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Abstract

Algorithms that use multi-layered memory hierarchies efficiently have tra-
ditionally relied on detailed knowledge of the characteristics of memory
systems. The cache-oblivious approach changed this in 1999 by making
it possible to design memory-efficient algorithms for hierarchical memory
systems without such detailed knowledge. As a consequence, one single
implementation of a cache-oblivious algorithm is efficient on any memory
hierarchy. The purpose of the thesis is to investigate the behavior of cache-
oblivious searching and sorting algorithms through constant-factors analysis
and benchmarking.

Cache-oblivious algorithms are analyzed in the ideal-cache model, which
is an abstraction of real memory systems. We investigate the assumptions
of the model in order to determine the accuracy of cache-complexity bounds
derived by use of the model.

We derive the constant factors of the cache complexities of cache-oblivious,
cache-aware, and traditional searching and sorting algorithms in the ideal-
cache model. The constant factors of the work complexities of the algorithms
are derived in the pure-C cost model. The analyses are verified through
benchmarking of implementations of all algorithms.

For the searching algorithms, our constant-factors analysis predicts the
benchmark results quite precisely — considering both memory performance
and work complexity. For the more complex sorting algorithms our results
show the same pattern, though the similarities between predicted and mea-
sured performance are not as significant.

Furthermore, we develop a new algorithm that lays out a cache-oblivious
static search tree in memory in linear time, which is an improvement of the
algorithms known so far.

We conclude that by combining the ideal-cache model and the pure-C
model, the relative performance of programs can be predicted quite precisely,
provided that the analysis is carefully done.





Preface

This thesis is submitted as partial fulfillment of the Danish Kandidatgrad
i Datalogi (condidatus scientiarium in Computer Science) at the Univer-
sity of Copenhagen. The thesis was written under the supervision of Jyrki
Katajainen. It is expected that the reader has an understanding of com-
puter science corresponding to that of a graduate level student. No prior
knowledge of analyzing I/O or cache complexity is expected.

Overview of the Thesis

The topic of this thesis is cache-oblivious searching and sorting. Our main
goal is to investigate whether it is possible to predict the behavior of these
algorithms by use of constant-factors analysis of the work and cache com-
plexities of these algorithms.

We analyze cache-oblivious, cache-aware, and traditional searching and
sorting algorithms in detail and verify the validity of these theoretical results
by benchmarking implementations of all algorithms of concern. The thesis
is organized as follows:

� In Chapter 1 we explain why it is of importance to take the memory
system into account when designing algorithms. We briefly introduce
the notion of cache-obliviousness and takes a tour of the practical
work done so far on cache-oblivious algorithms. Based on this tour we
explain why it is interesting to analyze the constant factors of these
algorithms.

� Knowing contemporary memory systems and the current trends in
their design is important for understanding the cache-oblivious ap-
proach and the ideal-cache model in which cache-oblivious algorithms
are analyzed and designed. In Chapter 2 we review the aspects of
modern memory systems that are the most important in relation to
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cache-oblivious algorithms. Furthermore, the impact of memory la-
tency on algorithm design is illustrated by use of a simple example.

� In Chapter 3 we present the ideal-cache model and carefully investi-
gate the ways in which the model differs from real memory systems.
This is important in order to understand how to interpret the constants
in cache complexity bounds derived in the model. Furthermore, the
chapter includes a description of the related external-memory model
as well as a description of the hierarchical-memory model. The latter
description is included to illustrate another way of modeling multi-
layered memory systems.

� In Chapter 4 we review two computational models, namely the MMIX-
model and the pure-C model. Both of these models can be used for
meticulous work complexity analysis of algorithms in general. Based
on this review we decide on the model to use for our analysis.

� With our apparatus of analysis presented, we turn to analyzing static
search trees in Chapter 5. We carefully analyze the cache-oblivious
static search tree as well as cache-aware and more traditional static
search tree variants. The analysis reveals the constant factors of both
the work and cache complexity of the various approaches.

The cache-oblivious search tree uses a special way of laying out data
in memory. We present a new algorithm for laying out data in this
way.

� The topic of Chapter 6 is the cache-oblivious sorting algorithm called
funnelsort. The algorithm is a variant of mergesort and uses a data
structure called a k-funnel to merge elements cache-obliviously. We
analyze the constant factors of the cache and work complexity of both
the k-funnel and funnelsort.

In addition, the chapter includes the cache-complexity analysis of an-
other mergesort variant which we compare to funnelsort.

� We present the results of our benchmarks in Chapter 7. We comment
on the experimental results and compare them to the analytically de-
rived complexity bounds of Chapter 5 and 6. The method used in the
performance investigation is described prior to the presentation of the
benchmark results.

� In Chapter 8 we summarize the experimental results and emphasize
the contribution of this thesis. We also give some directions of further
work.
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We have chosen only to include the most relevant source code and benchmark
results in the thesis. For the complete source code and benchmark results
we refer to the web-site:
http://www.diku.dk/forskning/performance-engineering/frederik/.
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c h a p t e r 1

Introduction

“Begin at the beginning,” the King said,
gravely, ”and go on till you come to the
end; then stop.”

— Lewis Carroll, Alice in Wonderland

When we analyze an algorithm our aim is to predict the resources that the
algorithm requires. Usually we are interested in the computational time of
the algorithm or the amount memory it uses. In other words, we analyze
the work complexity and the space complexity of an algorithm.

Algorithm analysis is usually a purely analytical task where we describe
the resource usage independent of specific computer architectures and mod-
els. Therefore, algorithms are analyzed in computational models, that is,
abstractions of how real computers work. It is important that these models
are both simple, so that the analysis task is relatively easy, and sufficiently
detailed, so that the reliability of the analysis is ensured.

When we consider the impact that the memory system of a computer
has on the running time of programs, it is most often the latency associated
with transporting data from and to the storage system, e.g. magnetic disks,
that is the main objective.

The interest in minimizing the amount of disk accesses is as important
as it is obvious. Accessing data on disk may take several milliseconds and
only a few hundred megabytes of data can be transferred from disk to main
memory per second. In comparison, the access time of main memory is 80 –
250 nanoseconds and data can be transferred at a speed of several gigabytes
per second [21].

However, in spite of the fact that main memory is faster than disks,
main memory accesses are becoming increasingly more influential on the
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running time of programs. For the past many years the annual increase in
CPU speed has followed Moore’s Law [21], which states that the number of
transistors that can be contained on a single chip increases by 55% every
year. The annual performance improvement in DRAM1 latency, is only
about 7%. As shown in Figure 1.1 this CPU-DRAM performance gap has
widened continuously since 19802.
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Figure 1.1: The CPU-DRAM performance gap since 1980 with the perfor-
mance of 1980 as baseline. The improvement in CPU performance was 35%
per year before 1986 and 55% thereafter. The annual performance improve-
ment of DRAM latency has been 7%.

Figure 1.1 simplifies the actual situation, since it reveals only one as-
pect of the performance gap, namely sheer speed. A more realistic picture
involves details of the memory hierarchy and instruction execution as well
as more general knowledge of operating systems. At the software level, the
technique of context switching found in multitasking operating systems pro-
vides an example of such a detail. These operating systems decrease the
impact memory stalls have on instruction throughput by letting the CPU
work on process B while process A waits for the memory system. This
clearly optimizes the overall performance of the system, but looking at pro-
cess A in isolation, the technique of context switching actually increases the

1DRAM or dynamic random access memory is the technology of choice for main me-
mory.

2The figure is a reproduction of Figure 5.2 in [21] and used with permission from
Elsevier Science.
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running time of that process. Another factor is the ability of some CPUs
to recognize and reorganize independent instructions to minimize idle time,
while waiting for the memory system.

Due to factors such as these, it is hard to determine whether the perfor-
mance gap in practice increases as rapidly as depicted by Figure 1.1. It is a
difficult task to take into account every aspect of the gap in order to make
the analysis precise.

What is worth noting is that the performance gap exists and memory
latency therefore is an important factor when analyzing the running time of
programs.

As mentioned earlier, computational models are used when analyzing
algorithms. The most commonly used model is the random-access machine
model (RAM-model) [16] — a model of computer machine languages. The
RAM-model assumes a flat random-access memory of unlimited size and
a uniform access cost to all memory locations. This way of modeling the
memory system makes the model unable to capture the increasing impact
that memory systems have on the behavior of computer programs.

For more precise predictions of running times, we need computational
models that resemble contemporary memory systems more closely. Unfor-
tunately, since modern memory systems are complex, so are the models that
represent them. Until recently, models of the memory system have relied on
quite detailed knowledge of memory system characteristics, such as memory
access times and the sizes of the different memory layers, in order to make
good predictions of running time. Therefore, analyzing algorithms in these
models have not been as straight-forward as one could have hoped.

1.1 Cache-Oblivious Algorithms

Taking account of memory latency when designing and analyzing algorithms
is not a new idea. As mentioned, focus has earlier mainly been on the rather
heavy latencies associated with reading data from and writing data to disks
and tapes, but in 1987 Aggarwal et al. [1] presented the hierarchical memory
model. The hierarchical memory model can be used to analyze algorithms
in memory hierarchies of multiple layers, but the accuracy of the model’s
predictions depends on detailed knowledge of the hierarchy itself. In other
words, an algorithm that is designed in this model is locked to the specific
memory hierarchy in which it was originally designed.

In 1999 Frigo et al. [19] presented a new model of the memory system, the
ideal-cache model. With this model it became possible to design and analyze
algorithms that used the memory system efficiently, but at the same time
were unaware of the characteristics of the memory system: The notion of
cache-oblivious algorithms was introduced3.

3The ideal-cache model and the notion of cache-obliviousness were first introduced by
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The number of cache misses that a cache-oblivious algorithm causes
in the ideal-cache model is defined by the algorithm’s cache complexity.
Frigo et al. showed that a cache-oblivious algorithm of asymptotically opti-
mal cache-complexity in the ideal-cache model exhibits asymptotically op-
timal cache-complexity in any modern memory system. This quality makes
cache-oblivious algorithms interesting, since one single implementation of
a cache-oblivious algorithm will immediately work well on all computers.
Furthermore, cache-oblivious algorithms are appealing since their machine
independency potentially make them more elegant than their cache-aware
counterparts.

1.2 Previous Work on Cache-Obliviousness

Practical work on cache-obliviousness so far has mainly focused on com-
paring the performance of cache-oblivious implementations to implementa-
tions of cache-aware and more traditional4 algorithms through benchmark-
ing. The limited work done so far indicates that cache-oblivious algorithms
can indeed compete with traditional algorithms that do not take the memory
hierarchy into account, but are inferior to cache-aware algorithms.

1.2.1 Cache-Obliviousness vs. Traditional Approaches

Frigo et al. showed that cache-oblivious matrix transposition executes in
70% less time than a traditional iterative approach and that cache-oblivious
matrix multiplication is almost twice as fast as a traditional implementation
involving 3 nested loops. Interestingly, despite the fact that the transpose
problem exhibits no temporal locality in its memory reference pattern, the
cache-oblivious approach pays off. Prokop [38] found that cache-oblivious
Jacobi multipass filters are almost twice as fast as a traditional implemen-
tation when the data does not fit in the level 2 cache.

Olsen & Skov [35] showed that two rather complex cache-oblivious pri-
ority queues, of optimal work and cache complexity [4, 13], are competitive
to traditional implementations only when the data size exceeds the size of
main memory. For small input sizes the workarounds to make the algo-
rithms cache-oblivious are too complex to make up for the gains due to the
better memory usage. Brodal et al. [15] noticed similar behavior with cache-
oblivious search trees. They implemented search trees of various memory
layouts and compared their performance. The cache-oblivious layout was

Harald Prokop in his Master’s Thesis in 1999 [38] and later the same year published with
co-authors Frigo, Leiserson and Ramachandran as an extended abstract [19]. Throughout
this thesis we will use the extended abstract of Frigo et al. as our primary source on
cache-obliviousness, though many of the same results are described in Prokop’s thesis.

4By categorizing algorithms as traditional we mean algorithms designed to work well
in the RAM model or similar models that do not take the memory hierarchy into account.
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best for all but small data sizes when compared to the traditional breath-
first and depth-first layouts.

1.2.2 Cache-Obliviousness vs. Cache-Awareness

Intuitively, cache-oblivious algorithms should not be able to run faster than
their cache-aware competitors, but, as Frigo et al. noted, a gap in asymp-
totic complexity between cache-aware and cache-oblivious algorithms has
not been proved. However, according to recent work of Brodal & Fagerberg
[14] optimal comparison-based sorting is not possible by the cache-oblivious
approach without the so-called tall-cache assumption5.

Benchmarks of both Olsen & Skov and Brodal et al. indicated that
the running times of cache-oblivious algorithms are comparable to those
of cache-aware counterparts.

1.2.3 Theoretical Results

In addition to the cache-oblivious algorithms that have been implemented
and benchmarked, a number of algorithms of optimal work and cache com-
plexity has been described and analyzed in the ideal-cache model. Among
the most interesting results are those of Frigo et al., who, besides the above-
mentioned matrix problems, present two sorting algorithms and an algo-
rithm for fast Fourier transformations. Bender et al. [7] introduced cache-
oblivious B-trees, and in a recent paper Arge et al. [4] present a number of
graph algorithms utilizing a cache-oblivious priority queue.

On the boundary between theoretical and practical studies on cache-
obliviousness is the work of Bender et al. [8]. They studied the behavior of
a cache-oblivious dynamic dictionary6 in a simulated memory hierarchy and
compared it to a standard B-tree. Their main objective was to understand
how the performance of the dictionary was affected by block size and memory
size. Their results indicate that the worst-case performance of the dictionary
is at least as good as the worst-case performance of the standard B-tree for
typical block and memory sizes.

1.2.4 Evaluating the Ideal Cache

In practice, only few efforts have been made to evaluate the practical rel-
evance of the assumptions of the ideal-cache model. Olsen & Skov [35]
investigated the ideal-cache model and made the effort of bridging the gap
between the model and actual memory systems of contemporary computers
by relating the assumptions of the model to the characteristics of real me-
mory systems. They argue that all the assumptions of the model are viable

5We will explain this assumption is Section 3.4.
6A simplified version of the cache-oblivious B-tree [7].
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abstractions — except for the assumption of full associativity, as the vast
majority of modern caches do not have this property.

1.3 Analyzing the Constant Factors

Based on the previous work on cache-obliviousness, there is a number of rea-
sons for investigating the constant factors of the work and cache complexity
bounds of cache-oblivious algorithms.

The experimental work on cache-oblivious priority queues of Olsen &
Skov indicated that the workarounds to make an algorithm oblivious of the
memory system may cause the work complexity of the algorithm to increase
by a constant factor. It is interesting to investigate whether this observation
holds for other algorithms as well.

Analyzing the constant factors of the work complexity by scrutinizing
cache-oblivious algorithms may also reveal ways of optimizing the algorithms
and making the cache-oblivious approach advantageous — even in the faster
memory layers.

For algorithms of similar asymptotic cache complexity it is interesting
to see if constant-factor analysis can predict their relative performance. By
combining analyses of work and cache complexities we may be able to predict
the behavior of algorithms more closely than by use of only a single metric.

Finally, to our knowledge, no one has earlier investigated the validity of
constant factors derived in the ideal-cache model. A fact that in itself makes
the topic interesting.
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Memory Systems and Latency

“Nothing is more responsible for the good
old days than a bad memory.”

— Franklin Pierce Adams

Cache-oblivious algorithms are analyzed in the ideal-cache model, and this
model is in fact an abstraction of real memory hierarchies. Understanding
modern memory systems is therefore essential for understanding the cache-
oblivious approach.

In Section 2.1 we explain those aspects of modern memory systems that
are the most important in relation to cache-oblivious algorithms. In Section
2.2 we investigate the concept of memory latency, and in Section 2.3 we
illustrate the impact of memory latency on algorithm design by use of an
example.

2.1 Important Aspects of the Memory Hierarchy

In this section we review the aspects of modern memory systems that are
important in the context of the cache-oblivious algorithms. The emphasis is
therefore not on describing the details of some vendor-specific system, but
rather on presenting the key ideas of some general and widely used concepts.
For a more complete presentation refer to [37].

A memory system contains both the data that a program manipulates
(i.e., input and output data) and the program code itself. In the context
of cache-oblivious algorithms our interest is not in knowing how memory
systems store program code. Therefore memory system concepts that are
only relevant in that respect are intentionally left out in this chapter.
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Modern memory systems are composed of multiple levels of memory
placed in a hierarchical structure. A typical memory hierarchy is shown in
Figure 2.1. A small but fast memory layer is placed closest to the CPU,
and one or more increasingly larger, but slower, memory layers are placed
further away from the CPU. Considering the registers as an integrated part
of the CPU, a typical hierarchy consists of one or more layers of memory
between the CPU and main memory and, as the largest layer, a disk. The
term cache is used to describe the memory layers between CPU and main
memory, so the hierarchy on Figure 2.1 has two cache layers and a disk, for
a total of four memory layers. The term cache is also used to describe the
role of the smaller of two consecutive memory layers, e.g., the main memory
acts as a cache for the disk. Unless otherwise noted, when we use the term
cache, it is used in the former meaning.

A distinction is made between the volatile part of the memory hierarchy
where data disappear when the power is turned off, i.e., the layers closer
to the CPU than the disk, and the non-volatile part where data remain
unchanged after a reboot, i.e., the disk. The volatile layers represent pri-
mary memory and the disk the secondary memory. Sometimes primary and
secondary memory are called internal and external memory, respectively.

Disk
Main
memory

Level 2
cachecache

Level 1CPU and
registers

...

...

...

...

Larger

Faster

Figure 2.1: The memory hierarchy consists of multiple memory layers of
increasing size and decreasing speed. A memory hierarchy may have more
levels of cache than depicted.

Ideally, the memory hierarchy adheres to the inclusion property, stating
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that a memory layer closer to the CPU contains a proper subset of the data
at any level further away. As such, if the layers are numbered in order of
increasing size, then layer i acts as a buffer for layer i+1. The layer furthest
away from the CPU contains all data. In Figure 2.2 the level 1 and 2 cache
characteristics of the Intel® Pentium® family are shown.

Computer Description
Intel Pentium 8 or 16 KB 2 or 4-way L1 cache, 32-byte cache lines

L2 cache is external to CPU and depends on
motherboard.

Intel Pentium 2 16 KB 4-way L1 cache, 32-byte cache lines.
256 or 512 KB 4-way L2 cache,
32-byte cache lines.

Intel Pentium 3 16 KB 4-way L1 cache, 32-byte cache lines.
256 or 512 KB 4 or 8-way L2 cache,
32-byte cache lines.

Intel Pentium 4 8 KB 4-way L1 cache, 64-byte cache lines.
128, 256, or 512 KB 2, 4, or 8-way L2 cache,
64-byte cache lines.

Figure 2.2: The cache characteristics of the Intel® Pentium® family. From
http://www.sandpile.org.

2.1.1 Principle of Locality of Reference

The memory hierarchy is based on two observations regarding the behavior
of computer programs. These observations make up the principle of locality
of reference:

Temporal locality is the observation that accessing the same memory lo-
cation is often done many times within a short interval of time. An
example is the counter in a for-loop, that is both read and written at
least once during each iteration. In other words the observation states
that, if a memory location has been accessed, then the probability that
it will be accessed again in near future is high.

Spatial locality is the observation that accessing memory locations close to
one that has recently been accessed are likely to occur. A common
programming construct that illustrates this observation is a for-loop
iterating through an array of elements.

These two principles are very important in relation to cache-oblivious al-
gorithms, since algorithms that are designed with these principles in mind
inherently behave memory efficiently.
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How the memory hierarchy ensures the principle of locality should be-
come apparent when we describe how and when data are transferred between
memory layers.

2.1.2 Moving and Addressing Data in the Hierarchy

The CPU can only access data residing in the closest memory layer, so
temporal locality is preserved by keeping data often accessed as close to the
CPU as possible.

In case the CPU requests data that are stored in the closest cache layer,
the CPU has immediate access to the data and a cache hit has occurred.
If the closest cache layer does not contain the requested data, then a cache
miss occurs. Then data have to be transferred from a memory layer further
away to the closest cache prior to being accessible by the CPU. In principle,
a request from the CPU can therefore cause misses in all but the layer
furthest away. Obviously, cache misses do not occur in the layer furthest
away because it contains all data.

At any layer of memory the contents are divided into consecutive se-
quential chunks. In the cache layers, these chunks are called blocks or cache
blocks and may vary in size among different cache layers. Most often a block
contains several words1.

In case of a cache miss spatial locality is preserved by moving data be-
tween layers in blocks. Hence, the block size at a given cache layer determines
the granularity of memory addressing at that particular layer. Memory ad-
dressing within the memory hierarchy is therefore different from that of the
CPU where memory is addressed in words.

As the memory layers are placed further away from the CPU they get
larger, and so does the chunks in which memory is addressed and transferred.
At the main memory layer the chunks are often several kilobytes and the
term pages is used instead of blocks. Consequently, failing to find data
in main memory causes a page fault instead of a cache miss. The page
containing the requested data is then copied from disk to main memory.

The capacity of a memory layer is determined by the number of blocks
or pages it can contain. Caches are divided into cache lines that can contain
one block each, so the capacity of a cache is calculated by simply multiplying
the block size and the number of cache lines. Main memory is divided into
frames that can contain one page each. The size of main memory is defined
by the number of pages it can contain.

Which block to replace in case of a cache miss is determined by the
associativity and the replacement policy of the cache layer in which the
cache miss occurs.

1On a 32-bit computer the size of a memory cell is 32 bits. A memory cell can there-
fore take on any value that can be expressed in 32 bits, e.g., the integers in the range
{0, . . . , 232 − 1}. In this context a word is the same as a memory cell.
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The associativity restricts the number of cache lines in which a given
block can reside. We call the cache lines that potentially can contain a
particular block of memory the candidate lines for that block. In other
words, the block maps to a number of candidate lines. Caches are divided
into three categories based on associativity:

A fully-associative cache poses no constraints on where to place a block.
The number of candidate lines for any block is the same as the to-
tal number of cache lines in the cache, i.e., any block can be placed
anywhere.

A direct-mapped cache is the most restrictive type since a block has only
one candidate line. The index of the candidate line in the cache is
calculated as block address modulo number of cache lines.

A set-associative cache is a hybrid of the fully-associative and the direct-
mapped caches. An x-way set-associative cache is divided into sets
each containing x cache lines. A block of memory maps to exactly one
of these sets, but within this set the block can be placed in any line. If
the memory is divided into blocks numbered by increasing addresses
from 0 to m, then the index of the set in the cache that block a (0 ≤
a ≤ m) maps to is calculated as a mod x. The number x defines the
degree of associativity of the cache. Typically, set-associative caches
have degree 2, 4, or 8.

In case of cache misses in set-associative or fully-associative caches some
strategy is needed to choose the cache line among multiple candidate lines
in which to place the new block. If there are empty lines among the candi-
dates, then the choice is easy, but if all candidate lines contain data, then the
choice of which cache line to replace is made according to the replacement
policy of the cache. To preserve the principle of temporal locality an opti-
mal replacement policy would replace the line that is referenced furthest in
the future. Determining what line that would be may involve considerable
knowledge of the future sequence of instructions executed by the CPU, so
much more simple policies are used in practice.

For 2-way set-associative caches the well-known least-recently-used (LRU)
policy is implemented by keeping just a single bit of information for each
cache line: When a cache line is accessed its recency bit is set and the re-
cency bit of its fellow cache line is reset. Theoretically, the LRU policy
could be implemented for higher degrees of associativity using more recency
bits, but in practice some approximation to LRU, such as the not-recently-
used policy is used. Even a policy choosing the candidate line to replace at
random is used. The point is, that for caches of limited associativity the
replacement policy has almost no impact on the number of cache misses. In
fact, in 2, 4, and 8-way set-associative caches, choosing the line to replace
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by random has been observed to work almost as good as LRU replacement
in caches containing 16, 64 and 256 KB data in 64-byte blocks [37]. The
bigger the cache, the smaller the difference, and for the 256 KB caches the
two replacement schemes were equally good. For the smaller cache sizes a
higher degree of associativity resulted in fewer cache misses but for the 256
KB caches this tendency was not present.

Deciding on which page to replace in main memory in case of a page fault
is of greater importance. To save the penalty of just a few extra page faults
makes it worthwhile to use a clever replacement policy in main memory. At
the main memory layer, the replacement policy is implemented in software
and therefore depends on the operating system.

2.1.3 Categorizing Cache Misses

Cache misses can be divided into three categories depending on the context
in which they occur:

Compulsory misses occur when a block is referenced for the first time, i.e.,
it has not been in the cache earlier. Compulsory misses are therefore
unavoidable and occur at every level in the memory hierarchy.

Capacity misses happen when the cache has no empty cache line in which
a block that has previously been in the cache can be placed. The size
of the cache as well as the quality of the replacement policy determine
the number of capacity misses of a program. A capacity miss does
not necessarily cause misses in every memory layer, e.g., if a block has
been removed from the level 1 cache, then it may still reside in the
level 2 cache.

Conflict misses occur when a referenced block can only be placed in an
occupied cache line. This type of misses can occur in caches that are
not fully associative, even though there are still empty cache lines.
This is due to the fact that in set-associative caches more than one
block map to the same cache line. In a fully-associative cache conflict
misses do not occur, since any block can reside in any cache line. If
a fully-associative cache has no empty cache line in which a block can
be placed, then a capacity miss occurs and not a conflict miss.

2.1.4 Virtual Memory

The virtual-memory system can be viewed as a caching system running in
parallel to the memory hierarchy described so far [35] (see Figure 2.3). This
parallel system handles data transfers between the primary and secondary
memory. Its purpose is to make multiple programs that run simultane-
ously on the computer think that they each have the entire main memory
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CPU and

registers memory

Level 1 Level 2

cachecache

TLB

Main
Disk

Figure 2.3: Virtual memory makes up a memory hierarchy in parallel to the
hierarchy of Figure 2.1.

at their disposal. A program is unaware that it actually shares the main
memory with other programs, and as a consequence, the virtual memory
system removes the burden from the programmer of managing main me-
mory manually. This means that the virtual-memory system has to ensure
that sharing of main memory is done in a safe way, so that one program
cannot overwrite the data of another program.

Knowing the exact details of the virtual memory system is not that
important in the scope of this thesis. Nevertheless, a few concepts are worth
noting:

Virtual and physical addresses. A distinction is made between virtual ad-
dresses referring to imaginary storage and physical addresses referring
to memory represented by DRAM chips. Since each process should be
able to execute as if it had the entire main memory at its disposal, each
process has its own virtual address space. The size of a pointer is 32
bits on 32-bit computers, so the number of memory addresses that can
be referenced is limited to 232, i.e., the virtual address space is 4GB.
As many processes often run simultaneously, and their total address
space is most likely much bigger than the amount of physical memory
available, at any time the virtual-memory system manages which of
the virtual pages that are currently present in physical memory and
which reside on disk. As such, the amount of physical memory avail-
able does not directly restrict how much memory a single process can
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allocate. On a computer with a small amount of physical memory the
virtual-memory system is simply forced to keep a larger portion of the
allocated memory on disk than would be the case on a computer with
a large amount of physical memory. A consequence of having only
a small amount of physical memory available is therefore more page
faults.

Address translation and page tables. When a process references some data,
the virtual address must be translated into a physical address. Since
main memory may be shared between multiple programs, it most often
contains only a subset of the whole virtual address space addressable
by a given process, so data pointed to by virtual addresses may actually
reside on disk. Each process therefore has a page table containing a
mapping from virtual addresses to physical addresses. The page table
contains information about which virtual pages that are currently in
main memory and which that are on disk. The page tables themselves
are kept in main memory, but as any other part of main memory a
page table can be temporarily written to disk, if the operating system
has intentions of using the space it occupies for something different.

Translation look-aside buffer (TLB). Like a page table the TLB contains a
mapping from virtual to physical addresses. It acts as a cache for page
tables by containing the most recent address translations. The TLB is
implemented in hardware to ensure that virtual pages often referenced
(due to temporal locality of reference) are translated quickly.

When the CPU references some data, the virtual address of the data is
looked up in the TLB and in the level 1 cache simultaneously. While the
level 1 cache checks if it contains the cache block with the requested virtual
address, the TLB translates the virtual address into a physical address and
hands the physical address over to the level 1 cache. If there is a hit on
the virtual address in the level 1 cache, then the cache uses the physical
address that it got from the TLB to check if the hit cache block is actually
the correct one, or if it belong to another program and just by coincidence
shared the same virtual address.

2.2 Memory Latency

Until now, we have used the term memory latency to describe the overhead
incurred by the memory system on the running time of programs. But what
is memory latency, from where does it originate, and how does it affect
memory design?

Latency is the period of time that one component spends waiting for
another component, in other words, latency is wasted time. So memory
latency refers to the CPU time wasted waiting for the memory system. The
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impact of memory latency is often measured in the number of clock cycles
that the CPU has to wait. This is practical for two reasons:

� Clock frequencies of memory and CPU seldomly match. Most often the
memory clock frequency is lower than the CPU clock frequency, and
the same CPU model is often shipped with differing clock frequencies
but with the same memory clock frequency. So even though measuring
latency in memory clock cycles provides a measure that is independent
of the CPU, it is not very useful. Memory latency is interesting in
relation to the CPU performance.

� Depending on the degree of instruction-level parallelism modern CPUs
are able to execute a number of instructions every clock cycle. If we
know this degree and the memory latency in CPU clock cycles, then
it is easy to interpret the importance of a given latency by simply
calculating the number of instructions that could have been executed
during the waiting period.

Memory latency is a non-uniform metric, i.e., it is specific to a particular
layer of the hierarchy and increases when moving from left to right in Figure
2.1. Therefore, each layer in the memory hierarchy adds to the total memory
latency. Assuming that data are not read in parallel, for each layer, the cost
is the sum of the time spent finding the requested block and the time spent
transferring it to a faster layer. A data request that causes cache misses all
the way through the hierarchy therefore incurs latency corresponding to the
sum of the latencies of all layers.

The latencies of the memory systems of the Intel® Pentium® and Sun
UltraSPARC� computer families were investigated by Olsen & Skov [35].
To give an idea of the actual impact of memory latency and how latencies
differ among memory layers we summarize the results of their investigation
in Figure 2.4. As expected, the figure shows that latency increases the
further away we get from the CPU.

Memory layer Latency
Min Max

Level 1 cache 2 3
Level 2 cache 7 23
Main memory 41 262

Figure 2.4: Minimum and maximum memory latencies in CPU clock cycles
on a variety of different computers measured by Olsen & Skov [35].

The distinct difference in minimum and maximum latencies of main me-
mory actually provide empirical evidence for the CPU-DRAM performance
gap: At the main memory layer the latency of the Pentium® family was
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measured to 41, 73, 86, and 262 for the Pentium® , Pentium® II, Pentium®

III, and Pentium® 4 respectively — almost a fourfold increase over a ten
year period. For the UltraSPARC� family the latencies have tripled from
the UltraSPARC� I to the UltraSPARC� III.

Furthermore, the investigation shows that while the latency of level
1 caches has been rather constant during the past ten years, the level 2
caches of the Pentium family have become faster, whereas those of the
UltraSPARC� family have become slower. The success of Intel’s level 2
caches contrasts the general tendency of increasing memory latency. The
success is due to the fact that the level 2 caches are built using faster tech-
nologies than DRAM and that the level 2 cache has recently been integrated
into the same chip as the CPU to ensure faster communication.

Olsen and Skov used a tool called LMbench [10] to measure memory
latencies. We have used the same tool to obtain the latencies of the bench-
marking computers at our disposal. The characteristics of these computers
are shown in Figure 2.5. For the AMD computer LMbench reported the
latency of the level 1 cache to 2 ns, the latency of the level 2 cache to 12 ns,
and the latency of main memory to 157 ns. LMbench reported 1 ns, 10 ns,
and 170 ns respectively for the Pentium® computer.

CPU Memory system
AMD Athlon XP 2100+ 64 KB 2-way L1 cache, 64-byte cache lines.
(1.73 GHz) Model 6 256 KB 16-way L2 cache, 64-byte cache lines.

