int& video_data,int& video_data_hp,int& se_data,int& se_data_hp,int& login_req,int& events);int get_data_req(strut data_strut_req& data,data_type type);int get_login_req(strut login_strut_req& user);int get_event(strut event_strut& event);int get_video_info_req(unsigned long& video_id);int deliver_data(data_lass* data, data_type type);319

B. Protool soure �les};#endifvod_server.pp#inlude "stdafx.h"//**// Construtor//**vod_server::vod_server(int data_port, int ontrol_port){ v_data_port = data_port;v_ontrol_port = ontrol_port;}//**// Open onnetion and start listening for inoming lients//**int vod_server::open(){ // Create objetsv_paket_queue = new paket_queue(_paket_queue_size_server);v_transport_handler = new transport_handler(v_data_port, v_ontrol_port);v_transport_handler->initialize();v_logi_server = new logi_server(v_transport_handler);// Create thread logiargs1.v_paket_queue = v_paket_queue;args1.v_logi_server = v_logi_server;v_logi_thread = CreateThread(NULL,0,(LPTHREAD_START_ROUTINE) logi_thread,(void*) &args1,0,&v_logi_thread_id);// Create thread transport_handlerargs2.v_paket_queue = v_paket_queue;args2.v_transport_handler = v_transport_handler;v_reeive_thread = CreateThread(NULL,0,(LPTHREAD_START_ROUTINE) reeive_thread,(void*) &args2,0,&v_reeive_thread_id);return 0;}//**// Close server. Terminate all threads and lose all open// soket despriptors. 320

B. Protool soure �les//**int vod_server::lose(){ // Logi - inluding stream engineTerminateThread(v_logi_thread, 0);delete v_reeive_thread;// Transport handler - inluding soketTerminateThread(v_reeive_thread, 0);delete v_transport_handler;// Additional objetsdelete v_paket_queue;delete v_request_queue;return 0;}//**// Poll all//**void vod_server::poll(int& movie_data,int& movie_data_hp,int& se_data,int& se_data_hp,int& login_req,int& events){ movie_data = v_request_queue->ount_data_request();movie_data_hp = 0;se_data = 0;se_data_hp = 0;login_req = 0;events = 0;}//**// Get next data request//**int vod_server::get_data_req(strut data_strut_req& data,data_type type){ return v_logi_server->get_data_req(data, type);}//**// Get next login request// Not implemented in this version.//**int vod_server::get_login_req(strut login_strut_req& user){ return 0;}//**// Get next event// Not implemented in this version. 321

B. Protool soure �les//**int vod_server::get_event(strut event_strut& event){ return 0;}//**// Get next movie info request// Not implemented in this version.//**int vod_server::get_video_info_req(unsigned long& movie_id){ return 0;}//**// Deliver data//**int vod_server::deliver_data(data_lass* data, data_type type){ return v_logi_server->deliver_data(data, type);}

322

C
Appendix CClient appliation soure �les

VOD_Client.pp// VOD_Client.pp : main projet file.#inlude "stdafx.h"#inlude "Form1.h"using namespae VOD_Client;[STAThreadAttribute℄int main(array<System::String ^> ^args){// Enabling Windows XP visual effets before any ontrols are reatedAppliation::EnableVisualStyles();Appliation::SetCompatibleTextRenderingDefault(false);// Create the main window and run itAppliation::Run(gnew Form1());return 0;}Form1.h#pragma onenamespae VOD_Client {using namespae System;using namespae System::ComponentModel;using namespae System::Colletions;using namespae System::Windows::Forms;using namespae System::Data;using namespae System::Drawing;using namespae System::IO;using namespae System::Text;/// <summary>/// Summary for Form1/// 323

