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Abstract

This is a study of the theoretical and practical efficiency of priority queues. The
priority queue is an old and well studied data structure on which a great deal
of theoretical and practical work has already been done. A priority queue can
be realised in many ways, some of the most commonly used data structures for
this are binary heaps and binomial queues.

In this thesis the efficiency of priority queues is studied in three separate
papers where one is focusing on the theoretical efficiency of priority queues and
the other two papers focus on the practical efficiency.

In the first paper studying the practical efficiency of priority queues (An
extended truth about heaps) a number of alternative implementations of in-place
d-ary heaps are studied. An experimental evaluation of the implementations
and the C++ standard library heap are performed. The implementations are
evaluated using different types of inputs and ordering functions. The results
of the experimental evaluation show that no single heapifying strategy has the
best performance for all the different types of inputs and ordering functions,
but that bottom-up heapifying has a good performance for most types of inputs
and ordering functions.

In the second paper studying the practical efficiency of priority queues (An
experimental evaluation of navigation piles) three different implementations of
navigation pile are studied. The efficiency of the implementations is experi-
mentally evaluated together with two implementations of binary heaps, again
different types of inputs and ordering functions have been used. Furthermore,
experiments using several different operation-generation models are performed.
The experiments show that when element moves are expensive then navigation
piles can be an alternative to binary heaps. In addition to the study of the
practical efficiency of navigation piles, the first-ancestor technique and a new
and simpler way to make static navigation piles dynamic are introduced.

In the third paper (A framework for speeding up priority-queue operations)
the theoretical efficiency of priority queues is studied, and a framework for reduc-
ing the number of element comparisons performed in priority-queue operations
is introduced. The framework gives a priority queue which guarantees the worst-
case cost of O(1) per find-min and insert , and the worst-case cost of O(log n)
with at most log n+O(1) element comparisons per delete-min and delete . Here,
n denotes the number of elements stored in the data structure prior to the oper-
ation in question, and log n equals max {1, log2 n}. Furthermore, in addition to
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the above-mentioned operations, a priority queue that provides decrease (also
called decrease-key) is given. This priority queue achieves the worst-case cost
of O(1) per find-min, insert , and decrease ; and the worst-case cost of O(log n)
with at most log n+O(log log n) element comparisons per delete-min and delete .
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Chapter 1

Introduction

A priority queue is a data structure that maintains a set of elements, each
element is associated with a key [CLRS01]. The following set of operations is
supported by a min priority-queue Q:

find-min(Q). Returns a pointer to a node containing a minimum element of the
priority queue Q.

insert(Q, x). Inserts node x, which has already been constructed to contain an
element, into priority queue Q.

delete-min(Q). Removes a minimum element and the node, in which it is con-
tained, from priority queue Q.

In some cases the following operations are also supported:

delete(Q, x). Removes the node x, and the element it contains, from priority
queue Q.

decrease(Q, x, e). Replaces the element at node x with element e. It is assumed
that x is in Q and that e is no greater than the element earlier stored at
x.

In the papers “An extended truth about heaps” and “An experimental evalu-
ation of navigation piles” the data structures investigated support the operations
find-min, insert , and delete-min, however, since we compare our implementa-
tions to the priority queue of the C++ standard library [Bri03] we choose to
follow their naming convention. Using the the C++ standard library naming
convention find-min is called top, insert is called push, and delete-min is called
pop.

In Chapter 2 the paper “An extended truth about heaps” describes the ex-
perimental evaluation of various heap variants. The heap variants are grouped
into two heapifying strategies top-down and bottom-up. The following top-
down heapifying strategies has been implemented: Basic [Joh75, Oko80, Wil64]
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and one-sided binary search [GZ96]. Also, the following bottom-up heapifying
strategies have been implemented: Basic [Knu98, §5.2.3, exercise 18], two lev-
els at a time (folklore), binary search [Car87, GM86], exponential binary search
[Pas], and move saving [Weg93]. Furthermore, five different push strategies have
been implemented. One of the goals of the study was to look for an approach
that performs best for different types of inputs and ordering functions there-
fore the experiments used the following types of input parameters: 1) built-in
unsigned integers; 2) bigints, as described in the book of Bulka and Mayhew
[BM00], where unsigned integers are represented as a string of digits; 3) built-in
unsigned integers combined with an ordering function that computes the natural
logarithm of the elements before comparing them; and 4) pairs of unsigned inte-
gers and bigints and an ordering function that computes the natural logarithm
function for the unsigned integers in element comparisons.

In Chapter 3 the paper “An experimental evaluation of navigation piles”
describe the experimental evaluation of three different navigation pile imple-
mentations. The first implementation is based on the original proposal given
in the paper on navigation piles [KV03]. The elements in this implementation
are stored in a resizable array and above this array a bit container is con-
structed storing a packed form of the navigation information. In the second
implementation the bit container is replaced with an index array. In the third
implementation the whole data structure is realized using concrete nodes and
pointers. Again different types of inputs and ordering functions are used in the
experimental evaluation, to be more exact the first three of the aforementioned
input parameters are used.

In Chapter 4 “A framework for speeding up priority-queue operations” the
following is presented: In Section 4.4, a structure called a two-tier binomial

queue is given, it guarantees the worst-case cost of O(1) per find-min and insert ,
and the worst-case cost of O(log n) with at most log n + O(log log n) element
comparisons per delete-min and delete . In Section 4.5, a priority queue called
a multipartite binomial queue is described, it achieves the bound of at most
log n+O(1) element comparisons per delete-min and delete . Both of these data
structures have binomial trees as there basic building blocks. In Section 4.6,
an application of the framework is described, by using a multipartite binomial
queue in adaptive heapsort [LP93], a sorting algorithm is obtained that is opti-
mally adaptive with respect to the inversion measure of disorder, and which sorts
a sequence having n elements and I inversions with at most n log(I/n) + O(n)
element comparisons. In Section 4.7, a priority queue, called a multipartite re-

laxed binomial queue is presented, in addition to the above-mentioned operations
it also provides decrease . This priority queue uses run-relaxed binomial trees
[DGST88] as its basic building blocks. A multipartite relaxed binomial queue
guarantees the worst-case cost of O(1) per insert , find-min, and decrease ; and
the worst-case cost of O(log n) with at most log n + O(log log n) element com-
parisons per delete-min and delete .
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Chapter 2

An extended truth about

heaps

Abstract. We describe a number of alternative implementations for the heap func-
tions, which are part of the C++ standard library, and provide a through experimental
evaluation of their performance. In our benchmarking framework the heap functions
are implemented using the same set of utility functions, the utility functions using the
same set of policy functions, and for each implementation alternative only the utility
functions need be modified. This way the programs become homogeneous and the
underlying methods can be compared fairly.

Our benchmarks show that the conflicting results in earlier experimental studies
are mainly due to test arrangements. No heapifying approach is universally the best
for all kinds of inputs and ordering functions, but the bottom-up heapifying performs
well for most kinds of inputs and ordering functions. We examine several approaches
that improve the worst-case performance and make the heap functions even more
trustworthy.

2.1 Introduction

Context. The Standard Template Library (STL) is an integrated part of the
standard library for the C++ programming language [Bri03]. This work is part
of the CPH STL project where the goal is to:

• study and analyse existing specifications for and implementations of the
STL to determine the best approaches to optimization,

• provide an enhanced edition of the STL and make it freely available on
the Internet,

• provide cross-platform benchmark results to give library users a better
basis for assessing the quality of different STL components,
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• develop software tools that can be used in the development of component
libraries, and

• carry out experimental algorithmic research.

For further information about the project, see the CPH STL website [Dep06].
Goal of this study. Earlier studies by LaMarca and Ladner [LL96, LL99]

pointed out that the memory references are more local for 4-ary and 8-ary heaps
than for binary heaps, which give better cache behaviour and faster programs.
On the other hand, a later study by Sanders [San00] showed that in some cases
binary heaps are faster than 4-ary heaps. Therefore, the goal set for this study
was

1. to produce a framework for measuring the efficiency of various heap vari-
ants,

2. to repeat the tests of earlier studies with our framework on contemporary
computers, and

3. to seek an approach that performs best for different kinds of inputs and
ordering functions.

Preliminary definitions. For an integer d ≥ 2, a d-ary heap — invented
by Williams [Wil64] for d = 2 and generalized for d > 2 by Johnson [Joh75] —
with respect to a given ordering function less() is a sequence of elements with
the following properties:

Shape: Internally, it is a nearly complete (or left-complete) d-ary tree.

Capacity: Each node of that tree stores one element.

Order: For each branch of the tree, i.e. for a node having at least one child,
the element y stored at that node should be no smaller than the element x
stored at any child of that node; or stated in another way, less(y, x) must
return false.

Representation: The elements in the tree are stored in breath-first order.

Informally, such a heap is called a d-ary max-heap . We assume that the reader
is familiar with the basic concepts related to heaps as described, for example,
in [CLRS01, chap. 6].

An iterator is a generalization of a pointer that indicates a position of an
element, provides operations for accessing the elements stored and operations for
moving to neighbouring positions. All the iterators considered in this paper are
assumed to be random-access iterators (for a precise definition of this concept,
see [Bri03, §24.1]). For example, if A and Z are random-access iterators and i is
a nonnegative integer, Z−A, ++A, --Z, A+i, Z−i, A[i], and ∗A are all allowable
expressions having the same meaning as the corresponding pointer expressions.
For iterators A and Z, we use [A . . Z) to denote the sequence of positions

A, A+1, . . . , A+
(

(Z−A)−1
)

storing the elements A[0], A[1], . . . , A[(Z−A)−1].
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According to the C++ standard [Bri03, §25.3.6] every realization of the stan-
dard library must provide the following heap functions :

template <typename position, typename ordering>
void push heap(position A, position Z, ordering less);
Requirement: [A . . Z−1) stores a heap with respect to ordering function less().

Effect: Make the sequence stored in [A . . Z) into a heap.

template <typename position, typename ordering>
void pop heap(position A, position Z, ordering less);
Requirement: [A . . Z) stores a heap with respect to ordering function less().

Effect: Swap the element stored at position A with the element stored at po-
sition Z−1, and make the sequence stored in [A . . Z−1) into a heap.

template <typename position, typename ordering>
void make heap(position A, position Z, ordering less);
Effect: Convert the sequence stored in [A . . Z) into a heap with respect to

ordering function less().

template <typename position, typename ordering>
void sort heap(position A, position Z, ordering less);
Requirement: [A . . Z) stores a heap with respect to ordering function less().

Effect: Sort the sequence stored in [A . . Z) with respect to ordering less().

When these functions are available, it is easy to implement a priority queue
class (see [Bri03, §23.2.3.2]) relying on any sequence supporting expansion and
shrinkage at the back end.

Our work versus earlier work. The C++ standard [Bri03, §25.3.6] gives
tight complexity requirements for the heap functions. Letting n denote the size
of the sequence manipulated, push heap() should run in O(log2 n) time and per-
form at most log2 n element comparisons, pop heap() should run in O(log2 n)
time and perform at most 2 log2 n element comparisons, make heap() should
perform at most 3n element comparisons, and sort heap() at most n log2 n el-
ement comparisons. Moreover, the intention is that the heap functions are
memoryless. That is, no extra information is passed from one invocation to
another, but temporary storage within a single function can be used.

These requirements were the main reason why we had to reject many of
the proposals presented in the literature. Some methods only guarantee good
amortized bounds, e.g. sequence heaps of Sanders [San00]; some methods have
too large constant factors in their worst-case complexity bounds, e.g. external
heaps of Wegner and Teuhola [WT89]; and some methods require extra space,
e.g. navigation piles of Katajainen and Vitale [KV03]. Also, in the current
implementation of the CPH STL, done by Jensen [Jen01], the heap functions
based on 8-ary heaps do not fulfil the requirements, and in our preliminary
experiments they turned out to be slow if element comparisons are expensive.
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As far as we know, the heap functions based on 2-ary, 3-ary, and 4-ary heaps
are the only ones that fulfil the requirements laid down in the C++ standard, ex-
cept that for the complexity of the sort heap() function. We describe a number
of alternative implementations for the heap functions and provide a framework
for benchmarking their performance. We apply the policy-based approach ad-
vocated by Alexandrescu [Ale01a, Ale01b], as well as borrow elements from the
earlier work done in our research group [Boj98, BKS00, Jen01].

In the recent experimental studies on the efficiency of priority queues, the el-
ements used as input were relatively small. LaMarca and Ladner [LL96, LL99]
used 32-bit and 64-bit integers, and Sanders [San00] 32-bit integer keys as-
sociated with 32-bit satellite data. The focus in these studies was on cache
behaviour and, when the elements manipulated are small, one can see dramatic
cache effects. On the other hand, in the experimental studies on sorting it is a
tradition to consider larger elements: in industry-strength benchmarks 100-byte
records with 10-byte keys are used (see, e.g. [NBC+95]). In the experiments of
Edelkamp and Stiegeler [ES02] expensive ordering functions were considered.

For the heap functions the element type (derived from the position type)
and the type of the ordering function are given as templete parameters. That
is, these library functions should perform well for all kinds of elements and
ordering functions. As a first approximation of this, we test all methods with
four different kinds of input:

1. Built-in unsigned ints, for which both element comparisons and element
moves are cheap.

2. Bigints that represent an unsigned integer as a string of its digits (chars).
The bigint class used by us is described in the book by Bulka and Mayhew
[BM00, chap. 12]. For bigints element comparisons are relatively cheap,
whereas element moves are expensive.