256 MB main memory.
Pentium® 4 Northwood 8 KB 4-way L1 cache, 64-byte cache lines.
1.8 GHz 512 KB 8-way L2 cache, 64-byte cache lines.

512 MB main memory.

Figure 2.5: The characteristics of our benchmarking computers.

The time that the CPU spends waiting for the memory system is not
necessarily completely wasted. If instruction imiss causes a cache miss and
the execution of the following instruction, i, does not depend on the result of
instruction imiss, then the CPU can execute instruction i while waiting for
the memory system. Of course, if multiple independent instructions follow
imiss, then the amount of wasted time can be further decreased.

The latency caused by a certain memory layer is influenced by that
layer’s degree of associativity. At the memory layers closest to the CPU the
associativity is implemented in hardware, and higher associativity means
more complex circuits and therefore higher latency. The fewer cache misses
induced by higher associativity simply does not pay for the increased me-
mory latency. Along with the results of [37], stating that for sufficiently
large caches the degree of associativity has minor impact on the number
of cache misses (page 11), the higher latency makes it infeasible to use full
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associativity at the closest memory layers.
Other parts of the computer than the memory system may cause la-

tency. Pipeline hazards in the CPU due to branch mispredictions or other
dependencies among instructions may force the pipeline to flush completely
or stall for a few cycles. Also, communicating with external devices such as
graphic and network devices causes latency.

2.3 Cache Misses and Latency by Example

By now it should be clear that being aware of memory latency and cache
usage when designing algorithms may affect running time in a positive way.
But just how severe are the effects of careless algorithm design and how do
the different kinds of cache misses occur in practice? By use of a simple
example we will answer these questions.

In [11] Bojesen et al. implemented a simple but clever C-program to
measure the performance of the level 1 cache on a number of different com-
puters. As such, the program was designed to reveal the same characteristics
of the memory system as those investigated by Olsen & Skov. Nevertheless,
we can use this C-program in a different way than originally intended by
Bojesen et al. to investigate how an algorithm that makes good usage of
the memory hierarchy can outperform an algorithm that uses the memory
hierarchy inefficiently.

The program computed the sum of N integers placed contiguously in an
array. Depending on the value of a variable step the integers were referenced
according to different patterns. Program 1 is the summing program used by
Bojesen et al.

1 unsigned int sum(unsigned int* a,
2 unsigned int step,
3 unsigned int N) {
4 unsigned int i;
5 unsigned int mask = N - 1;
6 unsigned int result = a[0];
7

8 for (i = step; i != 0; i = (i + step) & mask)
9 result += a[i];

10

11 return result;
12 }

Program 1: The summing program of Bojesen et al.

With a step value of 1 the integers were referenced sequentially and with
a value of p, chosen to be the smallest prime larger than the block size, the
reference pattern ensured that no two subsequent references caused access
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to the same cache line. By calculating the index of the ith integer to visit
as i ∗ step mod N and choosing N to be a power of 2 the values of 1 and p
of step ensured that all integers were referenced exactly once2.

With any of the two values of step the program executed the exact same
number of instructions, so the difference in running times was solely due to
the different reference patterns.

With B denoting the number of integers fitting in a block, the program
caused N/B level 1 cache misses with a step value of 1 and N level 1 cache
misses with step set to p. By the benchmarks of Bojesen et al. the summing
program turned out to be in the range of 3.3 to 10.1 times faster when
causing only N/B cache misses than when causing N . The variation among
the relative efficiencies were due to varying block sizes and differences in size
and associativity of the caches on the computers considered.

We have tested the summing program on our benchmarking computers
(Figure 2.5). For an input array exceeding the size of the level 2 cache the
program executed 5.8 times faster on the Athlon computer when causing
N/B cache misses than when causing N cache misses. On the Pentium® 4
the fewer cache misses made the program 3.4 times faster3.

In Figure 2.6 the reference patterns associated with the two values of
step are illustrated on an idealized cache. The cache on the figure is fully
associative and each of its eight cache lines contains a single block of eight
integers.

...
...

B

8

1

9 10 11 12 13 14

2 3 4 5 6 7 8

a)

...
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B

8

1
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8
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Figure 2.6: The numbering marks the order in which the caches are accessed
when N is equal to or larger than the capacity of the cache. a) The efficient
reference pattern accesses the cache continuously, i.e., step is 1. b) The
inefficient reference pattern accesses the cache in steps of p, where p is the
smallest prime larger than the block size B.

It may not be obvious how the bounds of N and N/B cache misses
2The reader can verify this by noting that the prime factorization of any integer is

unique and that for powers of 2 the only prime in the factorization therefore obviously is
the prime 2 itself.

3The execution times were measured in CPU time.
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are obtained. So, in the analysis that follows we will prove these bounds
informally. As in Figure 2.6 we assume a fully associative cache and we let
M denote its capacity. The cache uses the LRU replacement policy:

step = 1 : Initially the cache is empty. So as long as data fit in the cache,
i.e., N is smaller than or equal to M , the continuous reference pattern
incurs a compulsory miss for every B references. Hence, the summing
program causes N/B cache misses when N is smaller than or equal to
M .

IfN is larger thanM , then an additionalN−M integers are referenced.
Since the cache contains no empty cache lines when these integers
are referenced, an additional capacity miss is incurred for every B
references for a total of (N −M)/B capacity misses.

If we do not consider the nature of the cache misses, i.e., if they
are compulsory misses or capacity misses, then the summing program
causes N/B cache misses regardless of the input size.

step = p : The choice of p as the smallest prime larger than the block size
guarantees that no two consecutive integer references access the same
cache line. By choosing M and B as powers of 2, as Bojesen et al.
did, the program still causes only N/B cache misses as long as data
fit in the cache. But instead of incurring a miss for every B references
(as for step = 1) the program now causes compulsory misses when
referencing the first N/B integers. The remaining N −N/B integers
can be referenced without any further misses.

If data exceed the capacity of the cache, then the situation becomes
more complicated. First we notice that after the first M/p references
the cache is full and we are about to access a block that has not been
in cache earlier (remember that N now is larger than M). A capacity
miss occurs and according to the replacement policy this miss causes
the block that was accessed as the very first to be evicted from cache,
i.e., the block least recently used.

Depending on the size of N we now have one of the two following
situations for the next integer reference: Either the next integer relies
in a block that has not been in the cache earlier (i.e., we have not yet
reached the end of the integer array), or we have reached an index
exceeding the size of N (i.e., we are back at the beginning of the
array). Both situations cause capacity misses. The former situation
evicts a block just as when the preceding integer was referenced. The
latter also causes a capacity miss, since the block to reference (which
is the one containing the beginning of the integer array) has just been
replaced. In fact, even the very preceding reference may have caused
its eviction.
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Hence, when N is bigger than M , every reference causes a cache miss
and we have the bound of N cache misses.

Depending on the value of step the program was constructed with the
intent of making as many or as few cache misses as possible, so the running
times represent extreme usage of the cache. A programmer unaware of the
overhead incurred by memory latency seldomly would make programs ex-
hibiting a reference pattern as inefficient as that associated with the slow
summing program. Nevertheless, the investigation clearly shows that taking
memory latency into account when designing algorithms may decrease run-
ning time with a constant factor that is significant. Analysis of the program
in the RAM-model would not have revealed this behavior.

2.4 Summary

In this chapter we have presented the key concepts of modern memory sys-
tems and observed how the hierarchy adheres to the principle of locality of
reference. We have described how the different layers of the memory hierar-
chy are organized and seen that parameters such as block size, associativity,
and replacement policy influence how data are moved between various me-
mory layers and how different types of cache-misses occur. Also, we have
noticed that the virtual memory system can be seen as a hierarchy running
parallel to the traditional memory hierarchy.

We now know what memory latency is and how it can influence the
running time of programs. With the summing program we saw the effects
of not paying attention to the principle of locality of reference.
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Memory Models

“Do not quench your inspiration and your
imagination; do not become the slave of
your model.”

— Vincent Van Gogh

In Chapter 2 we saw how the memory access pattern of an algorithm highly
influences its running time in practice. As traditional work complexity anal-
ysis in the RAM-model cannot capture these access patterns, we need more
elaborate computational models that can.

In this chapter we review three computational models of modern me-
mory systems, namely the external-memory model, the hierarchical memory
model, and, most importantly, the ideal-cache model.

The external-memory model is described in Section 3.1 and is the model
of choice in the design and analysis of external-memory algorithms. The
model is interesting since it in some ways resembles the ideal-cache model.
Nevertheless, the external-memory model has some drawbacks that make it
insufficient for analyzing algorithms in a cache-oblivious way.

Though the hierarchical memory model is not that widely used we have
included its description in Section 3.2 to provide an example of how mul-
tilayered memory systems were modeled prior to the introduction of the
ideal-cache model.

In Section 3.3 we describe the ideal-cache model. Though the model at
first glance may seem very simple compared to real memory systems, it is
both theoretically and practically justifiable. We investigate these justifica-
tions in Section 3.4.
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3.1 The External-Memory Model

The idea demonstrated in the summing example (Section 2.3) of analyzing
algorithms by counting the number of memory accesses it causes is not new.
In the area of external-memory algorithms and data structures, complexity
analysis involving the count of memory accesses has been known for many
years.

External-memory algorithms and data structures deal with data sets
the size of which exceeds that of main memory. The idea is that by manag-
ing data placement and movement between internal and external memory
explicitly, the impact of latency associated with disk accesses can be min-
imized. As such, these algorithms and data structures bypass the virtual
memory system.

A consequence of the explicit data management is that the caching char-
acteristics of internal memory can be optimized for a specific algorithm, e.g.,
the replacement policy may be specialized — or even changed during the
execution of a program. It is all up to the programmer.

According to a recent survey by Vitter [41] on external-memory algo-
rithms and data structures the first work on complexity analysis in the area
dates back to the PhD thesis on sorting by Demuth in 1956. To facilitate
the analysis of external-memory programs a collection of reasonably accu-
rate models of the memory system’s characteristics has evolved throughout
the past 40 years. The most widely used is the external-memory model for-
malized by Aggarwal and Vitter in 1988 [3]. The model operates on two
consecutive layers of memory, namely an internal and an external one. The
I/O-complexity of an algorithm is measured in the number of memory ac-
cesses or I/Os it performs on the external memory layer. Since the external
memory is often a disk, the external-memory model is also known as the
I/O model and the disk access model.

The external-memory model uses the following parameters, some of
which were already used in the analysis of the summing program:

N : the number of elements that is to be processed by the algorithm,

M : the number of elements that fits in internal memory,

B: the number of elements that can be transferred in a single block,

P : the number of blocks that can be transferred concurrently.

The parameter P models a special feature that a disk might have, such as
multiple I/O channels and read/write heads. P can also model multiple
disks that can transfer data concurrently. Figure 3.1 depicts the external-
memory model.

It is assumed that 1 ≤ B ≤ M < N and 1 ≤ P ≤ bM/Bc. The
former inequality states that a block contains at least 1 element and that
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Disk

Disk

CPU

I/O complexity

Block replacement
is handled manually

Disk block size B

Memory
of size M

of disks P
Number

Work complexity

Figure 3.1: The external-memory model is a two-layered memory model
consisting of an internal and an external memory. Block replacement is
managed explicitly, i.e., the algorithm itself dictates the replacement policy,
so the knowledge of B and M is crucial.

the size of the problem has to exceed the size of internal memory. The
latter inequality states that the number of blocks that can be transferred
concurrently should not exceed the number of blocks in memory. This is a
rather obvious restriction since it makes no sense to transfer more blocks
concurrently than that there is room for in internal memory.

Often the work complexity of an external-memory algorithm is of interest
as well as the I/O complexity, because explicit memory management usually
causes an external-memory algorithm to be more complex than its more
conventional competitors. As for ordinary algorithms the well-known RAM
model is most often used for the work complexity analysis.

A drawback of the external-memory model is that even though knowl-
edge of the exact values of B and M is not strictly necessary when designing
algorithms in the model, these values must be known when the algorithms
are implemented. Remember, the whole idea of external-memory algorithms
is to tune the algorithms to the characteristics of the memory system by
moving data manually. As the parameters B and M may vary from one me-
mory system to another, they restrict an implementation to work efficiently
only on a specific memory system. Porting the programs to other platforms
becomes a non-trivial task.

In the memory layers closest to the CPU, i.e., the level 1 and level
2 caches, the replacement policies are implemented by hardware, so data
placement and movement cannot be managed explicitly. However, this does
not mean that the external-memory model is not applicable to these layers.
Knowing B and M and being aware of the actual replacement policy of those
layers still makes it possible to adjust an algorithm. As can be imagined,
optimizing an algorithm to multiple layers of a memory system with the
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Figure 3.2: In the merging phase of multiway mergesort the initial 2N/M
runs are reduced to a single run in logR 2N/M consecutive merges.

values of B and M varying from one layer to another can be a tedious job.
Since the knowledge of B andM is crucial in the external-memory model,

it is also known as the cache-aware model or cache-conscious model.

3.1.1 External-Memory Algorithms by Example

To see how implementations of external-memory algorithms depend on the
parameters of the memory system we consider a multiway mergesort algo-
rithm for external memory based on a presentation by Jeff Vitter [42] at the
EFF Summer School on Massive Data Sets1. The task is to sort N elements
residing on disk where N is much larger than M .

Multiway mergesort is a two-phase algorithm:

Run-formation phase: In the run-formation phase the N
B blocks are read

into internal memory in chunks of M
2B blocks, i.e., one half memory load

at a time. The chunks are sorted following some traditional sorting
algorithm that works well in internal memory, whereupon they are
written back to disk. When the run-formation phase is completed, we
have 2N

M sorted runs residing on disk. Each run contains M
2B blocks.

We read in the N elements in half memory loads rather than full
memory loads to be able to overlap computation and I/O, that is,
while one half memory load is being sorted the previously sorted half
memory load is outputted.

Merging phase: In the merging phase we repeatedly merge together R =
M
2B − 2 runs at a time in an on-line manner. That is, we perform a
number of R-way merges until all of the 2N

M runs are merged. Each of
the R-way merges are performed in an on-line manner by only having
one block of each run in memory at a time. As such, internal memory
acts as a buffer for the runs residing on disk. Each R-way merge results
in a new run of size RM

2B . Therefore, when all N elements have been
merged once, the 2N

M runs of size M
2B are reduced to 2N

MR runs of size
1Held June 17–July 1, 2002 at BRICS, University of Aarhus, Denmark.
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RM
2B . Each pass over the N elements in the merging phase results in

increasingly longer runs, so after logR
2N
M passes only 1 run is left and

we are done.

By choosing R = M
2B − 2 we can overlap the merging process with disk

I/O as was the case in the run-formation phase. We let the R runs
stream through internal memory by use of R double buffers, each of
size 2B (i.e., one double buffer consists of 2 buffers of size B each).
The one half of the double buffer is filled up with elements from disk
while the elements of the other half of the double buffer are being
merged.

The double buffers do not take up the entire internal memory. The
−2 term of R leaves space in memory for an output buffer to which
the elements are merged and held temporarily before they are written
blockwise back to disk.

The merging phase is depicted in Figure 3.2. The following theorem states
the I/O-complexity of the algorithm.

Theorem 1. The I/O-complexity of the external memory multiway merge-
sort algorithm is O(NB logM/B

N
B ).

Proof. The run-formation phase passes over the elements only once. The
merging phase passes over the elements once for each of the logR

2N
M levels

in the merge-tree. Hence, the total number of passes over the elements is

1 + logR
2N
M

≈ 1 + logM/2B 2
N/B

M/B

≈ 1 + logM/B

N

B
− 1

≈ logM/B

N

B
.

Each pass read the N elements into memory and writes them back to disk
once, so the I/O-complexity is proportional to

2
N

B
logM/B

N

B
= O(

N

B
logM/B

N

B
).

The I/O-complexity of the multiway mergesort algorithm is in fact equal
to the optimal sorting bound for comparison-based sorting in the external-
memory model [3].
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Figure 3.3: For cost function f(i) = dlog2 ie the hierarchical memory model
consists of several memory layers of polynomially increasing size.

3.2 The Hierarchical Memory Model

In contrast to the two-layered external-memory model the hierarchical me-
mory model of Aggarwal et al. [1] considers memory hierarchies of multiple
layers.

The hierarchical memory model resembles the RAM model. It accepts
the same operations and also assumes a potentially unlimited number of
memory registers R1, R2, . . . each having space for one integer. As with
the RAM model it is the running time of an algorithm that is of interest,
but in contrast to the RAM model accessing location Ri takes f(i) time
instead of constant time. The function f is assumed to be monotonically
increasing and the choice of f determines the size and numbers of memory
layers. Typically the functions f(i) = xα, where α > 0, and f(i) = dlog2 ie
are chosen [1] — the latter indicating a memory hierarchy of several layers
whose sizes increase by a factor 2 at each layer. Notice, though, that these
choices of f are just examples and other functions that one finds appropriate
can be applied. On Figure 3.3 the hierarchical memory model is depicted
for f(i) = dlog2 ie.

As such, the hierarchical memory model mimics the behavior of a me-
mory hierarchy consisting of increasingly larger amounts of increasingly
slower memory layers, but the model has some shortcomings. First of all,
it fails in modeling varying degrees of associativity among memory layers.
Secondly, it assumes that data are explicitly moved between layers by the
programmer, but in practice the programmer has no such control over data
management in the faster layers. Thirdly, and most importantly, choosing
a function f that makes the model realistic is a difficult task, as it requires
detailed knowledge of the characteristics of the memory system. Therefore,



3.3 The Ideal-Cache Model 27

it is hard to make running times predicted by the model match those ob-
served in practice, and if one should succeed in this task, f will most likely
be highly dependent on the specific memory system for which the algorithm
was designed [41].

Aggarwal et al. later extended the model to handle block transfers [2].
Though this made the model more realistic, Aggarwal et al. still viewed
the model only as a beginning in the theoretical exploration of memory
hierarchies.

3.3 The Ideal-Cache Model

Analyzing algorithms in the ideal-cache model is very similar to analyzing
algorithms in the external-memory model. It involves the same parame-
ters B, M and N (see page 22) but the ideal-cache model does not handle
concurrent transferring of multiple blocks. Therefore, the parameter P is
omitted. As was the case with external-memory algorithms we are interested
in analyzing how many memory transfers an algorithm incurs. In a cache-
oblivious context we use the terms I/O-complexity and cache complexity
interchangeably when we analyze memory behavior. For cache-oblivious al-
gorithms, ordinary analysis of work complexity is done in the RAM model.
We denote the number of cache misses incurred by a cache-oblivious algo-
rithm by Q(N,M,B)2, if the algorithm runs on a cache of size M , block size
B, and takes input of size N . We use W (N) to denote the work complexity
of a cache-oblivious algorithm. In the scope of cache-obliviousness the term
cache does not only refer to level 1 and 2 caches but to the smaller of any
two consecutive memory layers.

According to Prokop [38] an algorithm is cache-oblivious if “... no pro-
gram variables dependent on hardware configuration parameters, such as
cache size and cache-line length need to be tuned to minimize the num-
ber of cache misses”. By this description all algorithms that do not pay
special attention to the memory system are cache-oblivious. As a conse-
quence, all traditional algorithms designed in the RAM model are cache-
oblivious. Therefore it makes sense to distinguish between cache-oblivious
algorithms and optimal cache-oblivious algorithms, i.e., cache-oblivious al-
gorithms that incur an asymptotically minimum number of cache misses.
Since algorithms designed in the ideal-cache model are cache-oblivious the
model is also known as the cache-oblivious model.

3.3.1 Consequences of Obliviousness

At first sight, being unaware of B andM might seem like a restriction. But it
has some surprisingly powerful consequences that actually deal with the two

2We may just use Q(N) to ease notation.
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main objections to the external-memory model, i.e., platform dependency
and complex programming for multiple caching layers.

The first consequence of obliviousness is that, if a cache-oblivious al-
gorithm uses two consecutive memory layers optimally, then it must auto-
matically use any two consecutive layers optimally. This means that cache-
oblivious algorithms that behave optimally in a two-layer memory hierarchy
will also behave optimally in all layers of a memory hierarchy of more than
two layers.

The second consequence is that cache-oblivious algorithms automatically
tune to the system in which they run. A cache-oblivious algorithm that
works well on one computer should therefore work well on any computer — a
feature that completely eliminates portability issues. This self-tuning ability
is a clear advantage over memory efficient algorithms that require knowledge
of the memory system that is not always available from the manufacturer
and may be difficult to extract automatically.

However, not knowing B and M poses a problem as data placement
and movement between memory layers can no longer be managed by the
programmer. The programmer no longer has control over the replacement
policy, so how can she possibly know when a cache-oblivious algorithm uses
the memory hierarchy optimally? This question and the two mentioned
consequences of obliviousness are dealt with in the computational model of
cache-oblivious algorithms, namely the ideal-cache model that, as its name
suggests, assumes an ideal cache.

3.3.2 The Ideal Cache

The ideal cache is fully associative and relies on the optimal replacement
policy, i.e., the block that is accessed furthest in the future is replaced in
case of a cache miss. The movement of data between the layers is done
automatically. The model has only two memory layers, a main memory
layer that is assumed to be arbitrarily large and a data cache containing M
words. The cache is divided into M/B cache lines each containing B words3.
Furthermore, the cache is assumed to be tall, that is, the size of a cache line
is no wider than the number of lines the cache can contain in total. The
tall-cache assumption can be stated as M = Ω(B2). The ideal-cache model
is depicted in Figure 3.4.

The ideal-cache model offers an obvious advantage of simplicity over
the external-memory model, but some assumptions are made in the model
that may not seem reasonable compared to the characteristics of real world
caches and memory systems. Firstly, the optimal replacement policy is un-
realistic as it requires the knowledge of future program execution. Secondly,
very few modern memory systems have only two layers of memory. Finally,

3Frigo et al. [19] denote the cache size by Z and the cache line length by L. We prefer
using M and B to emphasize the connection to the external-memory model.



3.3 The Ideal-Cache Model 29

memory
main
large
Arbitrarily

CPU

policy
replacement
optimal
organised by
Automatically

Work complexity W

Cache complexity Q
of size M
Tall cache

Cache lines of length B

M/B cache lines

Figure 3.4: The ideal-cache model is a two-layered memory model. The
cache is fully associative and data is transported between cache and main
memory automatically following an optimal replacement policy. B and M
are unknown but the cache is assumed to be tall, i.e., M = Ω(B2).

full associativity is seldomly supported. Most caches have a limited degree
of associativity. In Section 3.4 we will verify that these assumptions are
reasonable.

3.3.3 Cache-Oblivious Techniques

According to Demaine [18], the two main techniques for designing cache-
oblivious algorithms are sequential scanning, that inherently exhibits good
spatial locality, and divide-and-conquer. Intuitively, these two techniques
are well-suited because they adhere to the principle of locality of reference.

In the external-memory model scanning an array of N elements causes
dN/Be blocks to be read from disk into internal memory. In the ideal-
cache model the same task causes at worst dN/Be + 1 cache misses. This
difference is due to not knowing B and M for cache-oblivious algorithms. A
consequence of this is that we cannot align the array with the boundaries of
the cache lines. Figure 3.5 illustrates this issue of alignment for the scanning
example. It follows from the example that accessing a continuous segment of
memory that has the size of a single block in the worst case means accessing
two physical blocks.

Most of the algorithms originally presented by Frigo et al. [19] follow the
divide-and-conquer approach. Traditionally, by this approach an algorithm
repeatedly refines the problem size until some base case is reached that can
be solved easily. For example, in traditional 2-way mergesort an array of
elements is repeatedly divided into two subarrays each of half the size. The



30 Memory Models

BB B BB

N

Figure 3.5: Due to the possibly bad alignment cache-oblivious scanning of
an array of N elements incurs dN/Be+ 1 cache misses in the worst case.

base case is reached when the subarrays only contain one element each, and
therefore can be merged easily.

In a cache-oblivious context, divide-and-conquer also means splitting up
the problem into smaller parts. In analogy to the mergesort example, the
base case is reached when the subproblem becomes easily solvable. But
where easily solvable for traditional algorithms (i.e., in the RAM model)
means solvable in a constant number of instructions, by the cache-oblivious
approach it means that solving a subproblem will cause no further cache
misses. Typically, this is when the subproblem fits in cache4.

Cache-oblivious algorithms following the divide-and-conquer approach
will often exhibit cache complexities that are optimal within a constant
factor — especially when the divide-and-conquer cost is dominated by the
leaf cost, i.e., when the number of leaves in the recursion tree is polynomially
larger than the divide and combine cost in terms of cache misses [18].

3.4 Justifying the Ideal-Cache Model

The ideal cache is an abstraction of real memory systems. Compared to the
characteristics of modern memory systems, like those presented in Chapter
2, the characteristics of the ideal cache clearly make the ideal-cache model
a simplification of a real memory hierarchy.

The number of cache misses an algorithm causes in the ideal-cache model
is within a constant factor of the number of cache misses the algorithm
causes in a real memory system [19]. This is a key property of the model.
In this section we will investigate the validity of the ideal cache and, more
importantly, look into what causes the constant factors that separate the
cache complexities analyzed in the ideal cache from the cache complexities
that can be observed in real memory hierarchies.

If we want to predict the cache complexity of algorithms in real memory
systems accurately, then it is a must to have good knowledge of how the

4Note, that this does not mean that the algorithm stops dividing the problem when
it fits in cache (this would make the algorithm cache-aware), but merely that this point
in the divide-and-conquer recursion provides for the base case of our cache complexity
analysis.
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ideal cache differs from these systems, and how the differences affect cache
complexity.

Theoretically, the assumptions of the ideal-cache model are justified by
Frigo et al. They show that by a number of reductions the ideal cache can
be modified into a more realistic cache model assuming LRU replacement,
multiple layers of memory, and direct mapping. We will not formally prove
the reductions here but describe the reductive steps in an informal way
to explain how weak or strong the ideal-cache model is compared to real
memory systems.

3.4.1 Assumption: Optimal Replacement

Frigo et al. use an older result of Sleator and Tarjan [39] on the efficiency of a
variety of on-line replacement strategies, such as LRU and FIFO, relative to
an optimal off-line strategy5 to justify the reduction of optimal replacement
to LRU or FIFO replacement.

Sleator and Tarjan show that for any constant factor c > 1, on an LRU
or FIFO-cache of size M , any algorithm incurs at most c times as many
cache misses as the same algorithm would incur on an optimal cache of size
(1− 1/c)M . We can express this as

QLRU (N,M,B) = cQOPT (N, (1− 1/c)M,B),

where QLRU is the number of cache misses with the LRU replacement and
QOPT is the number of cache misses with the optimal replacement. Frigo
et al. choose c = 2 and can therefore rightfully argue that an algorithm
that causes 2Q cache misses on an LRU-cache of size M and block size B
causes at most Q cache misses on an optimal cache of half the size (M/2)
and the same block size. Hence, LRU replacement is just as good as optimal
replacement up to a constant factor of cache misses and a constant factor
of wasted cache lines.

Frigo et al. then define the cache complexity of an algorithm as being
regular if it satisfies the condition Q(N,M,B) = O(Q(N, 2M,B)). This
regularity condition states that when the number of cache lines is halved,
then the cache complexity is affected only by a constant factor. The condi-
tion is important since it can be used to guarantee that an algorithm does
not exhibit worst-case cache behavior when using the LRU replacement.

So, what is meant by worst-case LRU behavior, and which algorithms are
of irregular cache complexity? Consider an algorithm that cyclically scans
an array of M/B+1 elements — assuming that the M/B+1 elements reside
in M/B+1 distinct blocks. After scanning the first M/B elements the cache
will be full, so accessing the last element of the array causes a cache block

5An on-line strategy has no knowledge of future memory references, whereas an off-line
strategy know the entire sequence of references in advance.
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to be evicted. The LRU policy will evict the block holding the first element
of the array, since that block is the one least recently used. However, the
next element to be accessed resides in the block just evicted, so a cache miss
occurs and another block must be evicted. The LRU policy evicts the block
holding the second element of the array, which is the next to be accessed.
This pattern where every access will cause a cache miss continues until
the algorithm somehow terminates. In other words the cache complexity
depends on how many passes over the elements the algorithm incurs.

Doubling the number of cache lines to 2M/B would only cause cache
misses for the first M/B+1 accesses, whereas all subsequent accesses would
be to blocks already in the cache — no matter how many times the algorithm
cycles through the array. Now the cache complexity depends on M and
B rather than the number of passes over the elements. Therefore, this
worst-case LRU behavior is not regular, so this behavior is impossible for
algorithms of regular cache complexity bounds.

Combining the results of Sleator and Tarjan with the regularity condition
yields Corollary 13 of [19] stating that any algorithm with a regular cache
complexity on an ideal cache of size M will have an asymptotically equal
cache complexity on an LRU cache of the same size.

The analysis of Frigo et al. assumes real LRU replacement. In real me-
mory systems LRU is often approximated or a random replacement strategy
is used instead, so their Corollary 13 is not entirely true to real memory
systems. But, as we saw on page 11, the choice between LRU and random
replacement only has a minor influence on cache performance in practice —
at least for caches of a certain minimum size. However, one should be aware
that the practical observations only indicate similar average case behavior
of the two replacement strategies. The way in which the LRU strategy sup-
ports the principle of locality of reference may very well make it superior to
the random strategy when it comes to cache-oblivious algorithms.

3.4.2 Assumption: Two Memory Layers

In real memory hierarchies there are 3 to 5 layers (not counting the CPU
registers), so we need to be sure that the two-layered model is sufficient.
In other words: A cache-oblivious algorithm of optimal cache complexity in
the two-layered ideal cache is also of optimal cache complexity in an LRU
memory hierarchy of multiple layers. We can argue this in two ways:

� By assuming that all layers in the memory hierarchy follow the in-
clusion property and are managed by the optimal replacement policy,
this is intuitively true. Recalling Section 2.1, the inclusion property
states that data cannot be present at layer i unless also present at layer
i+ 1 (layer i is closer to the CPU than layer i+ 1). By definition, the
optimal replacement policy will ensure a minimum number of cache
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misses in each layer. As a consequence the whole hierarchy will be
used optimally. If we now apply Corollary 13 of Frigo et al. at each
layer of the hierarchy, then the optimal replacement policy is turned
into the LRU policy. This reduction increases the cache complexity
at each layer by a constant factor depending on the algorithm under
consideration.

� Frigo et al. show the asymptotic optimality of the multilayered LRU
hierarchy in a more formal way. First they argue that when using LRU
replacement in hierarchies of multiple layers the inclusion property is
maintained during both cache hits and cache misses. This argument is
important, since if the inclusion property was not maintained within
multiple LRU layers, then the only reliable preservation of the principle
of locality would be that of the memory layer closest to the CPU.

Secondly they argue that, at any layer i in a hierarchy of multiple
layers and LRU replacement, cache hits happening at lower layers are
not seen. In fact, layer i acts exactly as if it was the first layer in a
two-layer hierarchy. That is, for any sequence of accesses it contains
exactly the same data as it would have contained if it was the first layer
in a two-layer model that had served the same sequence of accesses.
As a consequence, the cache behavior at each boundary between any
two consecutive layers in the memory hierarchy can be analyzed in the
ideal-cache model.

Therefore, the ideal-cache model applies at each boundary between
two layers in a multilayered LRU hierarchy. And, by Corollary 13 of
Frigo et al., each layer can be turned into using the LRU policy with
an increase in cache complexity of a constant factor for each layer.

As was the case with the reduction from optimal replacement to LRU
replacement, removing the assumption of only two memory layers increases
the cache complexity observed at each caching layer by a constant factor.
This constant factor depends on the regularity of the algorithm under con-
sideration.

3.4.3 Assumption: Auto Replacement and Full Associativity

The ideal cache assumes that cache blocks are automatically replaced in
case of cache misses. From a programmer’s point of view this actually is a
viable assumption: Between the smaller memory layers block replacement
is handled automatically by hardware, whereas data transfers between main
memory and disk are handled by the operating system. Therefore, the
programmer does not have to consider block replacement at all.

Furthermore, the ideal cache assumes full associativity even though the
memory layers closest to the CPU typically are 2, 4, or 8-way set-associative
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(see Figure 2.2). The question is how efficiently operating systems are able
to implement automatic replacement and full associativity?