C. Client appliation soure �les/// WARNING: If you hange the name of this lass, you will need to hange the/// 'Resoure File Name' property for the managed resoure ompiler tool/// assoiated with all .resx files this lass depends on. Otherwise,/// the designers will not be able to interat properly with loalized/// resoures assoiated with this form./// </summary>publi ref lass Form1 : publi System::Windows::Forms::Form{publi:Form1(void){InitializeComponent();}proteted:/// <summary>/// Clean up any resoures being used./// </summary>~Form1(){if (omponents){delete omponents;}}private: System::Windows::Forms::Button^ button1;private: System::Windows::Forms::Button^ button2;private: System::Windows::Forms::Button^ button3;private: System::Windows::Forms::GroupBox^ groupBox1;private: System::Windows::Forms::GroupBox^ groupBox2;private: System::Windows::Forms::Label^ label1;private: System::Windows::Forms::TextBox^ textBox2;private: System::Windows::Forms::Label^ label2;private: System::Windows::Forms::TextBox^ textBox1;private: System::Windows::Forms::TextBox^ textBox4;private: System::Windows::Forms::Label^ label4;private: System::Windows::Forms::TextBox^ textBox3;private: System::Windows::Forms::Label^ label3;private: System::Windows::Forms::Label^ label6;private: System::Windows::Forms::TextBox^ textBox5;private: System::Windows::Forms::TextBox^ textBox6;private: System::Windows::Forms::Button^ button6;private: System::Windows::Forms::Button^ button5;private: System::Windows::Forms::Button^ button4;private: System::Windows::Forms::Label^ label10;private: System::Windows::Forms::TextBox^ textBox9;private: System::Windows::Forms::TextBox^ textBox8;private: System::Windows::Forms::TextBox^ textBox7;private: System::Windows::Forms::Label^ label9;private: System::Windows::Forms::Label^ label8;324

C. Client appliation soure �lesprivate: System::Windows::Forms::Label^ label7;private: System::Windows::Forms::Label^ label5;private: System::Windows::Forms::RihTextBox^ rihTextBox1;proteted:private:vod_lient* lient_protool;login_data* login;data_thread* dt;unsigned long skip_distane;private: AxQTOControlLib::AxQTControl^ axQTControl1;private: System::Windows::Forms::Timer^ timer1;private: System::ComponentModel::IContainer^ omponents;/// <summary>/// Required designer variable./// </summary>#pragma region Windows Form Designer generated ode/// <summary>/// Required method for Designer support - do not modify/// the ontents of this method with the ode editor./// </summary>void InitializeComponent(void){ this->omponents = (gnew System::ComponentModel::Container());System::ComponentModel::ComponentResoureManager^ resoures =(gnew System::ComponentModel::ComponentResoureManager(Form1::typeid));this->button1 = (gnew System::Windows::Forms::Button());this->button2 = (gnew System::Windows::Forms::Button());this->button3 = (gnew System::Windows::Forms::Button());this->groupBox1 = (gnew System::Windows::Forms::GroupBox());this->label6 = (gnew System::Windows::Forms::Label());this->textBox5 = (gnew System::Windows::Forms::TextBox());this->textBox4 = (gnew System::Windows::Forms::TextBox());this->label4 = (gnew System::Windows::Forms::Label());this->textBox3 = (gnew System::Windows::Forms::TextBox());this->label3 = (gnew System::Windows::Forms::Label());this->textBox2 = (gnew System::Windows::Forms::TextBox());this->label2 = (gnew System::Windows::Forms::Label());this->textBox1 = (gnew System::Windows::Forms::TextBox());this->label1 = (gnew System::Windows::Forms::Label());this->groupBox2 = (gnew System::Windows::Forms::GroupBox());this->label10 = (gnew System::Windows::Forms::Label());this->textBox9 = (gnew System::Windows::Forms::TextBox());this->textBox8 = (gnew System::Windows::Forms::TextBox());this->textBox7 = (gnew System::Windows::Forms::TextBox());this->label9 = (gnew System::Windows::Forms::Label());this->label8 = (gnew System::Windows::Forms::Label());this->label7 = (gnew System::Windows::Forms::Label());this->textBox6 = (gnew System::Windows::Forms::TextBox());this->button6 = (gnew System::Windows::Forms::Button());this->button5 = (gnew System::Windows::Forms::Button());this->button4 = (gnew System::Windows::Forms::Button());this->label5 = (gnew System::Windows::Forms::Label());325