3. Unsigned ints with an ordering function that computes the natural loga-
rithm of the given numbers before comparing them. This is just one of
the expensive ordering functions considered by Edelkamp and Stiegeler
[ES02].

4. Pairs of unsigned ints and bigints applying the natural logarithm func-
tion for unsigned ints in element comparisons. This makes both element
comparisons and element moves expensive.

To sum up, the task of a library implementer is much harder than that of
performance engineer.

Contents. We start by reviewing the implementation alternatives for the
heap functions. Our focus is on the functions push heap() and pop heap().
Thereafter, we describe our benchmarking framework for comparing the alter-
natives presented. Finally, we report the results of our benchmarks.
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Table 2.1: The worst-case performance of various versions of push heap(). If the
heap stores n ≥ 1 elements, the height h is equal to

⌊

logd

(

(d−1)(n−1)+1
)⌋

.
approach reference # comparisons # moves

bottom-up
– basic [Joh75, Wil64] h+1 h+2
– two levels at a time folklore bh/2c+1 h+2
– binary search [Car87, GM86] dlog2(h+1)e h+2
– exponential binary search [Pas] 2 blog2 hc+1 h+2

2.2 Implementation alternatives

Function push heap(). Assume that a heap is stored in [A . . Z−1) and that a
new element in Z−1 is to be inserted into that heap. Consider the path upwards
from the new last leaf (Z−1) to the root (A), we call it the siftup path . Given
the path, the task is to insert the new element ∗(Z−1) into the sorted sequence
of elements stored on the siftup path.

According to the original proposals by Williams [Wil64] ans Johnson [Joh75]
the insertion is done by a simple linear scan starting from the new last leaf.
One could reduce the number of element comparisons — keeping the number
of element moves unchanged — by performing the test whether to stop the
traversal only at every second level and backtrack if one goes too far up. Also,
since the elements stored on the siftup path are in sorted order, binary search
could be used to determine the final destination of the new element [Car87,
GM86]. Yet another alternative, as communicated to us by Pasanen [Pas], is to
use exponential binary search [BY76] instead of binary search.

In Table 2.1 we summarize the worst-case performance of the implementation
alternatives mentioned.

Function pop heap(). Consider a heap stored in [A . . Z). Assume that we
have put element ∗(Z−1) from the last leaf aside and moved element ∗A from
the root to the last leaf so that we have a hole at the root. Now the task is to
embed the element put aside into the sequence stored in [A . . Z−1) and remake
it into a heap. To carry out this task we consider the special path starting
from the root, ending at a leaf, and going down at each level to the child which
stores the maximum element among all the children. We call this the siftdown

path . The elements on the siftdown path appear in sorted order. In addition
to finding the path, the task is to insert the element put aside into this sorted
sequence.

In the top-down heapifying , used in the original articles by Williams
[Wil64] and Johnson [Joh75], the siftdown path is traversed down as long as
the node under consideration is not a leaf and the element stored at that node
is larger than the element put aside. Simultaneously, the elements met are
moved one level up to get the hole down. When the traversal stops, the element
put aside is stored at the hole. If the arity of the tree is d, at most d element
comparisons are done at each level: at most d−1 to find the maximum element
stored at the children and one to determine whether we should stop or not.
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We could reduce the number of element comparisons by carrying out the
test whether we should stop only at every second level, and backtracking if we
proceed too far down. Another possibility, proposed by Gu and Zhu [GZ96],
is to calculate the height of the tree in the beginning, do the stop test first at
level bh/2c, and backtrack with linear search or repeat the process recursively
downwards. That is, a one-sided binary search is performed on the sequence
stored on the siftdown path. As shown in [Car92], it is possible to reduce the
number of element comparisons even further, but this improvement is only of
theoretical interest.

In the bottom-up heapifying , proposed by Floyd (as cited in [Knu98,
§5.2.3, exercise 18]), the siftdown path is first traversed down until a leaf is
met, the elements on the path are moved one level up, and thereafter another
traversal up the tree along the siftdown path is done to determine the final
destination of the element put aside, by moving the elements met along. When
traversing down at most d−1 element comparisons are done at each level, and
when traversing up one element comparison is done at each level considered. The
point is that often only a few nodes are visited during the upwards traversal.
As to the number of element comparisons, the worst case is the same as that
for the basic top-down version, but the number of element moves can be almost
twice as high.

The number of element comparisons performed in the worst case can be re-
duced in several ways depending on how the upwards traversal is done. First,
the test whether to stop or not could be done only at every second level. Sec-
ond, the final destination of the element put aside could be determined using
binary search [Car87, GM86]. Third, the final destination could be determined
using exponential binary search [Pas]. Fourth, one could save element moves by
omitting the moves during the downwards traversal and doing them first after
the final destination of the new element is known. In the original proposal by
Wegener [Weg93] the upwards traversal was done by linear search, but any of
the above-mentioned approaches could be used.

The worst-case performance of all the implementation alternatives men-
tioned is summed up in Table 2.2.

Function make heap(). In the paper by Bojesen et al. [BKS00] various
heap construction methods were rigorously analysed both theoretically and ex-
perimentally. The conclusion was that the standard heap construction method
[Flo64] performs almost optimally in all respects if the nodes are handled in
depth-first order. Our experiments show that the extreme code-tuning described
in [BKS00] is not necessary since on contemporary computers the few instruc-
tions saved can be executed in pipeline or even in parallel with other interdepen-
dent instructions. According to Okoma [Oko80], for a d-ary heap containing n
elements, the heap construction requires at most dn/(d−1) element comparisons.

Function sort heap(). It is well-known that heapsort cannot compete
against quicksort or mergesort. Moreover, since quicksort does not have a good
worst-case performance guarantee, we rely on mergesort in the realization of this
function. Even if temporary storage could be allocated, we decided to avoid that
— to make the function more robust — and use the in-place mergesort algorithm
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Table 2.2: The worst-case performance of various versions of pop heap(). If the
heap stores n ≥ 1 elements, the height h is equal to

⌊

logd

(

(d−1)(n−1)+1
)⌋

.
approach reference # comparisons # moves

top-down
– basic [Joh75, Oko80, Wil64] dh h+2
– two levels at a time folklore (d−1)h+bh/2c+1 h+2
– one-sided binary search [GZ96] (d−1)h+bh/2c+1 h+2
bottom-up
– basic [Knu98, §5.2.3, exercise 18] dh 2h+2
– two levels at a time folklore (d−1)h+bh/2c+1 2h+2
– binary search [Car87, GM86] (d−1)h+dlog2(h+1)e 2h+2
– exponential binary search [Pas] (d−1)h+2 blog2 hc+1 2h+2
– move saving [Weg93] dh h+2

developed by Katajainen et al. [KPT96].
It is interesting to note that in the experiments reported in the original paper

by Katajainen et al. [KPT96] heapsort was a clear winner compared to in-place
mergesort. Contemporary computers favour local memory accesses and most
memory accesses in in-place mergesort are such, which makes it a noteworthy al-
ternative. Experiments carried out in our research group by Sloth et al. [SLK03]
showed that for uniformly distributed integer data in-place mergesort is almost
as fast as introsort [Mus97], which is an adaptation of median-of-three quick-
sort. We want to point out that, even its practical utility, the implemented
variant of in-place mergesort requires n log2 n+O(n) element comparisons, so
some fine-tuning is necessary to reach the bound n log2 n set down in the C++
standard.

2.3 Benchmarking framework

Heap policies. Our policy-based implementation of the heap functions, when
the underlying data structure is an in-place d-ary heap, has two parts: policy
functions and utility functions. A policy means a minimal set of core func-
tions that are enough to implement all the utility functions. Given the policy
functions and utility functions it is then possible to implement all the heap
functions.

It is natural to represent a policy as a class which contains all the core
functions. The declaration of such a class is given in Figure 2.1. Most member
functions are const functions since they do not change the state of a policy
object. The only information which is stored in a policy object is n, the current
number of elements in the heap.

The meaning of most member functions should be clear from their name,
except that of the functions top all present() and top some absent() which com-
pute for a given node the index of the child storing the maximum element among
all the children. Internally, the two functions are similar — a linear scan over
the children is performed and the index of the node storing the maximum ele-

9



#include <iterator> // defines std::iterator_traits

template <int d, typename position, typename ordering>

class heap_policy {
public:
typedef typename std::iterator_traits<position>::difference_type index;

typedef typename std::iterator_traits<position>::difference_type level;
typedef typename std::iterator_traits<position>::value_type element;

heap_policy(index n = 0);

bool is_root(index) const;
bool is_first_child(index) const;
index size() const;

level depth(index) const;
index root() const;

index leftmost_node(level) const;
index last_leaf() const;
index first_child(index) const;

index parent(index) const;
index ancestor(index, level, level) const;

index top_all_present(position, index, ordering) const;
index top_some_absent(position, index, ordering) const;

void update(position, index, const element&);
void erase_last_leaf(position, ordering);
void insert_new_leaf(position, ordering);

private:

index n;
};

Figure 2.1: Declaration of the heap-policy class.

ment is recalled. To make an efficient loop unrolling possible, we separated the
case where the branch considered has all its d children, and the case where some
of the children is missing.

The general heap-policy class is specialized for specific values of the arity
d. The challenge is to implement the functions depth(), leftmost node(), and
ancestor() efficiently. For a node with index i and level λ, these can be calculated
using the formulas:

depth(i):
⌊

logd

(

(d−1)i+1
)⌋

leftmost node(λ): (dλ−1)/(d−1)

ancestor(i, λ, ∆):
⌊

(i−leftmost node(λ)) /d∆
⌋

+leftmost node(λ−∆), where ∆ ∈
{0, 1, . . . , λ}.

In the implementation of these functions we used two precomputed tables, one
giving the index of the leftmost node at each level and another giving the powers
of d for d = 3. To compute the depth, for d = 2 and d = 4 the math library
function ilogb() was used, and for d = 3 binary search over the first precomputed
table was performed.

Utility functions. As in many textbooks, we implement the heap functions
using two utility functions siftup() and siftdown():

10



template <typename position, typename index, typename element,
typename ordering, typename policy>
void siftup(position A, index i, element x, ordering less , policy& p);
Requirement: A[i] contains a hole.

Effect: Insert element x into the sorted sequence stored on the siftup path
staring from the node with index i.

template <typename position, typename index, typename element,
typename ordering, typename policy>
void siftdown(position A, index i, element x, ordering less , policy& p);
Requirement: A[i] contains a hole.

Effect: Insert element x into the sorted sequence stored on the siftdown path
starting from the node with index i.

For each implementation alternative, only these functions should be modified.
Heap functions. Following the earlier recipes, the heap functions can

be implemented easily using the policy functions and utility functions. This
includes the sort heap() function even though the more efficient implementation
is completely independent of them. It should be noted that the heap functions
are memoryless. If needed a new policy object is constructed, so no extra
runtime information is passed from one invocation to another.

2.4 Benchmarks

Overall strategy. We will not repeat the experiments for make heap() done
in [BKS00], and those for sort heap() (in-place mergesort) done in [SLK03].
Therefore, our focus is on the functions push heap() and pop heap(). To compare
the efficiency of the implementation alternatives presented, we decided to use
artificial operation generation in our experiments. Also, we restrict the problem
sizes so that the heaps can be in internal memory all the time.

In earlier experimental studies on the efficiency of priority queues (see [Jon86,
LL96, San00] and the references therein), several different operation-generation
models were used. To describe the models we found interesting, we use I as a
short-hand notation for push heap(), D for pop heap(), and Mn for make heap()
involving n elements. For nonnegative integers k and n, the models considered
by us were:

Insert In: Determine the average running time of a single push heap() when
n operations are executed in all.

Hold In(DI)k: Determine the average running time for a single iteration (DI)
after inserting n elements.

Sort MnDn: Determine the average running time per element when sorting a
sequence of n elements.

11



Peak (IDI)n(DID)n: Determine the average running time per operation.

Furthermore, the models involving element insertions should define how the new
elements are generated.

Due to space restrictions we concentrate here on the sort model which we
found most relevant. Directly, the sort model exercises only the pop heap()
function, but since many of the implementation alternatives are based on the
bottom-up heapifying, the push heap() function gets indirectly tested as well.
We plan to report the performance of our programs in all the four models in a
later version of this paper.

As explained in the introduction, we decided to use four kinds of input:
unsigned ints; bigints [BM00, chap. 12]; unsigned ints with an expensive ordering
function; and pairs containing unsigned ints as keys and bigints as an extra load,
comparing the keys with an expensive ordering function. Uniformly generated
random unsigned ints (32 bits) and bigints (strings of about 10 digits) were used
all over. To give an idea of the execution times of various primitive operations,
we accessed a vector containing unsigned ints or bigints both sequentially (stride
p = 1) and arbitrarily (stride p = 617). The results of these micro benchmarks
are shown in Table 2.3.

Test environment. To understand the development in computer hard-
ware, we used three computers for our benchmarking having an Intel Pentium
II (300 MHz), Intel Pentium III (1 GHz), and Intel Pentium 4 (1.5 GHz) pro-
cessor, respectively. The experiments, the results of which are reported in this
paper, were carried out on the latest computer (1st-level cache: 8 KB, 8-way
associative 2nd-level cache: 256 KB, internal memory: 256 MB) running under
Red Hat Linux 7.1 and using g++ C++ compiler 3.0.4 with option -O6.