According to Frigo et al. a fully associative LRU cache can be maintained
in ordinary memory by letting data transfers be handled in software. By
using hashing techniques, such an implementation can support access to
any cache line in O(1) expected time, using in total O(M/B) records of size
O(B) words each. In the following we will explain how this is possible.

Consider the problem of distributing any subset S of a totally ordered
universe of elements U evenly over a set of buckets L. L is much smaller
than U . Using a 2-universal family of hashing functions [32] to distribute U
over L, we can ensure that no matter which two distinct elements we map
from U to L, the probability that they end up in the same bucket is the
same. The consequence is, that no matter which subset S we choose, it will
be expected to be evenly distributed over the buckets L.

In analogy to this description we have the following: Let Mbig and Msmall

denote the sizes of two consecutive memory layers, and let B denote their
block size. The two layers contain Mbig/B and Msmall/B blocks respectively.
The smaller layer is x-way set-associative, so it is divided into Msmall/x
clusters containing x blocks each.

Now, Mbig is a totally ordered universe of Mbig/B blocks and Msmall/x
is a set of buckets. We can therefore use a 2-universal family of hashing
functions to map an arbitrary subset ofMsmall/B blocks of the larger layer to
the smaller layer. Doing so, we can expect the subset to be evenly distributed
over the Msmall/x buckets.

Within each cluster we can connect the blocks in a double-linked list
to support the LRU policy. Due to the 2-universal hashing each cluster is
expected to hold a constant number of blocks, namely x, so within a cluster
the LRU policy is maintained in constant time. Since 2-universal hashing
can be done in constant time the whole process is done within a constant
time bound.

Cache-Oblivious Algorithms vs. External-Memory Algorithms

Since automatic replacement and full associativity can be handled in O(1)
time any optimal cache-oblivious algorithm can also be optimally imple-
mented in the external-memory model (among others, Kumar noted this
in [29]). To bypass the operating system, we can simply implement the
2-universal hashing technique in software to obtain automatic replacement
between disk and main memory.

There is, however, still a difference between the optimal complexity
bounds of some fundamental algorithms in the two models. Since it is up to
the programmer to align data in the external-memory model, e.g., scanning
an array of N elements incurs dN/Be I/Os in that model, whereas the same
task incurs dN/Be+ 1 cache misses in the ideal-cache model.
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Associativity and Memory Access Patterns

Though automatic replacement and full associativity are reasonable assump-
tions with respect to memory access times and space usage, full associativity
may still cause problems. The memory access pattern of an algorithm may
force a set-associative cache to only use one of its clusters. However, de-
signing cache-oblivious algorithms is all about being true to the principle of
locality of reference, so bad exploitation of set-associative caches is unlikely
in this context.

3.4.4 Assumption: Tall-Cache

A last assumption of the ideal cache is that it is tall. The tall-cache assump-
tion can be described as

M = Ω(B2),

meaning that the number of lines in the cache M/B is larger than the the
block size B. Among others, Prokop [38] uses the tall-cache assumption in
proving optimal cache complexity of matrix multiplication, matrix transpos-
ing and FFT. Sometimes the weaker assumption

M = Ω(B1+γ)

suffices, where γ > 0. In the Lazy Funnelsort algorithm of Brodal and
Fagerberg that we analyze in Chapter 6 this weaker assumption is used.

In very recent work Brodal and Fagerberg [14] emphasize the importance
of the tall-cache assumption. In fact, they show that optimal comparison-
based sorting is not possible without the tall-cache assumption. In contrast,
the cache oblivious search tree that we analyze in Chapter 5 does not use
the assumption at all.

Frigo et al. notes that in practice caches are usually tall. By a quick look
at the cache characteristics of the Intel® Pentium® computer family (Figure
2.2) we are easily convinced that the tall-cache assumption is realistic.

3.4.5 The Constant Factors of the Ideal-Cache Model

The justifications of the ideal-cache model tells us that an algorithm that
is asymptotically optimal in the ideal-cache model is also asymptotically
optimal in any real memory system. While this is an important relation,
it does not tell us precisely how much worse the cache complexity of an
algorithm is on a real computer compared to the cache complexity in the
ideal-cache model. As we have seen, the factor that separates these two
complexities depends heavily on characteristics such as replacement policies
and degrees of associativity, and in general we can therefore not determine
its value. What we do know is that when we analyze algorithms in the
ideal-cache model we can derive the constant factor of the most significant
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term and use it to estimate the relative performance of those algorithms.
Therefore, this is what we will do in Chapter 5 and 6 when we analyze
searching and sorting algorithms in the model.

3.5 Summary

In this chapter we have described the external-memory model, the hierar-
chical memory model, and the ideal-cache model. In the two former models
knowledge of the memory system’s characteristics is crucial in order to design
memory efficient algorithms. In the ideal-cache model, no such knowledge
is needed.

The ideal cache is theoretically justified, since it can be reduced into a
cache that closer resembles real memory hierarchies, and that this reduc-
tion only increases the cache complexity of cache-oblivious algorithms by a
constant factor.
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Analyzing Work Complexity

“There are only 10 types of people in
the world. Those who understand bi-
nary and those who don’t.”

— unknown

The goal of meticulous analysis is to analyze the constant factors in the
running time of algorithms. Especially, the constant in the most significant
term in the function that describes the work complexity of an algorithm is of
interest. In order to make precise predictions, meticulous analysis demands
a computational model that closely matches the way real computers work.
On the other hand, the model must be sufficiently simple, so the algorithms
can be specified in a feasible way. In this chapter we will review two models
suitable for meticulous analysis and decide on which model to use in our
work complexity analysis.

4.1 The MMIX Model

The idea of analyzing constant factors in the running time of computer
programs have, among others, been advocated by Knuth in his famous books
on the art of computer programming (see, e.g., [25]).

Knuth’s model of computation has until recently been the MIX model.
As its name suggests the model is based on a mix of the most widely used
computers of the 1960s and 1970s. The machine language of the MIX model
is quite detailed. It defines about 100 instructions using multiple categories
of registers, e.g. jump registers and index registers. No computer implement-
ing the language has ever been built, so in a way the language is artificial.
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Nevertheless, simulators and other tools for the MIX model exist for mul-
tiple platforms making it possible to actually write and execute programs
written in the language.

As Knuth admits in the latest edition of his book ([25]) the MIX model is
now quite obsolete, and he has therefore developed a new model, the MMIX
model [27, 28]. The MMIX model builds on the same ideas as its predeces-
sor, but being based on more recent 64-bit computers it now implements a
RISC architecture. In both models each instruction is assigned a cost, and
the running time of a program is the sum of the costs of the instructions
executed. The cost varies among the instructions, so in the MIX model e.g.
the DIV instruction always takes 12 time units whereas the ADD takes only 2.
In the MMIX model the cost is further complicated by taking into account
the number of memory references of an instruction and varying the cost of
branch instructions based on whether the branch was predicted correctly.

Without doubt, the close connection to real computer architectures make
the MMIX model suitable for very detailed algorithm analysis. This makes
the model useful in book series such as Knuth’s where the aim is not only to
analyze running times of algorithms, but just as much to show how high-level
language constructions are actually implemented in machines. However, the
details of the model are overwhelming and specifying algorithms in the model
is a tedious task. We need a simpler model.

4.2 Pure-C Cost Model

In Chapter 1 we presented the RAM model of computation. A variant of
this is the word-RAM model of computation [20], which is also a model
of computer machine languages. The word-RAM model differs from the
traditional RAM model by restricting the contents of memory locations to
be integers in the range {0, ..., 2w−1}, and that these integers are represented
as strings of w bits. This allows for bitwise operations such as left and right
shifts on integers. The word-RAM model is actually a family of related
models differing in the arithmetic instruction set assumed to be available.
Therefore, we can choose which set of instructions to support.

The pure-C language was first introduced by Katajainen & Träff [23], but
in their analysis of mergesort programs they assumed the traditional RAM
model. Bojesen et al. [11] assumed the word-RAM model, so they expanded
the pure-C language with a few new operations matching word-RAM.

A combination of the word-RAM model and the pure-C language as
defined by Bojesen et al. provides for a computational model less detailed
than the MMIX model. We call this model the pure-C cost model. The
model consists of a program, memory, a collection of registers, and a CPU
to execute the program.

The pure-C cost model is machine independent, as the programs are
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written in the pure-C language, which is a subset of C [24]. All primitive
operations in pure C have counterparts in the assembly languages of modern
RISC computers.

4.2.1 The Pure-C Language

The fact that pure C is a subset of C makes it possible to compile pure-C
programs into executables with any C compiler. As such, no special software
is needed in order to carry out experiments and verifying the correctness of
pure-C programs. This ease-of-use makes the pure-C cost model a lot more
attractive than the MMIX model.

In the pure-C cost model memory locations and registers each contain
one integer. Actual computations operate solely on registers and random
access to memory locations are possible only by dereferencing registers. It
should be mentioned that since the contents of registers are restricted to be
within word size only 2w − 1 different memory locations can be referenced.

The pure C primitives are divided into 7 categories. In the following, x
is a register (pointer or data), y, z, s, and t are registers (pointer or data)
or constants, p is a pointer register, and λ is some label:

1. Memory-to-register and register-to-memory assignment statements.
That is, the read statement x = *p and the write statement *p = x
respectively.

2. Register-to-register and constant-to-register assignment statements.
That is, x = y.

3. Unary arithmetic expression assignment statements.
That is, x = 	 y, where 	 ∈ {-,!}.

4. Binary arithmetic expression assignment statements.
That is, x = y ⊕ z, where ⊕ ∈ {+,-,*,/,&,|,<<,>>}.

5. Conditional register-to-register assignment statement.
That is, x = y / z ? s : t, where / ∈ {<, <=, ==, !=, >=, >}.

6. Conditional branch statements.
That is, if (x / y) goto λ, where / ∈ {<, <=, ==, !=, >=, >}, and λ is
a label.

7. Unconditional branch statements.
That is, goto λ, where λ is a label.

Normal C constructs such as functions and control statements (e.g., switch
and while) are left out, though control statements can easily be described
in Pure C, and functions can be assumed to be inlined.
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4.2.2 Unit Cost

The original pure-C cost model was a unit-cost model. That is, the exe-
cution of each primitive was assumed to take the same amount of time τ ,
so a pure-C program of N instructions has a total cost of τN . However,
in the latest revision of the model by Mortensen [31] the cost of branch
mispredictions was introduced. In modern pipelined CPUs the execution
of instruction B is already in process before the execution of the previous
instruction A has completed. If instruction A is a conditional branch in-
struction, then we cannot be sure that instruction B is in fact the correct
instruction to follow A, since we do not know whether the branch of in-
struction A should be taken when the execution of B begins. Modern CPUs
use the technique of speculative execution to predict the outcome of con-
ditional branch instructions, that is, the CPU guesses the outcome of the
branch and speculatively begins to execute either the instructions following
the branch or the instructions at the branch target. If the CPU does not
guess the correct outcome of the branch, then a branch misprediction has
occurred, and the instructions that were speculatively processed have to be
flushed from the pipeline before program execution can resume. Therefore,
a branch misprediction causes a delay in the pipeline. On the other hand, if
the CPU predicts the branch correctly, then no special action is to be taken
and the branch causes no execution time overhead.

As a rule of thumb Mortensen estimated the cost of the branch mispre-
diction, denoted by τb, to be approximately 15τ1.

Now, what remains in the model is a way to simulate the way in which the
CPU guesses the outcome of a branch. Mortensen described two categories
of conditional branches: Those that are easy to predict, and those that are
hard to predict. To understand these categories consider the following code
snip from [31]:

1 void limit_data(unsigned long* begin, unsigned long* end)

2 {

3 unsigned long v;

4 goto test;

5 loop:

6 v = *begin;

7 if (v < 100) goto skip_if;

8 *begin = 100;

9 skip_if:

10 begin = begin + 1;

11 test:

12 if (begin < end) goto loop; /* hint: branch taken */

13 }

The program makes sure that no elements in the range [begin . . . end) are
larger than 100.

1Mortensen derived this cost through experiments on both a 450 MHz Pentium® 2
and a 1000MHz AMD Athlon computer.
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The conditional branch in line 12 is easy to predict, since it is taken for
every iteration but the last. Mortensen states this by adding the comment
/* hint: branch taken */ to that line. Therefore, line 12 will incur only
one branch misprediction.

On the other hand, the conditional branch in line 7 is hard to pre-
dict, since the computer does not know the values of the elements in the
range [begin . . . end). In such a situation, Mortensen decided on simulating
a branch prediction algorithm that guesses the outcome of the branch cor-
rectly every other time, i.e., in every other iteration. As a consequence, line
7 incurs N/2 branch mispredictions, and thus the total cost of the program
becomes 5Nτ + (N/2 + 1)τb. As shown in the code snip no hints are given
for conditional branches that are hard to predict.

Because branch mispredictions can be so expensive it is often advanta-
geous to replace conditional branch instructions with conditional assignment
instructions as they do not cause any branching. Mortensen illustrates how
this is done by rewriting the limit_data program into the following code:

1 void limit_data(unsigned long* begin, unsigned long* end)

2 {

3 unsigned long v;

4 goto test;

5 loop:

6 6 v = *begin;

7 v = v > 100 ? 100 : v;

8 *begin = v;

9 begin = begin + 1;

10 test:

11 if (begin < end) goto loop; /* hint: branch taken */

12 }

4.3 Summary

In this chapter we have reviewed two computational models suitable for
meticulous analysis. The MMIX model is very closely connected to the way
in which real computers work, but we feel that the details of the model are
too overwhelming to make it usable for our purpose. The pure-C cost model
is a simpler model. It has the advantage that programs written in the pure-
C language can easily be compiled into fully executable programs by any C
or C++ compiler. The pure-C model is a unit cost model that charges the
cost τ to each instruction executed. In addition, the model takes branch
mispredictions into account. Each branch misprediction is charged the cost
of τb. In the following chapters we will use the pure-C cost model in our
meticulous analyses2.

2We will analyze the pure-C instruction count and the branch misprediction count
separately. Therefore, we will leave out τ and τb.
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Static Search Trees

“There are rich counsels in the trees.”

— Herbert P. Horne

According to Cormen et al. [17] search trees are data structures that support
set operations such as searching for an element, extracting the minimum or
maximum element, inserting elements and deleting elements. Search trees
supporting operations that modify the tree, such as insert and delete, are
dynamic, whereas search trees that do not allow this type of operations are
static. It follows from this that static search trees have a limited scope,
since they practically only support searching. The scope of dynamic search
trees on the other hand is wider, since they can be used as priority queues,
dictionaries, and similar data structures. However, the memory layout of
cache-oblivious static search trees are relatively simple and used as building
blocks of more complex cache-oblivious data structures.

In this chapter our main goal is to analyze the cache-oblivious static
search tree, or more precisely, we investigate the task of searching in such
a tree for a given element. We begin by taking a look at the previous work
done on cache-oblivious search trees in Section 5.1. Thereafter, we present a
formal description of search trees in Section 5.2. This leads us to present the
idea of layout policies in Section 5.3, which can be seen as a general way of
representing search trees both analytically and in practice. Layout policies
for search trees offer a way of separating the memory layout of a tree from
a generic algorithm used to perform the search.

To determine the efficiency of the cache-oblivious static search tree, we
compare it to the well-known static binary search tree and a cache-aware
static search tree. We analyze the binary search tree in Section 5.5, the
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cache-aware search tree in Section 5.6, and the cache-oblivious search tree
in Section 5.7. Furthermore, we present an algorithm that builds a cache-
oblivious search tree in O(N) time in Section 5.7.3. This is an improvement
of the O(N log2 log2N) algorithm of Ohashi [34], which, as far as we know,
is the only algorithm for this task described in the literature so far.

For all search trees, our analysis covers both cache-efficiency analyzed
in the ideal-cache model and the number of pure-C instructions performed
for the various trees. Furthermore, to complete the analysis, we count the
number of branch mispredictions caused by the trees. In Section 5.8 we sum
up the theoretical results to get an idea of what we can expect from the
benchmarks in Chapter 7.

5.1 Previous Work

The idea of cache-oblivious static binary search trees was already introduced
in Prokop’s thesis [38]. He shortly described the idea of a cache-oblivious
memory layout with a cache complexity that is asymptotically equivalent to
that of the B-tree [26], which is asymptotically optimal.

Independently, Ohashi [34] and Brodal et al. [15] described algorithms of
asymptotically optimal work complexity for navigating in Prokop’s memory
layout, e.g., finding a child node from a parent. Brodal et al. furthermore
compared the performance of the layout to other memory layouts and found
the cache-oblivious approach able to compete with cache-aware layouts, and
superior to memory layouts not explicitly optimized for the memory hierar-
chy. Ohashi used the layout for constructing a cache-oblivious heap.

Bender et al. [6] also used the idea of Prokop’s cache-oblivious layout.
Among other cache-oblivious data structures, they presented a dynamic
search tree supporting search and update operations of optimal cache com-
plexity O(logB N) in the worst case. Their approach was mostly to use the
tree as a building block for other structures, they did not analyze the tree
in detail.

Ladner et al. [30] have recently made an experimental comparison of
cache-aware and cache-oblivious static search trees using program instru-
mentation. They measured the execution time and by use of the instru-
mentation tool ATOM [40] they simulated the cache performance of vari-
ous implementations. They found that the cache-oblivious implementations
outperformed classic binary search on large datasets because of their better
utilization of the cache layers of the memory system . Overall, they found
cache-aware search to be the most effective.

As such, this chapter can be seen as a supplement to the experimental
work of Ladner et al. [30]. However, as they remarked themselves, the cache-
oblivious search algorithm they described was perhaps not the most efficient
one known. We will analyze a simpler cache-oblivious search algorithm that
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is potentially more efficient.

5.2 Definitions

A binary search tree is a standard binary tree satisfying Property 1, stating
the relative placement of the nodes in the tree [17].

Property 1. Let x be a node in a binary search tree. If y is a node in the
left subtree of x, then y is less than or equal to x. If y is in the right subtree
of x, then y is greater than or equal to x.

The number of elements in each node of a search tree depends on the
branching degree of the tree, i.e., a search tree with a branching degree of
k has k − 1 elements in each node. Therefore, Property 1 can be relaxed to
consider branching degrees other than 2:

Property 2. Let x be a node containing k − 1 sorted elements in a search
tree of branching degree k, where k ≥ 2. Let x1, . . . , xk−1 denote the non-
decreasing sequence of elements in node x and let the k subtrees of a node
be indexed 1, . . . , k in a left to right manner. If y is a node in the left-most
subtree of x (subtree 1), then all elements y1, . . . , yk−1 of node y are less
than or equal to x1. If y is a node in the right-most subtree of x (subtree k),
then all elements y1, . . . , yk−1 of node y are greater than or equal to xk−1.
If y is a node in any other subtree i of node x (i.e., 2 ≤ i ≤ k− 1), then all
elements y1, . . . , yk−1 of node y are greater than or equal to xi and less than
or equal to xi+1.

For a static search tree of branching degree k to be complete, it is required
that each node is either a leaf or has a branching degree of exactly k. It
follows that the number of leaves in a complete static search tree is a power
of k, and hence, the number of nodes is ki − 1, where i is some positive
integer. The size of a tree T is defined as the number of nodes in T , and
should not be confused with the amount of memory occupied by T , which of
course depends on both the number of elements in the tree and the size of
these elements. The height h of a static search tree is the number of levels
in the tree. If a complete static search tree T of degree k has N leaves, then
h(T ) is logkN +1. The depth of a node v is denoted d(v) and is the number
of nodes on the path from the root to v — including both the root and v.

5.3 Generic Static Search and Layout Policies

It follows from Property 2 that descending the levels in any search tree nar-
rows down the interval to search by a factor k. So, no matter the branching
degree of the tree, a search algorithm will have to examine the root for the
element that is searched for, and, if the root does not contain that element,
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continue the search in one of its child nodes. If the element is found some-
where on the path from root to a leaf, then the algorithm returns true,
otherwise false. What makes the search algorithm different for various
search trees is the way the algorithm determines whether a node holds the
element searched for and, if not, which child node to visit next and how to
find that child node. How these matters are handled depends on both the
branching degree and the way in which the tree is laid out in memory. We
say, that the layout policy of the search tree describes these matters.

The algorithm generic_search (Program 2) defines an overall iterative
search algorithm where the LayoutPolicy object hides the layout specific
behavior. By examining the algorithm it is obvious, that in the worst case
the loop will be executed once for each level of the tree.

1 template <typename RandomIterator, typename T, typename LayoutPolicy>

2 bool generic_search(RandomIterator begin,

3 RandomIterator beyond,

4 LayoutPolicy policy,

5 const T& value) {

6 policy.initialize(begin, beyond);

7 while(policy.not_finished()) {

8 if (policy.node_contains(value)) {

9 return true;

10 }

11 else

12 policy.descend_tree(value);

13 }

14 return false;

15 }

Program 2: Generic static search.

The three search trees investigated in this chapter all follow the generic_
search algorithm but have various layout policies. In our analysis the em-
phasis will be on the relative performance of these policies, so we will fo-
cus on how the various policies implement the functions initialize(),
not_finished(), node_contains(), and descend_tree().

5.4 Navigating in a Search Tree

There are two different ways of navigating in a search tree. Either we can
use explicit or pointer navigation, where each parent node contains pointers
to its children, or implicit navigation, where the positions of the child nodes
of a parent node are calculated based on the position of the parent node in
the tree. The use of explicit navigation means larger nodes and navigation
involving few calculations, whereas implicit navigation means smaller nodes
but navigation involving more calculations. Depending on the complexity
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of the explicit navigation procedure and possible constraints on how much
space an algorithm is allowed to use, one navigation method may be more
feasible than another.

5.5 The Inorder Layout Policy

We begin our investigation by examining the simplest of the layout policies,
namely that of the static binary search tree.

The memory layout of the static binary search tree is straightforward.
It is simply an array containing the elements in sorted order. This lay-
out is sometimes called the inorder layout, because it resembles an inorder
traversal of the tree. If the array is given by A[0..N)1, then the root is the
middle element with index N/2. If we denote this middle index by i, the
indices of its left and right children can be calculated as bi/2c and i+ bi/2c
respectively.

Many different implementations of the binary search tree exist, so which
one should we use? Mortensen [31] compared the performance of a number
of different binary search programs. Among others, he benchmarked a lower
bound algorithm similar to the one on which the SGI STL binary search
is built2. He compared the running time of this lower bound algorithm
to a number of optimized implementations. The benchmarks revealed that
even though the optimized implementations were superior to the SGI STL
implementation when data did fit into the level 1 and level 2 caches, the
SGI STL implementation was most efficient for larger datasets. However,
Mortensen’s measurements were highly affected by the fact that he inten-
tionally suppressed the compiler’s ability to translate conditional branches
into conditional assignments. This choice made the SGI STL implementa-
tion cause a high number of branch mispredictions and, by that, favored the
optimized implementations that were explicitly programmed to use condi-
tional assignments. For Mortensen, this was a necessary action to take since
his goal was to measure the effects of using conditional branch instructions
versus conditional assignment instructions in his programs.

Our goal is somewhat different. We are interested in deciding on whether
we should use the SGI STL implementation as the base of our analysis or
one of Mortensen’s other implementations. Specifically, we are interested
in knowing whether we should use conditional assignments in our programs
instead of conditional branches that may cause mispredictions, and thereby
decrease performance. To make the decision, we have compared the running

1We use A[0..N) to emphasize that element 0 belongs to the A, while element N
denotes the element one-past-the-end. This is similar to the use of begin() and end() in
STL containers.

2The binary search implementation of SGI STL is both widely used and known to be
quite efficient.
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time of the SGI STL lower_bound to one of Mortensen’s lower bound im-
plementations that uses conditional assignments (see page 148 in Appendix
A). Figure 5.1 shows that the effort of programming conditional assign-
ments explicitly does not pay off in practice. Since the two implementation
are equally efficient and the SGI STL version contains no conditional as-
signments, we decide on not making any workarounds to avoid conditional
branches in our programs. We let the compiler perform this optimization
job.
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Figure 5.1: The running time of the SGI STL lower bound and an optimized
lower bound implementation using conditional assignment instructions in-
stead of conditional branches.

Based on the lower bound algorithm of SGI STL we have constructed an
inorder layout policy to be used in the generic search algorithm of Program
2. This inorder policy is shown as Program 3. Figure 5.2 shows how the
generic search algorithm works when it uses the inorder layout policy. In
the figure, the search for the element 10 visits the elements 15, 7, 11, and 9
on the path from the root to element 10.

Work Complexity

We want to express the work complexity of the inorder layout policy by the
number of pure-C instructions the generic search program executes when
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1 template<typename RandomIterator, typename Value>

2 class inorder_search_policy {

3 public:

4 inorder_search_policy() { }

5 inline void initialize(RandomIterator begin,

6 RandomIterator beyond) {

7 m_begin = begin;

8 m_beyond = beyond;

9 m_len = beyond-begin;

10 }

11 inline bool not_finished() { return (m_len > 0); }

12 inline bool node_contains(const Value& value) {

13 m_half = m_len >> 1;

14 m_middle = m_begin;

15 m_middle = m_middle + m_half;

16 return *m_middle == value;

17 }

18 inline void descend_tree(const Value& value) {

19 if (*m_middle < value) {

20 m_begin = m_middle;

21 ++m_begin;

22 m_len = m_len - m_half - 1;

23 }

24 else

25 m_len = m_half;

26 }

27 private:

28 typename std::iterator_traits<RandomIterator>::difference_type m_half;

29 typename std::iterator_traits<RandomIterator>::difference_type m_len;

30 RandomIterator m_begin, m_beyond, m_middle;

31 };

Program 3: Layout policy of binary search.

0 1 2 3 4 5 6 7 98 10 11 12 13 14 15 16 17 18 302928272625

1st read2nd read 3rd read

5th read

4th read

N

Figure 5.2: The nodes of a compete binary search tree are laid out in memory
in sorted order, resembling an inorder traversal of the tree. When searching
for element 10 the inorder layout policy visits nodes 15, 7, 11, 9, and 10 in
the stated order.
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using that particular policy. Program 4 is a pure-C translation of the generic
search program using the inorder layout policy3.

1 template <typename RandomIterator, typename T>

2 bool inorder_search(RandomIterator begin,

3 RandomIterator beyond,

4 const T& value) {

5 typedef typename std::iterator_traits<RandomIterator>::difference_type diff_type;

6 initialize:

7 diff_type half, len = beyond - begin;

8 T middle_value;

9 RandomIterator middle;

10

11 goto not_finished;

12 descend_right:

13 begin = middle;

14 begin = begin + 1;

15 len = len - half;

16 len = len - 1;

17 not_finished:

18 if (len == 0) goto return_false; /* hint: not taken */

19 node_contains:

20 half = len >> 1;

21 middle = begin + half;

22 middle_value = *middle;

23 if (middle_value == value) goto return_true;

24 if (middle_value < value) goto descend_right;

25 descend_left:

26 len = half;

27 goto not_finished;

28

29 return_false:

30 return false;

31 return_true:

32 return true;

33 }

Program 4: Pure-C translation of generic search using the inorder layout
policy.

Theorem 2. Searching in a complete binary tree laid out in memory ac-
cording to the inorder layout incurs at most 10blog2Nc + O(1) Pure-C in-
structions, if using the generic search algorithm as defined in Program 2.

Proof. From the generic search algorithm it is apparent that the while loop
will dominate the running time. Therefore, we are interested in analyzing

3The pure-C programs are written in STL style. Therefore, variables of the type
RandomIterator are expected to behave like random access iterators as defined in the
C++ standard [22].
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the pure-C instructions of this loop, i.e., lines 11–27 of Program 4. Lines
6–9 and 29–32 will only add a constant O(1) term to the running time.

There are two ways of leaving the while loop. Either the value searched
for is found in line 23 or repetitive executions of the loop will have truncated
the length of the sequence to 0 in line 18. The latter situation will happen
in the worst case, so the question is how many times the loop is executed
before len becomes zero.

Descending down the tree from a parent to its left child cuts the sequence
N into a sequence of length bN/2c, while descending down to its right child
cuts the sequence N into a sequence of length N−bN/2c−1. Since bN/2c ≥
N−bN/2c−1, a search that continuously descends down the left path makes
up the worst-case search.

Let T (N) define the number of times the loop is executed. If N is 0,
then the loop is not executed at all, so we have T (0) = 0. If N > 0, then
T (N) is bounded by the recurrence T (N) ≤ T (bN/2c) + 1. Assuming that
T (bN/2c) ≤ blog2Nc+ 1 yields

T (N) ≤ T (bN/2c) + 1
≤ blog2bN/2cc+ 2
≤ blog2N/2c+ 2
= blog2N − 1c+ 2
= blog2Nc+ 1.

This bound also holds for the base case T (1).
Descending down the rightmost path of the tree incurs 10 pure-C in-

structions per loop iteration, hence we have a worst case pure-C complexity
of 10blog2Nc+O(1).

Branch Mispredictions

The following theorem states the number of branch mispredictions incurred
by the inorder layout:

Theorem 3. Searching in a complete binary tree laid out in memory accord-
ing to the inorder layout incurs at most blog2Nc+ 2 branch mispredictions,
if using the generic search algorithm as defined in Program 2.

Proof. To derive the branch misprediction count we consider the conditional
branch instructions in line 18, 23, and 24 of Program 4. The branch in line
18 has a hint, so it will only cause a misprediction in the last iteration of
the loop. None of the branches in line 23 and 24 have hints, so they are
predicted correctly every second iteration, i.e., blog2 Nc+1

2 times each. Hence,
the inorder layout incurs blog2Nc+ 2 branch mispredictions in total.
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Figure 5.3: As on Figure 5.2, the search for element 10 descends through
nodes 15, 7, 11, 9, and 10. During the search 3 distinct cache blocks are
visited.

Cache Complexity

To derive the cache complexity of binary search incurred by the inorder
layout, consider the example on Figure 5.3. The example shows how the
iterations narrow down the sequence to search, and by that make the me-
mory accesses increasingly more local. Assuming that a single element will
never cross a boundary between two blocks, Theorem 4 states the number
of cache misses incurred by the search algorithm.

Theorem 4. Searching in a binary tree, laid out in memory according to
the inorder layout, requires at most Q(N) = dlog2Ne − blog2Bc + 2 cache
misses, where N is 2i − 1 for some positive integer i.

Proof. Searching the tree involves, in the worst case, traversing a path from
the root all the way to a leaf. The number of cache misses involved in that
process is given by the recurrence T (N) = T (N/2)+1. For each node visited,
the problem size is reduced by half, and visiting a node requires reading a
new block into the cache. The recursion repeats until a subtree fits in a
cache line, i.e., the size of a subtree is less than B. This means that the base
case of the recurrence is T (B) = 2. For each of the log2N levels in the tree
a cache miss may occur, except for the final blog2Bc levels, that incur only
two misses; one miss for reading the block, and one additional miss if the
block alignment does not fit. Therefore, the total number of cache misses
becomes dlog2Ne− blog2Bc+ 2. Rounding down log2B is necessary, since,
when the recursion stops, we can only be sure that the subtree has at most
size B, not exactly size B.

The constraint in Theorem 4, that N has to be of the form 2i − 1, can
easily be relaxed by using a tree that is a little bigger than actually needed,
i.e. of size 2dlog2 Ne − 1, and allowing empty nodes and leaves in the tree.
The size of such a tree will be at most 2N−1 resulting in a worst-case space
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overhead of size N−1. In fact, due to the rounding up of log2N in Theorem
4, the upper bound stated by the theorem holds for all values of N .

As revealed by the analysis, the search algorithm is only likely to make
cache hits when a subtree becomes sufficiently small. Therefore, it can
be argued, that the inorder layout makes searching incompatible with the
principle of spatial locality.

5.6 The Cache-Aware Layout Policy

In the inorder layout, all but the last blog2Bc descends from a parent to
a child node incurs a cache miss. The cache-aware layout policy that we
present in this section does a better job at keeping data accesses local. The
layout is based on a description from Bentley [9]. He calls the searching
algorithm for this layout the multiway heap search, so we will use the term
heap policy for the search policy implementing this cache-aware memory
layout.