C. Client appliation soure �lesthis->rihTextBox1 = (gnew System::Windows::Forms::RihTextBox());this->axQTControl1 = (gnew AxQTOControlLib::AxQTControl());this->timer1 = (gnew System::Windows::Forms::Timer(this->omponents));this->groupBox1->SuspendLayout();this->groupBox2->SuspendLayout();(li::safe_ast<System::ComponentModel::ISupportInitialize^ >(this->axQTControl1))->BeginInit();this->SuspendLayout();//// button1//this->button1->Loation = System::Drawing::Point(6, 20);this->button1->Name = L"button1";this->button1->Size = System::Drawing::Size(75, 23);this->button1->TabIndex = 1;this->button1->Text = L"Play";this->button1->UseVisualStyleBakColor = true;this->button1->Clik += gnew System::EventHandler(this, &Form1::button1_Clik);//// button2//this->button2->Enabled = false;this->button2->Loation = System::Drawing::Point(6, 49);this->button2->Name = L"button2";this->button2->Size = System::Drawing::Size(75, 23);this->button2->TabIndex = 2;this->button2->Text = L"Pause";this->button2->UseVisualStyleBakColor = true;this->button2->Clik += gnew System::EventHandler(this, &Form1::button2_Clik);//// button3//this->button3->Loation = System::Drawing::Point(96, 149);this->button3->Name = L"button3";this->button3->Size = System::Drawing::Size(75, 23);this->button3->TabIndex = 3;this->button3->Text = L"Connet";this->button3->UseVisualStyleBakColor = true;this->button3->Clik += gnew System::EventHandler(this, &Form1::button3_Clik);//// groupBox1//this->groupBox1->Controls->Add(this->label6);this->groupBox1->Controls->Add(this->textBox5);this->groupBox1->Controls->Add(this->button3);this->groupBox1->Controls->Add(this->textBox4);this->groupBox1->Controls->Add(this->label4);this->groupBox1->Controls->Add(this->textBox3);this->groupBox1->Controls->Add(this->label3);this->groupBox1->Controls->Add(this->textBox2);this->groupBox1->Controls->Add(this->label2);this->groupBox1->Controls->Add(this->textBox1);this->groupBox1->Controls->Add(this->label1);this->groupBox1->Loation = System::Drawing::Point(509, 12);this->groupBox1->Name = L"groupBox1";this->groupBox1->Size = System::Drawing::Size(182, 190);this->groupBox1->TabIndex = 4; 326

C. Client appliation soure �lesthis->groupBox1->TabStop = false;this->groupBox1->Text = L"Settings";//// label6//this->label6->AutoSize = true;this->label6->Loation = System::Drawing::Point(6, 154);this->label6->Name = L"label6";this->label6->Size = System::Drawing::Size(53, 13);this->label6->TabIndex = 11;this->label6->Text = L"Movie ID:";//// textBox5//this->textBox5->Loation = System::Drawing::Point(65, 151);this->textBox5->Name = L"textBox5";this->textBox5->Size = System::Drawing::Size(25, 20);this->textBox5->TabIndex = 10;this->textBox5->Text = L"1";this->textBox5->TextAlign = System::Windows::Forms::HorizontalAlignment::Right;//// textBox4//this->textBox4->Loation = System::Drawing::Point(96, 72);this->textBox4->Name = L"textBox4";this->textBox4->Size = System::Drawing::Size(80, 20);this->textBox4->TabIndex = 7;this->textBox4->Text = L"10000";this->textBox4->TextAlign = System::Windows::Forms::HorizontalAlignment::Right;//// label4//this->label4->AutoSize = true;this->label4->Loation = System::Drawing::Point(6, 75);this->label4->Name = L"label4";this->label4->Size = System::Drawing::Size(82, 13);this->label4->TabIndex = 6;this->label4->Text = L"Client TCP Port:";//// textBox3//this->textBox3->Loation = System::Drawing::Point(96, 97);this->textBox3->Name = L"textBox3";this->textBox3->Size = System::Drawing::Size(80, 20);this->textBox3->TabIndex = 5;this->textBox3->Text = L"11000";this->textBox3->TextAlign = System::Windows::Forms::HorizontalAlignment::Right;//// label3//this->label3->AutoSize = true;this->label3->Loation = System::Drawing::Point(6, 100);this->label3->Name = L"label3";this->label3->Size = System::Drawing::Size(84, 13);this->label3->TabIndex = 4;this->label3->Text = L"Client UDP Port:";// 327