The experiments were carried out using the benchmark tool developed for
the CPH STL by Katajainen and others [Dep06]. This tool is written in Python;
most other scripting was also done in Python. The tool was used to generate
test drivers which measure the CPU time spent by given operation sequences.
Each experiment was repeated several times depending on the clock precision
and the median of the execution times was reported if the execution times of
90% of the runs were within 20% of the reported value; otherwise, the whole
experiment was ignored. Based on the scripts created it should be relatively
easy for others to repeat our experiments in other environments.

Results. In order to understand the conflicting results reported by LaMarca
and Ladner [LL96] and Sanders [San00], we analysed the test arrangements and
found the following differences:

LaMarca and Ladner [LL96] Sanders [San00]
approach top-down bottom-up
element type 64-bit integers 32-bit interger keys, 32-bit

satellite data
operation generation hold model peak model
element generation earlier minimum plus a random

increment
random over the whole range

computer Pentium and others Pentium II and others

12



Table 2.3: Cost of some instructions on an Intel Pentium 4 workstation for a)
unsigned ints and b) bigints; n denotes the size of the sequence accessed and p
the stride used.

a)

initializations instruction unsigned int

p← 1
a[i]← 0
x← 220

a[i]← x n = 210 . . 224 4.1–4.7 ns

p← 617
a[i]← 0
x← 220

a[i]← x

n = 210 . . 214 7.3–8.9 ns
n = 215 12 ns
n = 216 29 ns
n = 216 . . 222 62–63 ns

p← 1
a[i]← 0
x← 220

x← a[i] n = 210 . . 224 3.3–3.8 ns

p← 617
a[i]← 0
x← 220

x← a[i]
n = 210 . . 215 3.3–4.1 ns
n = 216 23 ns
n = 217 . . 222 45–55 ns

p← 1
a[i]← 0
x← 220

r ← (a[i] < x) n = 210 . . 224 5.3–5.8 ns

p← 1
a[i]← 0
x← 220

r← (ln(a[i]) < ln(x)) n = 210 . . 224 580–610ns

b)

initializations instruction bigint

p← 1
a[i]← 0
x← 220

a[i]← x
n = 210 . . 221 60–66 ns
n = 222 290 ns

p← 617
a[i]← 0
x← 220

a[i]← x

n = 210 . . 212 75–78 ns
n = 213 117 ns
n = 214 229 ns
n = 215 . . 220 297–318 ns
n = 221 . . 222 748–752 ns

p← 1
a[i]← 0
x← 220

x← a[i] n = 210 . . 222 18–21 ns

p← 617
a[i]← 0
x← 220

x← a[i]

n = 210 . . 212 24 ns
n = 213 83 ns
n = 214 180 ns
n = 215 . . 222 230–260 ns

p← 1
a[i]← 0
x← 220

r ← (a[i] < x) n = 210 . . 222 13–16 ns
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The most important differences are in the operation and element generation. In
the experiments by LaMarca and Ladner the final destination of the new ele-
ments tends to be close to a leaf, whereas in those by Sanders the new elements
tend to traverse higher up the heap.

To repeat Sanders’ experiments, we downloaded the programs from his
homepage and tested them on our three Pentium computers. On an Intel Pen-
tium II computer for the peak model our results were similar to his, but for the
sort model on all computers and for the peak model on the other computers the
results were similar to those reported by LaMarca and Ladner.

Our initial profiling showed that the policy function top all present() is a
bottleneck in the pop heap() function. Therefore, we tried to implement it
carefully for all implementation alternatives so that branch prediction would be
easy. In general, we avoided if -else-constructs since these may make branch
prediction harder. In this point we also observed that sometimes it was faster
to use the conditional operator ?: instead of a normal if -statement. After
inspecting the assembler code, it turned out that our compiler could inline the
function if the conditional operator was used, but with a normal if -statement it
did not do that. In spite of this observation, we decided to keep the if -statements
in our programs and leave the inlining for later code tuning.

In our preliminary experiments we tested all the implementation alternatives
mentioned for the pop heap() function. For integer data the best top-down
approach was equally fast as the basic bottom-up approach, but when element
comparisons are expensive the top-down approaches behaved badly. Therefore,
we did not consider the top-down approaches any further.

We carried out the final experiments in two rounds. In the first round, for
each implementation alternative and for each kind of input we determined the
best arity. If an alternative was the fastest for more than 80% of the data points
measured, we declared it as a winner . In the second round, for each kind of
input the winners were compared against each others. The results of these tests
are shown for the four types of input in Figs. 3.3, 3.4, 3.5, and 2.5, respectively.
In all experiments we used the functions partial sort() (carefully coded heap-
sort using binary heaps and bottom-up heapifying) and sort() (introsort) from
the Silicon Graphics Inc. implementation of the STL [Sil04] as our reference
implementations.

Discussion. For integer data our results are similar to those reported by
LaMarca and Ladner [LL96, LL99] even though on our Pentium 4 computer
the point when the 4-ary heaps become faster than 2-ary heaps appears first
at the end of the range plotted in Figure 3.3. In all fairness other data types
have to be considered, too. Our results show that a single arity is not the best
for all kinds of elements and all kinds of ordering functions. Furthermore, no
heapifying approach is the best for all kinds of elements and all kinds of ordering
functions, but for randomly generated inputs it is very difficult to beat the basic
bottom-up approach.

Of the approaches improving the worst-case performance of the basic bottom-
up heapifying, the two-levels-at-a-time bottom-up heapifying is simple and per-
forms better than those based on binary or exponential binary search. Moreover,
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Figure 2.2: Performance of the first-round winners for random unsigned ints on
an Intel Pentium 4 workstation.
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Figure 2.3: Performance of the first-round winners for random bigints on an
Intel Pentium 4 workstation.
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Figure 2.4: Performance of the first-round winners for random unsigned ints
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for small problem sizes (say for n ≤ 220) the difference in the worst-case number
of element comparisons is small for these three approaches, so we recommend
that the two-levels-at-a-time bottom-up heapifying is used as a basis for a tuned
implementation. Doubling in the worst-case number of element moves may be
significant, but according to our experiments move saving seems not to be worth-
while because typically only a few levels are traversed up in each push heap()
and pop heap() operation. If it is important to perform fewer element moves,
one may consider using extra space (pointers) when implementing the priority
queue class since there this is allowed.

Software availability

All source code and scripts developed in the course of this study are available
at the CVS repository for the CPH STL project [Dep06].
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Figure 2.6: Performance of the Sanders heap programs for random unsigned
ints on an Intel Pentium 2 workstation using the peak model.
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Figure 2.7: Performance of the Sanders heap programs for random unsigned
ints on an Intel Pentium 2 workstation using the sort model.
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Figure 2.8: Performance of the Sanders heap programs for random unsigned
ints on an Intel Pentium 3 workstation using the peak model.
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Figure 2.10: Performance of the Sanders heap programs for random unsigned
ints on an Intel Pentium 4 workstation using the peak model.
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Chapter 3

An experimental evaluation

of navigation piles

Abstract. A navigation pile, which can be used as a priority queue, is an extension
of a selection tree. In a compact form the whole data structure requires only a linear
number of bits in addition to the elements stored. In this paper, we study the practical
efficiency of three different implementations of navigation piles and compare their ef-
ficiency against two implementations of binary heaps. The results of our experiments
show that navigation piles are a good alternative to heaps when element moves are
expensive—even if heaps store pointers to elements instead of elements. Based on the
experimental comparison of the three navigation-pile implementations it is clear that
care should be taken when applying space saving strategies that increase the number
of instructions performed. In addition to our experimental findings, we give a new
and simple way of dynamizing a static navigation pile. Furthermore, we introduce a
pointer-based navigation pile which is inherently dynamic in its nature and can be
made to support deletions as well.

3.1 Introduction

A priority queue is a data structure which stores a collection of elements and
supports the operations construct , push , pop, and top in terminology used in
the C++ standard [Bri03, §23.2]. A maximum element of the priority queue is
selected with respect to an ordering function given at the time of construction.
For the realization of a priority queue, the navigation pile, introduced by Kata-
jainen and Vitale [KV03], is an alternative to the standard binary heap [Wil64]
and similar data structures. In its basic form, a navigation pile is a static data
structure where the maximum number of elements to be stored must be known
in advance. The main advantage of navigation piles is that they provide fast
worst-case priority-queue operations and have low space requirements (linear
number of bits in addition to the elements stored). The same holds true even if
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the data structure is made fully dynamic.
At the beginning of this study we wanted to obtain a greater understanding

of the practical utility of compact navigation piles and to study the practical
utility of other adaptations of that data structure. In this paper we report the
results of our experiments where we consider three different implementations of
navigation piles. The first implementation, called a compact pile, is based on the
original description given in [KV03]. The elements are stored in a resizable array
and above this array a bit container is built which stores navigation information
in packed form. In the second implementation the bit container is replaced with
an index array so we call it an index pile. In the third implementation the whole
data structure is realized using concrete nodes and pointers; from now on we
call it a pointer-based pile.

When analysing the runtime complexity of priority-queue operations and
the space complexity of data structures, we use word RAM as our model of a
computer (for a precise definition of the model, see [Hag98]). In an element

comparison the relative order of two elements is determined by evaluating the
specified ordering function, which defines a strict weak ordering on the set of
elements manipulated (for a definition of strict weak ordering, see, for example,
[Bri03, §25.3]). By an element move we mean the execution of a copy operation,
copy construction or copy assignment, invoked for copying elements. We use the
term cost to denote the sum of word-RAM instructions, element constructions,
element destructions, and element comparisons performed.

In the three implementations studied, there is an interesting tradeoff between
the amount of space and instructions used. Let N denote the capacity of a
navigation pile and n the number of elements stored. A pointer-based pile uses
5n + O(log2 n) words to store all navigation information and simple pointer
operations are performed when moving around in the data structure. As a
sharp contrast, a compact pile uses d2N/we words of space, where w denotes the
length of each machine word measured in bits, but it requires more complicated
calculations in navigation through the pile structure. As a compromise, an
index pile uses N − 1 words to store the navigation information and does less
calculations than a compact pile.

The specific questions addressed by this study are the following: Can naviga-
tion piles be considered an alternative to the standard heap when implementing
priority queues? Can a data structure based on pointers be competitive in a
contemporary computer where the locality of data is important due to a hi-
erarchical memory structure? Does the extra computational work, in form of
extra instructions used in connection with packing and unpacking information,
counterbalance the advantage gained by reducing the use of extra space?

Besides the experimental results, the following theoretical contributions pre-
sented in this paper are new: 1) the introduction of pointer-based piles, 2) the
introduction and use of the first-ancestor technique for the realization of pop,
and 3) the introduction of a new way of dynamizing a static navigation pile.

Navigation piles in a nutshell. In order to define a navigation pile, which is
a binary tree, we use the following standard terminology for trees. A node of a
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Figure 3.1: A dynamic compact pile storing 10 integers. For example, the bits
(001)2 in the second branch of height three indicate that the largest integer in
the leaves of the subtree rooted at that branch is 42; the leaf has position 1
among the leaves spanned; indexing starts from 0. The offset of the spanned
subarray from the beginning of the array is calculated from the height (h) and
index (i) of the branch using the formula i × 2h.

tree is the root if it has no parent, a leaf if it has no children, and a branch if it
has at least one child. The depth of a node is the length of the path from that
node to the root. The height of a node is the length of the longest path starting
from that node and ending at a leaf. In a complete binary tree all branches have
two children and all leaves have the same depth.

A navigation pile can be seen as an extension of a selection tree described,
for example, in [Knu98]. In a navigation pile elements are stored at the leaves,
and each branch stores a reference to the maximum element held in the leaves
of the subtree rooted at that branch. The references at branches, referred to as
navigation information, can be stored in different ways. According to the origi-
nal proposal of Katajainen and Vitale [KV03], navigation information is stored
in a packed form, but each branch could also store an index of the corresponding
maximum element in the resizable array storing the elements.

Our implementation of a compact pile follows closely the guidelines given in
[KV03]. An index pile is a natural extension where the packing/unpacking of
references is omitted. Both data structures are static so the maximum capacity
N must be known beforehand. A dynamic navigation pile, as described in
[KV03], is a collection of static navigation piles. Therefore, the performance of
our static implementations can be used as a baseline for the performance of the
dynamic version as well.

The data-structural transformation described in [KV03] uses at most loga-
rithmic number of static data structures to represent a dynamic data structure.
This approach is theoretically sound, but tedious to implement. Therefore, we
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describe a new, simpler, and more direct way of dynamizing the data struc-
ture. The new strategy is to use one resizable array to store the branches of
the same height and maintain a header which stores references to these resiz-
able arrays (for an illustration, see Figure 3.1). That is, there can be at most
dlog2 ne resizable arrays and the objects stored at each array are of the same
size even if packing is used. The header itself is also a resizable array. A simi-
lar dynamization strategy has previously been used in connection with deques
(see [KM01]). Even though this strategy requires some administrative work
for maintaining the header and allocating/deallocating arrays “on the fly”, the
extra work should not increase the cost of the priority-queue operations signifi-
cantly. The complexity of the operations used to navigate through a navigation
pile, as for instance the calculation of the first and second child of a branch, is
not increased and, therefore, these operations should not increase the cost of
the priority-queue operations.

If N denotes the capacity of a static data structure and n the number of
elements stored prior to each priority-queue operation, a compact pile and an
index pile give the following performance guarantees [KV03]:

• construct requires n−1 element comparisons, n element moves, and O(n)
instructions.

• top requires O(1) instructions.

• push requires log2 log2 n +O(1) element comparisons, one element move,
and O(log2 n) instructions.

• pop requires dlog2 ne element comparisons, two element moves, one ele-
ment destruction, and O(log2 n) instructions.