The heap policy uses multiway branching in order to obtain good cache
complexity. This approach ensures a tree with fewer levels than the inorder
layout, and since we are allowed to use knowledge of the cache line length,
we can ensure that cache misses do not occur as long as we stay inside a
node. Only when we descend a level down the tree it may incur a cache
miss. This way of laying out data in accordance with cache characteristics
is sometimes called blocking.

5.6.1 Implicit Navigation

Assuming 32-byte cache lines, 4-byte elements, and implicit navigation, each
node in the heap layout can contain 8 elements. Hence, we use 9-way branch-
ing, so for less than 9 elements the tree will have 1 level, for 9–80 elements
the tree will have 2 levels and so forth. We only need 11 levels to contain
232 elements. Within a node the elements are stored inorder, so searching
inside a node is done by use of standard binary search. The concept of the
implicit heap layout is shown on Figure 5.4.

According to Bentley, the heap layout uses B-way branching instead of
the (B + 1)-way branching shown on the figure. Therefore, Bentley’s nodes
contain perfectly balanced binary trees of height logB N , but in each cache
block a few bytes will remain unused. On the contrary, using (B + 1)-way
branching means fully filled cache blocks, but unbalanced binary trees of
height logB+1N . While this difference is a minor detail, filling the cache
blocks completely means a small improvement in cache performance.

Beginning at the root, the implicit heap search works as follows. First,
we check if the value we search for is held within the root. This can be
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Figure 5.4: A tree of 2 levels in the implicit heap layout. a) The implicit
heap layout uses (B + 1)-way branching with B elements in each node. b)
The B elements of a node are placed continuously in memory.

accomplished by use of the STL lower_bound algorithm4, as the elements
within a node are sorted in increasing order. If the lower bound algorithm
returns the value we are looking for, then we are done. Otherwise the lower
bound algorithm will indicate in which child node the search should proceed
by returning the index of the smallest element larger than the one we are
looking for. We can now calculate the memory position of the child to visit
next. The nodes are stored levelwise in memory, that is, the root at depth
1 is placed prior to the nodes at depth 2, and so on. Therefore, assuming
that we know the index i and the address ia of the node we are currently in
(i.e., the index points to the first element in the node), and the address la
of the node returned by the lower bound algorithm, then the index of the
child to visit next is calculated as

i = i ∗ (B + 1) +B ∗ ((la − ia) + 1),

where the i ∗ (B + 1) term brings the search down one level in the tree, and
the B ∗ ((la − ia) + 1) term makes sure that we index the correct node at
that level.

As an example, consider searching for the element 5 in the tree on Figure
5.4. The root has index 0, and the lower bound algorithm will return the

4We might as well use the upper bound algorithm, as the algorithms exhibit identical
behavior for unique keys.
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address of element 8, so the node to visit next is at index 0 ∗ (8 + 1) + 8 ∗
(0 + 1) = 8.

Work Complexity

The implicit heap layout can be expressed as a layout policy (Program 5)
and used in the generic_search algorithm. Program 6 is a full translation
of the pure-C program resulting from combining the generic_search algo-
rithm and this layout. The following theorem states the work complexity of
searching in the layout.

1 template <typename RandomIterator, typename Value>

2 class implicit_heap_policy {

3 public:

4 implicit_heap_policy(int degree) { m_degree = degree; }

5 inline void initialize(RandomIterator begin,

6 RandomIterator beyond) {

7 m_index = 0;

8 m_size = beyond-begin-m_degree;

9 m_current_node = begin;

10 m_lower_bound = begin;

11 m_begin = begin;

12 }

13 inline bool not_finished() { return m_index < m_size; }

14 inline bool node_contains(const Value &value) {

15 m_lower_bound =

16 std::lower_bound(m_current_node, m_current_node+m_degree-1, value);

17 return (*m_lower_bound == value);

18 }

19 inline void descend_tree(const Value& value) {

20 m_index =

21 m_index*m_degree + (m_degree-1)*((m_lower_bound-m_current_node)+1);

22 m_current_node = m_begin+m_index;

23 }

24 private:

25 int m_degree;

26 typename iterator_traits<RandomIterator>::difference_type

27 m_index, m_size;

28 RandomIterator m_current_node, m_lower_bound, m_begin;

29 };

Program 5: The implicit heap policy.

Theorem 5. Searching in an array of N elements laid out in memory ac-
cording to the implicit heap layout incurs at most (13+9 log2B)blog(B+1)Nc+
O(1) pure-C instructions, if using the generic search algorithm as defined in
Program 2.

Proof. As was the case with the inorder policy, the while loop of generic_
search dominates, so our focus is on lines 13–27 of Program 6. In the worst
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1 template <typename RandomIterator, typename T>

2 bool implicit_heap_search(RandomIterator begin,

3 RandomIterator beyond,

4 int degree,

5 const T& value) {

6 typedef typename std::iterator_traits<RandomIterator>::difference_type diff_type;

7 initialize:

8 RandomIterator lower_bound, l_middle, current_node = begin;

9 diff_type l_len, l_half, index = 0, size = beyond-begin;

10 T l_middle_value, x;

11 int degree_minus_1 = degree - 1;

12

13 goto not_finished;

14 descend_tree:

15 index = index * degree;

16 x = lower_bound-current_node;

17 x = x + 1;

18 x = degree_minus_1 * x;

19 index = index + x;

20 current_node = begin + index;

21 not_finished:

22 if (index >= size) goto return_false; /* hint: not taken */

23 node_contains:

24 lower_bound = current_node;

25 LOWER_BOUND(lower_bound, x)

26 if (x == value) goto return_true;

27 goto descend_tree;

28

29 return_false:

30 return false;

31 return_true:

32 return true;

33 }

Program 6: The pure-C implementation of the implicit heap search.
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case the while loop is exited in line 22 as the consequence of an unsuccessful
search. So, how many times is the loop executed before index becomes
larger than or equal to size?

The nodes in the tree are laid out levelwise in memory, so descending
down one level in the tree from depth di to depth di+1 corresponds to having
moved at least (B + 1)i − 1 places to the right in the array since the search
began. Therefore, index will become larger than or equal to size when we
have descended blog(B+1)Nc levels in the tree. As the loop is executed once
before the first descend, it is executed 1 + blog(B+1)Nc times in total.

Without counting the lower bound calculation of line 25, the loop consists
of 10 pure-C instructions. The lower bound can be calculated by Program
4 with a slight modification. By excluding line 23 of that program, and
returning the iterator begin instead of true or false, the program implements
the lower bound algorithm. The lower bound program as used in Program
6 is shown in Program 7. It executes 9blog2Bc+ 3 pure-C instructions (cf.
Theorem 2).

1 #define LOWER_BOUND(lower_bound, x) \

2 l_len = degree_minus_1; \

3 goto l_not_finished; \

4 l_right: \

5 lower_bound = l_middle; \

6 lower_bound = lower_bound + 1; \

7 l_len = l_len - l_half; \

8 l_len = l_len - 1; \

9 l_not_finished: \

10 if (l_len == 0) goto l_return; /* hint: not taken */ \

11 l_found: \

12 l_half = l_len >> 1; \

13 l_middle = lower_bound + l_half; \

14 l_middle_value = *l_middle; \

15 if (l_middle_value < value) goto l_right; \

16 l_left: \

17 l_len = l_half; \

18 goto l_not_finished; \

19 l_return: \

20 x = *lower_bound;

Program 7: Lower bound calculation in pure-C.

Since B in practice is a power of 2, we can omit the floors of the
lower bound calculation, so the worst-case pure-C complexity becomes (13+
9 log2B)blog(B+1)Nc+O(1),

Branch Mispredictions

Theorem 6. Searching in an array of N elements laid out in memory ac-
cording to the implicit heap layout incurs at most
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branch mispredictions, if using the generic search algorithm as defined in
Program 2.

Proof. The loop of Program 6 (line 13–27) contains two conditional branch
instructions plus the conditional branch instructions of the lower bound cal-
culation in line 25. The branch in line 22 is only mispredicted in the last
iteration, while the branch in line 26 is mispredicted every second iteration
of the loop, that is

1+blog(B+1) Nc
2 times. One lower bound calculation (Pro-

gram 7) involves two conditional branch instructions in line 10 and 15. The
branch in line 10 is mispredicted only once, while the branch in line 15 is
mispredicted 1+log2 B

2 times. Hence, in total Program 6 causes

1 +
1 + blog(B+1)Nc

2
+
(

1 + blog(B+1)Nc
)(

1 +
1 + log2B

2

)
= 1 +

1
2

+
blog(B+1)Nc

2
+
(

1 + blog(B+1)Nc
)(

1 +
1
2

+
log2B

2

)
=

3
2

+
blog(B+1)Nc

2
+

3
2

+
log2B

2
+

3blog(B+1)Nc
2

+
blog(B+1)Nc log2B

2

=
4blog(B+1)Nc+ log2B + blog(B+1)Nc log2B + 6

2

=
1
2

(
blog(B+1)Nc+ 1

)
(log2B + 4) + 1

branch mispredictions.

Cache Complexity

In a cache-aware algorithm we are allowed to take advantage of knowing
the cache-line length, so we can avoid the alignment considerations men-
tioned in Section 3.3.3 and assume that the nodes are aligned on cache-line
boundaries. The following theorem states the cache complexity of using the
implicit heap layout.

Theorem 7. Searching in an array of N elements laid out in memory ac-
cording to the implicit heap layout incurs at most Q(N) = dlog(B+1)Ne
cache misses.

Proof. The search visits one node at each level of the tree. As all nodes are
aligned on cache line boundaries and take up exactly one cache line each,
the cache complexity equals the number of levels in the tree, which is given
by dlog(B+1)Ne.
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Figure 5.5: A tree of 2 levels in the explicit heap layout. In the example
the cache line length is 32 bytes and each element takes up 4 bytes. a) The
explicit heap layout uses (B/2)-way branching with (B/2) − 1 elements in
each node. b) The nodes are placed levelwise and continuously in memory.

5.6.2 Explicit Navigation

The use of explicit or pointer navigation instead of implicit navigation offers
a trade-off between the work and cache complexity of the multiway heap
search. By simplifying the navigational computations explicit navigation
can lower the constant in the leading term of the work complexity. The
price to pay is an increase in the logarithmic bases of both the work and the
cache complexities.

Assuming 32-byte cache lines, 4-byte elements, and 4-byte pointers5, the
explicit navigation leaves only room for three elements in each node. Of the
remaining 20 bytes, 16 bytes contain four 4-byte pointers to the nodes in
the next layer, and the last 4 bytes are unused. The concept of the explicit
heap layout is depicted on Figure 5.5.

The search algorithm still determines which child node to visit next by
calculating the lower bound in the parent node. But instead of calculating
the position of the child nodes in memory, the position is found by following
a pointer.

Work Complexity

Program 8 depicts the explicit heap policy and Program 9 is the pure-
C translation. In Program 8 and 9 a node is expected to be a C struct
containing an array of B/2 − 1 elements and an array of B/2 pointers to
the children of that node. In leaf nodes, the child pointers are expected to
point to beyond. The structure of the nodes is shown in Figure 5.5.

532 bits per pointer is reasonable to assume as long as we use 32-bit computers.
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1 template <typename RandomIterator, typename Value>

2 class explicit_heap_policy {

3 public:

4 explicit_heap_policy(int degree) { m_degree = degree; }

5 inline void initialize(RandomIterator begin,

6 RandomIterator beyond) {

7 m_current_node = begin;

8 m_beyond = beyond;

9 }

10 inline bool not_finished() {

11 return (m_current_node < m_beyond);

12 }

13 inline bool node_contains(const Value &value){

14 m_lower_bound =

15 lower_bound(&(m_current_node->e[0]), &(m_current_node->e[m_degree-1]), value);

16 return (*m_lower_bound == value);

17 }

18 inline void descend_tree(const Value& element) {

19 m_current_node =

20 m_current_node->p[m_lower_bound-reinterpret_cast<Value*>(m_current_node)];

21 }

22 private:

23 int m_degree;

24 RandomIterator m_current_node, m_beyond;

25 Value *m_lower_bound;

26 };

Program 8: The explicit heap policy.
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1 template <typename RandomIterator, typename T>

2 bool explicit_heap_search(RandomIterator begin,

3 RandomIterator beyond,

4 unsigned int degree_minus_1,

5 const T& value) {

6 typedef typename std::iterator_traits<RandomIterator>::difference_type diff_type;

7 initialize:

8 T x, l_middle_value, *lower_bound, *l_middle;

9 diff_type y, l_len, l_half;

10 RandomIterator current_node = begin;

11

12 goto not_finished;

13 descend_tree:

14 y = lower_bound - reinterpret_cast<T*>(current_node);

15 current_node = current_node->p[y];

16 not_finished:

17 if (current_node >= beyond) goto return_false; /* hint: not taken */

18 node_contains:

19 lower_bound = reinterpret_cast<T*>(current_node);

20 LOWER_BOUND(lower_bound, x)

21 if (x == value) goto return_true;

22 goto descend_tree;

23

24 return_false:

25 return false;

26 return_true:

27 return true;

28 }

Program 9: The pure-C implementation of the explicit heap search.
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a) b)

typedef struct a {

unsigned int b[3];

unsigned int *c[4]; movl p, %eax

} a; movl 20(%eax), %eax

a *p; movl %eax, x

unsigned int *x;

x = p->c[2];

Figure 5.6: The compiler translates the last line of program a) into as-
sembly code b), which corresponds to three pure-C instructions, namely a
memory-to-register, a register-to-register, and a register-to-memory instruc-
tion. Assuming that p is already in memory prior to the indexing of c[2],
only the cost of the last two assembly instructions should be charged to the
struct indexing.

Pure-C has no instructions for accessing members of a struct (line 15
in Program 9), so we have to determine the cost of such an instruction to
be able to express the program’s work complexity in the pure-C cost model.
By use of Program 5.6a and the g++ compiler with the -S option we can
determine this cost. The compiler translates the line x = p->c[2] into the
three assembly instructions of Program 5.6b. Since c[2] is found by adding
20 to the pointer p, the assembly instructions tell us that the members of
a struct are byte-indexed on basis of the address of the struct itself. In
total, x p->c[2] corresponds to a memory-to-register, a register-to-register,
and a register-to-memory instruction. Assuming that p is kept in a register
prior to the access, we charge it a pure-C cost of 2. This resembles the
way in which the cost of other pure-C instructions are derived. E.g., the
instruction x = x * 2 only has a pure-C cost of 1, since x is assumed to be
in a register prior to the multiplication.

Theorem 8. Searching among N elements laid out in memory according to
the explicit heap layout incurs at most (9 log2(B/2 − 1) + 7)blog(B/2)Nc +
O(1) pure-C instructions, if using the generic search algorithm as defined in
Program 2.

Proof. We focus on the loop in the lines 12–22 of Program 9. In the worst
case the loop is exited in line 17 as the consequence of an unsuccessful search,
that is, when the iterator current_node becomes larger than or equal to
the iterator beyond.

The nodes in the tree are laid out in memory levelwise. Therefore,
descending down one level in the tree from depth di to depth di+1, by
following a child pointer (line 15), corresponds to increasing the value of
current_node, so that all nodes at level j < i are at lower addresses than
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that node. Therefore, current_node is larger than or equal to beyond after
1 + blog(B/2)Nc iterations.

Including the calculation of lower bound in line 20, the work complexity
becomes (9 log2(B/2− 1) + 7)blog(B/2)Nc+O(1).

Branch Mispredictions

Theorem 9. Searching in an array of N elements laid out in memory ac-
cording to the explicit heap layout incurs at most

1
2

(
blog(B/2)Nc+ 1

)
(log2 (B/2− 1) + 4) + 1

branch mispredictions, if using the generic search algorithm as defined in
Program 2.

Proof. Program 9 contains conditional branch instructions similar to those
of Program 6, i.e., the two conditional branch instructions in line 17 and
21 plus the conditional branch instructions of the lower bound calculation
in line 20. Therefore, the only difference between the branch misprediction
counts of the implicit and the explicit heap layout is the logarithm base and
the number of elements that the lower bound algorithm works on in each
iteration. Hence, Program 9 causes the stated number of branch mispredic-
tions.

Cache Complexity

The cache complexity of using the explicit heap layout resembles that of its
implicit sibling. The only difference is the branching degree.

Theorem 10. Searching in an array of N elements laid out in memory
according to the explicit heap layout incurs at most Q(N) = dlog(B/2)Ne
cache misses.

Proof. The search visits one node at each level of the tree. As all nodes are
aligned on cache line boundaries and take up less than one cache line each,
the cache complexity equals the number of levels in the tree, which is given
by dlog(B/2)Ne.

5.7 The Cache-Oblivious Layout Policy

The cache-oblivious layout policy that we present in this section offers a
cache complexity that is comparable to that of the cache-aware layout, but
without using any knowledge of the memory system’s characteristics. The
layout is sometimes referred to as the van Emde Boas layout, since it matches
the layout of a priority queue of van Emde Boas. We prefer to use the term
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Figure 5.7: The concept of splitting a tree in the height partitioned layout.
The tree with N nodes is split at the middle level resulting in a top recur-
sive subtree T and

√
N + 1 bottom recursive subtrees B1, B2, . . . , Bk. Each

subtree has size
√
N + 1− 1.

height partitioned layout, since it better describes what the layout is all
about.

The idea of the height partitioned layout is as follows. Suppose we have
a complete binary tree of height h with N nodes storing N elements in
search-tree order, and that h is a power of 2. The tree is split at the middle
level of edges, i.e., between nodes at depth h/2 and h/2 + 1 resulting in
a top recursive subtree T of height h/2 and a number of disjoint bottom
recursive subtrees B1, . . . , Bk each of height h/2. The layout is obtained by
recursively laying out the top subtree T and the bottom subtrees B1, . . . , Bk
in memory in the order T,B1, . . . , Bk. We now have

√
N + 1 bottom subtrees

in addition to the top subtree, and since the tree is complete, each subtree
is of size

√
N + 1− 1.

If h is not a power of two, then splitting will not result in top and bottom
subtrees of the same height. Instead, the tree is split so that the height of the
bottom trees is 2dlog2 (h/2)e, i.e., the smallest power of 2 greater than or equal
to h/2. This leaves the top recursive subtree with height h − 2dlog2 (h/2)e.
This splitting method continues on the top recursive subtree until its height
becomes a power of 2. Notice, that if there still is an “odd-sized” subtree
when the recursion stops, then this splitting method guarantees that it is
located at the topmost top subtree. Furthermore, notice that all subtrees
except a possibly “odd-sized” top subtree at this level of recursion all have
the same size.

Figure 5.7 illustrates the concept of splitting a tree with the height par-
titioned layout and Figure 5.8 is an example of the height partitioned layout
for a tree of height 5.
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Figure 5.8: The height partitioned layout of a tree of height 5. Since 5 is
not a power of 2, the tree is split so that the bottom recursive subtrees have
heights that are powers of 2, namely 4. This leaves the top subtree with
height 5 − 4 = 1. As can be seen the top subtree is recursively laid out in
memory, followed by the bottom subtrees — here in a left to right order.
Actually the order is not important as long as a subtree is laid out in a
continuous segment of memory.
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5.7.1 Implicit Navigation

As was the case with the inorder layout, navigating down the height parti-
tioned tree implicitly involves calculating the location of left and right child
nodes given the location of their parent. In the inorder layout implicit nav-
igation involved simple address arithmetics. In the cache-oblivious layout it
gets more complicated. A clever implicit navigation method of Brodal et al.
[15] is described in this section.

The navigation method builds on two observations. The first is on the
height partitioned layout, and the second is on the breadth-first layout6 of
a tree of the same size:

Observation 1: At some level in the recursion, every node will become the
root of a bottom tree. If we unroll the recursion until this is true for
a node v, then the unrolling will be just the same for all other nodes
at depth d(v). Hence, the bottom subtrees with root at level d(v) all
have the same size, and they all have corresponding top subtrees of the
same size. In Figure 5.9a, the first level of recursion splits the tree at
depth 2, the second at depth 4, and the third at depth 3 and 5. Hence,
the split at depth 5 makes the nodes 3, 4, 18, and 19 roots of bottom
trees of size 1 after three levels of recursion. The corresponding top
subtree of node 3 and 4 is rooted at node 2 and has size 1 — the same
size as node 17, which is the corresponding top subtree of node 18 and
19.

Observation 2: Given a node v at position i in a tree of the breadth-first
layout, the positions of its children are given by 2i and 2i+ 1. Figure
5.9b depicts a tree of the breadth-first layout. A tree of the breadth-
first layout holds the following property:

Property 3. Let ibin be the sequence of bits representing the position
of a node v in the breadth-first layout. The bits of ibin, except for the
most significant one, represent by descending significance the left and
right turns on the path from the root the v. A 0-bit represents a left
turn and a 1-bit represents a right turn.

In Figure 5.9b, the binary representation of node 25 is 11001bin. There-
fore, the path from the root to node 25 is right, left, left, right.

By observation 1, and by recalling that the height partitioned layout is
all about storing bottom subtrees in memory after their corresponding top
subtree (Figure 5.8), the memory location of the bottom subtrees Ba

1 , . . . , B
a
k

of a corresponding top subtree T a, relative to the root of T a, is the same as
the memory location of the bottom subtrees Bb

1, . . . , B
b
k of a corresponding

6The breadth-first layout is similar to the layout of a binary heap.
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top subtree T b, relative to the root of T b, if the roots of T a and T b are at
the same depth. As an example, in Figure 5.9, the bottom subtree rooted
at node 20 is the left-most bottom subtree of the top subtree rooted at node
17. The distance of 3 memory units is the same as the distance between
the left-most bottom subtree rooted at node 5 and the top subtree rooted
at node 2. This means that we are able to calculate the position of the root
of any of the bottom subtrees, if we know

� the size of the bottom subtree,

� the size of the corresponding top subtree, and

� the position of the root of the corresponding top subtree.

Since a node can only be the root of one top and one bottom subtree during
the recursion, the sizes of bottom and top subtrees need only be calculated
for each depth d in the tree. This can easily be done during the actual layout
of the tree in memory, and stored in two arrays PT [d] and PB[d]. These
arrays are calculated in O(log2N) time, and take up O(log2N) space.

We know that the root of the entire tree is at position 1, so we start by
calculating the position Pos[2] of the bottom subtrees rooted at depth 2.
These bottom subtrees must necessarily have a corresponding top subtree
rooted at depth 1, so the position of the root of this top subtree is 1. Thus,
we have

Pos[2] = Pos[1] + PT [2] + xPB[2], (5.1)

since the root of the top subtree is also the parent. The x indicates the
bottom subtree whose root position we are calculating. For the left-most
subtree x is 0. When we descend further down the tree we can no longer
be sure that the root of the corresponding top subtree is the parent, i.e., is
located at current depth minus 1. Therefore, while building the arrays PT [d]
and PB[d] we also keep track of the depth PD[d] at which the top trees are
rooted. This only affects the time and space bounds of laying out the tree
by a constant factor. Equation (5.1) can be generalized to

Pos[d] = Pos[PD[d]] + PT [d] + xPB[d]. (5.2)

The remaining problem is now to index the correct bottom subtree, i.e. to
find the value of x. In other words, we need to calculate the path followed
in the top subtree from its root to the root of the bottom subtree of interest.
Here observation 2 will come in handy: When a node is visited during the
search in the height partitioned layout, we can keep track of the position iv
of the corresponding node in the breadth-first layout.

If iv is the position of the node v in the breadth-first layout, and v is the
root of the bottom tree of interest, and is located at depth dv in the height
partitioned layout, then the binary and-operation iv&PT [dv] will index the
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correct bottom subtree to descend in the height partitioned layout. Equation
(5.2) becomes:

Pos[d] = Pos[PD[d]] + PT [d] + (i&PT [d])PB[d]. (5.3)

Given the precomputed arraysB, T , andD, the algorithm Height-Partitioning-

Search searches the array A for the value key. Array A represents a tree
in the height partitioned layout.

Height-Partitioning-Search(A, key, PB, PT , PD)
1 d← 1
2 Pos[1]← 1
3 i← 1
4 while PD[d] 6= nil

5 do if A[Pos[d]] = key
6 then return true
7 if A[Pos[d]] < key
8 then i← 2i+ 1
9 else i← 2i

10 d← d+ 1
11 Pos[d] = Pos[PD[d]] + PT [d] + (i&PT [d]) · PB[d]
12 return false

In line 1 to 3 d and Pos[d] are initialized to the depth and position of
the root. The while-loop (line 4 to 11) is executed at most once for each
depth in the tree. In line 5 and 6, if the current node contains the value to
be found, then the algorithm terminates by returning true. In line 7 to 9 the
position in the breadth-first layout of the next node to search is calculated,
and in line 10 and 11 the depth and position in the height partitioned layout
of the next node to search is calculated.

As an example of Height-Partitioning-Search, we investigate the
tree in Figure 5.8. The following table shows the precomputed arrays of this
tree.

d PB[d] PT [d] PD[d]
2 15 1 1
3 1 1 2
4 3 3 2
5 1 1 4

Searching the tree for the value 18 involves examining Figure 5.9a and b as
well as Figure 5.8. By the following computational steps, we calculate the
positions of the nodes on the path from root to the 18-node:
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Figure 5.9: a) The root-to-node path visits memory position 1, 17, 18, 20,
and 22 in the height partitioned layout, when searching for the value 18 in
the tree on Figure 5.8. b) The corresponding positions of the nodes 1, 17, 18,
20, and 22 in the breadth-first layout. In Height-Partitioning-Search

the nodes are only conceptually laid out in the breadth-first layout. Actual
storing of elements is only done according to the height partitioned layout.

Pos[1] = 1
Pos[2] = Pos[PD[2]] + PT [2] + (3&PT [2]) · PB[2] = 17
Pos[3] = Pos[PD[3]] + PT [3] + (6&PT [3]) · PB[3] = 18
Pos[4] = Pos[PD[4]] + PT [4] + (12&PT [4]) · PB[4] = 20
Pos[5] = Pos[PD[5]] + PT [5] + (25&PT [5]) · PB[5] = 22

Work Complexity

We have programmed the implicit height partitioning search both as a lay-
out policy and in pure-C. As the Height-Partitioning-Search algorithm
indicates how the layout policy is implemented, we will here only show the
pure-C implementation. In fact, Program 10 only shows the dominating
while loop of this implementation, since only this part of the implementa-
tion is interesting when bounding the work complexity. The complete code
for both implementations can be found in Appendix A.
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16 goto not_finished;

17 descend_right:

18 current_bfs_index = current_bfs_index*2;

19 current_bfs_index++;

20 current_depth++;

21 p = D + current_depth;

22 x = *p;

23 p = Pos + x;

24 x = *p;

25 p = T + current_depth;

26 y = *p;

27 z = current_bfs_index & y;

28 p = B + current_depth;

29 w = *p;

30 z = z * w;

31 w = x + y;

32 w = w + z;

33 p = Pos + current_depth;

34 *p = w;

35 not_finished:

36 if (current_bfs_index > size) goto return_false; /* hint: not taken */

37 node_contains:

38 p = Pos+current_depth;

39 x = *p;

40 p = begin+x;

41 x = *p;

42 if (x == value) goto return_true;

43 if (x < value) goto descend_right;

44 descend_left:

45 current_bfs_index = current_bfs_index*2;

46 current_depth++;

47 p = D + current_depth;

48 x = *p;

49 p = Pos + x;

50 x = *p;

51 p = T + current_depth;

52 y = *p;

53 z = current_bfs_index & y;

54 p = B + current_depth;

55 w = *p;

56 z = z * w;

57 w = x + y;

58 w = w + z;

59 p = Pos + current_depth;

60 *p = w;

61 goto not_finished;

Program 10: The dominating while loop of the pure-C implementation of
the implicit height partitioning search.
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Theorem 11. Searching among N elements laid out in memory according to
the implicit height partitioned layout incurs at most 24blog2Nc+O(1) pure-
C instructions, if using the generic search algorithm as defined in Program
2.

Proof. In the worst case the search terminates in line 36 due to an unsuc-
cessful search when current_bfs_index becomes larger than size. De-
scending down the left-most path in the tree incurs the least increment of
current_bfs_index, and thereby the worst case situation. As the index in
this case is doubled each iteration (beginning with a value of 1), the loop is
executed 1 + blog2Nc times. As each iteration of the loop incurs 24 pure-C
instructions the worst-case work complexity becomes 24blog2Nc+O(1).

Branch Mispredictions

Theorem 12. Searching in an array of N elements laid out in memory
according to the implicit height partitioned layout incurs at most blog2Nc+2
branch mispredictions, if using the generic search algorithm as defined in
Program 2.

Proof. Program 10 contains conditional branch instructions in line 36, 42,
and 43. The branch instruction in line 36 has a hint, so it is mispredicted
only once. The other two branch instructions have no hints, so they are
mispredicted every second iteration of the loop, that is, 1+blog2 Nc

2 times
each. Hence the implicit height partitioned layout causes blog2Nc+2 branch
mispredictions.

Cache Complexity

The implicit height partitioned layout is different from the inorder and heap
layouts in that it uses additional space to ease the navigational compu-
tations. This extra space usage makes the navigation influence the cache
complexity of the implicit heap partitioned layout, which is not the case for
the other layouts. Therefore, we have split the cache complexity analysis
for this layout into three theorems. Theorem 13 states the number of cache
misses incurred by the height partitioned tree itself, that is, not taking the
navigational computations into account. Theorem 14 handles the naviga-
tional computations on their own and Theorem 15 states the total cache
complexity of searching in the implicit height partitioned layout.

Theorem 13. Searching in an array of N elements laid out in memory
according to the implicit height partitioned layout incurs at most Q(N) =
4blogB Nc + 2 cache misses, if the navigational computations are not con-
sidered.
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Proof. Suppose the tree is split recursively until every subtree has size at
most B, i.e., until every subtree contains at most B and at least

√
B nodes.

Then, at this final level of recursion, each subtree is stored in an interval
of memory of size at most B, and since the block alignment may not fit,
each subtree occupies at most 2 blocks. All subtrees now have a height of
at least (log2B)/2 except the topmost top subtree which may be smaller.
When the search traverses down the path from the root to a leaf a sequence
of 2(log2N)/(log2B) = 2 logB N recursive subtrees is visited in addition
to the topmost subtree. Since visiting a subtree may incur up to 2 cache
misses, the cost becomes 4blogB Nc+ 2 misses.

Theorem 14. The navigational computations of searching in the implicit
height partitioned layout incurs at most Q(N) = 4

(
log2 N
B + 1

)
cache misses,

provided M ≥ 5B.

Proof. During the search the navigational computations are supported by
the arrays PT , PB, and PD, each of size blog2Nc, and the array Pos of size
dlog2Ne. The computations at each depth d > 1 are given by Equation
(5.3). According to this equation, a descend from the root to a leaf causes a
scan of each of the four arrays — plus an additional lookup of Pos[PD[d]] at
each depth. Ignoring floors and ceilings, the four scans incur 4

(
log2 N
B + 1

)
cache misses, provided that the cache can hold 4 blocks at a time, i.e.,
M ≥ 4. The dlog2Ne lookups of Pos[PD[d]] incur no extra cache misses.
Because PD[d] < d for all d (cf. the example on page 68), Pos[PD[d]]
will always refer to an entry in Pos that have been brought into the cache
earlier. If the cache can contain this extra block, i.e., M ≥ 5, then the
optimal replacement strategy of the ideal-cache model guarantees that the
block has not been thrown out in the meantime.

Theorem 15. Searching in an array of N elements laid out in memory
according to the implicit height partitioned layout incurs at most Q(N) =
4blogB Nc+ 4 log2 N

B + 6 cache misses, provided M ≥ 6B.

Proof. Follows directly from Theorem 13 and 14.

5.7.2 Explicit Navigation

By use of explicit navigation we can omit the complex navigational com-
putations and use pointers instead. Assuming 4-byte pointers and 4-byte
elements the explicit layout is three times as space consuming as the implicit
one, since each node has to contain pointers to its two children.