C. Client appliation soure �les// textBox2//this->textBox2->Loation = System::Drawing::Point(96, 46);this->textBox2->Name = L"textBox2";this->textBox2->Size = System::Drawing::Size(80, 20);this->textBox2->TabIndex = 3;this->textBox2->Text = L"20000";this->textBox2->TextAlign = System::Windows::Forms::HorizontalAlignment::Right;//// label2//this->label2->AutoSize = true;this->label2->Loation = System::Drawing::Point(6, 49);this->label2->Name = L"label2";this->label2->Size = System::Drawing::Size(63, 13);this->label2->TabIndex = 2;this->label2->Text = L"Server Port:";//// textBox1//this->textBox1->Loation = System::Drawing::Point(76, 20);this->textBox1->Name = L"textBox1";this->textBox1->Size = System::Drawing::Size(100, 20);this->textBox1->TabIndex = 1;this->textBox1->Text = L"192.168.15.145";this->textBox1->TextChanged += gnew System::EventHandler(this, &Form1::textBox1_TextChanged);//// label1//this->label1->AutoSize = true;this->label1->Loation = System::Drawing::Point(6, 23);this->label1->Name = L"label1";this->label1->Size = System::Drawing::Size(54, 13);this->label1->TabIndex = 0;this->label1->Text = L"Server IP:";//// groupBox2//this->groupBox2->Controls->Add(this->label10);this->groupBox2->Controls->Add(this->textBox9);this->groupBox2->Controls->Add(this->textBox8);this->groupBox2->Controls->Add(this->textBox7);this->groupBox2->Controls->Add(this->label9);this->groupBox2->Controls->Add(this->label8);this->groupBox2->Controls->Add(this->label7);this->groupBox2->Controls->Add(this->textBox6);this->groupBox2->Controls->Add(this->button6);this->groupBox2->Controls->Add(this->button5);this->groupBox2->Controls->Add(this->button4);this->groupBox2->Controls->Add(this->button2);this->groupBox2->Controls->Add(this->button1);this->groupBox2->Enabled = false;this->groupBox2->Loation = System::Drawing::Point(12, 351);this->groupBox2->Name = L"groupBox2";this->groupBox2->Size = System::Drawing::Size(491, 80);this->groupBox2->TabIndex = 5; 328

C. Client appliation soure �lesthis->groupBox2->TabStop = false;this->groupBox2->Text = L"Control";//// label10//this->label10->AutoSize = true;this->label10->Loation = System::Drawing::Point(351, 25);this->label10->Name = L"label10";this->label10->Size = System::Drawing::Size(71, 13);this->label10->TabIndex = 13;this->label10->Text = L"Remain. time:";//// textBox9//this->textBox9->Loation = System::Drawing::Point(426, 22);this->textBox9->Name = L"textBox9";this->textBox9->ReadOnly = true;this->textBox9->Size = System::Drawing::Size(59, 20);this->textBox9->TabIndex = 12;this->textBox9->TextAlign = System::Windows::Forms::HorizontalAlignment::Right;//// textBox8//this->textBox8->Loation = System::Drawing::Point(149, 22);this->textBox8->Name = L"textBox8";this->textBox8->ReadOnly = true;this->textBox8->Size = System::Drawing::Size(59, 20);this->textBox8->TabIndex = 11;this->textBox8->TextAlign = System::Windows::Forms::HorizontalAlignment::Right;//// textBox7//this->textBox7->Loation = System::Drawing::Point(286, 22);this->textBox7->Name = L"textBox7";this->textBox7->ReadOnly = true;this->textBox7->Size = System::Drawing::Size(59, 20);this->textBox7->TabIndex = 10;this->textBox7->TextAlign = System::Windows::Forms::HorizontalAlignment::Right;//// label9//this->label9->AutoSize = true;this->label9->Loation = System::Drawing::Point(214, 25);this->label9->Name = L"label9";this->label9->Size = System::Drawing::Size(66, 13);this->label9->TabIndex = 9;this->label9->Text = L"Current time:";//// label8//this->label8->AutoSize = true;this->label8->Loation = System::Drawing::Point(354, 25);this->label8->Name = L"label8";this->label8->Size = System::Drawing::Size(0, 13);this->label8->TabIndex = 8;//// label7 329