Excluding the space required for storing the elements, a compact pile requires at
most 2N bits of additional space to store the navigation information. If the 2N
extra bits are packed, the navigation information uses d2N/we words in total,
w denoting the size of a machine word measured in bits. An index pile requires
at most N − 1 words of additional space, one index per branch.

A pointer-based pile, where nodes are stored explicitly and all connections
are handled by pointers, is automatically a dynamic data structure giving the
following performance guarantees:

• construct requires n−1 element comparisons, n element moves, and O(n)
instructions.

• top requires O(1) instructions.

• push requires log2 log2 n +O(1) element comparisons, one element move,
and O(log2 n) instructions.

• pop requires dlog2 ne element comparisons, one element destruction, and
O(log2 n) instructions.
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In addition to the space required for storing the elements, a pointer-based pile
requires at most 5n+O(log2 n) words of extra space to store the pointers, which
could be reduced to 4n + O(log2 n) words by using the child-sibling representa-
tion of binary trees (see, e.g. [Tar83, Section 4.1]).

Experimental setting. As an immediate contender of our implementations of
navigation piles, we chose the priority-queue implementation relying on implicit
binary heaps implementation of the C++ standard library (shipped with the g++
compiler version 3.3.4 which is available at the Free Software Foundation, Inc.).
This heap implementation is known to be highly tuned; from now on we refer to
this as an implicit heap. Implicit binary heaps have also been used in many of
the earlier experimental studies (see, for example, [Jon86, LL96, LL99, San00]),
which make it possible to compare our results indirectly to these earlier results.

One problem with an implicit heap is that it does not provide referential

integrity, i.e. it does not keep external references to elements inside the data
structure valid, which is important if the structure is to be extended to support
general erasure (erase) or modification (e.g. decrease) of elements. As an oppo-
site, a pointer-based pile naturally provides referential integrity and can easily
be extended to support erase . To make the comparison between pointer-based
piles and heaps more fair, we extended the C++ library heap with the ability to
support referential integrity; this implementation is from now on referred to as a
referent heap. To support referential integrity, an adapter class was constructed.
This adapter class operates with pointers instead of elements and the elements
have references back to the pointers in the heap. In this way only pointers are
moved, not elements, and external references to elements remain valid.

A generic priority queue, as defined in the C++ standard [Bri03], should
be able to perform well under various circumstances. It should handle built-in
types, user-defined types, and different types of ordering functions efficiently. In
an attempt to cover the effects of a broad selection of possible input parameters
with a reasonable number of experiments, we chose input parameters that rep-
resent a variation of cheap and expensive element comparisons and cheap and
expensive element moves.

In the experiments the following types of input parameters were used: 1)
built-in unsigned integers; 2) bigints, as described in the book of Bulka and
Mayhew [BM00], which represent an unsigned integer as a string of digits; and 3)
built-in unsigned integers combined with an ordering function that computes the
natural logarithm of the elements before comparing them. In the case of built-in
unsigned integers, both element comparisons and element moves are cheap. In
the case of bigints, element comparisons are cheap, but the element moves are
expensive. In the last case element comparisons are expensive, but the element
moves are cheap. In earlier studies, similar settings for input parameters have
been used. LaMarca and Landner [LL96, LL99] used 32-bit and 64-bit integers
and Sanders [San00] used 32-bit integer keys with a 32-bit satellite data attached
to the key. In experimental studies on sorting, elements consisting of 100-byte
records with 10-byte keys are often used (see, e.g. [NBC+95]). Edelkamp and
Stiegeler [ES02] used a number of expensive ordering functions, of which the
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expensive ordering function used by us is one.
To make the experiments reflect different scenarios of use, we employed sev-

eral different models for the generation of priority-queue operations:

Insert: Measure the average running time per operation in a sequence of n
push operations.

Peak: Measure the average running time per operation in a sequence of n
(push pop push) operations followed by a sequence of n (pop push pop)
operations.

Sort: Measure the average running time per element for a single construct

operation for n elements followed by n pop operations.

Hold: Measure the average running time per operation in a sequence of k (push

pop) operations after a sequence of n push operations has already be done.
In this model only input data of type float are considered.

These operation-generation models have also been used in several other exper-
imental studies of priority queues (see [Jon86, LL96, San00] and the references
therein).

3.2 Our implementations of navigation piles

In this section, we give a general description of navigation piles and all the three
implementations considered in this study. The nodes of a navigation pile are
divided into two groups: leaves which hold the elements and branches which hold
the navigation information used when locating the maximum element stored in
a subtree. The overall maximum element stored in the data structure can be
found by following the reference at the root.

A navigation pile could be defined recursively as follows. Let n denote the
number of elements being stored. If n = 1, the data structure has only one leaf
which stores the single element and there are no branches. If n = 2, the elements
are stored in their respective leaves and there is a single branch which contains
a reference to the leaf storing the maximum of the two elements. Assume now
that n > 2 and let h be the largest positive integer such that 2h < n. Two
navigation piles S and T are constructed recursively; S contains the first 2h

elements and T contains the remaining n − 2h elements. If the height of T is
less than that of S, T is transformed to a tree having the same height as S by
incrementally creating a new parent for the current root and making the old root
the left child of the new root, and this process is repeated until both trees have
the same height. In each step the new root should contain the same navigation
information as the former root. When the height of S and T is the same, a
new branch r is created and this node becomes the root of the joined tree; S
becomes the left subtree of r and T the right subtree of r; and the navigation
information of r is determined by comparing the elements referred to by the
roots of S and T and setting the reference at r to point to the leaf storing the
maximum of these two elements.
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Representation. In a pointer-based pile, each leaf contains a parent pointer
and an element. Each branch contains a parent pointer which can be null, a
left-child pointer, a right-child pointer which can also be null, and a pointer to a
leaf. To save space, the child pointers of branches are allowed to point to either a
leaf or to a branch. Navigation through the data structure is done by following
the pointers contained in the nodes. It should also be emphasized that this
implementation of a navigation pile is fully dynamic without any modifications.

In an index pile, the nodes are implicit and there is an implicit interconnec-
tion between the indices of leaves and the indices of the resizable array storing
the elements. The indices held in branches are stored in a separate container.
Movement inside the data structure involves arithmetic operations on array
indices. To simplify the program logic, a collection of utility functions was in-
troduced, each having some specific function, e.g. left-child is an example of
such a utility function.

In a compact pile, the nodes are also implicit, and there is the same inter-
connection between the leaves and elements stored in a resizable array as in an
index pile. The navigation information held in branches is stored in a resizable
bitarray. To compress the indices stored at branches as much as possible, for
each branch we store a relative index of a leaf inside the leaf-subarray spanned
by that branch. Using this relative index and the offset of the spanned subar-
ray from the beginning of the element array, the actual position of the element
referred to can be calculated (cf. Figure 3.1). For example, if a branch spans a
group of four elements, the relative index can be stored as a number between
zero and three which can be represented as a bit-pattern of size two. As a
consequence of relative indexing the total amount of space needed for storing
the navigation information can be brought down to d2N/we words, N being
the total capacity and w the size of a machine word. The utility functions
for a compact pile are in many ways the same as those for an index pile; the
main difference is the packing and unpacking of navigation information and the
additional offset calculations required.

Priority-queue operations. To make the construction of a navigation pile
more cache-friendly, construct is performed by visiting the branches in depth-
first order. The actual implementation is iterative, instead of recursive, and
nodes are visited in a bottom-up manner. The navigation information of a se-
lected branch is computed by using the navigation information stored at the
children of that branch and comparing the elements pointed to by the children.
A special case in the construction is the computation of the navigation infor-
mation for the branches having height one. The navigation information of these
branches is computed through a comparison of the elements contained in the
two leaves associated with the branch.

A new element is inserted by push into the first empty leaf. After this,
the navigation information is updated (if neccessary) on the path from the
corresponding leaf to the root, and new branches are initialized/created when
necessary.

The maximum element to be returned by top is found by following the
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Figure 3.2: Illustration of the first-ancestor technique. The nodes, the contents
of which may change, are indicated with light gray. When updating the contents
of the shadowed branches on the right, no element comparisons are necessary.

reference stored at the root.
When pop is executed, the maximum element referred to by the root is erased

and the navigation information is updated accordingly. This update is done in
three different ways depending on the circumstances inside the navigation pile
(for an illustration of one of the cases, see Figure 3.2). The implementation
details of the update depend on the form of the navigation pile. For a compact
pile and an index pile, pop is accomplished in a similar manner as follows.

Let ` be the last leaf and m the leaf containing the maximum element. Let
i be the first ancestor of the last leaf which has two children. If the left child
of i is a branch, let j be this node. Let k be the leaf referred to by j, or if j is
undefined, let k be the left child of i.

Using the first-ancestor technique, pop is executed as follows. Case 1: m = `.
The leaf containing the maximum element (the last leaf) is erased and the
references at the branches on the path from the new last leaf to the root are
updated by performing repeated element comparisons. The traversal up stops
when a reference different from ` is met. Case 2: m 6= ` and i refers to k. The
element stored at leaf ` is moved to leaf m, and the last leaf is erased. The
references at the branches on the path from leaf m to the root are updated by
performing repeated element comparisons. Case 3: m 6= ` and i refers to ` (see
Figure 3.2). The element in leaf k is moved to leaf m, the element in leaf ` is
moved to leaf k, and the last leaf is erased. The branches on the path from i
to the root are assigned to refer to leaf k. The references at the branches on
the path from leaf m to the root are updated by performing repeated element
comparisons.

Let us now consider pop for a pointer-based pile. The main difference is
that now whole nodes are moved instead of elements. As before, there are three
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cases. Case 1: m = `. The leaf containing the maximum element (the last
leaf) is erased and the navigation information in the branches on the path from
the new last leaf to the root is updated. Case 2: m 6= ` and i refers to k.
The last leaf ` is moved into the place of leaf m, and leaf m is erased. The
navigation information at the branches on the path from leaf ` to the root is
updated. Case 3: m 6= ` and i refers to `. Leaf k is moved to the position of
leaf m, leaf ` is moved to the earlier position of leaf k, and leaf m is erased. The
navigation information of the branches on the path from leaf l up to branch i,
but no including i, is assigned to refer to leaf `. The navigation information
of the branches on the path from leaf k to the root is updated by performing
repeated element comparisons.

3.3 Experimental setup

In our experiments we compared the performance of the three versions of navi-
gation piles in order to determine whether an implementation, where the naviga-
tion information is packed, gives a performance advantage over a non-packed im-
plementation; and whether a pointer-based implementation have a performance
advantage over an implicit implementation, or vice versa. Also, we compared
the performance of our implementations against two heap implementations. The
first implicit heap implementation was taken directly from the standard library
available at our environment (that shipped with the g++ compiler). The other
referent heap implementation is our modification which provides referential in-
tegrity. A referent heap is simply an adaptor which stores the elements and
passe pointers to a standard heap.

In the experiments we used the three types of input parameters mentioned in
the introduction: unsigned integers (32 bit), bigints (strings of about 10 digits),
and unsigned integers combined with an expensive ordering function. Integers
and bigints were generated randomly.

We ran our experiments for the four operation-generation models: insert,
peak, sort, and hold (see the introduction for a description of these models),
but as a consequence of the space restrictions we only include the benchmark
results for the sort model in the main part of this paper, and present the results
of the other models in the appendix.

We performed the experiments in the following environment:

Hardware: dual CPU: Intel Pentium 4 (3 GHz), cache: 1 MB, internal mem-
ory: 3.8 GB

Software: operating system: Gentoo, Linux kernel: 2.4.26, compiler: g++ 3.3.4,
compiler option: -O6.

All time measurements were done using the benchmark tool (Benz) developed
by Katajainen and extended by others (see [SP03]). Benz was configured to
measure the CPU-time consumption of a given operation sequences. In the
framework of Benz, each experiment is repeated several times until 90% of the
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Figure 3.3: Performance of the implementations for the sort model using random
unsigned integers on an Intel Pentium 4 workstation.

outcomes differ at most 20% from the median, which is reported; or more than
100 trials have been done after which the experiment is aborted.

3.4 Results

The results of our experiments for the sort model are given in Figures 3.3 (un-
signed integers), 3.4 (bigints), and 3.5 (expensive comparisons). When manip-
ulating integers the execution time for all variants of navigation piles is much
higher than the execution time for implicit heaps, as shown by Figure 3.3. The
execution time for referent heaps is lower than the execution time for pointer-
based piles when the number of elements is small, but after the crossover point
(at about 500000 elements) the execution time for referent heaps is higher. If
referential integrity should be provided, pointer-based piles are a viable alter-
native to heaps even for integer input data. The tendency seen in the results
for integer data is repeated in the experiments where an expensive ordering
function is applied, but for large input sizes the differences in execution times
decrease among the implementations. As seen in Figure 3.4, the advantages of
navigation piles compared to implicit heaps become apparent when the elements
considered are large and element moves become expensive.

The extra space used by pointer-based piles in comparison with that used
by index piles has only a small effect on the performance when the number
of elements is small, but as the number of elements grows the execution time
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Figure 3.4: Performance of the implementations for the sort model using random
bigints on an Intel Pentium 4 workstation.

for pointer-based piles increases faster than the execution time for index piles.
After observing that the use of extra space has a negative consequence on the
performance, it could be expected that saving space by packing the naviga-
tion information would give better performance, at least when the number of
elements increases. However, this does not seem to be the case; our results
show that the increase in the instruction count due to packing devaluates the
performance advantage gained by saving space.