Work Complexity

Program 11 depicts the pure-C implementation using explicit navigation.
The code for the corresponding layout policy is in Appendix A.
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1 template <typename RandomIterator, typename T>

2 bool explicit_hp_search(RandomIterator begin,

3 RandomIterator beyond,

4 const T& value) {

5 initialize:

6 typedef typename std::iterator_traits<RandomIterator>::difference_type diff_type;

7 RandomIterator current_element = begin;

8 T x;

9 diff_type size = beyond - begin, current_bfs_index = 1;

10

11 goto not_finished;

12 descend_right:

13 current_element = current_element->left_child;

14 current_bfs_index = current_bfs_index*2;

15 current_bfs_index++;

16 not_finished:

17 if (current_bfs_index > size) goto return_false; /* hint: not taken */

18 node_contains:

19 x = current_element->e;

20 if (x == value) goto return_true;

21 if (x > value) goto descend_right;

22 descend_left:

23 current_element = current_element->right_child;

24 current_bfs_index = current_bfs_index*2;

25 goto not_finished;

26

27 return_false:

28 return false;

29 return_true:

30 return true;

31 }

Program 11: The pure-C implementation of the explicit height partitioning
search.
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Theorem 16. Searching among N elements laid out in memory according
to the explicit height partitioned layout incurs at most 7blog2Nc+O(1) pure-
C instructions, if using the generic search algorithm as defined in Program
2.

Proof. The proof is similar to that of Theorem 11. Each of the blog2Nc
iterations incurs 7 pure-C instructions — remember, that line 13 and 19
both correspond to 2 pure-C instructions.

Branch Mispredictions

Theorem 17. Searching in an array of N elements laid out in memory
according to the explicit height partitioned layout incurs at most blog2Nc+2
branch mispredictions, if using the generic search algorithm as defined in
Program 2.

Proof. Program 11 contains conditional branch instructions similar to those
of Program 10. Hence the explicit height partitioned layout causes the stated
number of branch mispredictions.

Cache Complexity

Also the cache complexity of using the explicit height partitioned layout
resembles that of the implicit variant — except for the fact that it does not
use any precomputed information.

Theorem 18. Assuming that an element and a pointer to an element takes
up the same amount of memory space, searching in an array of N elements
laid out in memory according to the explicit height partitioned layout requires
at most Q(N) = 4blogB 3Nc+ 2 cache misses.

Proof. The proof is similar to that of Theorem 13. Though, since an element
takes up three times as much space than is the case for the implicit layout
we get the factor 3 of the blogB 3Nc term.

5.7.3 Constructing a Height Partitioned Tree

As mentioned earlier, Ohashi [34] presented an algorithm for constructing a
tree in the height partitioned layout. Given a sorted sequence of elements
Ohashi’s algorithm can construct a height partitioned tree inO(N log2 log2N)
time. In this section we present a linear time algorithm that performs the
same task.

Given a source array of N sorted elements and a target array, also of size
N , in which the tree is to be build, the algorithm works by splitting the target
array into a top subtree T and a number of bottom subtrees B1, . . . , Bk. The
algorithm then recursively splits the top tree and the bottom trees until the
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base case of the recursion is reached. As such, this splitting of the target
array is conceptual, since no elements are actually moved until the bottom of
the recursion is reached. In fact, the splitting can be viewed as a recursive
mapping of the elements from the source to the target array, where the
calculations of the positions of the elements in the target array become
recursively more and more precise. In Figure 5.10 the mapping is shown for
the coarsest level of recursion.

Source array

Target array

0

|B|+ 1 2|B|+ 2

T B B B B

3|B|+ 22|B|+ 1 N(k − 1)|B|+ (k − 1)|B|

Figure 5.10: At the coarsest level of recursion we know that for every |B|
elements of the source array one element will eventually end up in the top
tree in the target array. Furthermore, the elements within a bottom tree are
placed continuously in both the source and the target array — though the
final placement of the elements in the target array will be a permutation of
the sequence in which they occurred in the source array. The mapping is
not final, since only the first recursion of the conceptual mapping is shown.
It only indicates in which area the elements will eventually end up.

For the bottom trees the mapping is easy. The elements of a bottom
tree are placed continuously in the source array as well as in the target
array, though the final placement of the elements in the target array will be
a permutation of the sequence in which they occurred in the source array.
This locality among the elements keeps the recursive mapping simple, since
the segments of both the source and the target array will remain continuous.

For the top tree the mapping is more difficult. Let |B| denote the size
of a bottom tree. At the coarsest level of recursion we know that for every
|B| elements in the source array one element will belong to the top tree
when the algorithm terminates; we just do not know yet at what position it
ends up. Therefore, when we recurse the mapping of a top tree we have to
keep track of |B|. Otherwise, we can not copy the elements to their correct
position when the base case of the recursion is reached.

The algorithm has two base cases. At some point in the recursion the
tree will either consist of a top tree and two bottom trees — each of height
1 — or of a single top tree containing just one element. The latter base case
can occur if the height of the tree initially was not a power of 2 (for details,
see the discussion of “odd-sized” subtrees on page 63). Program 12 is a
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C++ program that builds a tree in the height partitioned layout. Initially,
the program should be called with step = 1.

1 template<typename RandomIterator>

2 void build_hp_tree(RandomIterator begin_in,

3 RandomIterator begin_out,

4 int height,

5 int step) {

6 int bottom_height = height==2?1:hyperfloor(height-1);

7 int top_height = height-bottom_height;

8 int bottom_size = (1<<(bottom_height))-1;

9 int top_size = (1<<(top_height))-1;

10

11 if (top_height == 1 && bottom_height == 1) {

12 begin_out[1] = begin_in[0];

13 begin_out[0] = begin_in[1*step];

14 begin_out[2] = begin_in[2*step];

15 return;

16 }

17 if (top_height == 1) {

18 begin_out[0] = begin_in[bottom_size*step];

19 } else {

20 build_hp_tree(begin_in+bottom_size*step,

21 begin_out,

22 top_height,

23 bottom_size*step+step);

24 }

25 for(int i = 0; i <= top_size; i++) {

26 build_hp_tree(begin_in+(i*bottom_size+i)*step,

27 begin_out+top_size+i*bottom_size,

28 bottom_height,

29 step);

30 }

31 }

Program 12: C++ program implementing the algorithm for building a tree
in the height partitioned layout.

Theorem 19. Assuming that N is 2i−1 for some positive integer i, Program
12 builds a tree of N elements in the height partitioned layout in O(N) time.

Proof. The height h of the tree is given by log2(N + 1), which implies N =
2h − 1. In each recursive step the input is divided into a single top tree of
size 2h−2dlog2 h/2e−1 and 2h−2dlog2 h/2e bottom trees each of size 22dlog2 h/2e−1.
We denote the work of subdividing the problem by d2h−2dlog2 h/2e . Hence, we
have the recurrence

T (N) = T (2h−2dlog2 h/2e−1)+(2h−2dlog2 h/2e)T (22dlog2 h/2e−1)+d2h−2dlog2 h/2e
.

(5.4)
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We want to prove that T (N) ≤ cN for some constant c > 0. We assume
that this bound holds for 2h−2dlog2 h/2e − 1 and 22dlog2 h/2e − 1, that is,

T (2h−2dlog2 h/2e − 1) ≤ c
(

2h−2dlog2 h/2e − 1
)

and
T (22dlog2 h/2e − 1) ≤ c

(
22dlog2 h/2e − 1

)
.

Substituting these values into Recurrence (5.4) yields

T (N) ≤ c(2h−2dlog2 h/2e − 1) + 2h−2dlog2 h/2e
c(22dlog2 h/2e − 1) + d2h−2dlog2 h/2e

= c(2h−2dlog2 h/2e − 1) + c2h − c2h−2dlog2 h/2e + d2h−2dlog2 h/2e

= c2h − c+ d2h−2dlog2 h/2e

= c(N + 1)− c+ d2h−2dlog2 h/2e

= cN + d2h−2dlog2 h/2e
,

which does not imply T (N) ≤ cN for any choice of c. We therefore try
with the stronger inductive hypothesis T (N) ≤ cN − b, where b is some
constant greater than or equal to 0. Again, assuming that this bound holds
for 2h−2dlog2 h/2e − 1 and 22dlog2 h/2e − 1, and substituting these values into
Recurrence (5.4) yields

T (N) ≤ c(2h−2dlog2 h/2e − 1)− b+ 2h−2dlog2 h/2e
(
c(22dlog2 h/2e − 1)− b

)
+ d2h−2dlog2 h/2e

= c2h−2dlog2 h/2e − c− b+ c2h − c2h−2dlog2 h/2e − b2h−2dlog2 h/2e

+ d2h−2dlog2 h/2e

= c2h − c− b− b2h−2dlog2 h/2e + d2h−2dlog2 h/2e

= c(N + 1)− c− b− b2h−2dlog2 h/2e + d2h−2dlog2 h/2e

= cN − b− b2h−2dlog2 h/2e + d2h−2dlog2 h/2e

≤ cN − b,

which holds when b ≥ d. As this bound also holds for the base cases T (1)
and T (3) if we choose c > 1 and b = 0 we are done.

Theorem 20. Assuming that N is 2i−1 for some positive integer i, building
a tree of N elements in the height partitioned layout with Program 12 incurs
at most Q(N) = 2

√
N + 1 +

√
N+1
B + 2N+1

B cache misses.

Proof. We prove this bound by looking at the cost of constructing the top
tree and the bottom trees respectively. In the following, we assume that h
is the height of the tree defined as log2(N + 1).
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As depicted on Figure 5.10, the elements that belong to the top tree are
scattered throughout the source array. In the worst case none of these ele-
ments belong to the same cache block, so accessing each of these 2h−2dlog2 h/2e−
1 elements in the source array costs at most 2 misses per element (due
to alignment). Writing these elements to the target array costs at most
2h−2dlog2 h/2e

B misses, so the total cost of constructing the top tree is

2 · 2h−2dlog2 h/2e +
2h−2dlog2 h/2e

B
.

The elements of the bottom trees are placed continuously in both source
and the target array, so copying a single bottom tree incurs 2 · 22dlog2 h/2e/B
misses. For all bottom trees this cost adds up to

2 · 2h−2dlog2 h/2e · 22dlog2 h/2e

B
.

The total number of cache misses of laying out the tree becomes

Q(N) = 2 · 2h−2dlog2 h/2e +
2h−2dlog2 h/2e

B
+ 2 · 2h−2dlog2 h/2e · 22dlog2 h/2e

B

= 2 · 2h−2dlog2 h/2e +
2h−2dlog2 h/2e

B
+ 2 · 2h

B

≤ 2
√
N + 1 +

√
N + 1
B

+ 2
N + 1
B

.

The assumptions of Theorem 19 and 20, that N has to be in the form
2i−1 (that is, the tree has to be complete), can easily be relaxed by building
a height partitioned tree a little bigger than actually needed, i.e., of size
2dlog2Ne − 1, and allowing empty nodes and leaves in the tree. In the worst
case a tree containing N elements will be of size 2N − 1, which implies a
worst-case space overhead of size N − 1.

5.8 Expected Performance

The work complexities of the heap layouts are difficult to compare to those
of the other three layouts, since the use of the lower bound algorithm makes
the constant B influence the constant factor in the most significant terms of
the pure-C instruction count for those two layouts. On our benchmarking
machines the cache line length is 64 bytes, so for 4-byte elements B is 16. For
this value of B the work and cache complexities of all five layouts are shown
in Figure 5.11. The branch misprediction counts are shown in Figure 5.12.
We have rewritten the complexities and counts into base 2 logarithm to make
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them easier to compare. This way of presenting the characteristics of the
layouts gives us a better idea of what we can expect from the benchmarks
in Chapter 7. The change of logarithm base reveals a couple interesting
aspects of the five layouts that we will describe in the following sections.

5.8.1 Knowing the Memory System

For the implicit heap layout, knowing the characteristics of the memory
system seems to pay off. The implicit heap layout has a work complexity
similar to those of the inorder layout and the explicit layouts, and its cache
complexity is the best among the five. The branch misprediction counts
of both heap layouts are a little higher than for the other layouts. This
difference is due to the lower bound calculations used within the nodes of
these layouts.

5.8.2 Alignment of Data

The inorder layout is superior to the implicit height partitioned layout in
both work and cache complexity. It is no surprise that the implicit height
partitioned layout exhibits worse work complexity, but it is disappointing
that its cache complexity is inferior to that of the inorder layout, since the
whole idea of the height partitioned layout was to increase cache perfor-
mance. The bad cache complexity of the implicit height partitioned layout
is partly due to the extra space used for the navigational computations.
Nevertheless, even though we ignore the contribution of the navigation (cf.
Theorem 13) the cache complexity is still worse, since dlog2Ne−6 is smaller
than 4blog16Nc+ 2 ≈ blog2Nc+ 2, for all N > 0.

Figure 5.11 shows the worst-case cache complexity bounds, so the worst
possible data alignment is assumed. In practice, though, data alignment
this is rarely the case. In the implicit height partitioned layout we keep on
splitting the tree until the size of the subtrees is smaller than B (see the

Layout Work complexity Cache complexity
Inorder 10 log2N +O(1) dlog2Ne − 6
Imp. Heap 12 log2N +O(1) d log2 N

log2 17e ≤ d
log2 N

4 e
Exp. Heap 11 log2N +O(1) d log2 N

3 e
Imp. Height Part. 24 log2N +O(1) 4blog16Nc+ 4 log2 N

16 + 6
≤ 5 log2 N

4 + 6
Exp. Height Part. 9 log2N +O(1) 4blog16 3Nc+ 2

≤ blog2 3Nc+ 2

Figure 5.11: The work and cache complexities of the five layouts. The
logarithms are rewritten into base 2 to make the comparison easier.
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Layout Branch mispredictions
Inorder blog2Nc+ 2
Imp. Heap 1

2

(
blog(B+1)Nc+ 1

)
(log2B + 4) + 1

= 4blog17Nc+ 5 ≈ blog2Nc+ 5
Exp. Heap 1

2

(
blog(B/2)Nc+ 1

)
(log2 (B/2− 1) + 4) + 1

≤ 4blog8Nc+ 5 = 4
3blog2Nc+ 5

Imp. Height Part. blog2Nc+ 2
Exp. Height Part. blog2Nc+ 2

Figure 5.12: The branch misprediction counts of the five layouts. The log-
arithms are rewritten into base 2 to make the comparison easier.

Cache-line length B subtree size % badly aligned subtrees
32 bytes 8 221 − 1 = 3 2/8 = 25
64 bytes 16 222 − 1 = 15 14/16 = 87.5
128 bytes 32 222 − 1 = 15 14/32 = 43.75
256 bytes 64 222 − 1 = 15 14/128 = 10.94

Figure 5.13: For 4-byte elements B = 16 results in the largest percentage of
badly aligned subtrees.

cache complexity analysis on page 71). Depending on the cache-line length,
all subtrees (except for the top-most top subtree) will then have a size larger
than

√
B and smaller than B. The smaller the subtree, the smaller risk of

it being badly aligned and therefore occupying 2 cache lines.
Unfortunately, when B = 16, as is the case on the benchmark computers,

a subtree will be smaller than B when it reaches size 15. The consequence
of this is that the majority of the subtrees will be aligned badly. In fact, on
average 14/16 = 87.5% of the subtrees will have elements in two cache lines.
If we had B = 32, then the situation would have been better. The subtrees
would still end up having size 15, but on average only 14/32 = 43.75% of the
subtrees would be aligned badly. Figure 5.13 shows the average percentage
of badly aligned subtrees for the height partitioned layout for various cache-
line lengths. Recall, that splitting the height partitioned tree results in
subtrees of size 22i − 1. Since 222

= 16 the 64-byte cache line is the worst
possible for 4-byte elements.

In contrast to the implicit height partitioned layout the inorder layout
is almost completely unaffected by data alignment. No matter how data is
aligned the first dlog2Ne − blog2Bc levels in the tree will access one cache
line each. Only the final log2B levels may incur a single additional miss due
to bad alignment.
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5.8.3 Implicit vs. Explicit Navigation

As one might expect, the use of explicit navigation decreases the pure-C
instruction count but makes the cache complexity worse. This is apparent
for both the heap and the height partitioned layouts. It is hard to predict
whether the lower instruction count can pay for the inferior cache complexity,
since the situation may change when the dataset sizes exceeds the different
memory layer sizes. For example, the lower instruction count may pay off as
long as the dataset fits within the level 2 cache, because level 1 cache misses
are quite inexpensive, while the better cache complexity may start paying
off when the dataset exceeds the size of the level 2 cache, as misses at that
level cost more CPU cycles.

5.9 Summary

In this chapter we have investigated five different static search tree layouts.
We have presented a generic search algorithm and the notion of layout poli-
cies that together make it possible to separate the memory layout of data
from the overall structure of the search algorithm. By use of this strategy
we have succeeded in conducting a comparative analysis of all five layouts
with respect to the constant factors of work complexity and cache complex-
ity. In order to derive the constant factors of the work complexities we have
translated all search algorithms into full running pure-C programs.

Furthermore, we have presented a new algorithm for constructing a tree
in the cache-efficient height partitioned layout. The algorithm runs in linear
time and incurs at most Q(N) = 2

√
N + 1 +

√
N+1
B + 2N+1

B cache misses.
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Sorting

“The most damaging phrase in the lan-
guage is: It’s always been done that way.”

— Grace Hopper

Given an array of N elements the sorting problem consists of reordering
the elements such that they appear in nondecreasing order. Many different
approaches can successfully be applied to solve the sorting problem. The
sorting algorithm insertionsort, works in a way similar to that of a card
player arranging his hand, picking up one card at a time and inserting it
at the appropriate position relative to the previously-arranged cards. Other
sorting algorithms, such as bubblesort and quicksort, work by exchanging
elements, that is, whichever two elements that are found to be out of order
are interchanged. The process continues until no more interchanges are
necessary.

In this chapter our main goal is to analyze the cache-oblivious lazy fun-
nelsort algorithm of Brodal and Fagerberg [12]. This algorithm can be con-
sidered a variant of mergesort, and is a modification of the original funnelsort
by Frigo et al. [19]. The lazy funnelsort is basically the same algorithm as
the original, but both its description and analysis are simpler.

In order to determine the efficiency of funnelsort1 we compare it theo-
retically to 4-way mergesort, which is a more traditional mergesort variant.
Our investigation covers constant-factors analysis of cache-efficiency in the
ideal-cache model as well as work complexity in the pure-C model. We
analyze 4-way mergesort in Section 6.1.

Central to funnelsort is a static data structure called a k-funnel. It
is important to understand how this data structure operates in order to

1In the following we will refer to lazy funnelsort simply as funnelsort.
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understand the workings of funnelsort. Therefore, we introduce the k-funnel
in Section 6.2, prior to describing the funnelsort algorithm in Section 6.3.
In Section 6.4 we analyze both the k-funnel and the funnelsort algorithm.

In Section 6.5 we compare the two sorting algorithms theoretically and
comment on what can be expected from the benchmarks in Chapter 7.

6.1 The 4-way Mergesort

Mergesort is a term used for a family of sorting algorithms that all operate
in a similar way. The common approach used by mergesort algorithms is to
consider an initially unsorted array of N elements as N sorted subarrays con-
taining each one element, and then merge these subarrays recursively until
only a single sorted array remains. The 2-way divide-and-conquer mergesort
is considered the basic mergesort algorithm and operates as follows:

Divide: Divide the N -element array to be sorted into two subarrays of N/2
elements each.

Conquer: Sort the two subarrays recursively using 2-way mergesort.

Combine: Merge the two, now sorted, subarrays into one sorted array.

For its simplicity and efficiency the 2-way mergesort is a widely used
sorting algorithm. It is optimal in terms of asymptotic work complexity [17],
and according to Demaine [18] its cache complexity in the ideal-cache model
is O(N/B log2N/B), which is close to the optimal O(N/B logM/B N/B)
complexity bound for comparison-based sorting [3].

Other mergesort variants exist. Katajainen & Träff [23] analyzed 2-,
3-, and 4-way mergesort algorithms in the pure-C cost model, and accord-
ing to their empirical measurements the 4-way mergesort algorithm is the
most efficient. These results are supported by Mortensen [31] who finds the
same 4-way mergesort implementation the most efficient among a number
of mergesort variants.

The 4-way mergesort works in a way similar to the 2-way mergesort,
the difference being that it divides the array into 4 subarrays and therefore
merges 4 subarrays at a time instead of 2. This similarity makes it reasonable
to expect that it too exhibits good cache efficiency. Along with the fact that
the algorithm works well in practice, we are convinced that it is well suited
as a competitor to funnelsort.

The following 4-way mergesort algorithm sorts the elements in the sub-
array A[p..q). If a subarray contains less than 4 elements it is sorted using
insertionsort. Otherwise, the divide step partitions A[p..q) into 4 subarrays
of approximately equal size, recursively sorts these subarrays, and merges
them.
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4-way-Mergesort(A, p, q)
1 len← q − p
2 if len > 3
3 then fourth = len/4
4 4-way-Mergesort(A, p, p+ fourth)
5 4-way-Mergesort(A, p+ fourth, p+ 2 · fourth)
6 4-way-Mergesort(A, p+ 2 · fourth, p+ 3 · fourth)
7 4-way-Mergesort(A, p+ 3 · fourth, q)
8 4-way-Merge(p, p+ fourth, p+ 2 · fourth, p+ 3 · fourth)
9 else Insertionsort(A, p, q)

The procedure 4-way-Merge uses an additional array of size N to which
the sorted subarrays are merged. To avoid copying the elements back to
A[p..q) after a merge step, an implementation of 4-way-Mergesort makes
sure to merge the elements forth and back between A[p..q) and the additional
array.

6.1.1 Work Complexity and Branch Mispredictions

Both Mortensen and Katajainen & Träff deduce the number of pure-C in-
structions and branch mispredictions incurred by 4-way-Mergesort. For
an input of size N the algorithm executes 3.25N log2N +O(N) pure-C in-
structions and causes 0.53N log2N + O(N) branch mispredictions in the
worst-case2.

6.1.2 Cache Complexity

Mortensen also analyzed the cache complexity of the algorithm, but since
he did not assume the ideal-cache model we will redo the analysis here.
Theorem 21 states the cache complexity of the 4-way-mergesort.

Theorem 21. Sorting N elements with the 4-way mergesort algorithm in-
curs Q(N) < 2NB log4

N
M + 6NB − 4 log4

N
B + 4 cache misses, provided that

M ≥ 8B.

Proof. In the proof we use use logb a as a shorthand for max{ ln b
ln a}, which is

a common assumption when analyzing recursive structures.
The call to 4-way-Merge merges the 4 subarrays A[p..p + fourth),

A[p + fourth..p + 2 · fourth), A[p + 2 · fourth..p + 3 · fourth) and A[p +
3 · fourth..q) to a temporary array also of length N . In the next call the
procedure merges the elements back to A[p..q). In the following we only
consider what happens when we merge from A[p..q) to the temporary array,
but the description also holds the other way around.

2For a detailed analysis of the carefully written pure-C programs that adhere to these
bounds we refer to [23, 31].
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B1

N

B0 B2 B3 B4

Figure 6.1: In case of bad data alignment the first blocks of the 3 last
subarrays are the same as the last blocks of the first 3 subarrays, namely
block B1, B2, and B3. By keeping these 3 blocks in the cache during the
merge we can avoid that they are read into the cache twice.

We assume that A[p..q) is laid out in memory in continuous locations
and that the cache can contain at least 8 blocks simultaneously. During the
merge the cache contains 1 block of each of the 4 subarrays that are being
merged at that time and one block of the target array. The contents of these
five cache lines change as the merging progresses.

In the remaining 3 cache lines, at any time during the merge, the first
block of the last 3 subarrays is contained.

In case of bad data alignment the first blocks of the last 3 subarrays are
the same blocks as the last blocks of the first 3 subarrays. Therefore, by
keeping the first blocks of the last 3 subarrays in the cache after the merging
of their elements, we can avoid that these blocks are read once again when
the merge reaches the ends of the subarrays. The situation is shown in
Figure 6.1.

For N ≥ M , merging the 4 subarrays corresponds to scanning 2 se-
quences of N elements, which incurs 2dNB e+ 2 < 2NB + 4 cache misses in the
worst case. For N < M the cache can contain the 4 subarrays entirely, but
we still need to read and write the elements, which incurs 2dNB e+2 < 2NB +4
cache misses. The total number of cache misses Q(N) incurred by the 4-

way-Mergesort algorithm is therefore given by the recurrence

Q(N) <

{
2NB + 4 if N < M,

4Q(N4 ) + 2NB + 4 otherwise.

For the recursive case we assume that the bound Q(N) < 2NB log4
N
M +6NB −

4 log4
N
B + 4 holds for N

4 . Substituting into the recurrence yields

Q(N) < 4
(

2
N/4
B

log4

N/4
M

+ 6
N/4
B
− 4 log4

N/4
B

+ 4
)

+ 2
N

B
+ 4

= 2
N

B
(log4N − 1− log4M) + 6

N

B

−16 (log4N − 1− log4B) + 2
N

B
+ 20

= 2
N

B
log4

N

M
− 2

N

B
− 16 log4

N

B
+ 8

N

B
+ 20
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= 2
N

B
log4

N

M
+ 6

N

B
− 16 log4

N

B
+ 4

< 2
N

B
log4

N

M
+ 6

N

B
− 4 log4

N

B
+ 4.

We split the base case N < M into five separate cases:

Case I: When 4B ≤ N < M we have

2
N

B
log4

N

M
+ 6

N

B
− 4 log4

N

B
+ 4 (6.1)

> 2
N

B
+ 6

N

B

> 2
N

B
+ 4,

since log4
N
M = 1 and 4− 4 log4

N
B ≥ 0.

Case II: When 3B ≤ N < 4B, the value of Expression (6.1) is at least 24.
This is larger than the value of 2NB + 4, which is less than 12.

Case III: When 2B ≤ N < 3B the value of Expression (6.1) is at least 16.
This is larger than the value of 2NB + 4, which is less than 10.

Case IV: When B ≤ N < 2B the value of Expression (6.1) is at least 8.
This is larger than the value of 2NB + 4, which is less than 8.

Case V: When N < B the value of Expression (6.1) is at least 8. This is
larger than the value of 2NB + 4, which is less than 6.

This concludes the proof of Theorem 21.

6.2 The k-funnel Data Structure

The k-funnel data structure offers a way of merging k sorted sequences each
containing kd−1 elements, where d ≥ 2, into a single sorted sequence of
size kd. The k-funnel merges these kd elements cache efficiently and cache-
obliviously by ensuring that the merging process at all times works on data
that is stored in memory as locally as possible.

A k-funnel is a complete binary tree with k leaves where these leaves are
connected to the k sorted input lists. Therefore, k is assumed to be of the
form 2i for some positive integer i. Each internal node in the tree is a binary
merger and each edge between two internal nodes contains a buffer. Each
of these buffers acts as an output buffer for the binary merger in the lower
node and as one of the two input buffers for the binary merger in the upper
node. The kd elements that are output from merger tree have been merged
on their way up the tree — from the sorted input streams at the leaves to
the output buffer of the binary merger at the root.



88 Sorting

2blog2 k
1/2c-subfunnels

Buffer of size kd

Buffers of size 2blog2 k
1/2cd

2dlog2 k
1/2e-subfunnel

Binary mergers

k-funnel

Figure 6.2: A k-funnel is a complete binary tree with binary mergers in
every node and buffers on the edges connecting the output of a merger in a
lower node to the input of a merger in an upper node.

The k-funnel is a recursive data structure, so the size of the internal
buffers are defined recursively in terms of subfunnels of smaller size. By
the description of Brodal and Fagerberg the k-funnel is conceptually split
between the nodes at depth di/2e and the nodes at depth di/2e+1 into a top
recursive 2dlog2 k

1/2e-subfunnel and 2dlog2 k
1/2e bottom recursive 2blog2 k

1/2c-
subfunnels 3 . The buffers that connect the bottom subfunnels to the top
subfunnel need to hold all the elements that the bottom subfunnels output,

so they are each of size 2blog2 k
1/2cd. Within the subfunnels the sizes of the

buffers are recursively defined.
The way of splitting the k-funnel resembles the way we split the height

partitioned tree in Chapter 5. But where we split the height partitioned tree
in such a way that the top subtree is never larger than the bottom subtrees,
it is the other way around for the top and bottom subfunnels: An uneven
split results in a top subfunnel that is larger than the bottom subfunnels.
Figure 6.2 shows the concept of a k-funnel for this way of splitting.

Also the way in which the buffers of the k-funnel are laid out in memory
in continuous locations resembles the layout of the height partitioned search
tree. This means, that for a k-funnel, the layout of the top subfunnel is
followed by the layout of the bottom subfunnels. The output buffer of a
bottom subfunnel is placed just before the bottom subfunnel itself. Figure
6.3 shows the buffer sizes and illustrates the memory layout of a 16-funnel
for d = 3, that is, a k-funnel with 16 input buffers that outputs 163 = 4096
elements during an invocation.

3Actually, Brodal & Fagerberg round off these values to
√
k, so the k-funnel consists

of
√
k + 1

√
k-subfunnels.
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F1 F3F2 F4
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Memory layout

Figure 6.3: The layout of a 16-funnel for d = 3. The buffers are recursively
laid out in memory in continuous locations, first the top subfunnel, then the
bottom subfunnels. The output buffer of a bottom subfunnel is placed just
before the bottom subfunnel itself. The 16-funnel is first split between depth
2 and 3, whereupon the resulting top subfunnel and bottom subfunnels are
split between depth 1 and 2, and depth 3 and 4 respectively.
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We delay the analysis of the k-funnel to after the description of the
funnelsort algorithm. For now, it suffices to think of a k-funnel as a buffered
merge tree like the one just described, and that it can merge kd elements
incurring only O(k

d

B logM kd + k) cache misses. We prove this bound in
Section 6.4.2.

6.2.1 Creating a k-funnel

The following procedure Allocate-Funnel creates a k-funnel by connect-
ing binary-merger objects and buffer objects into the desired balanced tree
structure. The nodes are expected to be binary-merger objects holding
pointers to two input buffers, an output buffer, and two sources, that are
the binary mergers just below the node.

The procedure first creates an array S of k empty binary-merger objects
(nil-objects). These empty mergers will eventually end up as sources to
the binary mergers just above the buffers at the leaf level of the entire
k-funnel. Allocate-Funnel then calls the recursive Allocate-Funnel-

Rec procedure that builds up the funnel. In the base case, when k = 2, this
procedure returns a binary-merger object with pointers to its two continuous
input buffers I[0] and I[1], a pointer to its output buffer O, and pointers to
its source nodes S[0] and S[2]. In the recursive case, Allocate-Funnel-

Rec first allocates space for the k middle buffers, each of size k(d+1)/2,
and then allocates the subfunnels that uses these middle buffers as output
buffers. Finally, the top subfunnel is allocated.

Allocate-Funnel(I, k)
1 for i← 0 to k − 1
2 do S[i]← Create-Binary-Merger(nil)
3 return Allocate-Funnel-Rec(O, k, I, S)

Allocate-Funnel-Rec(O, k, I, S)
1 if k = 2
2 then return Create-Binary-Merger(I[0], I[1], O, S[0], S[1])
3 else h← blog2 kc
4 kb ← 2h/2

5 kt ← h− kb
6 for i← 0 to k − 1
7 do M [i]← Allocate-Buffer(k(d+1)/2)
8 for i← 0 to k − 1
9 do ib ← i · kb

10 ie ← Length(I)
11 B[i]← Allocate-Funnel-Rec(M [i], kb, I[ib..ie), S[ib..ie))
12 return Allocate-Funnel-Rec(O, kt,M,B)
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6.2.2 Invoking a k-funnel

Within each node in the k-funnel the following merge process is executed
in order to fill the output buffer of a merger. The node is a binary-merger
object, where bleft and bright are the two input buffers, boutput is the output
buffer, and sleft and sright are the sources:

Fill(node)
1 while node.boutput is not full
2 do if node.bleft is empty
3 then Fill(node.sleft)
4 if node.bright is empty
5 then Fill(node.sright)
6 if First(node.bright) < First(node.bleft)
7 then move First(node.bright) to node.boutput
8 else move First(node.bleft) to node.boutput

A single invocation of a k-funnel, that outputs kd sorted elements, is simply
a call to Fill on the root of the entire k-funnel. It follows from the Fill

procedure that the buffers are filled completely before they are emptied, and
that buffers are emptied completely before they are refilled.