C. Client appliation soure �les//this->label7->AutoSize = true;this->label7->Loation = System::Drawing::Point(87, 25);this->label7->Name = L"label7";this->label7->Size = System::Drawing::Size(56, 13);this->label7->TabIndex = 7;this->label7->Text = L"Total time:";//// textBox6//this->textBox6->Loation = System::Drawing::Point(243, 52);this->textBox6->Name = L"textBox6";this->textBox6->Size = System::Drawing::Size(24, 20);this->textBox6->TabIndex = 6;this->textBox6->Text = L"1";this->textBox6->TextAlign = System::Windows::Forms::HorizontalAlignment::Center;//// button6//this->button6->Loation = System::Drawing::Point(410, 49);this->button6->Name = L"button6";this->button6->Size = System::Drawing::Size(75, 23);this->button6->TabIndex = 5;this->button6->Text = L"Stop";this->button6->UseVisualStyleBakColor = true;this->button6->Clik += gnew System::EventHandler(this, &Form1::button6_Clik);//// button5//this->button5->Loation = System::Drawing::Point(273, 49);this->button5->Name = L"button5";this->button5->Size = System::Drawing::Size(75, 23);this->button5->TabIndex = 4;this->button5->Text = L"Skip >>";this->button5->UseVisualStyleBakColor = true;this->button5->Clik += gnew System::EventHandler(this, &Form1::button5_Clik);//// button4//this->button4->Enabled = false;this->button4->Loation = System::Drawing::Point(162, 49);this->button4->Name = L"button4";this->button4->Size = System::Drawing::Size(75, 23);this->button4->TabIndex = 3;this->button4->Text = L"<< Skip";this->button4->UseVisualStyleBakColor = true;this->button4->Clik += gnew System::EventHandler(this, &Form1::button4_Clik);//// label5//this->label5->AutoSize = true;this->label5->Loation = System::Drawing::Point(516, 212);this->label5->Name = L"label5";this->label5->Size = System::Drawing::Size(62, 13);this->label5->TabIndex = 11;this->label5->Text = L"Information:";// 330

C. Client appliation soure �les// rihTextBox1//this->rihTextBox1->Loation = System::Drawing::Point(517, 230);this->rihTextBox1->Name = L"rihTextBox1";this->rihTextBox1->Size = System::Drawing::Size(163, 193);this->rihTextBox1->TabIndex = 10;this->rihTextBox1->Text = L"";//// axQTControl1//this->axQTControl1->Enabled = true;this->axQTControl1->Loation = System::Drawing::Point(11, 13);this->axQTControl1->Name = L"axQTControl1";this->axQTControl1->OxState = (li::safe_ast<System::Windows::Forms::AxHost::State^>(resoures->GetObjet(L"axQTControl1.OxState")));this->axQTControl1->Size = System::Drawing::Size(491, 338);this->axQTControl1->TabIndex = 12;//// timer1//this->timer1->Tik += gnew System::EventHandler(this, &Form1::timer1_Tik);//// Form1//this->AutoSaleDimensions = System::Drawing::SizeF(6, 13);this->AutoSaleMode = System::Windows::Forms::AutoSaleMode::Font;this->ClientSize = System::Drawing::Size(701, 443);this->Controls->Add(this->axQTControl1);this->Controls->Add(this->label5);this->Controls->Add(this->rihTextBox1);this->Controls->Add(this->groupBox2);this->Controls->Add(this->groupBox1);this->Name = L"Form1";this->Text = L"Client";this->groupBox1->ResumeLayout(false);this->groupBox1->PerformLayout();this->groupBox2->ResumeLayout(false);this->groupBox2->PerformLayout();(li::safe_ast<System::ComponentModel::ISupportInitialize^ >(this->axQTControl1))->EndInit();this->ResumeLayout(false);this->PerformLayout();}#pragma endregionprivate: System::Void button3_Clik(System::Objet^ sender, System::EventArgs^ e){ lient_addr ;.dp_port = Convert::ToInt32(textBox3->Text);.p_port = Convert::ToInt32(textBox4->Text);lient_protool = new vod_lient(1000, &);server_addr s;s.port = Convert::ToInt32(textBox2->Text);331