3.5 Guidelines

When studying the results of our experimental results for the three implemen-
tations of the navigation-pile data structure, it can be seen that they not only
answer the specific questions stated, but they also provide some general guide-
lines for the use of extra space versus an increase in the instruction count. It
seems, that saving space can have a high cost on the performance if this at the
same time increases the number of instructions performed which is often the
case for many space-saving strategies. On the other hand, as indicated by the
implicit-heap implementation, if a space-saving strategy does not increase the
instruction count significantly, it may be possible to get better performance.

Comparing the results obtained for navigation piles and for implicit heaps,
it can be seen that, when the elements being manipulated are large and ele-
ment moves thereby become expensive, it is appropriate to increase the code
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Figure 3.5: Performance of the implementations for the sort model using random
unsigned integers with an expensive ordering function on an Intel Pentium 4
workstation.

complexity if one thereby can reduce the number of element moves performed.
If a priority queue has to support referential integrity, our experimental

results show that other types of priority queues than an implicit heap should be
taken into consideration.

Software availability

The programs used in this experimental study are accessible via the home page
of the CPH STL project [Dep06].
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Figure 3.6: Performance of the implementations for the insert model using ran-
dom unsigned integers on an Intel Pentium 4 workstation.
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Figure 3.7: Performance of the implementations for the insert model using ran-
dom bigints on an Intel Pentium 4 workstation.
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Figure 3.8: Performance of the implementations for the insert model using ran-
dom unsigned integers with an expensive ordering function on an Intel Pentium
4 workstation.
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Figure 3.9: Performance of the implementations for the peak model using ran-
dom unsigned integers on an Intel Pentium 4 workstation.
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Figure 3.10: Performance of the implementations for the peak model using
random bigints on an Intel Pentium 4 workstation.
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Figure 3.11: Performance of the implementations for the peak model using ran-
dom unsigned integers with an expensive ordering function on an Intel Pentium
4 workstation.
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Figure 3.12: Performance of the implementations for the hold model using ran-
dom doubles on an Intel Pentium 4 workstation.
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Chapter 4

A Framework for Speeding

Up Priority-Queue

Operations

Abstract. We introduce a framework for reducing the number of element comparisons
performed in priority-queue operations. In particular, we give a priority queue which
guarantees the worst-case cost of O(1) per minimum finding and insertion, and the
worst-case cost of O(log n) with at most log n+O(1) element comparisons per minimum
deletion and deletion, improving the bound of 2 log n+O(1) on the number of element
comparisons known for binomial queues and pairing heaps. Here, n denotes the number
of elements stored in the data structure prior to the operation in question, and log n

equals max {1, log
2
n}. We also give a priority queue that provides, in addition to

the above-mentioned methods, the priority-decrease (or decrease-key) method. This
priority queue achieves the worst-case cost of O(1) per minimum finding, insertion, and
priority decrease; and the worst-case cost of O(log n) with at most log n+O(log log n)
element comparisons per minimum deletion and deletion.

4.1 Introduction

One of the major research issues in the field of theoretical computer science is the
comparison complexity of computational problems. In this paper, we consider
priority queues (called heaps in some texts) that guarantee a cost of O(1) for
insert, with an attempt to reduce the number of element comparisons involved
in delete-min. Binary heaps [Wil64] are therefore excluded, following from the
fact that log log n ± O(1) element comparisons are necessary and sufficient for
inserting an element into a heap of size n [GM86]. Gonnet and Munro [GM86]
(corrected by Carlsson [Car91]) also showed that log n + log∗ n ± O(1) element
comparisons are necessary and sufficient for deleting a minimum element from
a binary heap.
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In the literature several priority queues have been proposed that achieve
a cost of O(1) per find-min and insert, and a cost of O(log n) per delete-min
and delete. Examples of priority queues that achieve these bounds, in the
amortized sense [Tar85], are binomial queues [Bro78, Vui78] and pairing heaps
[FSST86, Iac00]. The same efficiency can be achieved in the worst case with
a special implementation of a binomial queue (see, for example, [CMP88] or
[DGST88, Section 3]). If the decrease (often called decrease-key) method is to
be supported, Fibonacci heaps [FT87] and thin heaps [KT99] achieve, in the
amortized sense, a cost of O(1) per find-min, insert, and decrease; and a cost
of O(log n) per delete-min and delete. Run-relaxed heaps [DGST88], fat heaps
[KT99], and meldable priority queues described in [Bro96] achieve these bounds
in the worst case.

Among the priority queues that support insertions at a cost of O(1), binomial
queues and pairing heaps guarantee that the number of element comparisons
performed per delete-min is bounded above by 2 logn + O(1). For the other
aforementioned priority queues guaranteeing a cost of O(1) per insert, the bound
on the number of element comparisons involved in delete-min exceeds 2 log n.

In all our data structures we use various forms of binomial trees as the basic
building blocks. Therefore, in Section 4.2 we review how binomial trees are em-
ployed in binomial queues (called binomial heaps in [CLRS01]). In Section 4.3,
we present our two-tier framework for structuring priority queues. We apply the
framework in three different ways to reduce the number of element comparisons
performed in priority-queue operations. In Section 4.8, we discuss which other
data structures could be used in our framework as a substitute for binomial
trees.

The results of this paper are as follows. In Section 4.4, we give a structure,
called a two-tier binomial queue, that guarantees the worst-case cost of O(1) per
find-min and insert, and the worst-case cost of O(log n) with at most log n +
O(log log n) element comparisons per delete-min and delete. In Section 4.5,
we describe a refined priority queue, called a multipartite binomial queue, by
which the better bound of at most log n+O(1) element comparisons per delete-
min and delete is achieved. In Section 4.6, we show as an application of the
framework that, by using a multipartite binomial queue in adaptive heapsort
[LP93], a sorting algorithm is obtained that is optimally adaptive with respect
to the inversion measure of disorder, and that sorts a sequence having n elements
and I inversions with at most n log(I/n) + O(n) element comparisons. This is
the first priority-queue-based sorting algorithm having these properties. Both
in Section 4.5 and in Section 4.6 the results presented are stronger than those
presented in the conference version of this paper [Elm04].

In Section 4.7, we present a priority queue, called a multipartite relaxed

binomial queue, that provides the decrease method in addition to the above-
mentioned methods. The data structure is built upon run-relaxed binomial
queues (called run-relaxed heaps in [DGST88]). A multipartite relaxed binomial
queue guarantees the worst-case cost of O(1) per insert, find-min, and decrease;
and the worst-case cost of O(log n) with at most log n + O(log log n) element
comparisons per delete-min and delete. During the course of this work we
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perceived an interesting taxonomy between different building blocks that can
be used in our framework. In the conference version of this paper [Elm04],
it was outlined that with structures similar to thin binomial trees [KT99] a
priority queue is obtained that guarantees, in the amortized sense, a cost of
O(1) per insert, find-min, and decrease; and a cost of O(log n) with at most
1.44 logn + O(log log n) element comparisons per delete-min and delete. With
fat trees [KT99] the same costs can be achieved in the worst case and the number
of element comparisons performed per delete-min and delete can be reduced to
1.27 logn+O(log log n). Finally, with relaxed binomial trees [DGST88] the same
worst-case bounds are achieved, except that the constant factor in the logarithm
term in the bound on the number of element comparisons for delete-min and
delete can be reduced to one.

4.2 Binomial queues

In a generic form, a priority queue is a data structure which depends on four
type parameters: E , C, F , and A. E is the type of the elements manipulated;
C is the type of the compartments used for storing the elements, one element
per compartment; and F is the type of the ordering function used in element
comparisons. A compartment may also contain satellite data, like references
to other compartments. We assume that the elements can only be moved and
compared, both operations having a cost of O(1). Furthermore, we assume
that it is possible to get any datum stored at a compartment at a cost of
O(1). A is the type of the allocator which provides methods for allocating
new compartments and deallocating old compartments. We omit the details
concerning memory management, and simply assume that both allocation and
deallocation have a cost of O(1).

Any priority queue Q 〈E , C,F ,A〉 should provide the following methods:

E find-min(). Return a minimum element stored in Q. The minimum is taken
with respect to F . Requirement. The data structure is not empty. The
element returned is passed by reference.

C insert(E e). Insert element e into Q and return its compartment for later
use. Requirement. There is space available to accomplish this operation.
Both e and the returned compartment are passed by reference.

void delete-min(). Remove a minimum element and its compartment from
Q. Requirement. The data structure is not empty.

void delete(C x). Remove both the element stored at compartment x and
compartment x from Q. Requirement. x is a valid compartment. x
is passed by reference.

Another method that may be considered is:
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void decrease(C x, E e). Replace the element stored at compartment x with
element e. Requirement. x is a valid compartment. e is no greater than
the old element stored at x. Both x and e are passed by reference.

Some additional methods — like a constructor, a destructor, and a set of meth-
ods for examining the number of elements stored in Q — are necessary to make
the data structure useful, but these are computationally less interesting and
therefore not considered here.

We would like to point out that, after inserting an element, the reference to
the compartment where it is stored should remain the same so that possible later
references made by delete and decrease operations are valid. In some sources
this problem is not acknowledged, meaning that the proposed algorithms are
actually incorrect. Our solution to this potential problem is simple: we do not
move the elements after they have been inserted into the data structure. For
other solutions, we refer to a longer discussion in [HR02].

In a tree its nodes are used as compartments for storing the elements. A
binomial tree [Bro78, SPP76, Vui78] is a rooted, ordered tree defined recursively
as follows. A binomial tree of rank 0 is a single node. For r > 0, a binomial tree
of rank r comprises the root and its r binomial subtrees of rank 0, 1, . . . , r − 1
in this order. We call the root of the subtree of rank 0 the oldest child and the
root of the subtree of rank r − 1 the youngest child. It follows directly from the
definition that the size of a binomial tree is always a power of two, and that the
rank of a tree of size 2r is r.

A binomial tree can be implemented using the child-sibling representation,
where every node has three pointers, one pointing to its youngest child, one to
its closest younger sibling, and one to its closest older sibling. The children of a
node are kept in a circular, doubly-linked list, called the child list, so one of the
sibling pointers of the youngest child points to the oldest child, and vice versa.
Unused child pointers have the value null. In addition, each node should store
the rank of the maximal subtree rooted at it. To facilitate the delete method,
every node should have space for a parent pointer, but the parent pointer is set
only if the node is the youngest child of its parent. To distinguish the root from
the other nodes, its parent pointer is set to point to a fixed sentinel; for other
nodes the parent pointer points to another node or has the value null.

The children of a node can be sequentially accessed by traversing the child
list from the youngest to the oldest, or vice versa if the oldest child is first
accessed via the youngest child. It should be pointed out that with respect to
the parent pointers our representation is nonstandard. An argument, why one
parent pointer per child list is enough and why we can afford to visit all younger
siblings of a node to get to its parent, is given in Lemma 1. In our representation
each node has a constant number of pointers pointing to it, and it knows from
which nodes those pointers come. Because of this, it is possible to detach any
node by updating only a constant number of pointers.

In its standard form, a binomial queue is a forest of binomial trees with at
most one tree of any given rank. In addition, the trees are kept heap ordered,
i.e. the element stored at every node is no greater than the elements stored at
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the children of that node. The sibling pointers of the roots are reused to keep
the trees in a circular, doubly-linked list, called the root list, where the binomial
trees appear in increasing order of rank.

Two binomial trees of the same rank can be linked together by making the
root of the tree that stores the greater element the youngest child of the other
root. Later on, we refer to this as a join. A split is the inverse of a join, where
the subtree rooted at the youngest child of the root is unlinked from the given
tree. A join involves a single element comparison, and both a join and a split
have a cost of O(1).

Let B be a binomial queue. The priority-queue operations for B can be
implemented as follows:

B.find-min(). The root storing a minimum element is accessed and that ele-
ment is returned. The other operations are given the obligation to main-
tain a pointer to the location of the current minimum.

B.insert(e). A new node storing element e is constructed and then added to the
forest as a tree of rank 0. If this results in two trees of rank 0, successive
joins are performed until no two trees have the same rank. Furthermore,
the pointer to the location of the current minimum is updated if necessary.

B.delete-min(). The root storing an overall minimum element is removed,
thus leaving all the subtrees of that node as independent trees. In the
set of trees containing the new trees and the previous trees held in the
binomial queue, all trees of equal ranks are joined until no two trees of
the same rank remain. The root storing a new minimum element is then
found by scanning the current roots and the pointer to the location of the
current minimum is updated accordingly.

B.delete(x). The binomial tree containing node x is traversed upwards starting
from x, the current node is swapped with its parent, and this is repeated
until the root of the tree is reached. Note carefully that nodes are swapped
by detaching them from their corresponding child lists and attaching them
back in each others place. Since whole nodes are swapped, pointers to the
nodes from the outside remain valid. Lastly, the root is removed as in a
delete-min operation.

B.decrease(x, e). The element stored at node x is replaced with element e
and node x is repeatedly swapped with its parent until the heap order is
reestablished. Also, the pointer to the location of the current minimum is
updated if necessary.

For a binomial queue storing n elements, the worst-case cost per find-min
is O(1) and that per insert, delete-min, delete, and decrease is O(log n). The
amortized bound on the number of element comparisons is two per insert and
2 logn+O(1) per delete-min. To see that the bound is tight for delete-min (and
delete), consider a binomial queue of size n which is one less than a power of
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two, an operation sequence which consists of pairs of delete-min and insert, and
a situation where the element to be deleted is always stored at the root of the
tree of the largest rank. Every delete-min operation in such a sequence needs
blog nc element comparisons for joining the trees of equal ranks and blog nc
element comparisons for finding the root that stores a new minimum element.