6.3 The Cache-Oblivious Funnelsort

The O(NB log4
N
M ) cache complexity of 4-way-Mergesort is a bit closer

to the optimal O(NB logM/B
N
B ) bound on comparison-based sorting than

the cache complexity of standard 2-way mergesort. The cache-oblivious
funnelsort algorithm matches this optimal bound.

As a k-funnel merges kd elements very cheaply — incurringO(k
d

B logM kd+
k) cache misses — we could be tempted to use an N -funnel to sort N el-
ements. We could simply have N sorted lists of 1 element each and use
an N -funnel to sort them. This would incur only O(NB logM N + N1/d)
cache misses. However, the technique used by the funnel that makes it work
on data in a local manner cannot guarantee this complexity bound when
a k-funnel outputs less than kd elements, so merging N elements with an
N -funnel is not a good idea. Furthermore, a k-funnel uses approximately
ck(1+d)/2 space [12], where c ≥ 1, and since d has to be larger than or equal
to 2, it would not result in an algorithm of linear space complexity.

Instead of using a single N -funnel to sort N elements, the Funnelsort

algorithm uses funnels recursively in a multiway merge. First it splits the
input array A[p..q) into k = (q−p)1/d contiguous segments each of size m =
(q − p)1−1/d. Then it recursively sorts each segment, whereupon it merges
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the now sorted segments using a k-funnel. The smallest possible k-funnel
is a 2-funnel that outputs 2d elements, so the base case of the algorithm is
reached when the subarray to sort contains less than 2d elements. For these
small subproblems any other sorting algorithm can be applied (e.g., the 4-
way mergesort algorithm, or the introsort algorithm of Musser [33] available
at SGI STL):

Funnelsort(A, p, q)
1 len← q − p
2 if len < 2d

3 then Any-Other-Sort(A, p, q)
4 else k ← len1/d

5 m← len1−1/d

6 i← 0
7 start← p
8 while start < q
9 do Funnelsort(A, start, start+m)

10 I[i]← Create-Buffer(start, start+m)
11 start← start+m
12 i← i+ 1
13 root← Allocate-Funnel(I, k)
14 Fill(root)

The procedure Create-Buffer returns an object that allows us to treat
the interval from start to start+m of A as one of the sorted input buffers
that are about to be merged by a funnel in line 14. Thus, the result of the
while-loop is an array I that is a subdivision of A into sorted input buffers
ready to be merged. The procedure Allocate-Funnel creates a k-funnel
on top of these buffers and returns the top-most binary merger of the funnel.
The call to Fill merges the buffers, and we are done.

The procedure Fill need some space to which it can merge the elements,
so a global array Oglobal of size N is needed. To avoid copying the elements of
Oglobal back to A before returning from a recursive call, an implementation
of Fill should use the technique of merging forth and back between two
arrays in a way similar to the one used in the 4-way mergesort algorithm.
Figure 6.4 illustrates the recursion tree of the algorithm, and Figure 6.5
illustrates how the elements are merged forth and back between A and the
Oglobal.

The largest funnel used by Funnelsort is an N1/d-funnel, which takes
up approximately cN (d+1)/2d space. Since cN (d+1)/2d < cN for all d ≥ 2,
the space used by this funnel is sub-linear. In addition to this space, the
algorithm uses the global array Oglobal of size N . Since funnelsort work
locally on one funnel at a time, the total amount of space used by the
algorithm is O(N).
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Figure 6.4: The recursion tree of funnelsort. Funnelsort splits the N ele-
ments into N1/d segments of N1−1/d elements each, recursively sorts these
segments using funnelsort, and merges them with an N1/d-funnel. The bot-
tom of the recursion is reached when a segment contains less than 2d ele-
ments, in which case the elements are sorted using any other sorting algo-
rithm. Each funnel merges the elements from its input streams to an output
buffer that acts as input stream for the funnel just above.

A

A

Oglobal

A

Figure 6.5: On the way up the recursion tree the elements are merged forth
and back between A and Oglobal.
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6.3.1 The Parameter d

In the funnelsort algorithm the parameter d determines the branching factor
of the merge by influencing the number of subsequences into which funnelsort
divides its input sequence. The lower we choose d, the more subsequences
we get and the higher the branching factor of the merge.

A higher branching factor implies a recursion tree of fewer levels of fun-
nels. However, this is not entirely true, because a lower value of d at the
same time means that the element sequence in the base case (which is 2d)
becomes smaller. This implies a deeper recursion tree. So the parameter d
offers some tradeoff between the depth of the tree of funnels and its branch-
ing factor.

However, a funnel is always a complete binary tree. So if we instead
of the tree of funnels consider the entire binary merge tree of funnelsort
with the funnels “unfolded”, then the choice of d will have no effect on the
branching factor, which will remain 2. The base case, though, will still be
influenced.

It may seem tempting to tune d to obtain the best performance of fun-
nelsort, but the fact that d determines the base case of the recursion makes
it questionable to do so in a cache-oblivious context. Tuning d to obtain the
best performance or complexity bound would implicitly imply the tuning of
the base case to the characteristics of a specific memory system. To see how,
consider a choice of d = 8. This choice implies that funnelsort switches to
another sorting algorithm when a subsequence contains less than 28 = 256
elements. Since 256 elements most likely take up the space of several cache
lines, the cache complexity of the base-case sorting algorithm might com-
promise the good cache complexity bound of funnelsort.

To conclude, it seems reasonable to choose d, such that the base case
sequence is of a reasonably small size, say d ∈ {2, 3, 4}4.

6.4 Analyzing Funnelsort

The cache complexity of funnelsort depends on the cache complexity of
invoking a k-funnel. And in order to deduce the cache complexity a k-
funnel, we first need to know the size of a k-funnel. This is necessary since
we want to know at which point in the recursion a subfunnel fits in cache.

6.4.1 Space Complexity of a k-funnel

The size of a k-funnel is the sum of the sizes of its middle buffers and the
sizes of the recursive top and bottom subfunnels. Ignoring the floors and

4Frigo et al. use d = 3 in their funnelsort.
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ceilings, Brodal and Fagerberg expressed this size S(k) by the recurrence

S(k) = (k1/2 + 1)S(k1/2) + k(d+1)/2, (6.2)

which is bounded by ck(d+1)/2 for c ≥ 1[12]. Note, that this recurrence does
not include the size of the output buffer of the k-funnel.

Since a k-funnel is a complete tree, Recurrence (6.2) holds the implicit
invariant that all values in the sequence k, k1/2, k1/4, . . . have to be powers
of 2, i.e., k belongs to the sequence 22log2 a, where a > 0 and integer. A more
precise recurrence stating the size of a k-funnel for all k that are powers of
2 is given by

S(k) = S(2dlog2 k
1/2e)+2dlog2 k

1/2eS(2blog2 k
1/2c)+2dlog2 k

1/2e2blog2 k
1/2cd. (6.3)

Note, that Recurrence (6.3) reduces to Recurrence (6.2) for those special
values of k where 2blog2 k

1/2c = 2dlog2 k
1/2e = k1/2.

Theorem 22 states the space used by a k-funnel by presenting a closed
form of Recurrence (6.3). It only handles the situations where d ∈ {2, 3, 4}.
In Section 6.3.1 we explained why this limitation is reasonable.

Theorem 22. The size of a k-funnel is bounded by

3 · 2dlog2 k
1/2e2blog2 k

1/2c2 for d = 2,

2 · 2dlog2 k
1/2e2blog2 k

1/2c3 for d = 3,

2 · 2dlog2 k
1/2e2blog2 k

1/2c4 for d = 4.

Proof. We solve Recurrence (6.3) by using the substitution method:
According to [12] the solution of Recurrence (6.2) has the form ck(d+1)/2 for
a constant c ≥ 1 and d ≥ 2, so we assume that the solution of Recurrence

(6.3) has the similar form c2dlog2 k
1/2e2blog2 k

1/2cd. We start by assuming that
the bound holds for 2dlog2 k

1/2e and 2blog2 k
1/2c (for short denoted by k↑ and

k↓ respectively), that is, that

S(k↑) ≤ c2dlog2 k↑
1/2e2blog2 k↑

1/2cd (6.4)

and
S(k↓) ≤ c2dlog2 k↓

1/2e2blog2 k↓
1/2cd. (6.5)

Substituting (6.4) and (6.5) into Recurrence (6.3) yields

S(k) ≤ c2dlog2 k↑
1/2e2blog2 k↑

1/2cd +

2dlog2 k
1/2ec2dlog2 k↓

1/2e2blog2 k↓
1/2cd +

2dlog2 k
1/2e2blog2 k

1/2cd

≤ c2k↑1/2k↑1/2
d

+
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2k1/2c2k↓1/2k↓1/2
d

+

2dlog2 k
1/2e2blog2 k

1/2cd (6.6)
= c2k↑(d+1)/2 +

2k1/2c2k↓(d+1)/2 +

2dlog2 k
1/2e2blog2 k

1/2cd

≤ c4k(d+1)/4 +
c4k(d+3)/4 +

2dlog2 k
1/2e2blog2 k

1/2cd (6.7)

≤ c2dlog2 k
1/2e2blog2 k

1/2cd. (6.8)

Steps (6.6) and (6.7) are obtained by using that 2dlog2 ae < 2log2 a+1 = 2a
and 2blog2 ac ≤ 2log2 a = a. For any choice of d ≥ 2 the last term of Step (6.7)
will grow faster than the sum of the two first terms when k gets sufficiently
large. Therefore, we can choose a value of c ≥ 1, so that (6.8) becomes legal.
If we consider the case where d = 3 and choose c = 2, then we have

2 · 4k + 2 · 4k6/4 + 2dlog2 k
1/2e2blog2 k

1/2c3 ≤ 2 · 2dlog2 k
1/2e2blog2 k

1/2c3.

On Figure 6.6 we solve this inequality graphically and deduce that c = 2
makes Step (6.8) legal for k > 32 (recall, that k is always a power of 2).

We have now proven that S(k) ≤ 2 · 2dlog2 k
1/2e2blog2 k

1/2c3 for k > 32, so it
remains to be shown that c = 2 is also sufficient for k ≤ 32. By noticing
that s(2) = 2 (i.e., 2 elements can be sorted using 2 units of space) we can

show that S(k) ≤ c · 2dlog2 k
1/2e2blog2 k

1/2cd for k ∈ {2, 4, 8, 16, 32}:

s(2) = 2

≤ 2 · 2dlog2 21/2e2blog2 21/2c3 = 4

s(4) = s(2dlog2 41/2e) + 2dlog2 41/2es(2blog2 41/2c) + 2dlog2 41/2e2blog2 41/2c3

= s(2) + 2s(2) + 16 = 22

≤ 2 · 2dlog2 41/2e2blog2 41/2c3 = 32

s(8) = s(2dlog2 81/2e) + 2dlog2 81/2es(2blog2 81/2c) + 2dlog2 81/2e2blog2 81/2c3

= s(4) + 4s(2) + 32 = 62

≤ 2 · 2dlog2 81/2e2blog2 81/2c3 = 64

s(16) = s(2dlog2 161/2e) + 2dlog2 161/2es(2blog2 161/2c) + 2dlog2 161/2e2blog2 161/2c3

= s(4) + 4s(4) + 256 = 366

≤ 2 · 2dlog2 161/2e2blog2 161/2c3 = 512

s(32) = s(2dlog2 321/2e) + 2dlog2 321/2es(2blog2 321/2c) + 2dlog2 321/2e2blog2 321/2c3
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Figure 6.6: For the values d = 3 and c = 2 Step (6.8) is legal when k > 32.

= s(8) + 8s(4) + 512 = 750

≤ 2 · 2dlog2 321/2e2blog2 321/2c3 = 1024.

In a similar way it can be shown that c = 3 is sufficient for d = 2, and that
c = 2 is sufficient for d = 4. This concludes the proof of Theorem 22.

6.4.2 Cache Complexity of a k-funnel

Now that we know how much space a k-funnel occupies we can analyze its
cache complexity. In Theorem 23, that states the cache complexity of a
single invocation of a k-funnel, we will ignore the floors and ceilings of the
space complexity bound derived in Theorem 22 and use the bound given
by Brodal & Fagerberg instead. We do this to simplify the analysis, and

since their bound c′k(d+1)/2 is an upper bound for c2dlog2 k
1/2e2blog2 k

1/2cd,
when c′ ≥ 2c, this will not affect the cache complexity bound in the wrong
direction, that is, making it look better than it actually is.

In Theorem 23 we use the following variant of the tall-cache assumption:

B(d+1)/(d−1) ≤M/2c′ (6.9)

By checking for the values of c and d we derived in theorem 22 it is easy to
see that (6.9) still describes a tall cache.
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Theorem 23. Assuming a tall cache (Inequality (6.9)) and that the size of
a k-funnel is bounded by c′k(d+1)/2 for a constant c′ ≥ 1 and d ≥ 2, a single
invocation of a k-funnel causes Q(N) ≤

(
1 + 1

d

)
(2c′+5)k

d

B logM kd+k cache
misses.

Proof. To prove this bound we consider the recursive definition of the buffer
sizes in a k-funnel. We find the point in the recursion where a subfunnel
(top or bottom) for the first time occupies at most half of the cache. To be
precise, we consider the point of recursion where the size of the subfunnel
satisfies the inequality c′k̄(d+1)/2 ≤ M/2, where k̄ denotes the number of
leaves of the subfunnel. This implies

k̄(d+1)/2 ≤M/2c′, (6.10)

and hence
k̄ ≤ (M/2c′)2/(d+1). (6.11)

Note, that since k̄ is the first such value of k we also know that

(k̄2)(d+1)/2 = k̄d+1 > M/2c′, (6.12)

which implies
k̄ > (M/2c′)1/(d+1). (6.13)

We denote subfunnels that satisfy Inequality (6.10) as base funnels, and we
denote the output buffers of base funnels as large buffers.

By Inequality (6.11) and the tall-cache assumption (6.9) a base funnel
and one block of each of its k̄ leaf input streams can at the same time fit in
the cache, since

k̄ ·B ≤ (M/2c′)2/(d+1) · (M/2c′)(d−1)/(d+1) ≤M/2c′.

Loading a base funnel and one block of each of its k̄ input streams incurs

ck̄(d+1)/2

B
+ k̄ (6.14)

cache misses. Expression (6.14) defines the load cost of a base funnel.
Now, consider the number of cache misses incurred by a single invocation

of a base funnel that outputs k̄d elements to its output buffer. Since the
entire base funnel and one block for each of its k̄ input buffers can be in the
cache simultaneously, the invocation incurs

2k̄d

B
+ k̄ (6.15)

cache misses. That is, k̄d/B cache misses for outputting the elements at the
root of the base funnel, k̄d/B cache misses for reading the elements from
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the input streams, and an additional k̄ misses, because the elements of the
k̄ input streams may be aligned badly. Expression (6.15) defines the merge
cost of filling a large buffer.

In the following argumentation we assume that each of the k input
streams of the k-funnel contribute to the merge with an equal amount of
elements. This assumption is reasonable, since it reflects the way in which
k-funnels are used in funnelsort. A consequence of this is, that during a
call Fill to the root of the k-funnel, an equal number of elements passes
through all large buffers that belong to the same layer of the k-funnel.

A base funnel has at least (M/2c′)1/(d+1) leaves (cf., Inequality (6.13)),
so the path from the root to a leaf in the k-funnel consists of

log
(M/2c′)1/(d+1) k =

log(M/2c′) k

log(M/2c′)(M/2c′)1/(d+1)

= log(M/2c′) k
d+1

=
logM kd+1

logM (M/2c′)

=
1

1− logM (2c′)
logM kd+1

base funnels, and equally many large buffers — including the output buffer
of the k-funnel itself. Since logM (2c′) is very small, the k-funnel has approx-
imately logM kd+1 levels of large buffers. Figure 6.7 illustrates this. Merging
the kd elements through one of these logM kd+1 layers corresponds to filling
kdk̄d large buffers. Since the merge cost of filling a large buffer is 2k̄d/B+ k̄
cache misses, the cost of merging kd elements with the k-funnel becomes(

2k̄d

B
+ k̄

)
kd

k̄d
logM kd+1 (6.16)

cache misses.
In addition to this total merge cost, we also have to pay for the swapping

of base funnels in and out of the cache, as the Fill algorithm jumps around
in the k-funnel working on filling the different large buffers. To derive the
total cost of this swapping, consider a call Fill to the root of a base funnel
F , which outputs k̄d elements to the output buffer of F . During the call, an
input buffer of F may run empty. In order to refill this empty large buffer,
a call Fill to the root of the base funnel just below the empty buffer is
triggered. During this recursive filling of the empty buffer, F is most likely
evicted completely from the cache, which leads to its reload when the empty
buffer has been refilled. By Expression (6.14) the cost of reloading the base
funnel is c′k̄(d+1)/2

B + k̄ cache misses, so in the worst case we have to pay twice
the load cost each time a large buffer is filled; one payment when the filling
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k̄

k

logk̄ k layers of k̄-funnels

k̄-funnels large buffers

Figure 6.7: The path from the root to a leaf in a k-funnel consists of approx-
imately logM kd+1 base funnels and equally many large buffers, if including
the output buffer of the entire k-funnel.

of the buffer begins, and one additional payment during the fill. The total
load cost incurred by a single invocation of a k-funnel becomes(

2c′k̄(d+1)/2

B
+ 2k̄

)
kd

k̄d
logM kd+1 (6.17)

cache misses.
The input buffers get exhausted at some point during the merge, which

means that the buffer will not contribute with any more elements to the
merge. The exhaustion of the buffers is propagated as far upward the k-
funnel as possible. This means that a buffer is marked as exhausted when
both its input buffers are exhausted, and that the first buffers that get
exhausted therefore are the input streams of the k-funnel.

The removal of the final element of an input stream may complete the
filling of an output buffer of a k̄-funnel. If this is the case, then the k-funnel
does not know that the stream is exhausted until the next time it is invoked.
During this next invocation the k̄-funnel will therefore access the exhausted
stream. This process will incur a cache miss that is accounted for by neither
the merge cost nor the load cost. In the worst case this exhaustion cost is
paid for all input streams, which adds in total an additional k cache misses
to the merge and load costs of the k-funnel.

Summing the exhaustion cost, the merge cost, and the load cost, a single
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invocation of a k-funnel outputting kd elements incurs in total

(
2c′k̄(d+1)/2

B
+

2k̄d

B
+ 3k̄

)
kd

k̄d
logM kd+1 + k

<

(
2c′k̄d

B
+

2k̄d

B
+ 3k̄

)
kd

k̄d
logM kd+1 + k (6.18)

=
(

(2c′ + 2)kd

B
+

3kd

k̄d−1

)
logM kd+1 + k

≤ (2c′ + 5)
kd

B
logM kd+1 + k (6.19)

=
(

1 +
1
d

)
(2c′ + 5)

kd

B
logM kd + k

cache misses in the worst case. In Step (6.18) we use that d ≥ 2, which
implies k̄(d+1)/2 < k̄d, and in Step (6.19) we use Inequality (6.12), which im-
plies k̄d−1 > (M/2c′)(d−1)/(d+1) ≥ B. This concludes the proof of Theorem
23.

6.4.3 Cache Complexity of Funnelsort

The following theorem states the cache complexity of funnelsort.

Theorem 24. Assuming a tall cache as defined in Inequality (6.9), the
number of cache misses incurred by funnelsort is Q(N) ≤

(
1 + 1

d

)
(2c′ +

5)dNB logM N .

Proof. Funnelsort recursively sorts N1/d segments of N1−1/d elements and
merges these with a N1/d-funnel. Each of the N1/d segments are sorted
recursively using smaller and smaller funnels, so the N1/d-funnel at the
coarsest level of recursion is the biggest funnel used by the algorithm. The
size of the N1/d-funnel is bounded by c′N (d+1)/2d < c′N , because d ≥ 2.

Consider the point in the recursion where the size of the funnel is smaller
than half the cache for the first time, i.e., when N < M/2. In the cache-
complexity analysis this is considered the base case of the recursion5. In the
base case the N1/d-funnel can be contained entirely in the cache, and the N
elements can therefore be merged cheaply. By Inequalities (6.14) and (6.15)
loading the funnel into the cache incurs c′N(d+1)/2d

B +N1/d cache misses, and
merging the elements incurs an additional 2NB +N1/d cache misses. In total

5This is different from the algorithmic base case that is reached when N < 2d.
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this is

c′N (d+1)/2d

B
+ 2

N

B
+ 2N1/d

≤ (c′ + 2)
N

B
+ 2N1/d

≤ (c′ + 5)
N

B
.

cache misses, which is clearly bounded by
(
1 + 1

d

)
(2c′ + 5)dNB logM N as

stated. The last derivation depends on N
B being an upper bound for N1/d.

To see why it is so, consider the recursive definition of a base funnel of Section
6.4.2. Recall, that a base funnel (i.e., a k̄-funnel) is the first subfunnel of a
k-funnel that takes up at most half the cache (cf., Inequality (6.10)). This
implies that the subfunnel one step further up the recursion tree is larger
than half the cache size. By Inequality (6.12) we have k̄d+1 > M/2c, which
implies k̄d−1 > (M/2c′)(d+1)/(d−1) ≥ B and hence k̄ ≤ k̄d

B . In analogy to this
we can deduce that N1/d ≤ N

B .
When N ≥ M/2 the cache complexity of funnelsort is given by the

recurrence

Q(N) = N1/dQ(N1−1/d) +
(

1 +
1
d

)
(2c′ + 5)

N

B
logM N +N1/d, (6.20)

since the funnelsort algorithm guarantees that only one funnel is active at a
time.

In solving this recurrence we use α =
(
1 + 1

d

)
(2c′ + 5) for notational

convenience. Assuming that the bound Q(N) ≤ αdNB logM N − b holds for
N1−1/d and substituting into the recurrence yields

Q(N) ≤ N1/d

(
αd
N1−1/d

B
logM N1−1/d − b

)
+ α

N

B
logM N +N1/d

= αd
N

B
logM

N

N1/d
− bN1/d + αd

N

B
logM N1/d +N1/d

= αd
N

B
logM N − αdN

B
logM N1/d − bN1/d + αd

N

B
logM N1/d +N1/d

= αd
N

B
logM N − bN1/d +N1/d

≤ αd
N

B
logM N − b,

when b > 1, because N1/d ≥ 1. This concludes the proof of Theorem 24

6.4.4 Work Complexity of Funnelsort

To deduce the work complexity of funnelsort, we consider the algorithm
Funnelsort on page 92. The algorithm first divides the problem into N1/d
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recursive subproblems each of size N1−1/d. Then it creates a N1/d-funnel,
and invokes this funnel once to merge the subproblems. The work complexity
W (N) of Funnelsort is described by the recurrence

W (N) =


Wbase(N) if N < 2d,
N1/dW (N1−1/d)+
Wc(N1/d) +Wf (N) +O(N) otherwise.

(6.21)

Wbase is the work complexity of the sorting algorithm used for the base
case of funnelsort, the Wc(N1/d) term is the work complexity of building
an N1/d-funnel with the Allocate-Funnel-Rec procedure (see page 90),
and the Wf (N) term is the work complexity of filling the output buffer of
this N1/d-funnel with N elements using the Fill procedure (see page 91).

Assuming that the procedure Allocate-Buffer takes constant time,
the work complexity of the Allocate-Funnel-Rec is given by the recur-
rence

Wc(N) = (N1/2 + 1)Wc(N1/2) +O(N).

The solution to this recurrence is O(N log2 log2N), so in Recurrence (6.21)
we have Wc(N1/d) = O(N1/d log2N

1/d), which means that the cost of build-
ing the funnel is dominated by the O(N) term of (6.21).

For the Wf term we examine the call Fill to the root merger of the
N1/d-funnel. This call moves each of the N elements from a leaf buffer to
the output buffer of the N1/d-funnel.

Fill calls itself recursively each time a buffer becomes empty. But since
the buffers within the N1/d-funnel are of different sizes, not all buffers be-
come empty equally many times. Therefore, it is difficult to describe the
total number of recursive calls by a recurrence.

Instead, we notice that the N1/d-funnel is in fact in complete binary tree
of 2N1/d − 1 nodes, which means that the funnel consists log2(2N1/d − 1)
buffer levels. Each of the N elements passes through each buffer level on
the leaf-to-root path, from which it follows that a call Fill to the root of
the N1/d-funnel incurs

N log2(2N1/d − 1)

< N log2(2N1/d)

= N +
1
d
N log2N (6.22)

element moves, and hence, equally many element comparisons and checks
for empty buffers. Since a single buffer can contain many elements, the
number of buffers that becomes empty during the call is also bounded from
above by Expression (6.22).

Program 13 is a pure-C translation of the Fill procedure. By use of this
program we can count the number of pure-C instructions that are executed
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1 void fill() {

2 bool a1, a2, b1, b2, c1, c2;

3 T x, y;

4 bool exhausted1 = false;

5 bool exhausted2 = false;

6 loop:

7 a1 = out->full(); // 1 pure-C instruction

8 if (a1 == true) goto out;

9 a1 = !in1->empty(); // 1 pure-C instruction

10 if (exhausted1 || a1) goto cont1;

11 a1 = !source1->exhausted(); // 1 pure-C instruction

12 if (a1) goto end1;

13 exhausted1 = true;

14 goto cont1;

15 end1:

16 source1->fill();

17 cont1:

18 a1 = !in2->empty(); // 1 pure-C instruction

19 if (exhausted2 || a1) goto cont2;

20 a1 = !source2->exhausted(); // 1 pure-C instruction

21 if (a1) goto end2;

22 exhausted2 = true;

23 goto cont2;

24 end2:

25 source2->fill();

26 cont2:

27 if (exhausted1 && exhausted2) goto out;

28 if (!exhausted1) goto cont3;

29 x = in2->extract(); // 6 pure-C instructions

30 out->insert(x); // 6 pure-C instructions

31 goto loop;

32 cont3:

33 if (!exhausted2) goto cont4;

34 x = in1->extract(); // 6 pure-C instructions

35 out->insert(x); // 6 pure-C instructions

36 goto loop;

37 cont4:

38 x = in1->peep(); // 1 pure-C instruction

39 y = in2->peep(); // 1 pure-C instruction

40 if (comp(x, y)) goto cont5; // 1 pure-C instruction

41 x = in2->extract(); // 6 pure-C instructions

42 out->insert(x); // 6 pure-C instructions

43 goto loop;

44 cont5:

45 x = in1->extract(); // 6 pure-C instructions

46 out->insert(x); // 6 pure-C instructions

47 goto loop;

48 out:

49 return;

50 }

Program 13: Pure-C implementation of the Fill procedure. in1, in2, and
out are the input and output buffers of the binary merger, and source1 and
source2 are the binary mergers just below the merger that the procedure is
invoked on.
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in the worst case for each element moved. In the program, in1, in2, and
out are pointers to the input and output buffers of the binary-merger object
on which fill() is called. source1 and source2 are pointers to the binary-
merger objects at the other end of the input buffers. The program contains
calls to some functions that manipulate these buffer objects and binary-
merger objects. The Pure-C cost of these calls appears from the program.

The while-loop (line 6–47) results in an element move in two situations.
Either when exactly one of the input buffers is empty and the source node
below it is exhausted, or when none of the input buffers are empty. In all
other situations the while-loop results in a recursive call to fill() on a
binary-merger object further down the merge tree.

If in1 is empty and source1 is exhausted, then the element move incurs
27 pure-C instructions, since the lines 4–14, 18–19, and 27–31 are executed.
If in2 is empty and source2 is exhausted, then the move incurs 28 pure-C
instructions, since the lines 4–10, 18–23, 27–28, and 33-36 are executed. If
neither in1 nor in2 is exhausted, then the lines 4–10, 18–19, 27–28, 33,
and either 38–43 or 38–40 and 45–47 are executed, which incurs 27 pure-
C instructions. By Expression (6.22) this results in a worst-case pure-C
instruction count of 281

dN log2N +O(N), for a call to fill(), which means
that the work complexity of funnelsort in terms of pure-C instructions is
given by the recurrence

Wp(N) ≤

{
O(N log2N) if N < 2d,
N1/dWp(N1−1/d) + 28

d N log2N +O(N) otherwise.
(6.23)

The following theorem states the pure-C instruction count of funnelsort.

Theorem 25. If the Fill procedure is implemented as in Program 13, then
funnelsort incurs at most 28N log2N+O(N) pure-C instructions when sort-
ing N elements.

Proof. For the recursive case of Recurrence (6.23) we assume that the bound
holds for N1−1/d, that is Wp(N1−1/d) ≤ 28N1−1/d log2N

1−1/d +O(N1−1/d).
Substituting Wp(N1−1/d) into the recurrence yields

Wp ≤ N1/d(28N1−1/d log2N
1−1/d +O(N1−1/d)) +

28
d
N log2N +O(N)

= 28N log2N
1−1/d +O(N) +

28
d
N log2N +O(N)

= (1− 1/d)28N log2N +
28
d
N log2N +O(N)

= 28N log2N −
28
d
N log2N +

28
d
N log2N +O(N)

= 28N log2N +O(N).
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Algorithm Work complexity Cache complexity
4-way mergesort 3.25N log2N +O(N) ≈ 0.0625N log2N
Funnelsort (d = 2) 24N log2N +O(N) ≈ 0.20N log2N
Funnelsort (d = 3) 24N log2N +O(N) ≈ 0.20N log2N
Funnelsort (d = 4) 24N log2N +O(N) ≈ 0.25N log2N

Figure 6.8: The work and cache complexities of the sorting algorithms. The
logarithms are rewritten into base 2 to make the comparison easier.

The bound also holds for the base case as long as we choose a base-case sort-
ing algorithm that incurs at most 28N log2N + O(N) pure-C instructions.
This concludes the proof of Theorem 25.

6.5 Expected Performance

We have summarized the cache and work complexities of the 4-way merge-
sort and funnelsort in Figure 6.8. To ease the comparison, all logarithms
have been changed into base 2, and the characteristics of the level 2 cache of
the Athlon computer has been assumed (M = 65536 and B = 16 for 4-byte
elements). For the cache complexity of the 4-way mergesort we have only
shown the most significant term, and for the cache complexity of funnelsort,
we have used the values of c derived in Theorem 22 on page 95.

The constant in the work complexity of funnelsort is approximately 8
times larger then that of 4-way mergesort. This is not surprising, since it
reflects the fact that the merging step in funnelsort is quite complex.

It is more surprising that the cache complexity of funnelsort is between
3 and 4 times worse than that of 4-way mergesort. This huge difference can
partially be explained by the fact that the analysis is of worst-case perfor-
mance. However, some of the difference can be explained by the different
ways in which we have conducted the cache complexity analyses.

6.5.1 The Accuracy of the Analysis

In the cache complexity analysis of the 4-way mergesort we assumed that
we could keep the first block of the last 3 subsequences in cache throughout
an entire merge step in order to save some cache misses. In the funnelsort
analysis we did not use that trick.

If we had used the similar assumption that, at any time during the
merge, the cache could hold a k̄-funnel, the first block of each of the k̄ input
buffers, and the first block of the last k̄ − 1 input buffers simultaneously,
then we could have saved k̄−1 cache misses per invocation of a base funnel.
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Expression (6.15) (the merge cost) could have been rewritten into

2k̄d

B
+ 1. (6.24)

This would have lead to a cache complexity of

Q(N) ≤
(

1 +
1
d

)
(2c′ + 4)d

N

B
logM N,

which is a little better than the one derived in Theorem 24. Note that
this additional assumption does not influence the load cost of the k̄-funnel
(Equation (6.14)), since the k̄− 1 elements that should remain in the cache
during the merge are a subset of the k̄ elements that are already counted in
the load cost.

In the cache complexity analysis of a k-funnel, we furthermore used a
somewhat pessimistic bound on its space complexity (see Section 6.4.2 on
page 97). We did this in order to simplify the analysis, but the tradeoff was
a doubling of the constant factor c of the space complexity bound, which
may be more than needed. Without this doubling the funnelsort would have
incurred 0.13N log2N and not 0.20N log2N cache misses in Figure 6.8 for
d = 3.

To conclude, a more careful analysis than the one we have conducted
might have lead to a tighter worst-case cache complexity bound on funnel-
sort. We therefore expect that funnelsort will exhibit better cache usage
than predicted in this chapter in the average-case.