C. Client appliation soure �lespin_ptr<onst whar_t> wh = PtrToStringChars(textBox1->Text);size_t sizeInBytes = ((textBox1->Text->Length + 1) * 2);har *h = (har *)mallo(sizeInBytes);size_t onvertedChars = 0;wstombs_s(&onvertedChars,h, sizeInBytes,wh, sizeInBytes);s.ip_address = h;login = new strut login_data;lient_protool->onnet(Convert::ToInt32(textBox5->Text), &s, login);dt = new data_thread(lient_protool, login->video_size);groupBox1->Enabled = false;groupBox2->Enabled = true;};private: System::Void button2_Clik(System::Objet^ sender, System::EventArgs^ e){ axQTControl1->Movie->Pause();};private: System::Void button1_Clik(System::Objet^ sender, System::EventArgs^ e){ if(axQTControl1->URL == "") {System::Diagnostis::Proess^ p = System::Diagnostis::Proess::GetCurrentProess();System::String^ filname = ":\\video" + System::Convert::ToString(p->Id) + ".mov";axQTControl1->URL = filname;axQTControl1->Movie->TimeSale = 1000;textBox8->Text = Convert::ToString(axQTControl1->Movie->Duration);skip_distane = login->skip_distane;}axQTControl1->Movie->Play(1);timer1->Enabled = true;};private: System::Void button4_Clik(System::Objet^ sender, System::EventArgs^ e){};private: System::Void button6_Clik(System::Objet^ sender, System::EventArgs^ e){ timer1->Enabled = false;axQTControl1->Movie->Stop();axQTControl1->URL = "";delete dt;lient_protool->disonnet();delete lient_protool;groupBox1->Enabled = true;groupBox2->Enabled = false; 332

C. Client appliation soure �lesSystem::Diagnostis::Proess^ p = System::Diagnostis::Proess::GetCurrentProess();System::String^ path = ":\\video" + System::Convert::ToString(p->Id) + ".mov";//System::IO::File::Delete(path);};private: System::Void button5_Clik(System::Objet^ sender, System::EventArgs^ e){ int skip_bb = Convert::ToInt32(textBox6->Text);lient_protool->skip(skip_bb);timer1->Enabled = false;axQTControl1->Movie->Pause();axQTControl1->Movie->Time = skip_bb * skip_distane;};private: System::Void timer1_Tik(System::Objet^ sender, System::EventArgs^ e){ textBox7->Text = Convert::ToString(axQTControl1->Movie->Time);textBox9->Text = Convert::ToString((axQTControl1->Movie->Duration) -(axQTControl1->Movie->Time));textBox7->Refresh();textBox9->Refresh();}publi: System::Void TriggerPlay(){ axQTControl1->Movie->Pause();}private: System::Void textBox1_TextChanged(System::Objet^ sender, System::EventArgs^ e) {}};}data_thread.h#ifndef DATA_THREAD#define DATA_THREAD//#inlude <iostream>//#inlude <fstream>lass data_thread {private:DWORD thread_id;HANDLE thread;vod_lient* v_lient;unsigned int v_movie_size;publi:data_thread(vod_lient* lient, unsigned int movie_size);333

C. Client appliation soure �les~data_thread();};#endifdata_thread.pp#inlude "stdafx.h"#inlude "data_thread.h"void data_retrive(void* args){ vod_lient* v = (vod_lient*)args;System::Diagnostis::Proess^ p = System::Diagnostis::Proess::GetCurrentProess();System::String^ filname = ":\\video" + System::Convert::ToString(p->Id) + ".mov";System::IO::FileStream^ fs = System::IO::File::Open(filname,System::IO::FileMode::Open,System::IO::FileAess::Write,System::IO::FileShare::ReadWrite);void* buffer = mallo(2000000);unsigned long offset;for(;;) {// Reeive dataoffset = 0;size_t len = v->rev_data(buffer, 2000000, offset);// Write data to filefs->Position = offset;for(int i = 0; i < len; i++)fs->WriteByte(((har*)buffer)[i℄);fs->Flush();System::Diagnostis::Debug::WriteLine("Writing data to lient, length: " +len + " - offset: " + offset);}return;}data_thread::data_thread(vod_lient* lient, unsigned int movie_size){ System::Diagnostis::Proess^ p = System::Diagnostis::Proess::GetCurrentProess();System::String^ path = ":\\video" + System::Convert::ToString(p->Id) + ".mov";System::IO::FileStream^ fsa = System::IO::File::Create(path);fsa->SetLength(movie_size);fsa->Close();thread = CreateThread(NULL, 334

C. Client appliation soure �les0,(LPTHREAD_START_ROUTINE) data_retrive,(void*) lient,0,&thread_id);}data_thread::~data_thread(){ //fs->Flush();//fs->Close();TerminateThread(thread, 0);}