To get the worst-case cost of O(1) for an insert operation, all the necessary
joins cannot be performed at once. Instead, a constant number of joins can be
done in connection with each insertion, and the execution of the other joins can
be delayed for forthcoming insert operations. To facilitate this, a logarithmic
number of pointers to joins in process is maintained on a stack. More closely,
each pointer points to a root in the root list; the rank of the tree pointed to
should be the same as the rank of its neighbour. In one join step, the pointer
at the top of the stack is popped, the two roots are removed from the root
list, the corresponding trees are joined, and the root of the resulting tree is put
in the place of the two. If there exists another tree of the same rank as the
resulting tree, a pointer indicating this pair is pushed onto the stack. Thereby
a preference is given for joins involving small trees.

In an insert operation a new node is created and added to the root list. If
the given element is smaller than the current minimum, the pointer indicating
the location of a minimum element is updated to point to the newly created
node. If there exists another tree of rank 0, a pointer to this pair of trees is
pushed on the stack. After this a constant number of join steps is executed. If
one join is done in connection with every insert operation, the on-going joins
are already disjoint and there are always space for new elements (for a similar
treatment, see [CMP88] or [CK77, p. 53ff.]). Analogously with an observation
made in [CMP88], the size of the stack can be reduced dramatically if two join
steps are executed in connection with every insert operation, instead of one.

Since there are at most two trees of any given rank, the number of element
comparisons performed by a delete-min and delete operation is never larger than
3 logn. In fact, a tighter analysis shows that the number of trees is bounded by
blog nc+1. The argument is that insert, delete-min, and delete operations can be
shown to maintain the invariant that any rank occupying two trees is preceded
by a rank occupying no tree, possibly having a sequence of ranks occupying
one tree in between. That is, the number of element comparisons is only at
most 2 logn + O(1) per delete-min and delete. An alternative way of achieving
the worst-case bounds, two element comparisons per insert and 2 logn + O(1)
element comparisons per delete-min/delete, is described in [DGST88, Section 3].

4.3 Two-tier framework

For the binomial queues there are two major tasks that contribute to the mul-
tiplicative factor of two in the bound on the number of element comparisons for
delete-min. The first is the join of trees of equal ranks, and the second is the
maintenance of the pointer to the location of a minimum element. The key idea
of our framework is to reduce the number of element comparisons involved in
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finding a new minimum element after the joins.
To realize this idea we compose a priority queue using the following three

components, which themselves are priority queues:

1. The lower store is a priority queue which stores at least half of all of
the n elements. This store is implemented as a collection of separate
structures, the size of each of which is an exact power of two. Each
element is stored only once, and there is no relation between elements
held in different structures. A special requirement for delete-min and
delete is that they only modify one of the structures and at the same time
retain the size of that structure. In addition to the normal priority-queue
methods, structure borrowing should be supported in which an arbitrary
structure can be released from the lower store (and moved to the reservoir
if this becomes empty). As to the complexity requirements, find-min and
insert should have a cost of O(1), and delete-min and delete a cost of
O(log n). Moreover, structure borrowing should have a cost of O(1).

2. The upper store is a priority queue which stores pointers to the m struc-
tures in the lower store, each giving one minimum candidate. In pointer
comparisons, the candidates referred to are compared. The main purpose
of the upper store is to provide fast access to an overall minimum element
in the lower store. The requirement is that find-min and insert should
have a cost of O(1), and delete-min and delete a cost of O(log m).

3. The reservoir is a special priority queue which supports find-min, delete-
min, and delete, but not insert. It contains the elements that are not in
the lower store. Whenever a compartment together with the associated
element is deleted from the lower store, as a result of a delete-min or
delete operation, a compartment is borrowed from the reservoir. Using
this borrowed compartment, the structure that lost a compartment can
be readjusted to gain the same properties as before the deletion. Again,
find-min should have a cost of O(1), and delete-min and delete a cost of
O(log n), where n is the number of all elements stored. In other words,
the cost need only be logarithmic in the size of the reservoir at the time
when the reservoir is refilled by borrowing a structure from the lower store.
Moreover, compartment borrowing should have a cost of O(1).

To get from the lower store to the upper store and from the upper store to
the lower store, we assume that each structure in the lower store is linked to
the corresponding pointer in the upper store, and vice versa. Moreover, to
distinguish whether a compartment is in the reservoir or not, we assume that
each structure has extra information indicating the component in which the
structure is held, and that this information can easily be reached from each
compartment.

Let I be an implementation-independent framework interface for a priority
queue. Using the priority-queue operations provided for the components, the
priority-queue operations for I can be realized as follows:
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I.find-min(). A minimum element is either in the lower store or in the reser-
voir, so it can be found by lower-store find-min — which relies on upper-
store find-min — or by reservoir find-min. The smaller of these two ele-
ments is returned.

I.insert(e). The given element e is inserted into the lower store using lower-
store insert, which may invoke the operations provided for the upper store.

I.delete-min(). First, if the reservoir is empty, a group of elements is moved
from the lower store to the reservoir using structure borrowing. Second,
lower-store find-min and reservoir find-min are invoked to determine in
which component an overall minimum element lies. Depending on the
outcome, lower-store delete-min or reservoir delete-min is invoked. If an
element is to be removed from the lower store, another element is borrowed
from the reservoir to retain the size of the modified lower-store structure.
Depending on the changes made in the lower store, it may be necessary
to update the upper store as well.

I.delete(x). It is first made sure that the reservoir is not empty; if it is, it is
refilled by borrowing a structure from the lower store. The extra informa-
tion, associated with the structure in which the given compartment x is
stored, is accessed. If the compartment is in the reservoir, reservoir delete
is invoked; otherwise, lower-store delete is invoked. In lower-store delete,
a compartment is borrowed from the reservoir to retain the size of the
modified structure. If necessary, the upper store is updated as well.

Assume now that the given complexity requirements are fulfilled. Since a
lower-store find-min operation and a reservoir find-min operation have a cost
of O(1), a find-min operation has a cost of O(1). The efficiency of an insert
operation is directly related to that of a lower-store insert operation, i.e. the
cost is O(1). In a delete-min operation the cost of the find-min and insert
operations invoked is only O(1). Also, compartment borrowing and structure
borrowing have a cost of O(1). Let n denote the number of elements stored,
and let D`(n), Du(n), and Dr(n) be the functions expressing the complexity of
lower-store delete-min, upper-store delete-min, and reservoir delete-min, respec-
tively. Hence, the complexity of a delete-min operation is bounded above by
max {D`(n) + Du(n), Dr(n)}+ O(1). As to the efficiency of a delete operation,
there is a similar dependency on the efficiency of lower-store delete, upper-store
delete, and reservoir delete. The number of element comparisons performed can
be analysed after the actual realization of the components is detailed.

4.4 Two-tier binomial queues

In our first realization of the framework we use binomial trees as the basic
structures, and utilize binomial queues in the form described in Section 4.2.
Therefore, we call the data structure two-tier binomial queue. Its components
are the following:
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1. The lower store is implemented as a binomial queue storing the major part
of the elements.

2. The upper store is implemented as another binomial queue that stores
pointers to the roots of the binomial trees held in the lower store, but the
upper store may also store pointers to earlier roots of the lower store that
are currently either in the reservoir or inner nodes in the lower store.

3. The reservoir consists of a single tree, which is binomial at the time of its
creation.

The form of the nodes is identical in the lower store and the reservoir, and
each node is linked to the corresponding node in the upper store; if no coun-
terpart in the upper store exists, the link has the value null. Also, we use the
convention that the parent pointer of the root of the reservoir points to a reser-
voir sentinel, whereas for the trees held in the lower store the parent pointers
of the roots point to a lower-store sentinel. This way we can easily distinguish
the origin of a root. Instead of compartments and structures, nodes and sub-
trees are borrowed by exchanging references to these objects. We refer to these
operations as node borrowing and tree borrowing.

If there are n elements in total, the size of the upper store is O(log n).
Therefore, at the upper store, delete-min and delete require O(log log n) element
comparisons. The challenge is to maintain the upper store and to implement
the priority-queue operations for the lower store such that the work done in the
upper store is reduced. If in the lower store the removal of a root is implemented
in the standard way, there might be a logarithmic number of new subtrees that
need to be inserted into the upper store. Possibly, some of the new subtrees have
to be joined with the existing trees, which again may cascade a high number of
deletions to the upper store. Hence, as required, a new implementation of the
removal of a root is introduced that alters only one of the lower-store trees.

Next, we show how different priority-queue operations may be handled. We
describe and analyse the operations for the reservoir, the upper store, and the
lower store in this order.

4.4.1 Reservoir operations

To borrow a node from the tree of the reservoir, the oldest child of the root is
detached (or the root itself if it does not have any children), making the children
of the detached node the oldest children of the root in the same order. Due to
the circularity of the child list, the oldest child and its neighbouring nodes can
be accessed by following a few pointers. So the oldest child can be detached
from the child list at a cost of O(1). Similarly, two child lists can be appended
at a cost of O(1). To sum up, the total cost of node borrowing is O(1).

A find-min operation simply returns the element stored at the root of the
tree held in the reservoir. That is, the worst-case cost of a find-min operation
is O(1).
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In a delete-min operation, the root of the tree of the reservoir is removed
and the subtrees rooted at its children are repeatedly joined by processing the
children of the root from the oldest to the youngest. In other words, every
subtree is joined with the tree which results from the joins of the subtrees
rooted at the older children. In a delete operation, the given node is repeatedly
swapped with its parent until the root is reached, the root is removed, and
the subtrees of the removed root are repeatedly joined. In both delete-min
and delete, when the removed node has a counterpart in the upper store, the
counterpart is deleted as well.

For the analysis, the invariants proved in the following lemmas are crucial.
For a node x in a rooted tree, let Ax be the set of ancestors of x, including x
itself; let Cx be the number of all the siblings of x that are younger than x,
including x; and let Dx be

∑

y∈Ax

Cy .

Lemma 1. For any node x in a binomial tree of rank r, Dx ≤ r + 1.

Proof. The proof is by induction. Clearly, the claim is true for a tree consisting
of a single node. Assume that the claim is true for two trees T1 and T2 of rank
r − 1. Without loss of generality, assume that the root of T2 becomes the root
after T1 and T2 are joined together. For every node x in T1, Dx increases by one
due to the new root. For every node y in T2, except the root, Dy increases by
one because the only ancestor of y that gets a new younger sibling is the child
of the new root. Now the claim follows from the induction assumption. 2

Lemma 2. Consider any node x of the tree held in the reservoir. Starting with

a binomial tree of rank r, Dx never gets larger than r + 1 during the life-span

of this tree.

Proof. By Lemma 1, the initial tree fulfils the claim. Node borrowing modifies
the tree in the reservoir by removing the oldest child of the root and moving
all its children one level up. For every node x in any of the subtrees rooted at
the children of the oldest child of the root, Dx will decrease by one. For all
other nodes the value remains the same. Hence, if the claim was true before
borrowing, it must also be true after the modifications.

Each delete-min and delete operation removes the root of the tree in the
reservoir and repeatedly joins the resulting subtrees. Due to the removal of the
root, for every node x, Dx decreases by one. Moreover, since the subtrees are
made separate, if there are j subtrees in all, for any node y in the subtree rooted
at the ith oldest child (or simply the ith subtree), i ∈ {1, . . . , j}, Dy decreases
by j − i. A join increases Dx by one for every node x in the subtrees involved,
except that the value remains the same for the root. Therefore, since a node
x in the ith subtree is involved in j − i + 1 joins, Dx may increase at most by
j − i +1. To sum up, for every node x, Dx may only decrease or stay the same.
Hence, if the claim was true before the root removal, it must also be valid after
all the modifications. 2
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Corollary 3. During the life-span of the tree held in the reservoir, starting with

a binomial tree of rank r, the root of the tree has at most r children.

Proof. For a node x, let dx denote the number of children of x. Let y be
the root of the tree held in the reservoir and z the oldest child of y. Clearly,
Dz = dy + 1. By Lemma 2, Dz ≤ r + 1 all the time, and thus, dy ≤ r. 2

The complexity of a delete-min and delete operation is directly related to
the number of children of the root, and the complexity of a delete operation is
also related to the length of the Dx-path for the node x being deleted. If the
rank of the tree in the reservoir was initially r, by Corollary 3 the number of
children of the root is always smaller than or equal to r, and by Lemma 2 the
length of the Dx-path is bounded by r. During the life-span of the tree held in
the reservoir, there is another binomial tree in the lower store whose rank is at
least r (see Section 4.4.3). Thus, if n denotes the number of elements stored,
r < log n. The update of the upper store, if at all necessary, has an extra cost of
O(log log n), including O(log log n) element comparisons. Hence, the worst-case
cost of a delete-min and delete operation is O(log n) and the number of element
comparisons performed is at most log n + O(log log n).

4.4.2 Upper-store operations

The upper store is a worst-case efficient binomial queue storing pointers to the
nodes held in the other two components. In addition to the standard priority-
queue methods, it supports lazy deletions where nodes are marked to be deleted
instead of being removed immediately. It should also be possible to unmark a
node if the node pointed to by the stored pointer becomes a root later on. The
invariant maintained by the algorithms is that for each marked node, whose
pointer refers to a node y in the lower store or in the reservoir, there is another
node x such that the element stored at x is no greater than the element stored
at y.