6.6 Summary

In this Chapter we have derived the constant factors of the cache complexity
of 4-way mergesort and funnelsort. Furthermore, we have described the
workings of the k-funnel and the funnelsort algorithm in detail. In order
to derive the pure-C instruction count of the funnelsort algorithm, we have
translated the central part of the algorithm into pure-C.
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Benchmarks

An experiment is a question which science
poses to Nature, and a measurement is the
recording of Nature’s answer.

— Max Planck (1949)

Most often the goal of benchmarking computer programs is to obtain empir-
ical results that support some theoretically founded hypothesis stating that,
program A is faster than program B, or program A uses only half as much
memory as program B.

No matter which hypothesis one has the intention of supporting — or
rejecting — it is important that the measurements are both reliable and
valid. A measurement is reliable if comparable but independent measure-
ments of the same program agree. For example, a reliable measurement can
be obtained by conducting the same measurements multiple times and on
different computers. A measurement is valid if it in fact tells us something
about what we set out to investigate. For example, measuring the execution
time of a program does not directly tell us anything about the way in which
the memory hierarchy affects the behavior of the program, but combining
execution time measurements with the number of cache misses incurred by
the program certainly will.

As one can imagine, benchmarking computer programs is not an easy
task. Numerous conditions should be taken into account in order to obtain
useful results. In this chapter we first describe our benchmarking method-
ology (Section 7.1). Thereafter, we investigate the benchmarking results
of the static search tree implementations (Section 7.2), and of the sorting
implementations (Section 7.3).
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7.1 Methodology

Preparing and running benchmarks can be viewed as the task of doing a
performance investigation. Which aspects of a program that we expect the
investigation to tell something about highly influences how the benchmarks
should be constructed. Therefore, we first of all have to define the goal of
the investigation.

7.1.1 What Should Be Measured

In this thesis we are interested in obtaining empirical measurements that
can help us in answering the following questions:

1. Is the cache-oblivious approach successful when it comes to applying
it to searching and sorting algorithms? And if it is, under which
conditions is the approach most and least advantageous?

2. Do empirical measurements support our analytical predictions of the
cache complexities of the algorithms? And if not, how and and why
do they differ?

3. Do empirical measurements support our analytical predictions of the
work complexities and branch misprediction counts of the algorithms?
And if not, can we explain the differences from our use of cost model
or is there another explanation?

To answer these questions for each the implemented programs, we need to
measure the running time, the way in which the programs uses the memory
system, the instruction count, and the branch misprediction count.

Measuring Execution Time

The execution time of a program is usually measured in either wall-clock
time or CPU time. Wall-clock time corresponds to starting a stop-watch
when the program starts executing, and stopping the watch when the pro-
gram terminates, while CPU time is the time the CPU uses working on
the program. The advantage of using CPU time is that the measurements
will not be affected by interrupts or other processes running on the sys-
tem. On the contrary, wall-clock time will measure all activities on the
system from the benchmarked program begins its execution until it termi-
nates. The consequence of using wall-clock time is therefore a low reliability
of the measurements. That is, the result may be measurements that are
highly dependent on the setup of the benchmarking computer at the time
when the benchmarks were run, and therefore hard to reproduce and gen-
eralize. Nevertheless, there is one important objection to using CPU time
as the sole execution time metric, namely that the CPU cannot execute the
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instructions of a process while it waits for main memory. The operating
system will simply switch to another process or stay idle while waiting, so
the measured CPU time will not reflect the true influence of the memory
system on execution time. The consequence is that we cannot use CPU time
to measure the effects of datasets that exceeds main memory in size.

To get the best of two worlds, we choose CPU time as a metric for
datasets that are smaller than main memory and wall-clock time for the
datasets that exceeds it in size.

Measuring Memory System Performance

PAPI [36] is an acronym for Performance Application Programming Inter-
face, and can be used to access the hardware performance counters found on
most modern CPUs. By counting events such as floating point operations
and hardware interrupts PAPI can measure a wide variety of performance
characteristics. The use of hardware parameters ensures that monitoring
the performance of a program happens without affecting its behavior.

Through a C++ interface we can use PAPI to monitor events regard-
ing the memory system that happen during program execution. We are
interested in monitoring accesses to the various cache layers and in partic-
ular counting cache misses. The PAPI events of interest are shown in the
following table.

PAPI event Description
PAPI_L1_DCA Level 1 Data Cache Accesses
PAPI_L1_DCM Level 1 Data Cache Misses
PAPI_L2_DCA Level 2 Data Cache Accesses
PAPI_L2_DCM Level 2 Data Cache Misses

In practice, we instruct the hardware counters to monitor these PAPI events.
By reading the counters before and after each benchmark case, we obtain
the various counts.

Unfortunately, PAPI cannot be used to monitor page faults, as paging
is handled by the operating system. We therefore need some method to get
hold of the page fault count through the operating system. In the Linux
operating system the /proc file system can be used to access execution
statistics of the processes running on the system at any time. Each running
process has a subdirectory in /proc named by its process-id, and through
the files in that directory we can access information on the environment in
which the process executes, the currently mapped memory regions of the
process, and also the number of page faults incurred by the process. This
information on page faults can be read from the file stat.

According to the manual page for the /proc file system there are two
types of page faults. A minor page fault happens when a new page is created,



112 Benchmarks

and therefore does not incur disk access1. A major page fault happens when
a page is requested that is not in main memory. Major page faults therefore
require disk reads, so this is the type we will monitor.

Counting Instructions

Analytically, we have expressed the work complexities of the various al-
gorithms by pure-C instruction counts. By monitoring the PAPI event
PAPI_TOT_INS we can count the number of instructions that the CPU actu-
ally executes while running the programs. By comparing these two measures
we might get an idea of the quality of the derived work complexities.

Counting Branch Misprediction

Also branch mispredictions can be measured by PAPI. We do this by moni-
toring the event PAPI_BR_MSP. In order to derive the percentage of mispre-
dicted conditional branch instructions, we also monitor the total number of
conditional branch instructions executed, that is, the event PAPI_BR_CN.

7.1.2 Benchmarking Platforms

Ideally, the benchmarks should be carried out on a variety of different com-
puters representing the various CPU and computer manufacturers, and
thereby the various trends in modern CPUs and computer design. This
should be done in order to obtain reliable and generalizable results as well
as to investigate how architectural details might affect performance.

Our benchmark computers (see Figure 2.5) only represent two CPU man-
ufacturers. However, the Pentium® 4 and the Athlon are among the most
recent CPUs from Intel® and AMD aimed at the marked of personal com-
puters, and they are both widely used. Nevertheless, we remark that the
benchmark results cannot necessarily be generalized to other platforms.

Unfortunately, PAPI only works on the Pentium® 4 CPU in a prelim-
inary alpha version. To optimize the use of the computers we therefore
decide on measuring the PAPI event counts on the Athlon while we use the
Pentium for benchmarking large datasets.

The benchmarking computers are fully at our disposal, so we have con-
trol of all processes running on them. In order to make the wall-clock time
measurements as reliable as possible, we have shut down all irrelevant pro-
cesses prior to running the benchmark cases.

1Minor page faults are sometimes referred to as page reclaims.
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7.1.3 Benchmarking Tool

For benchmarking we use a tool originally written by Jyrki Katajainen for
the CPH STL Project2. By using a benchmarking tool we can automate
the execution of the benchmarks, and ensure that all benchmark cases are
carried out uniformly. That is, the code that performs the various types of
measurements is identical for all implementations.

The version of the tool that we use3 contains a driver for measuring CPU
time. For each benchmark case this driver measures 20 runs and returns the
median of these 20 execution times. However, if more than 10 percent of the
runs differ by more than 20 percent from the median, then an additional 20
runs are measured and the check is done again on all the runs (i.e., 40 runs).
This procedure is continued 100 times or until the median is considered
reliable.

We have written a couple of additional drivers for measuring PAPI
events, wall-clock time, and page faults. The wall-clock and PAPI drivers
use the same procedure of evaluating the reliability of the measurements,
but for the PAPI driver we occasionally had to lower the reliability a little
by accepting the median when at most 30 percent of the runs differed from
it by more than 20 percent.

Due to the fact that page faults take quite some time to process, the page
fault benchmarks may run for a very long time. This makes it practically
impossible to use the median of 20 runs. However, it is our experience that
the page fault counts do not differ significantly between runs, so we find
it acceptable to let each page fault benchmark case consist of only 5 runs
where we use the median.

The benchmark tool offers the possibility of carrying out the measure-
ments by use of the so-called double-loop technique. By this technique each
benchmark is followed by an identical benchmark performed with empty
functions. By subtracting the result of the empty benchmark from that of
the real run, the overhead imposed by the benchmark system itself can be
eliminated. To use the double-loop technique for the static search layout
policies we have written an empty layout policy.

The benchmarking tool is set up to use g++ — the GNU C++ compiler.
Furthermore, all implementations are compiled with the -O3 option, that is,
the highest level of optimization.

7.1.4 Datasets Sizes

When measuring execution times, and investigating the connection between
execution time and the number of cache misses that a program incurs, some
input data sizes become more interesting than others. In particular, it is

2http://www.cphstl.dk
3Version 1.6 dated January 26th, 2003.
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Program Athlon Pentium Main
L1 L2 L1 L2 Memory

Inorder 16.384 65.536 2.048 131.072 8.388.608
Imp. Heap 16.384 65.536 2.048 131.072 8.388.608
Exp. Heap 7.168 28.672 896 57.344 3.670.016
Imp. Height Part. 16.384 65.536 2048 131.072 8.388.608
Exp. Height Part. 5.461 21.845 682 43.690 2.796.202
4-way Mergesort 8.192 32.768 1.024 65.536 4.194.304
Funnelsort 8.192 32.768 1.024 65.536 4.194.304

Figure 7.1: The largest numbers of elements that fit within the various
memory layers with a 4-byte element type when 32 MB of main memory is
available.

interesting to see how execution time increases when the dataset approaches
a size where it no longer fits in a certain memory layer, and cache misses
therefore begin to occur at that layer. For those datasets the battle among
the elements of who gets to stay in the cache between runs and who has to
be thrown out to make room for others is intensified.

In order to measure the effects of the programs running out of main
memory, quite large datasets are needed. As mentioned, since large datasets
cause many page faults and make the programs run for a very long time, it
would be nice to decrease the amount of memory available to the programs
in order to reach the main memory boundary sooner. Fortunately, Linux
can be booted with only a small amount of memory available and we have
managed to boot the Pentium® with only 32 MB of main memory (recall,
that the Athlon is used for dataset sizes smaller than main memory).

The size of all elements and pointers used is always 4 bytes, which seems
appropriate on 32-bit computers. So for the 32 MB main memory bound-
ary, the cache boundaries of both benchmarking computers and the main
memory boundary of the Pentium are shown in Figure 7.1. The boundaries
are shown in the number of elements the various memory layers can contain.
They are calculated on basis of how much space the various data structures
take up holding the indicated number of elements. Other data necessary for
running the benchmarks are not included, so the numbers just indicate in
which areas cache misses and page faults can be expected.

Aligning Data on Cache Line Boundaries

On page 58 we emphasized the importance of adjusting the size of the nodes
in the heap layout to the cache line length in order to ensure optimal cache
performance. This means that the addresses of the nodes must be divisible
by 64, which is the cache-line length in bytes on the benchmarking com-
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puters. Only by aligning the tree at these boundaries can we ensure that
reading a node into memory will incur only one cache block transfer.

An address is divisible by 64 when the 6 least significant bits of its binary
representation are all unset, but when we allocate data we cannot be sure
that this is the case. To allocate an aligned dataset we therefore allocate a
chunk of memory that is a little larger than what we actually need, so that
we can push the starting address a little without risking that the end of the
dataset gets out of bound. If we allocate what corresponds to a cache line
of extra data, then we can ensure that this will not happen.

If we want to allocate N bytes of data on a cache-line boundary, then
we first allocate N + 64 bytes of data. Let the start address of these bytes
be 0, and let Pdata point 64 bytes into the data, that is, let Pdata point to
address 64. By manipulating Pdata, so that

Pdata = Pdata ∧ ¬(64− 1),

the pointer will now point to the first address between address 0 and 64 that
is divisible by 64.

7.1.5 About the Results

All in all our benchmarks have resulted in ≈ 50 plots describing numerous
characteristics of the different searching and sorting implementations. As
it would be overkill to include and comment on all these plots, we have
chosen a representative selection to illustrate the benchmarking results in the
following two sections. The complete selection of plots can be downloaded
from the web-site of this thesis.

Our main interest is in comparing the relative performance of the various
programs. On many of the plots one program therefore forms a base line to
which the other programs are compared.

7.2 Benchmarking the Static Search Trees Pro-
grams

In this section we present the results of benchmarking the static search
trees. In general, all benchmarks are performed following the same strategy
as Ladner et al. [30] who also carried out a series of experimental studies on
static search trees. As a consequence, each benchmark case consists of N
successful lookups, where N is the number of elements in the search tree.
The sequence of elements to lookup is composed as a random permutation
of the elements ranging from 0 to N − 1.

In Section 7.2.1 we carry out benchmarks to validate the analytically
derived work complexities and branch misprediction counts. In Section 7.2.2
we investigate the way in which the various layouts use the memory system,
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and some interesting effects due to the set-associative cache of the Athlon
is investigated in Section 7.2.4. Finally, we investigate the running times of
all layouts for lookups of a random sequence of elements as well as another
composition of the lookup sequence in Section 7.2.3.

7.2.1 Validating the Analytical Results

Before we get to validating the work complexities and branch misprediction
counts, we investigate the quality of the pure-C programs. What we mean
by quality in this context becomes clear in the following section.

Quality of Pure-C Programs

The pure-C search programs are translations of the generic search algorithm
using different layout policies. This translation process is done by hand
and resembles the work done by a compiler. It is therefore interesting to
compare the behavior of the pure-C programs to that of the layout-based
programs. Since the pure-C programs are C++ programs, we can compare
their relative running times to those of the layout-base programs and thereby
estimate their quality. Figure 7.2 shows the relative CPU usage of all search
programs — pure-C versions and layout-based versions are shown in separate
plots.

Overall, the compiler seems to make equally good executables of pure-C
and layout-based programs, though there is a vague tendency of the pure-C
programs being a little more efficient than the layout-based programs.

Work Complexity

We validate the analytically derived work complexities by comparing the
relative number of instructions executed by the various layouts. Figure 7.3
shows the relative instruction counts of the layout policies on the Athlon
computer. As predicted in Section 5.8 on page 79, the implicit height par-
titioned layout executes approximately two to three times as many instruc-
tions as the other layouts.

Furthermore, it is worth noting that the expected relative work com-
plexities among the other four layouts quite precisely matches their relative
instruction counts. The only mismatch is the instruction count for the in-
order layout that seems to grow a little faster than the others. However,
the overall picture indicates that the constant factors derived in the pure-C
cost model can indeed be trusted as a measure of relative work complexity
— even when the work complexities are as alike as is the case here.
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Figure 7.2: Relative CPU time measurements of the pure-C search pro-
grams (top) and the policy-based search programs (bottom) on the Athlon
computer. The inorder method is used as base line.
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Figure 7.3: Relative instruction counts of the pure-C search programs on
the Athlon computer with the inorder layout as base line.
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Figure 7.4: Branch misprediction counts (top) and conditional branch in-
struction counts (bottom) for the search tree layouts on the Athlon com-
puter.
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Figure 7.5: Branch misprediction ratios for the layout-based search trees.

Branch Mispredictions

Figure 7.4 (top) shows the branch misprediction counts of the various lay-
outs. In the pure-C model we expected the explicit heap layout to incur the
highest number of mispredictions but that is apparently not the case in prac-
tice. Though this layout incurs more mispredictions than the inorder and
the height partitioned layouts, it actually incurs less mispredictions than the
implicit heap layout. This is surprising since the implicit heap layout at the
same time executes fewer conditional branch instructions than the explicit
one (Figure 7.4, bottom). Looking at the branch misprediction ratios on
Figure 7.5 we see that for some reason the Athlon is better at predicting
the conditional branches of the explicit heap layout than those of the other
layouts.

Recall, that in the pure-C model conditional branch instructions are di-
vided into two categories based on whether they are easy or hard to predict.
It seems that the pure-C model either needs a finer granularity of this cat-
egorization or a more precise prediction algorithm for the hard-to-predict
branches than the one suggested by Mortensen [31]. Also, a better under-
standing of how compilers deal with conditional branches may lead to a
higher precision in the pure-C model in this regard.
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7.2.2 Investigating Memory Usage

In Section 5.8.2 on page 79 we argued that the method used for splitting the
height partitioned tree into subtrees causes bad alignment of the subtrees
for a cache-line length of 64-bytes. Also, we argued that the inorder layout
is less affected by the cache-line length. It is therefore interesting to see if
the theoretically superior cache complexity of the inorder layout pays off in
practice.

Figure 7.6 shows the number of level 1 cache misses (top) and accesses
(bottom) for the various layouts, while Figure 7.7 shows the number of level
2 cache misses4.

The benchmarks do not support the expected superiority of the inorder
layout. In fact, the implicit height partitioned layout exhibits better memory
usage at both cache layers — even though it incurs a higher number of level
1 cache accesses than the inorder layout. The higher number of level 1 cache
accesses can be explained by the precomputed table that the layout policy
uses for navigation.

An explanation for the better memory usage of the implicit height par-
titioned layout can be found in a very recent draft paper of Bender et al.
[5] that we became aware of just prior to the deadline of this thesis. In the
draft, Bender et al. explore the cost of cache oblivious searching and argue
that in the worst-case the number of cache misses incurred when following
the path from the root to a leaf in the height partitioned tree (which is
approximately 4 logB N) only occurs for a small subset of the total set of
such paths. Based on this observation, they argue that the expected number
of cache misses incurred when following any path from the root to a leaf, is
2(1 + 1/

√
B) logB N . Now, for these arguments Bender et al. use a splitting

of the tree that results in equally large top and bottom recursive subtrees5.
For uneven splits resulting in a top recursive subtree of height dahe and

bottom recursive subtrees of height bbhc, 0 ≤ a < b ≤ 1 and a+ b = 1, they
derive the optimal split to be when 1/4 ≤ a < 1/2. For these values of a
they argue for an expected (log2 e+ ε) logB N +O(1) cache misses, which is
clearly better than for the even split.

However, our way of splitting the tree, so that the height of the bottom
recursive subtrees are powers of 2, does not guarantee that a belongs to
the range 1/4 ≤ a < 1/2. In fact, our way of splitting closely resembles
the even split, since only top recursive subtrees can be split unevenly and
all splittings of bottom recursive subtrees are even. Therefore, since our
benchmark results are based on random lookups they should approximately
follow the expected cache complexity derived by Bender et al. for the even
split, that is, occurring 2(1+1/

√
B) logB N cache misses. Since this number

4Note that the number of level 2 cache accesses equals the number of level 1 cache
misses.

5Figure 5.7 shows this splitting.
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Figure 7.6: Level 1 cache misses (top) and relative level 1 cache accesses
(bottom) for the layout-based search trees on the Athlon.
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Figure 7.7: Level 2 cache miss counts for the layout-based search trees on
the Athlon.
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equals 5/8 log2N for B = 16, the expected cache complexity of the implicit
height partitioned layout grows slower than that of the inorder layout, which
is log2N − 6. This explains the better cache usage of the implicit height
partitioned layout shown in Figure 7.6 and 7.7. It also explains why the
explicit height partitioned layout is better than predicted.

If we ignore the height partitioned layouts, the relative expected cache
efficiencies (see Section 5.11 on page 79) match the relative cache miss counts
at both cache layers. The heap layouts are more efficient than the inorder
layout, and the implicit heap layout is more efficient than the explicit heap
layout.

From the plots we also see that the explicit layouts begin to cause more
misses at both cache levels earlier than the other layouts. This is expected
since they use extra memory for keeping child pointers. Overall, the dataset
sizes for which the cache effects begin to stabilize matches the cache bound-
aries shown on Figure 7.1.

Due to the long running times when benchmarking large datasets, we
have only sparse measurements of the main memory usage of the search
tree layouts. Nevertheless, it is possible to draw a few conclusions from the
page fault counts shown in Figure 7.8. We notice the same effect as with
the cache miss counts that the explicit layouts incur page faults for smaller
datasets than the other layouts. The curves of the explicit layouts also to
grow faster than the others. The curves of the implicit layouts seem to grow
slower than the curve of the inorder layout, but how much slower is difficult
to determine.

7.2.3 Investigating Running Time

We have experienced how the complex navigational computations of the im-
plicit height partitioned layout made it execute a significantly higher number
of instructions than the other layouts. It is therefore interesting to see if
the better memory usage of the implicit height partitioned layout makes it
faster than especially the inorder layout.

Figure 7.9 shows the running times of the layout-based search trees mea-
sured in CPU time on the Athlon and in wall-clock time on the Pentium.
The plots of the implicit layouts are the most smooth ones, which indicates
that these layouts are least affected by the level 1 and 2 cache misses. On
those plots the typical “knees bends”, that mark the dataset sizes for which
cache misses starts occurring at the next caching layer, are almost invisible.
From being the least efficient layout for small datasets the implicit height
partitioned layout becomes better than both the inorder layout and the ex-
plicit height partitioned layout when the datasets exceed the level 2 cache
in size. It is hard to interpret exactly what happens when the datasets get
larger than main memory, but the tendency is that the inorder layout ends
with a higher growth rate than the implicit layouts, and that the implicit
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Figure 7.8: Page fault counts of the layout-based search trees on the Pen-
tium.
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Figure 7.9: CPU time measurements on the Athlon (top) and wall-clock time
measurements on the Pentium (bottom). The Pentium was booted with only
32 MB of main memory available in order to capture main memory effects.
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height partitioned layout surely can compete with the explicit layouts.

It is interesting that the explicit height partitioned layout is the most
efficient on both computers until the point where the level 2 cache misses be-
gin to occur. It stays efficient on the Pentium until the dataset exceeds main
memory where the high latency makes it unable to compete6. It seems that
the better work complexity and branch misprediction count of the explicit
height partitioned layout is worth more than the better level 1 cache usage
of the explicit heap layout. The low level 1 cache miss penalty explains this
relative efficiency.

This result contradicts the work of Ladner et al. [30] who found the
cache-aware layout to be the most efficient. However, in the investigation
by Ladner et al., the performance of the explicit cache-aware layout and
the explicit cache-oblivious layout were very alike, so the reason for the
conflicting results is most likely found in the implementational details.

7.2.4 Set-Associative Caches

The CPU time plot of the inorder layout (Figure 7.9, top) shows some sudden
increases in the running time for a subset of the largest datasets sizes, i.e.,
for 217, 218, . . . , 223. As these tops are also visible on both the level 1 and 2
cache miss plots they are clearly related to memory usage.

The tops can be explained by investigating which memory addresses a
search in the inorder layout accesses on the path from the root to a leaf,
and how these addresses map to the cache-lines sets of the set-associative
caches. If the dataset is of size 2i (i.e., a power of 2), then each descend
down the inorder tree will result in continuing the search in an array of size
2i−1. Now, since the associativity of the caches are also powers of 2 the
search keeps on accessing elements that map to the same set in the cache,
and since these sets can only hold a limited number of blocks at a time7,
conflict cache misses begin to occur. Because the level 2 cache of the Athlon
is 16-way set-associative these conflict misses occur when the tree has 16 or
more levels, that is, when the dataset contains 216 or more elements. On
the contrary, when the dataset are large but not powers of 2 conflict misses
are not an issue.

These cache effects are not captured by the ideal-cache model, as it
assumes a full-associative cache.

6The missing measurements for the largest datasets on the Pentium (Figure 7.9, bot-
tom) are due to the benchmarks running for too long, and not because of uncertainty in
the measurements.

7On the Athlon these numbers are 2 and 16 for the level 1 and 2 caches respectively.
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7.2.5 Composition of Lookup Sequence

In addition to benchmarking successful random lookups we have bench-
marked the search trees for another composition of the lookup sequence.
Figure 7.10 (top) shows that looking up elements of increasing value instead
of random values completely removes the knee bends of the plots for all
layouts. This is due to better memory usage. For all layouts, the sequence
of memory blocks accessed during the search for the elements of value i
and i+ 1 are almost identical. Therefore, most of the blocks accessed when
searching for i+ 1 have been brought into the caches in the search for i, so
fewer cache misses occur. The caches are said to be warm. By comparing
the level 2 cache misses of the increasing lookup sequence (Figure 7.10, bot-
tom) to that of the randomly permuted lookup sequence (Figure 7.7) it is
apparent that the increasing sequence causes all layouts to incur fewer cache
misses. The bad work complexity of the implicit height partitioned layout
therefore becomes more influential on the running time, which is clearly
shown in Figure 7.10 (top).

7.3 Benchmarking the Sorting Programs

In this section we present the results of benchmarking the sorting algorithms.
In each benchmark case a sequence of N elements is sorted. This sequence
is a random permutation of the elements ranging from 0 to N − 1 and
contains no duplicates. In order for us to interpret the results correctly,
some comments on the funnelsort implementation we use should be made.
We look into this matter in Section 7.3.1.

In addition to the 4-way mergesort and the funnelsort algorithms, we
have chosen also to benchmark the introsort [33] algorithm available at SGI
STL. Like the 4-way mergesort, this algorithm is also a state-of-the-art sort-
ing algorithm. We have included a short description of introsort in Section
7.3.2.

In Section 7.3.3 we carry out benchmarks to validate the predicted work
complexities. In Section 7.3.4 we look at the memory usage of the algo-
rithms, and in Section 7.3.5 we investigate the running times of the algo-
rithms.

7.3.1 The Funnelsort Implementation

Olsen & Skov [35] used funnelsort in their investigations of cache-oblivious
priority queues. They compared the wall-clock time of heap construction
when using funnelsort and introsort respectively. Their funnelsort imple-
mentation was the fastest for datasets exceeding the size of main memory,
while introsort was superior for smaller datasets.
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Figure 7.10: CPU time measurements on the Athlon for lookups of a se-
quence of elements of increasing value (top), and the number of level 2
cache misses that this sequence causes (bottom).
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The implementation of Olsen & Skov is a combination of the funnel-
sort descriptions of Brodal & Fagerberg and Prokop [38], so it is not fully
compliant to the description of Brodal & Fagerberg.

The implementation of Olsen & Skov uses cyclic buffers, which is not
necessary for our purpose, since buffers are always filled completely and
emptied completely. However, this will not influence the cache complexity
of the algorithm. More importantly, the implementation does not use the
idea described in Section 6.3 of merging the elements forth and back between
two arrays. Instead, in every merge step, the elements are merged from the
input array to an additional array, whereupon the elements are copied back
to the input array. This incurs an additional 2 dN+1e

B cache misses for each
level in the tree of funnels, so asymptotically this does not change the cache
complexity of the algorithm.

Though the implementation of Olsen & Skov can be improved, the ways
in which it differs from our description and analysis of funnelsort are minor.
We will therefore use this implementation for our experiments8. The only
change we have made to the implementation is introducing the parameter
d.

7.3.2 The Introsort Competitor

The average running time of Quicksort is O(N log2N) when data are uni-
formly distributed. However, in the worst-case situation data are already
sorted, which means that the quicksort partitions the elements in a maxi-
mally unbalanced way. As a consequence, the recursion becomes very deep,
and the worst-case performance becomes O(N2).

Introsort uses quicksort as a primary sorting algorithm but can detect
worst-case situations while the algorithm runs. The trick is to keep track
of the recursion depth and switch to heapsort if the depth exceeds some
predefined threshold. This way introsort works just as good as quicksort
in the average case, and still exhibits O(N log2N) complexity in the worst
case. As both quicksort and heapsort are in-place sorting algorithms, so is
introsort.

7.3.3 Validating the Analytical Results

Figure 7.11 shows the relative instruction counts of 4-way mergesort, in-
trosort, and funnelsort9 using 4-way mergesort as a base line. In Section
6.5 we predicted that funnelsort would use approximately 8 times as many
instructions as 4-way mergesort. This relation can be verified from the plot,
which shows a factor between 6 and 10 for large datasets.

8The implementation can be downloaded from http://www.dunkel.dk/thesis/
9We have used d = 3 in the funnelsort benchmarks and introsort as base-case sorting

algorithm unless otherwise noted.

http://www.dunkel.dk/thesis/
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7.3.4 Investigating Memory Usage

The plots on Figure 7.12 do not match our cache complexity predictions of
the 4-way mergesort being significantly superior to funnelsort. This verifies
our suspicion in Section 6.5.1 that the derived worst-case cache complexity
bound on funnelsort is not the tightest possible. As expected, the average-
case performance is far better. The benchmarks indicate that the average-
case cache complexity bound most likely can be found in the same area as
the cache complexity bound of 4-way mergesort that we derived in Section
6.1.2.

Furthermore, the plots indicate that the cache complexities of 4-way
mergesort and funnelsort are both superior to that of introsort. Introsort
incurs fewer cache misses in the level 1 cache, but this is due to its better
space complexity. The difference becomes apparent in the level 2 cache
where the curve for introsort does not flatten out like the others. The
page fault measurements for large datasets (Figure 7.13) show the same
pattern as in the level 1 and 2 cache, that the two space consuming sorting
algorithms reach the boundary between memory layers for smaller datasets
than introsort. We would expect that the inefficient level 2 cache usage of
introsort would also be evident from the page fault counts. However, on
Figure 7.13 it is not possible to determine which of the three curves that
exhibits the highest growth rate.

7.3.5 Investigating Running Time

Figure 7.14 shows the CPU time on the Athlon and wall-clock time mea-
surements on the Pentium of the sorting programs.

On the Athlon the 4-way mergesort and introsort seem to become equally
efficient for large datasets. The introsort is superior to funnelsort for all
input sizes in spite of its inferior cache performance.

On the Pentium, funnelsort seems to gain upon the 4-way mergesort for
the largest datasets, while the introsort suffers heavily from reaching the
upper boundary of main memory. The sparse measurements beyond main
memory makes it impossible to predict how the relative performance will
develop when the datasets becomes even larger.

7.3.6 The Parameter d

In Section 6.3.1 on page 94 we discussed the implications of tuning the
parameter d. We argued that it might compromise the optimality of the
cache complexity of funnelsort, since a large value of d would make the
base-case sorting algorithm more influential. The level 2 cache miss counts
on Figure 7.15 (top) verifies this prediction. The higher we choose d, the
more cache misses the algorithm incurs. The plot on Figure 7.15 (bottom)
shows how the different values of d influences the CPU time.
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Figure 7.12: Level 1 cache misses (top) and level 2 cache misses (bottom)
of the sorting programs on the Athlon computer.
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Figure 7.13: Page fault counts for the sorting programs.

7.4 Summary

In this chapter we have explained the methodology used for our benchmarks,
including the way in which we measure memory usage, running time, and
instruction counts. We have investigated the results of the searching and
sorting benchmarks, and commented on these results separately.

Overall, the benchmark results have verified our predicted work and
cache complexities of the search trees — though, the measured cache per-
formance needed some further explanation on the average-case cache com-
plexity of cache-oblivious search trees. The precision of the expected branch
misprediction counts have not been equally good, which indicates that the
pure-C model might need some adjusting in that respect.

The benchmarks of the sorting algorithms indicate that the average-case
cache complexity bound on funnelsort is significantly better than the worst-
case bound derived in Section 6.4.3. Our predictions of the work complexity
of funnelsort relative to that of 4-way mergesort have proved successful.
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Figure 7.14: CPU time measurements on the Athlon computer (top) and
wall-clock measurements on the Pentium computer (bottom) of 4-way
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Conclusion

“Ignorance is bliss.”

— Franklin Pierce Adams

The main purpose of out work has been to investigate the possibilities of
predicting the behavior of cache-oblivious searching and sorting algorithms
by use of constant-factors analysis of work and cache complexity. Below, we
summarize the main achievements in order of appearance:

� In Chapter 2 we looked into the way in which modern memory systems
work, and saw how memory latency and the memory access pattern
of an algorithm influences its running time. By use of an example we
illustrated that the effects of efficient and inefficient memory access
patterns are not captured in the RAM-model.