335

C. Client appliation soure �les

336

D
Appendix DServer appliation soure �les

VOD_Server.pp// VOD_Server.pp : main projet file.#inlude "stdafx.h"#inlude "Form1.h"using namespae VOD_Server;[STAThreadAttribute℄int main(array<System::String ^> ^args){// Enabling Windows XP visual effets before any ontrols are reatedAppliation::EnableVisualStyles();Appliation::SetCompatibleTextRenderingDefault(false);// Create the main window and run itAppliation::Run(gnew Form1());return 0;}
Form1.h#pragma onenamespae VOD_Server {using namespae System;using namespae System::ComponentModel;using namespae System::Colletions;using namespae System::Windows::Forms;using namespae System::Data;using namespae System::Drawing;using namespae System::Threading;using namespae System::IO;/// <summary>/// Summary for Form1 337

D. Server appliation soure �les////// WARNING: If you hange the name of this lass, you will need to hange the/// 'Resoure File Name' property for the managed resoure ompiler tool/// assoiated with all .resx files this lass depends on. Otherwise,/// the designers will not be able to interat properly with loalized/// resoures assoiated with this form./// </summary>publi ref lass Form1 : publi System::Windows::Forms::Form{ private:vod_server* my_server;private: System::Windows::Forms::Label^ label1;private: System::Windows::Forms::Label^ label2;private: System::Windows::Forms::TextBox^ tbxLoalCCPport;private: System::Windows::Forms::TextBox^ tbxLoalDCPport;data_thread* dt;publi:Form1(void){InitializeComponent();////TODO: Add the onstrutor ode here//}proteted:/// <summary>/// Clean up any resoures being used./// </summary>~Form1(){if (omponents){delete omponents;}}private: System::Windows::Forms::Button^ button1;private: System::Windows::Forms::Button^ button2;proteted:private:/// <summary>/// Required designer variable./// </summary>System::ComponentModel::Container ^omponents;#pragma region Windows Form Designer generated ode/// <summary>/// Required method for Designer support - do not modify/// the ontents of this method with the ode editor./// </summary>void InitializeComponent(void){ this->button1 = (gnew System::Windows::Forms::Button());338

D. Server appliation soure �lesthis->button2 = (gnew System::Windows::Forms::Button());this->label1 = (gnew System::Windows::Forms::Label());this->label2 = (gnew System::Windows::Forms::Label());this->tbxLoalCCPport = (gnew System::Windows::Forms::TextBox());this->tbxLoalDCPport = (gnew System::Windows::Forms::TextBox());this->SuspendLayout();//// button1//this->button1->Loation = System::Drawing::Point(123, 114);this->button1->Name = L"button1";this->button1->Size = System::Drawing::Size(75, 23);this->button1->TabIndex = 0;this->button1->Text = L"Start";this->button1->UseVisualStyleBakColor = true;this->button1->Clik += gnew System::EventHandler(this, &Form1::button1_Clik);//// button2//this->button2->Enabled = false;this->button2->Loation = System::Drawing::Point(15, 114);this->button2->Name = L"button2";this->button2->Size = System::Drawing::Size(75, 23);this->button2->TabIndex = 1;this->button2->Text = L"Stop";this->button2->UseVisualStyleBakColor = true;this->button2->Clik += gnew System::EventHandler(this, &Form1::button2_Clik);//// label1//this->label1->AutoSize = true;this->label1->Loation = System::Drawing::Point(12, 19);this->label1->Name = L"label1";this->label1->Size = System::Drawing::Size(78, 13);this->label1->TabIndex = 2;this->label1->Text = L"Loal CCP port";//// label2//this->label2->AutoSize = true;this->label2->Loation = System::Drawing::Point(12, 59);this->label2->Name = L"label2";this->label2->Size = System::Drawing::Size(76, 13);this->label2->TabIndex = 3;this->label2->Text = L"LoalDCP port";//// tbxLoalCCPport//this->tbxLoalCCPport->Loation = System::Drawing::Point(109, 16);this->tbxLoalCCPport->Name = L"tbxLoalCCPport";this->tbxLoalCCPport->Size = System::Drawing::Size(100, 20);this->tbxLoalCCPport->TabIndex = 4;this->tbxLoalCCPport->Text = L"20000";//// tbxLoalDCPport//this->tbxLoalDCPport->Loation = System::Drawing::Point(109, 56);339