To obtain worst-case efficient lazy deletions, we use the global-rebuilding
technique adopted from [OvL81]. When the number of unmarked nodes becomes
equal to m0/2, where m0 is the current size of the upper store, we start building
a new upper store. The work is distributed over the forthcoming m0/4 upper-
store operations. In spite of the reorganization, both the old structure and
the new structure are kept operational and used in parallel. All new nodes
are inserted into the new structure, and all old nodes being deleted are removed
from their respective structures. Since the old structure does not need to handle
insertions, the trees there can be emptied as in the reservoir by detaching the
oldest child of the root in question, or the root itself if it does not have any
children. If there are several trees left, if possible, a tree whose root does not
contain the current minimum is selected as the target of each detachment.

In connection with each of the next at most m0/4 upper-store operations,
four nodes are detached from the old structure; if a node is unmarked, it is
inserted into the new structure; otherwise, it is released and in its counterpart
in the lower store the pointer to the upper store is given the value null. When
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the old structure becomes empty, it is dismissed and thereafter the new struc-
ture is used alone. During the m0/4 operations at most m0/4 nodes can be
deleted or marked to be deleted, and since there were m0/2 unmarked nodes
in the beginning, at least half of the nodes are unmarked in the new structure.
Therefore, at any point in time, we are constructing at most one new structure.
We emphasize that each node can only exist in one structure and whole nodes
are moved from one structure to the other, so that pointers from the outside
remain valid.

Since the cost of each detachment and insertion is O(1), the reorganization
only adds an additive term O(1) to the cost of all upper-store operations. A
find-min operation, which is a normal binomial-queue operation, may need to
consult both the old and the new upper stores, so its worst-case cost is still
O(1). The actual cost of marking and unmarking is clearly O(1), even if they
take part in reorganizations. If m denotes the total number of unmarked nodes
currently stored, at any point in time, the total number of nodes stored is Θ(m),
and during a reorganization m0 = Θ(m). According to our earlier analysis, in
the old structure the efficiency of delete-min and delete operations depends
on the original size m0. In the new structure their efficiency depends on the
current size m. Therefore, since delete-min and delete operations are handled
normally, except that they may take part in reorganizations, each of them has
the worst-case cost of O(log m) and may perform at most 2 log m+O(1) element
comparisons.

4.4.3 Lower-store operations

A find-min operation simply invokes upper-store find-min and then follows the
received pointer to the root storing a minimum element. Clearly, the worst-case
cost of a find-min operation is O(1).

An insert operation is accomplished, in a worst-case efficient manner, as
described in Section 4.2. As a result of joins, some roots of the trees in the
lower store are linked to other roots, so the corresponding pointers should be
deleted from the upper store. Instead of using upper-store delete, lazy deletion
is applied. The worst-case cost of each join is O(1) and the worst-case cost
of each lazy deletion is also O(1). Since each insert operation only performs a
constant number of joins and lazy deletions, its worst-case cost is O(1).

Prior to each delete-min and delete operation, it is checked whether a reser-
voir refill is necessary. If the reservoir is empty, a tree of the highest rank is
taken from the lower store. If the tree is of rank 0, it is moved to the reservoir
and the corresponding pointer is deleted from the upper store. This special case
when n = 1 can be handled at a cost of O(1). In the normal case, the tree taken
is split into two halves, and the subtree rooted at the youngest child is moved
to the reservoir. The other half is kept in the lower store. However, if after the
split the lower store contains another tree of the same rank as the remaining
half, the two trees are joined and the pointer to the root of the loser tree is to
be deleted from the upper store. Again, lazy deletion is applied. A join has a
cost of O(1) and involves one element comparison. As shown, each lazy deletion
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has a cost of O(1), including also some element comparisons. That is, the total
cost of tree borrowing is O(1).

In a delete-min operation, after a possible reservoir refill the root storing
a minimum element is removed, a node from the reservoir is borrowed, and
the borrowed node — seen as a tree of rank 0 — is repeatedly joined with the
subtrees of the removed root. This results in a new binomial tree with the
same structure as before the deletion. In the upper store, a pointer to the new
root of the resulting tree is inserted and the pointer to the old root is deleted.
However, if the pointer to the root already exists in the upper store, the upper-
store node containing that pointer is simply unmarked. In a delete operation,
after a possible reservoir refill the given node is swapped to the root as in a
delete operation for a binomial queue, after which the root is deleted as in a
delete-min operation.

As analysed earlier, tree borrowing and node borrowing have the worst-case
cost of O(1). Also, the removal of a root has the worst-case cost of O(1). The at
most blog nc joins executed have the worst-case cost of O(log n), and the number
of element comparisons performed is at most log n. The upper-store update has
an additional cost of O(log log n), including O(log log n) element comparisons.
To summarize, the worst-case cost of a delete-min operation is O(log n) and
the number of element comparisons performed is at most log n + O(log log n).
As to a delete operation, since in a binomial tree of size n the length of any
Dx-path is never longer than log n, node swapping has the worst-case cost of
O(log n), but involves no element comparisons. Therefore, the complexity of a
delete operation is the same as that of a delete-min operation.

4.4.4 Summing up the results

Using the components described and the complexity bounds derived, the effi-
ciency of the priority-queue operations supported by the framework interface
can be summed up as follows:

Theorem 4. Let n be the number of elements stored in the data structure

prior to each priority-queue operation. A two-tier binomial queue guarantees

the worst-case cost of O(1) per find-min and insert, and the worst-case cost of

O(log n) with at most log n + O(log log n) element comparisons per delete-min

and delete.

The bound on the number of element comparisons for delete-min and delete
can be further reduced. Instead of having two levels of priority queues, we can
have several levels. At each level, except the highest one, delete-min and delete
operations are carried out as in our earlier lower store relying on a reservoir;
and at each level, except the lowest one, lazy deletions are carried out as in
our earlier upper store. Except for the highest level, the constant factor in the
logarithm term expressing the number of element comparisons performed per
delete-min or delete is one. Therefore the total number of element comparisons
performed in all levels is at most log n+log log n+ . . .+O(log(k) n), where log(k)

53



denotes the logarithm function applied k times and k is a constant representing
the number of levels. An insertion of a new element would result in a constant
number of insertions and lazy deletions per level. Hence, the number of levels
should be a fixed constant to achieve a constant cost for insertions.

4.5 Multipartite binomial queues

In this section we present a refinement of a two-tier binomial queue, called a
multipartite binomial queue. To refine the previous construction, the following
modifications are significant:

1. The lower store is divided into three components: main store, insert buffer,
and floating tree. The main store is maintained as the lower store in
our earlier construction. However, all insert operations are directed to
the insert buffer which is a binomial queue maintained in a worst-case
efficient manner. When the insert buffer becomes too large, a subtree is
cut off from one of its trees and used as a cutting for the floating tree.
The floating tree is incrementally united with the existing trees in the
main store in connection with each modifying operation. That is, joins
make the floating tree larger, and when uniting is complete, the floating
tree becomes part of the main store. At any point in time, we ensure
that the size of the insert buffer is logarithmic in the total number of
elements stored. We also ensure that uniting will be finished before it will
be necessary to create a new floating tree.

2. The upper store is implemented as a circular, doubly-linked list; there is
one node per tree held in the main store. Each node contains a pointer to
the root of the tree which stores a minimum element among the elements
stored in the trees having a lower rank, including the tree itself. We call
these pointers the prefix-minimum pointers.

3. A reservoir is still in use and all the reservoir operations are performed as
previously described, but to refill it a subtree is borrowed from the insert
buffer and if the insert buffer is empty from the main store. Borrowing
is never necessary from the floating tree since during the whole uniting
process the insert buffer will be large enough to service the refills which
may be needed.

The nodes in the main store, insert buffer, floating tree, and reservoir may
be moved from one component to another, so the form of the nodes must be
identical in all four components.

In the improved construction the key idea is to balance the work done in
the main store and the upper store. After using r + O(1) element comparisons
to readjust a tree of rank r in the main store, only log n − r + O(1) element
comparisons are used for the maintenance of the upper store. Another important
idea is to unite the floating tree to the main store such that all the involved
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components, the main store, insert buffer, floating tree, and reservoir, are fully
operational during the uniting operation.

4.5.1 Description of the components

An upper-store find-min operation provides a minimum element in the main
store by following the prefix-minimum pointer for the tree of the highest rank.
Thus, a find-min operation has the worst-case cost of O(1). To delete a pointer
corresponding to a tree of rank r from the upper store, the node in question
is found by a sequential scan and thereafter removed, and the prefix-minimum
pointers are updated for all trees having a rank higher than r. The total cost
is proportional to log n and one element comparison per higher-rank tree is
necessary, meaning at most log n − r + O(1) element comparisons. When the
element stored at the root of a tree of rank r is changed, the prefix-minimum
pointers can be updated in a similar manner. The complexity of such a change
is the same as that of a delete operation. To insert a pointer corresponding to a
tree of rank r, as done in the uniting process, a sequential scan has to be done
to find the correct insertion point. It may happen that there already exists a
tree of the same rank. Therefore, these trees must be joined and this join may
propagate to all the higher ranks. In addition, the prefix-minimum pointers
must be updated, but this can be done simultaneously with the joins, if at all
necessary, so that each of the higher-rank trees is considered only once. Hence,
the worst-case cost of an insert operation is proportional to log n, and at most
2(log n − r) + O(1) element comparisons are performed.

The main store is a binomial queue that is maintained as our earlier lower
store, except that the main store and the upper store interact in another way.
Tree borrowing is done almost as before. First, the tree of the highest rank
is taken from the main store, the tree is split, one half of it is moved to the
reservoir, and the other half is kept in the main store; the latter half is then
joined with another tree of the same rank if there is any. Second, the prefix-
minimum pointers for the trees of the two highest ranks are updated. The total
cost of all these modifications is O(1). From this and our earlier analysis, it
follows that the worst-case cost of tree borrowing is O(1).

Since no normal insertions are done in the main store, no lazy deletions are
forwarded to the upper store. Because of node borrowing, only one tree need to
be modified in a delete-min or delete operation. If the rank of the modified tree
is r, both main-store operations have the worst-case cost of O(r) and require at
most r + O(1) element comparisons. After the adjustment in the main store,
the prefix-minimum pointers need to be updated in the upper store for all trees
having a rank higher than or equal to r. This has an additional cost propor-
tional to log n, and log n− r + O(1) element comparisons may be necessary. To
summarize, the worst-case cost of a delete-min and delete operation is O(log n)
and never more than log n + O(1) element comparisons are performed.

The insert buffer is implemented as a worst-case efficient binomial queue.
Hence, an insert operation has the worst-case cost of O(1). To reduce the size of
the insert buffer or to refill the reservoir, tree borrowing is used as for the main
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store. Observe that after tree borrowing no change to the pointer indicating
the location of the current minimum of the insert buffer is necessary. As will
be shown, the invariants maintained guarantee that the insert buffer will never
become larger than c1 log n+c2 for some constants c1 and c2. Therefore, a delete-
min and delete operation has the worst-case cost of O(log log n) and performs
at most 2 log(c1 log n + c2) + O(1) element comparisons, which is bounded by
log n + O(1) for all n ≥ 0.

The floating tree is maintained as the trees in our earlier lower store. The
main point is that delete-min and delete operations should retain the size of this
tree. Therefore, when a root is removed, a node from the reservoir is borrowed.
Our earlier analysis implies that the worst-case cost of a delete-min and delete
operation is O(log n), and the number of element comparisons performed is at
most log n + O(1).

4.5.2 Interactions between the components

We let the priority-queue operations change the data structure in phases. Let n0

denote the total number of elements at the beginning of a phase. All operations
are made aware of the current phase using n0, blog n0c, and a single counter. To
avoid the usage of the whole-number logarithm function, blog n0c can be calcu-
lated by maintaining the interval [2k . . 2k+1) in which n0 lies. When n0 moves
outside the interval, the logarithm and the interval are updated accordingly.

When performing the priority-queue operations the following invariants are
maintained:

1. In a phase, exactly blog n0c modifying operations — insert, delete-min, or
delete — are executed.

2. The number of elements in the floating tree is no smaller than log n0 if
the tree exists, i.e. at least log n0 elements are extracted from the insert
buffer if an extraction is done.

3. At the beginning of the phase, the insert buffer contains no more than
max {24, 9 logn0} elements, i.e. the insert buffer never gets too large.

4. At the beginning of the phase, there is no floating tree, i.e. the floating
tree from the previous phase, if any, has been successfully united to the
main store.

The first invariant is forced by the protocol used for handling the priority-queue
operations. Initially, the other invariants are valid since all the components are
empty. The first and third invariants imply that, for all n ≥ 0, the insert buffer
never gets larger than c1 log n + c2 for some constants c1 and c2.

At the beginning of a phase, the first modifying operation executes a prepro-

cessing step prior to its actual task in order to make the insert buffer smaller,
if necessary. If the size of the insert buffer is larger than 8 logn0, half of a tree
of the highest rank is borrowed and used to form a new floating tree. On the
other hand, if the size of the insert buffer is smaller than or equal to 8 log n0,
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no changes are made to the insert buffer and no floating tree is created. Next
we analyse the consequences of the preprocessing step.

Let us assume that, when a tree is borrowed in the preprocessing step,
in the insert buffer a tree of the highest rank is of size 2k. This tree would
be the smallest possible if, for all i ∈ {0, 1, . . . , k}, there existed two trees of
size 2i. Then the number of elements stored in the insert buffer would be
2k+2 − 2. Since in the insert buffer there are at least d8 log n0e − 1 elements,
d8 logn0e − 1 ≤ 2k+2 − 2, from which it follows that dlog n0e ≤ 2k−1. Since the
size of the borrowed tree is 2k−1, the size of the floating tree must be at least
dlog n0e at the time of its creation. During the uniting process, the floating tree
can only become larger, so the second invariant is established.