� The ideal-cache model and other models of memory systems capture
the effects of memory access patterns. In the investigation of three
such models in Chapter 3, we argued that the ideal-cache model offers
some advantages to the other models, that makes it attractive. By
investigating the theory behind the model we argued that it could be
well-suited for estimating the relative memory efficiency of algorithms
of similar asymptotic cache complexity.

� Earlier work on cache-oblivious algorithms indicates that such algo-
rithms are more complex and incur higher instruction counts than
traditional algorithms. Constant-factors analysis of cache complexity
should therefore be companied by meticulous work complexity analy-
sis. In Chapter 4 we argued that the pure-C model is the model best
suited for such analysis due to its simplicity.
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� In Chapter 5, we conducted a thorough analysis of the constant factors
of the worst-case cache complexity of five search tree variants. Fur-
thermore, we proved upper bounds on the pure-C instruction counts
and branch misprediction counts of all five trees.

� The cache-oblivious search tree is of optimal cache-complexity due to a
height partitioned memory layout. In Section 5.7.3 we have described
a new algorithm that builds a tree in the height partitioned memory
layout in linear time. This is an improvement of the, as far as we
know, only other algorithm for this task described in the literature.

� In Chapter 6 we analyzed the 4-way mergesort and the cache oblivious
funnelsort. We derived the constant factors of the worst-case cache
complexity of both algorithms and of the cache-oblivious k-funnel data
structure. Furthermore, we derived a bound on the pure-C instruction
count of funnelsort.

� In Chapter 7 we ran thorough benchmarks, monitoring several aspects
of the searching and sorting algorithms in order to evaluate the pre-
dicted performance.

For the searching algorithms the benchmarks could only partially ver-
ify the predictions of relative work and cache complexities. However,
with respect to the predictions of cache complexity, we have been able
to explain the way in which the measured performance differ from
the expected performance by use of a recent paper on average-case
analysis of the cache oblivious search tree. When taking this analy-
sis into account, our predictions matched the practical results closely.
The same was true for the work complexity analysis, while the branch
misprediction strategy of the pure-C model was unable to predict the
relative branch misprediction counts precisely.

The benchmarks of funnelsort indicate that our derived cache com-
plexity bound indeed was a worst-case bound, and showed that fun-
nelsort in the average-case behaved far better than predicted. In fact,
the measured cache performance of funnelsort was comparable to that
of the 4-way mergesort. This indicates that the average-case cache
complexity bound of funnelsort most likely can be found in the same
area as our derived worst-case cache complexity bound of the 4-way
mergesort. Regarding the predictions of work complexity, the bench-
marks verified the relative performance of funnelsort and the 4-way
mergesort.

The question whether the cache-oblivious approach is useful for search-
ing and sorting algorithms is hard to answer in general. However, our
results indicate that the use of pointer navigation was efficient in com-
bination with the cache-oblivious search tree layout — at least for
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small input sizes. In fact, it proved even better than a cache-aware
approach using pointers, but for larger datasets the cache-aware search
trees were superior. Without use of pointers the traditional search tree
was superior to the cache-oblivious search tree for small datasets, but
the cache-oblivious search tree was superior for large datasets.

The cache-oblivious funnelsort was inferior to both introsort and 4-way
mergesort in terms of running time for all dataset sizes. In spite of
a superior cache complexity compared to that of introsort, the higher
instruction count had more influence on the running time.

Working with the design and analysis of cache-oblivious algorithms has been
both an inspiring and challenging process, which has left some impressions.

The ideal-cache model is neat. It makes cache complexity analysis man-
ageable through the assumptions of a two-layered memory system of full
associativity, with an optimal replacement strategy, and automatic data re-
placement. A strong property of the model is that knowing the details of
the theory that validates these assumptions is no prerequisite for using the
model. All that is needed is to know the implications of these assumptions.

The cache-oblivious approach gives an algorithm designer or analyst the
freedom to think of algorithms in new ways. But with freedom follows re-
sponsibility. By the removal of the burden of considering memory system
characteristics, the focus switches towards a more general way of designing
memory efficient algorithms. The new techniques require new ways of think-
ing and thus may take time to master. However, the area of cache-oblivious
algorithms is still new, so the most simple cache oblivious techniques and
algorithms have probably not been discovered yet.

Therefore, cache-oblivious algorithms of better work complexity than
the algorithms investigated in this thesis might prove the cache-oblivious
approach even more useful than indicated by our results.

8.1 Directions of Further Work

There are a number of issues that we have chosen not to pursue in this
thesis. Here follows a few suggestions for related further work:

� The benchmarking results of the inorder search tree reveal effects
due to the set-associative cache of the Athlon computer. Certain
dataset sizes incurred sudden increases in the memory performance
of the inorder search tree. These cache effects are not captured by
the ideal-cache model. In general, it would be interesting to inves-
tigate how cache-oblivious algorithms perform on direct-mapped or
fully-associative caches. This might lead to guidelines on what kind of
algorithmic behavior that should be avoided in order for an algorithm
to be memory efficient.
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� Our results indicate that the branch misprediction counts derived in
the pure-C model in some cases do not match the actual behavior.
Analyzing the branch misprediction units of modern CPUs might lead
the way to a more realistic branch prediction strategy to use in the
model. However, the strength of the pure-C model lies in its simplicity,
so it is important that a new strategy is also simple.

� We have not paid much attention to optimizing the funnelsort al-
gorithm in respect to work complexity, but our results suggest that
there is room for improvement. Funnelsort needs scrutinizing in order
to become competitive to other sorting methods. Most importantly,
it should be possible to minimize the space used by the algorithm
by modifying the merge procedure to work in-place. This technique
might also be brought to work within a k-funnel itself, as it works with
buffers in a similar way.

� Our results suggest that the average-case cache complexity of funnel-
sort is significantly better than our derived worst-case bound. The
recent work of Bender et al. [5] on the average-case cache performance
of the cache-oblivious search tree might provide for some inspiration
on how such analysis could be conducted. An average-case analysis
of funnelsort would lead to better understanding on the workings of
the algorithms, which again could lead to a simpler and more efficient
algorithm.
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H. Hu, J. Iacono, and A. López-Ortiz, The Cost of Cache-
Oblivious Searching, Draft (2003).

[6] M. A. Bender, R. Cole, and R. Raman, Exponential Structures
for Efficient Cache Oblivious Algorithms, Proceedings of the 29th In-
ternational Colloquium on Automata, Languages and Programming,
Springer-Verlag (2002), 195–207.

[7] M. A. Bender, E. D. Demaine, and M. Farach-Colton, Cache-
Oblivious B-Trees, Proceedings of the 41st Annual IEEE Symposium
on Foundations of Computer Science, IEEE Computer Society Press
(2000), 399–409.



142 Conclusion

[8] M. A. Bender, Z. Duan, J. Iacono, and J. Wu, A Locality-
Preserving Cache-Oblivious Dynamic Dictionary, Proceedings of the
13th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM
Press (2002), 29–38.

[9] J. Bentley, Cache-Conscious Algorithms and Data Structures, World-
wide Web Document (2000). Available at http://www.cs.bell-labs.
com/cm/cs/pearls/ccads.pps.

[10] BitMover, LMbench, Worldwide Web Document (2003). Available at
http://www.bitmover.com/lmbench.

[11] J. Bojesen, J. Katajainen, and M. Spork, Performance engineer-
ing case study: heap construction, Journal of Experimental Algorith-
mics 5 (2000), 15.

[12] G. S. Brodal and R. Fagerberg, Cache-Oblivious Distribution
Sweeping, Proceedings of the 29th International Colloquium on Au-
tomata, Languages, and Programming, Lecture Note in Computer Sci-
ence 2380, Springer-Verlag (2002), 426–438.

[13] G. S. Brodal and R. Fagerberg, Funnel Heap — A Cache-
Oblivious Priority Queue, Proceedings of the 13th Annual International
Symposium on Algorithms and Computation, Lecture Notes in Com-
puter Science, Springer-Verlag (2002), 426–438.

[14] G. S. Brodal and R. Fagerberg, On the limits of cache-
obliviousness, Proceedings of the 35th Annual ACM Symposium on The-
ory of Computing (2003). To appear.

[15] G. S. Brodal, R. Fagerberg, and R. Jacob, Cache-Oblivious
Search Trees via Binary Trees of Small Height, Proceedings of the 13th
Annual ACM-SIAM Symposium on Discrete Algorithms, ACM Press
(2002), 39–48.

[16] S. A. Cook and R. A. Reckhow, Time-Bounded Random Access
Machines, Proceedings of the 4th Annual ACM Symposium on Theory
of Computing, ACM Press (1972), 73–80.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, In-
troduction to Algorithms, The MIT Electrical Engineering and Com-
puter Science Series, 4th Edition, MIT Press/McGraw Hill (2001).

[18] E. Demaine, Cache-Oblivious Algorithms and Data Structures, Pre-
liminary lecture notes — handed out at the EFF Summer School on
Massive Data Sets. June 27-July 1, BRICS, University of Aarhus.

http://www.cs.bell-labs.com/cm/cs/pearls/ccads.pps
http://www.cs.bell-labs.com/cm/cs/pearls/ccads.pps
http://www.bitmover.com/lmbench


8.1 Directions of Further Work 143

[19] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran,
Cache-oblivious algorithms, Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, IEEE Computer Society Press
(1999), 285–297.

[20] T. Hagerup, Sorting and Searching in the Word RAM, Proceedings of
the 15th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, Lecture Notes in Computer Science 1373, Springer-Verlag (1998),
266–298.

[21] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach, 3rd Edition, Morgan Kaufmann Publishers Inc.
(2003).

[22] International Organization for Standardization, ISO/IEC
14882:1998: Programming Languages — C++, International Organi-
zation for Standardization (1998).

[23] J. Katajainen and J. L. Träff, A meticulous analysis of mergesort
programs, Proceedings of the 3rd Italian Conference on Algorithms and
Complexity, Lecture Notes in Computer Science, Spring-Verlag (1997),
217–228.

[24] B. Kernighan and D. Ritchie, The C Programming Language,
2nd Edition, Prentice Hall (1988).

[25] D. E. Knuth, The Art of Computer Programming: Fundamental Al-
gorithms, 3rd Edition, Addison-Wesley (1998).

[26] D. E. Knuth, The Art of Computer Programming: Sorting and Search-
ing, 2nd Edition, Addison-Wesley (1998).

[27] D. E. Knuth, The Art of Computer Programming, Fascicle 1:
MMIX, Addison-Wesley (1999). Available at http://www-cs-staff.
stanford.edu/~knuth/mmix.html.

[28] D. E. Knuth, MMIX homepage, Worldwide Web Document
(2003). Available at http://www-cs-staff.stanford.edu/~knuth/
mmix.html.

[29] P. Kumar, Cache Oblivious Algorithms, Algorithms for Memory Hi-
erarchies, Lecture Notes in Computer Science 2625, Springer-Verlag
(2003), 193–212.

[30] R. E. Ladner, R. Fortna, and B. H. Nguyen, A Comparison of
Cache Aware and Cache Oblivious Static Search Trees Using Program
Instrumentation (2002).

http://www-cs-staff.stanford.edu/~knuth/mmix.html
http://www-cs-staff.stanford.edu/~knuth/mmix.html
http://www-cs-staff.stanford.edu/~knuth/mmix.html
http://www-cs-staff.stanford.edu/~knuth/mmix.html


144 Conclusion

[31] S. Mortensen, Refining the pure-C cost model, M. Sc. Thesis, De-
partment of Computer Science, University of Copenhagen (2001).

[32] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge
University Press (1995).

[33] D. R. Musser, Introspective sorting and selection algorithms, Software
— Practive and Experience 27,8 (1997), 983–993.

[34] D. Ohashi, Cache Oblivious Data Structures, M. Sc. Thesis, University
of Waterloo (2000).

[35] J. H. Olsen and S. C. Skov, Cache-Oblivious Algorithms in Practice,
M. Sc. Thesis, Department of Computer Science, University of Copen-
hagen (2002).

[36] University of Tennessee, Performance application programming
interface, Worldwide Web Document (2003). Available at http://icl.
cs.utk.edu/projects/papi/.

[37] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design: The Hardware/Software Interface, 2rd Edition, Morgan Kauf-
mann Publishers Inc. (1996).

[38] H. Prokop, Cache-Oblivious Algorithms, M. Sc. Thesis, Massachusetts
Institute of Technology (1999).

[39] D. D. Sleator and R. E. Tarjan, Amortized Efficiency of List Up-
date and Paging Rules, Communications of the ACM 28,2 (1985), 202–
208.

[40] A. Srivastava and A. Eustace, Atom: a system for building cus-
tomized program analysis tools, Proceedings of the ACM SIGPLAN ’94
conference on Programming language design and implementation, ACM
Press (1994), 196–205.

[41] J. S. Vitter, External Memory Algorithms and Data Structures:
Dealing with MASSIVE Data, ACM Computing Surveys 33,2 (2001),
209–271.

[42] J. S. Vitter, External Memory Algorithms: Computing on MASSIVE
Data, Worldwide Web Document (2002). Available at http://www.
brics.dk/MassiveData02/slides/vitter-Basic.ps.

http://icl.cs.utk.edu/projects/papi/
http://icl.cs.utk.edu/projects/papi/
http://www.brics.dk/MassiveData02/slides/vitter-Basic.ps
http://www.brics.dk/MassiveData02/slides/vitter-Basic.ps


a p p e n d i x A

Programs

A.1 Generic Search

#ifndef __GENERIC_SEARCH_CPP__

#define __GENERIC_SEARCH_CPP__

template <typename RandomIterator, typename T, typename LayoutPolicy>

5 bool generic_search(RandomIterator begin,

RandomIterator beyond,

LayoutPolicy policy,

const T& value) {

policy.initialize(begin, beyond);

10 while(policy.not_finished()) {

if (policy.node_contains(value)) {

return true;

}

else

15 policy.descend_tree(value);

}

return false;

}

20 #endif //__GENERIC_SEARCH_CPP__
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A.2 Inorder Search

#include <iterator>

#include <iostream>

#ifndef __INORDER_SEARCH_CPP__

5 #define __INORDER_SEARCH_CPP__

template<typename RandomIterator, typename Value>

class inorder_search_policy {

public:

10 inorder_search_policy() { }

inline void initialize(RandomIterator begin,

RandomIterator beyond) {

m_begin = begin;

m_beyond = beyond;

15 m_len = beyond-begin;

}

inline bool not_finished() { return (m_len > 0); }

inline bool node_contains(const Value& value) {

m_half = m_len >> 1;

20 m_middle = m_begin;

m_middle = m_middle + m_half;

return *m_middle == value;

}

inline void descend_tree(const Value& value) {

25 if (*m_middle < value) {

m_begin = m_middle;

++m_begin;

m_len = m_len - m_half - 1;

}

30 else

m_len = m_half;

}

private:

typename std::iterator_traits<RandomIterator>::difference_type m_half;

35 typename std::iterator_traits<RandomIterator>::difference_type m_len;

RandomIterator m_begin, m_beyond, m_middle;

};

#endif //__INORDER_SEARCH_CPP__
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#ifndef __INORDER_SEARCH_PURE_C_CPP__

#define __INORDER_SEARCH_PURE_C_CPP__

#include <iterator>

5 namespace pure_c {

template <typename RandomIterator, typename T>

bool inorder_search(RandomIterator begin,

RandomIterator beyond,

const T& value) {

10 typedef typename std::iterator_traits<RandomIterator>::difference_type diff_type;

initialize:

diff_type half, len = beyond - begin;

T middle_value;

RandomIterator middle;

15

goto not_finished;

descend_right:

begin = middle;

begin = begin + 1;

20 len = len - half;

len = len - 1;

not_finished:

if (len == 0) goto return_false; /* hint: not taken */

node_contains:

25 half = len >> 1;

middle = begin + half;

middle_value = *middle;

if (middle_value == value) goto return_true;

if (middle_value < value) goto descend_right;

30 descend_left:

len = half;

goto not_finished;

return_false:

35 return false;

return_true:

return true;

}

}

40 #endif //__INORDER_SEARCH_PURE_C_CPP__
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A.3 Optimized Lower Bound

#ifndef __LOWER_BOUND_OPTIMIZED_PURE_C_CPP__

#define __LOWER_BOUND_OPTIMIZED_PURE_C_CPP__

#include <iterator>

5 unsigned char log_table[256] = { 0xff, // <--- rogue value

0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

10 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

15 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

20 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 };

// calculates floor( log2( n ) )

inline size_t floor_log2(unsigned long n) {

long rv = 0;

25 if (n & 0xffff0000) {

rv += 16; n >>= 16;

}

if (n & 0xff00) {

rv += 8; n >>= 8;

30 }

return rv + log_table[n];

}

template<typename RandomIterator, typename T>

35 RandomIterator lower_bound_optimized(RandomIterator begin,

RandomIterator end,

const T& val)

{

typename std::iterator_traits<RandomIterator>::difference_type n = end - begin;

40 if (n == 0) return end;

ptrdiff_t i = (1 << floor_log2(n)) - 1;

begin = begin[i] < val ? begin + (n - i) : begin;

while (i > 0) {

i = i >> 1;

45 begin = begin[i] < val ? begin + i + 1: begin;

}

return begin;

}

50 #endif //__LOWER_BOUND_OPTIMIZED_PURE_C_CPP__
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A.4 Implicit Heap Search

#ifndef __IMPLICIT_HEAP_POLICY_CPP__

#define __IMPLICIT_HEAP_POLICY_CPP__

#include <iostream>

5 #include <iterator>

using namespace std;

template <typename RandomIterator, typename Value>

10 class implicit_heap_policy {

public:

implicit_heap_policy(int degree) { m_degree = degree; }

inline void initialize(RandomIterator begin,

RandomIterator beyond) {

15 m_index = 0;

m_size = beyond-begin-m_degree;

m_current_node = begin;

m_lower_bound = begin;

m_begin = begin;

20 }

inline bool not_finished() { return m_index < m_size; }

inline bool node_contains(const Value &value) {

m_lower_bound =

std::lower_bound(m_current_node, m_current_node+m_degree-1, value);

25 return (*m_lower_bound == value);

}

inline void descend_tree(const Value& value) {

m_index =

m_index*m_degree + (m_degree-1)*((m_lower_bound-m_current_node)+1);

30 m_current_node = m_begin+m_index;

}

private:

int m_degree;

typename iterator_traits<RandomIterator>::difference_type

35 m_index, m_size;

RandomIterator m_current_node, m_lower_bound, m_begin;

};

#endif // __IMPLICIT_HEAP_POLICY_CPP__
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#ifndef __LOWER_BOUND_PURE_C__

#define __LOWER_BOUND_PURE_C__

#define LOWER_BOUND(lower_bound, x) \

5 l_len = degree_minus_1; \

goto l_not_finished; \

l_right: \

lower_bound = l_middle; \

lower_bound = lower_bound + 1; \

10 l_len = l_len - l_half; \

l_len = l_len - 1; \

l_not_finished: \

if (l_len == 0) goto l_return; /* hint: not taken */ \

l_found: \

15 l_half = l_len >> 1; \

l_middle = lower_bound + l_half; \

l_middle_value = *l_middle; \

if (l_middle_value < value) goto l_right; \

l_left: \

20 l_len = l_half; \

goto l_not_finished; \

l_return: \

x = *lower_bound;

25 #endif //__LOWER_BOUND_PURE_C__
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#ifndef __IMPLICIT_HEAP_SEARCH_PURE_C_CPP__

#define __IMPLICIT_HEAP_SEARCH_PURE_C_CPP__

#include <iterator>

#include <algorithm>

5 #include <vector>

#include "lower_bound_pure_c.h"

namespace pure_c {

template <typename RandomIterator, typename T>

10 bool implicit_heap_search(RandomIterator begin,

RandomIterator beyond,

int degree,

const T& value) {

typedef typename std::iterator_traits<RandomIterator>::difference_type diff_type;

15 initialize:

RandomIterator lower_bound, l_middle, current_node = begin;

diff_type l_len, l_half, index = 0, size = beyond-begin;

T l_middle_value, x;

int degree_minus_1 = degree - 1;

20

goto not_finished;

descend_tree:

index = index * degree;

x = lower_bound-current_node;

25 x = x + 1;

x = degree_minus_1 * x;

index = index + x;

current_node = begin + index;

not_finished:

30 if (index >= size) goto return_false; /* hint: not taken */

node_contains:

lower_bound = current_node;

LOWER_BOUND(lower_bound, x)

if (x == value) goto return_true;

35 goto descend_tree;

return_false:

return false;

return_true:

40 return true;

}

}

#endif //__IMPLICIT_HEAP_SEARCH_PURE_C_CPP__
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A.5 Explicit Heap Search

#ifndef __EXPLICIT_HEAP_LAYOUT_CPP__

#define __EXPLICIT_HEAP_LAYOUT_CPP__

#include <iostream>

5 #include <iterator>

#include <algorithm>

#include <cmath>

using namespace std;

10

template <typename RandomIterator, typename Value>

class explicit_heap_policy {

public:

explicit_heap_policy(int degree) { m_degree = degree; }

15 inline void initialize(RandomIterator begin,

RandomIterator beyond) {

m_current_node = begin;

m_beyond = beyond;

}

20 inline bool not_finished() {

return (m_current_node < m_beyond);

}

inline bool node_contains(const Value &value){

m_lower_bound =

25 lower_bound(&(m_current_node->e[0]), &(m_current_node->e[m_degree-1]), value);

return (*m_lower_bound == value);

}

inline void descend_tree(const Value& element) {

m_current_node =

30 m_current_node->p[m_lower_bound-reinterpret_cast<Value*>(m_current_node)];

}

private:

int m_degree;

RandomIterator m_current_node, m_beyond;

35 Value *m_lower_bound;

};

#endif // __EXPLICIT_HEAP_LAYOUT_CPP__
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#ifndef __EXPLICIT_HEAP_SEARCH_PURE_C_CPP__

#define __EXPLICIT_HEAP_SEARCH_PURE_C_CPP__

#include <iterator>

#include <algorithm>

5 #include <vector>

#include <iostream>

#include "lower_bound_pure_c.h"

10 namespace pure_c {

template <typename RandomIterator, typename T>

bool explicit_heap_search(RandomIterator begin,

RandomIterator beyond,

unsigned int degree_minus_1,

15 const T& value) {

typedef typename std::iterator_traits<RandomIterator>::difference_type diff_type;

initialize:

T x, l_middle_value, *lower_bound, *l_middle;

diff_type y, l_len, l_half;

20 RandomIterator current_node = begin;

goto not_finished;

descend_tree:

y = lower_bound - reinterpret_cast<T*>(current_node);

25 current_node = current_node->p[y];

not_finished:

if (current_node >= beyond) goto return_false; /* hint: not taken */

node_contains:

lower_bound = reinterpret_cast<T*>(current_node);

30 LOWER_BOUND(lower_bound, x)

if (x == value) goto return_true;

goto descend_tree;

return_false:

35 return false;

return_true:

return true;

}

}

40 #endif //__EXPLICIT_HEAP_SEARCH_PURE_C_CPP__



154 Programs

A.6 Implicit Height Partitioning Search

#ifndef __IMPLICIT_HEIGHT_PARTITIONING_POLICY_CPP__

#define __IMPLICIT_HEIGHT_PARTITIONING_POLICY_CPP__

#include <iostream>

5 #include <iterator>

#include <algorithm>

#include <vector>

#include "hp_precomputed_table.h"

10 template <typename RandomIterator, typename Value>

class implicit_height_partitioning_policy {

public:

implicit_height_partitioning_policy(precomputed_table<Value> *precomp_table) {

m_precomp_table = precomp_table;

15 }

inline void initialize(RandomIterator begin,

RandomIterator beyond) {

m_current_depth = 0;

m_begin = begin;

20 m_current_bfs_index = 1;

m_size = beyond-begin;

m_precomp_table->initialise();

}

inline bool not_finished() { return m_current_bfs_index <= m_size; }

25 inline bool node_contains(const Value& value) {

return m_begin[m_precomp_table->Pos[m_current_depth]] == value;

}

inline void descend_tree(const Value& value) {

if (m_begin[m_precomp_table->Pos[m_current_depth]] > value)

30 m_current_bfs_index = m_current_bfs_index*2;

else

m_current_bfs_index = m_current_bfs_index*2+1;

m_current_depth++;

m_precomp_table->Pos[m_current_depth] =

35 m_precomp_table->Pos[m_precomp_table->D[m_current_depth]]+

m_precomp_table->T[m_current_depth]+

(m_current_bfs_index & m_precomp_table->T[m_current_depth])*

m_precomp_table->B[m_current_depth];

}

40 private:

precomputed_table<Value> *m_precomp_table;

typename iterator_traits<RandomIterator>::difference_type

m_current_depth, m_current_bfs_index, m_size;

RandomIterator m_begin;

45 };

#endif // __IMPLICIT_HEIGHT_PARTITIONING_POLICY_CPP__
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#ifndef __IMPLICIT_HP_SEARCH_PURE_C_CPP__

#define __IMPLICIT_HP_SEARCH_PURE_C_CPP__

#include <iterator>

#include <vector>

5

namespace pure_c {

template <typename RandomIterator, typename Tp>

bool implicit_hp_search(RandomIterator begin,

RandomIterator beyond,

10 RandomIterator Pos,

RandomIterator T,

RandomIterator B,

RandomIterator D,

const Tp& value) {

15 typedef typename std::iterator_traits<RandomIterator>::difference_type diff_type;

initialize:

diff_type current_depth = 0, current_bfs_index = 1, size = beyond - begin;

Tp x, y, z, w;

RandomIterator p;

20 *Pos = 0;

goto not_finished;

descend_right:

current_bfs_index = current_bfs_index*2;

25 current_bfs_index++;

current_depth++;

p = D + current_depth;

x = *p;

p = Pos + x;

30 x = *p;

p = T + current_depth;

y = *p;

z = current_bfs_index & y;

p = B + current_depth;

35 w = *p;

z = z * w;

w = x + y;

w = w + z;

p = Pos + current_depth;

40 *p = w;

not_finished:

if (current_bfs_index > size) goto return_false; /* hint: not taken */

node_contains:

p = Pos+current_depth;

45 x = *p;

p = begin+x;

x = *p;

if (x == value) goto return_true;

if (x < value) goto descend_right;

50 descend_left:

current_bfs_index = current_bfs_index*2;

current_depth++;

p = D + current_depth;

x = *p;
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55 p = Pos + x;

x = *p;

p = T + current_depth;

y = *p;

z = current_bfs_index & y;

60 p = B + current_depth;

w = *p;

z = z * w;

w = x + y;

w = w + z;

65 p = Pos + current_depth;

*p = w;

goto not_finished;

return_false:

70 return false;

return_true:

return true;

}

}

75 #endif //__IMPLICIT_HP_SEARCH_PURE_C_CPP__
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A.7 Explicit Height Partitioning Search

#ifndef __EXPLICIT_HEIGHT_PARTITIONING_POLICY_CPP__

#define __EXPLICIT_HEIGHT_PARTITIONING_POLICY_CPP__

#include "hp_precomputed_table.h"

5 #include "../helper/log2.h"

#include <iterator>

template <typename RandomIterator, typename Value>

class explicit_height_partitioning_policy {

10 public:

explicit_height_partitioning_policy() {}

inline void initialize(RandomIterator begin,

RandomIterator beyond) {

m_current_element = begin;

15 m_current_bfs_index = 1;

m_size = beyond-begin;

}

inline bool not_finished() { return (m_current_bfs_index < m_size); }

inline bool node_contains(const Value& value) { return m_current_element->e == value; }

20 inline void descend_tree(const Value& value) {

m_current_bfs_index = m_current_bfs_index*2;

if(m_current_element->e > value)

m_current_element = m_current_element->left_child;

else {

25 m_current_element = m_current_element->right_child;

m_current_bfs_index++;

}

}

private:

30 RandomIterator m_current_element;

typename iterator_traits<RandomIterator>::difference_type

m_size, m_current_bfs_index;

};

35 #endif //__EXPLICIT_HEIGHT_PARTITIONING_POLICY_CPP__
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#ifndef __EXPLICIT_HP_SEARCH_PURE_C_CPP__

#define __EXPLICIT_HP_SEARCH_PURE_C_CPP__

#include <iterator>

#include <vector>

5 #include <iostream>

namespace pure_c {

template <typename RandomIterator, typename T>

bool explicit_hp_search(RandomIterator begin,

10 RandomIterator beyond,

const T& value) {

initialize:

typedef typename std::iterator_traits<RandomIterator>::difference_type diff_type;

RandomIterator current_element = begin;

15 T x;

diff_type size = beyond - begin, current_bfs_index = 1;

goto not_finished;

descend_right:

20 current_element = current_element->left_child;

current_bfs_index = current_bfs_index*2;

current_bfs_index++;

not_finished:

if (current_bfs_index > size) goto return_false; /* hint: not taken */

25 node_contains:

x = current_element->e;

if (x == value) goto return_true;

if (x > value) goto descend_right;

descend_left:

30 current_element = current_element->right_child;

current_bfs_index = current_bfs_index*2;

goto not_finished;

return_false:

35 return false;

return_true:

return true;

}

}

40

#endif //__EXPLICIT_HP_SEARCH_PURE_C_CPP__


	Introduction
	Cache-Oblivious Algorithms
	Previous Work on Cache-Obliviousness
	Cache-Obliviousness vs. Traditional Approaches
	Cache-Obliviousness vs. Cache-Awareness
	Theoretical Results
	Evaluating the Ideal Cache

	Analyzing the Constant Factors

	Memory Systems and Latency
	Important Aspects of the Memory Hierarchy
	Principle of Locality of Reference
	Moving and Addressing Data in the Hierarchy
	Categorizing Cache Misses
	Virtual Memory

	Memory Latency
	Cache Misses and Latency by Example
	Summary

	Memory Models
	The External-Memory Model
	External-Memory Algorithms by Example

	The Hierarchical Memory Model
	The Ideal-Cache Model
	Consequences of Obliviousness
	The Ideal Cache
	Cache-Oblivious Techniques

	Justifying the Ideal-Cache Model
	Assumption: Optimal Replacement
	Assumption: Two Memory Layers
	Assumption: Auto Replacement and Full Associativity
	Assumption: Tall-Cache
	The Constant Factors of the Ideal-Cache Model

	Summary

	Analyzing Work Complexity
	The MMIX Model
	Pure-C Cost Model
	The Pure-C Language
	Unit Cost

	Summary

	Static Search Trees
	Previous Work
	Definitions
	Generic Static Search and Layout Policies
	Navigating in a Search Tree
	The Inorder Layout Policy
	The Cache-Aware Layout Policy
	Implicit Navigation
	Explicit Navigation

	The Cache-Oblivious Layout Policy
	Implicit Navigation
	Explicit Navigation
	Constructing a Height Partitioned Tree

	Expected Performance
	Knowing the Memory System
	Alignment of Data
	Implicit vs. Explicit Navigation

	Summary

	Sorting
	The 4-way Mergesort
	Work Complexity and Branch Mispredictions
	Cache Complexity

	The k-funnel Data Structure
	Creating a k-funnel
	Invoking a k-funnel

	The Cache-Oblivious Funnelsort
	The Parameter d

	Analyzing Funnelsort
	Space Complexity of a k-funnel
	Cache Complexity of a k-funnel
	Cache Complexity of Funnelsort
	Work Complexity of Funnelsort

	Expected Performance
	The Accuracy of the Analysis

	Summary

	Benchmarks
	Methodology
	What Should Be Measured
	Benchmarking Platforms
	Benchmarking Tool
	Datasets Sizes
	About the Results

	Benchmarking the Static Search Trees Programs
	Validating the Analytical Results
	Investigating Memory Usage
	Investigating Running Time
	Set-Associative Caches
	Composition of Lookup Sequence

	Benchmarking the Sorting Programs
	The Funnelsort Implementation
	The Introsort Competitor
	Validating the Analytical Results
	Investigating Memory Usage
	Investigating Running Time
	The Parameter d

	Summary

	Conclusion
	Directions of Further Work

	Bibliography
	Programs
	Generic Search
	Inorder Search
	Optimized Lower Bound
	Implicit Heap Search
	Explicit Heap Search
	Implicit Height Partitioning Search
	Explicit Height Partitioning Search