D. Server appliation soure �lesthis->tbxLoalDCPport->Name = L"tbxLoalDCPport";this->tbxLoalDCPport->Size = System::Drawing::Size(100, 20);this->tbxLoalDCPport->TabIndex = 5;this->tbxLoalDCPport->Text = L"21000";//// Form1//this->AutoSaleDimensions = System::Drawing::SizeF(6, 13);this->AutoSaleMode = System::Windows::Forms::AutoSaleMode::Font;this->ClientSize = System::Drawing::Size(267, 170);this->Controls->Add(this->tbxLoalDCPport);this->Controls->Add(this->tbxLoalCCPport);this->Controls->Add(this->label2);this->Controls->Add(this->label1);this->Controls->Add(this->button2);this->Controls->Add(this->button1);this->Name = L"Form1";this->Text = L"Server";this->ResumeLayout(false);this->PerformLayout();}#pragma endregionprivate: System::Void button1_Clik(System::Objet^ sender, System::EventArgs^ e) {button1->Enabled = false;int loalDCPport = Convert::ToInt32(tbxLoalDCPport->Text);int loalCCPport = Convert::ToInt32(tbxLoalCCPport->Text);my_server = new vod_server(loalDCPport, loalCCPport);my_server->open();//dt = new data_thread(my_server);button2->Enabled = true;}private: System::Void button2_Clik(System::Objet^ sender, System::EventArgs^ e) {button2->Enabled = false;my_server->lose();delete my_server;button1->Enabled = true;}};}
340

E
Appendix ESreendump of appliations

341

	Introduction
	Motivation
	Objectives
	Report layout

	Requirements and ideas
	Fundamental requirements
	Server bandwidth usage
	Efficient scalability
	Traffic shaping
	Design and implementation
	End-user functionality
	System security
	Quality of stream

	Fundamental ideas
	Server bandwidth usage
	Efficient scalability
	Traffic shaping
	Design and implementation
	End-user functionality
	System security
	Quality of stream

	Related theory
	Synthesis
	Multimedia coding
	Video codec
	Requirements
	Standards
	MPEG-2
	Existing software
	Video samples
	Conclusions

	Structure of the Internet
	The elements of the Internet
	Connection capacity
	Connection stability
	Routing
	The Internet of 2006
	Network byte-order

	Logical network topology
	Topological models
	Client-server relationship
	Sources of inspiration

	Network protocol design
	OSI model
	TCP/IP protocol stack
	Connection-oriented versus connectionless transport
	Network Address Translation (NAT)
	Real-time Transport Protocol (RTP)

	Protocol implementation
	Network layers and interfaces
	Multithreading

	Buffering of data
	Buffering approach
	Physical memory layout
	Buffering of data

	Security
	Authorization
	Data integrity
	Data theft

	Protocol design
	Fundamentals
	System control
	Data transport
	Logical topology
	Video identification
	Security
	Protocol architecture

	Protocol state
	Server state
	Client states

	Mechanisms
	Fragmentation of data
	Client buffering of data
	Bandwidth
	Calculation of round-trip time
	Error detection
	Selection mechanism

	Underlying protocol usage
	Protocol phases
	Packet description
	Packet types and flows
	Connection
	Configuration
	Streaming
	Interaction
	Status
	Round-trip time calculation
	Security

	Timers
	Interface

	Protocol implementation
	Fundamentals
	Main components
	Memory management
	Thread design

	Class design
	Packets
	Transport handler
	Incoming packet queue
	Data bank
	Stream engine
	Data container
	Application task queue
	Client-side logic
	Server-side logic

	Selection algorithm
	Finding the most anti-social client
	Block distribution mechanism

	Threading
	Receiving packages
	Incoming packet processing
	Buffer and cache
	Stream engine
	Status thread
	Application threads
	Summarizing

	Interface
	Server interface
	Client interface

	Our implementation
	Limitations

	Verification
	Verification of the implementation
	Test scenarios
	The test result

	Discussion of the performance
	Parameters
	Boundaries of the performance

	Closure
	Perspectives
	Conclusion

	Glossary
	Bibliography
	Packet table
	Protocol source files
	Client application source files
	Server application source files
	Screendump of applications