Assume that a phase involves i0 insertions, 0 ≤ i0 ≤ blog n0c, and d0 dele-
tions, 0 ≤ d0 ≤ blog n0c. Let b0 denote the number of elements stored in the
insert buffer at the beginning of the phase, and n1 the total number of elements
at the end of the phase. To analyse the effect of the preprocessing step on the
size of the insert buffer, we consider five cases:

Case 1. n0 ≤ 24. Since b0 ≤ n0, b0 < 8 logn0 for all 0 ≤ b0 ≤ n0 ≤ 24. Thus,
b0 + blog n0c < 9 log n0. If n1 > n0, we are done. Otherwise, if n1 ≤ n0,
then n1 ≤ 24 and hence the size of the insert buffer is less than 24 at the
end of the phase.

Case 2. n0 > 24, i0 ≥ d0, and b0 ≤ 8 logn0. Since i0 ≥ d0, n1 ≥ n0. If
b0 ≤ 8 logn0, the size of the insert buffer must be bounded by 9 logn0 ≤
9 log n1 at the end of the phase.

Case 3. n0 > 24, i0 ≥ d0, and b0 > 8 logn0. Since b0 > 8 log n0, at least
log n0 elements must have been extracted from the insert buffer in the
preprocessing step. Therefore, at the end of the phase the insert buffer
cannot be larger than b0. Since i0 ≥ d0, it must be that n1 ≥ n0. So if
b0 ≤ 9 log n0 at the beginning of the phase, the size of the insert buffer
must be bounded by 9 log n1 at the end of the phase.

Case 4. n0 > 24, i0 < d0, and b0 ≤ 8 logn0. Since i0 < d0, at most half
of the modifying operations have been insertions. Moreover, it must be
true that n1 ≥ n0 − blog n0c. Since 8.5 logn0 ≤ 9 log(n0 − blog n0c) for
all n0 > 24, the insert buffer cannot be larger than 9 logn1 at the end of
the phase. The above-mentioned inequality is easy to verify for n0 larger
than 218. We used a computer to verify it for all integers in the range
{

25, 26, . . . , 218
}

.

Case 5. n0 > 24, i0 < d0, and b0 > 8 logn0. Again, since i0 < d0, at most half
of the modifying operations involved in the phase have been insertions.
Since b0 > 8 log n0, at least log n0 elements must have been extracted
from the insert buffer in the preprocessing step. Thus, the insert buffer
cannot be larger than b0 − log n0 + (1/2)blogn0c at the end of the phase.
This means that its size must be bounded by 8.5 logn0. As in Case 4,
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n1 ≥ n0 − blog n0c. So by the same argument as in Case 4, the input
buffer cannot be larger than 9 logn1 at the end of the phase.

In particular, note that reservoir refills only make the insert buffer smaller,
so these cannot cause any harm. In conclusion, if the insert buffer was not
larger than max {24, 9 logn0} at the beginning of the phase, it cannot be larger
than max {24, 9 logn1} at the end of the phase. Thus, the third invariant is
established.

Basically, to unite the floating tree and the main store a normal insert op-
eration for binomial queues is executed, except that the insertion starts from a
rank higher than 0. In the worst case, uniting may involve logarithmically many
joins so it is done incrementally. This means that the prefix-minimum pointers
are not necessarily valid for trees whose rank is higher than the rank of the tree
up to which the uniting process has advanced. To solve the problem, each find-
min operation should consult two trees; one referred to by the prefix-minimum
pointer for the tree up to which the uniting process has advanced and the other
referred to by the prefix-minimum pointer for the tree of the highest rank.

The main store can have at most dlog(n0 − b8 log n0c)e trees when a new
floating tree is created, so this is the highest rank before uniting. Of course,
the trees having a rank lower than the rank of the given tree can be skipped.
Since dlog(n0 −b8 logn0c)e ≤ blog n0c for all positive n0, at most one tree need
to be visited in connection with each modifying operation. At each visit, one
join step is executed and the corresponding prefix-minimum pointer updated.
At this speed, the uniting process will be finished before the end of the phase
is reached, which establishes the fourth invariant.

Now that we have proved the correctness of the invariants, we can analyse the
efficiency of the priority-queue operations. The overhead caused by the phase
management and the preprocessing step is only O(1) per modifying operation.
Also, incremental uniting will only increase the cost of modifying operations by
an additive constant.

In a find-min operation, the four components storing elements — main store,
reservoir, floating tree, and insert buffer — need to be consulted. Since all these
components support a find-min operation at the worst-case cost of O(1), the
worst-case cost of a find-min operation is O(1). Insertions only involve the
insert buffer so, from the bound derived for worst-case efficient binomial queues
and the fact that the extra overhead per insert is O(1), the worst-case cost of
O(1) directly follows.

Each delete-min operation refills the reservoir if necessary, determines in
which component an overall minimum element is stored, and thereafter invokes
the corresponding delete-min operation provided for that component. According
to our earlier analysis, each of the components storing elements supports a
delete-min operation at the worst-case cost of O(log n), including at most log n+
O(1) element comparisons. Even with other overheads, the bounds are the same.

In a delete operation, the root is consulted to determine which of the delete
operations provided for the components storing elements should be invoked.
The traversal to the root has the worst-case cost of O(log n), but even with this
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and other overheads, a delete operation has the worst-case cost of O(log n) and
performs at most log n + O(1) element comparisons as shown earlier.

To conclude, we have proved the following theorem.

Theorem 5. Let n be the number of elements stored in the data structure prior

to each priority-queue operation. A multipartite binomial queue guarantees the

worst-case cost of O(1) per find-min and insert, and the worst-case cost of

O(log n) with at most log n + O(1) element comparisons per delete-min and

delete.

4.6 Application: adaptive heapsort

A sorting algorithm is adaptive if it can sort all input sequences and performs
particularly well for sequences having a high degree of existing order. The cost
consumed is allowed to increase with the amount of disorder in the input. In
the literature many adaptive sorting algorithms have been proposed and many
measures of disorder considered (for a survey, see [ECW92] or [MP92]). In this
section we consider adaptive heapsort, introduced by Levcopoulos and Petersson
[LP93], which is one of the simplest adaptive sorting algorithms. As in [LP93],
we assume that all input elements are distinct.

At the commencement of adaptive heapsort a Cartesian tree is built from the
input sequence. Given a sequence X = 〈x1, . . . , xn〉, the corresponding Carte-

sian tree [Vui80] is a binary tree whose root stores element xi = min {x1, . . . , xn},
the left subtree of the root is the Cartesian tree for sequence 〈x1, . . . , xi−1〉, and
the right subtree is the Cartesian tree for sequence 〈xi+1, . . . , xn〉. After building
the Cartesian tree, a priority queue is initialized by inserting the element stored
at the root of the Cartesian tree into it. In each of the following n iterations, a
minimum element stored in the priority queue is output and thereafter deleted,
the elements stored at the children of the node that contained the deleted el-
ement are retrieved from the Cartesian tree, and the retrieved elements are
inserted into the priority queue.

The total cost of the algorithm is dominated by the cost of the n insertions
and n minimum deletions; the cost involved in building [GBT84] and querying
the Cartesian tree is linear. The basic idea of the algorithm is that only those
elements that can be the minimum of the remaining elements are kept in the
priority queue, not all elements. Levcopoulos and Petersson [LP93] showed that,
when element xi is deleted, the number of elements in the priority queue is no
greater than b|Cross(xi)|/2c + 2, where

Cross(xi) =
{

j | j ∈ {1, . . . , n} and min {xj , xj+1} < xi < max {xj , xj+1}
}

.

Levcopoulos and Petersson [LP93, Corollary 20] showed that adaptive heap-
sort is optimally adaptive with respect to Osc, Inv , and several other measures
of disorder. For a sequence X = 〈x1, x2, . . . , xn〉 of length n, the measures Osc

59



and Inv are defined as follows:

Osc(X) =
n

∑

i=1

|Cross(xi)|

Inv(X) =
∣

∣

{

(i, j) | i ∈ {1, 2, . . . , n − 1}, j ∈ {i + 1, . . . , n}, and xi > xj

}∣

∣.

The optimality with respect to the Inv measure, which measures the number of
pairs of elements that are in wrong order, follows from the fact that Osc(X) ≤
4Inv(X) for any sequence X [LP93].

Implicitly, Levcopoulos and Petersson showed that using an advanced im-
plementation of binary-heap operations the cost of adaptive heapsort is propor-
tional to

n
∑

i=1

(

log |Cross(xi)| + 2 log log |Cross(xi)|
)

+ O(n)

and that this is an upper bound on the number of element comparisons per-
formed. Using a multipartite binomial queue, instead of a binary heap, we get
rid of the log log term and achieve the bound

n
∑

i=1

log |Cross(xi)| + O(n).

Because the geometric mean is never larger than the arithmetic mean, it follows
that our version is optimally adaptive with respect to the measure Osc, and
performs no more than n log

(

Osc(X)/n
)

+ O(n) element comparisons when
sorting a sequence X of length n. From this, the bounds for the measure Inv

immediately follow: the cost is O
(

n log
(

Inv(X)/n
))

and the number of element

comparisons performed is n log
(

Inv(X)/n
)

+ O(n). Other adaptive sorting
algorithms that guarantee the same bounds are either based on insertionsort or
mergesort [EF03].

4.7 Multipartite relaxed binomial queues

In this section, our main goal is to extend the repertoire of priority-queue meth-
ods to include the decrease method. There are two alternative ways of relaxing
the definition of a binomial queue to support a fast decrease operation. In
run-relaxed heaps [DGST88], heap-order violations are allowed and a separate
structure is maintained to keep track of all violations. In Fibonacci heaps [FT87]
and thin heaps [KT99], structural violations are allowed; in general, some nodes
may have lost some of their children. We tried both approaches; with the for-
mer approach we were able to achieve better bounds even though for the best
realizations in both categories the difference was only in the lower-order terms.

We use relaxed binomial trees, as defined in [DGST88], as our basic building
blocks. Our third priority queue has multiple components and the interactions
between the components are similar to those in a multipartite binomial queue.
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The main difference is that there is no separate reservoir, but the insert buffer
is kept nonempty so it can support node borrowing. Since all components
are implemented as run-relaxed binomial queues [DGST88] with some minor
variations, we call the resulting data structure a multipartite relaxed binomial

queue. We describe the data structure in three parts. First, we recall the details
of run-relaxed binomial queues, but we still assume that the reader is familiar
with the original paper by Driscoll et al. [DGST88], where the data structure
was introduced. Second, we show how the upper store is maintained. Third, we
explain how the insert buffer and the main store are organized.

The following theorem summarizes the main result of this section.

Theorem 6. Let n be the number of elements stored in the data structure prior

to each priority-queue operation. A multipartite relaxed binomial queue guar-

antees the worst-case cost of O(1) per find-min, insert, and decrease, and the

worst-case cost of O(log n) with at most log n+O(log log n) element comparisons

per delete-min and delete.

4.7.1 Run-relaxed binomial queues

A relaxed binomial tree [DGST88] is an almost heap-ordered binomial tree where
some nodes are denoted to be active, indicating that the element stored at that
node may be smaller than the element stored at the parent of that node. Nodes
are made active by a decrease operation if the replaced element causes a heap-
order violation between the accessed node and its parent. Even though a later
priority-queue operation may repair the heap-order violation, the node can still
be active. A node remains active until the heap-order violation is explicitly
removed. From the definition, it directly follows that a root cannot be active.
A singleton is an active node whose immediate siblings are not active. A run is
a maximal sequence of two or more active nodes that are consecutive siblings.

Let τ denote the number of trees in any collection of relaxed binomial trees,
and let λ denote the number of active nodes in these trees, i.e. in the entire

collection of trees. A run-relaxed binomial queue (called a run-relaxed heap in
[DGST88]) is a collection of relaxed binomial trees where τ ≤ blog nc + 1 and
λ ≤ blog nc, n denoting the number of elements stored.

To keep track of the trees in a run-relaxed binomial queue, the roots are
doubly linked together as in a binomial queue. To keep track of the active
nodes, a run-singleton structure is maintained as described in [DGST88]. All
singletons are kept in a singleton table, which is a resizable array accessed by
rank. In particular, this table must be implemented in such a way that growing
and shrinking at the tail is possible at the worst-case cost of O(1), which is
achievable, for example, by doubling, halving, and incremental copying (see
also [BCD+99, KM01]). Singletons of the same rank are kept in a list. Each
entry of the singleton table has a counterpart in a pair list if there are more than
one singleton of that rank. The youngest active node of each run is kept in a run

list. All lists are doubly linked, and each active node should have a pointer to its
occurrence in a list (if any). The bookkeeping details are quite straightforward
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so we will not repeat them here, but refer to [DGST88]. The fundamental
operations supported are an addition of a new active node, a removal of a given
active node, and a removal of at least one arbitrary active node if λ is larger
than blog nc. The cost of each of these operations is O(1) in the worst case.

As to the transformations needed for reducing the number of active nodes,
we again refer to the original description given in [DGST88]. The rationale
behind the transformations is that, when there are more than blog nc active
nodes, there must be at least one pair of active nodes that root a subtree of
the same rank or there is a run of two or more neighbouring active nodes. In
that case, it is possible to apply at least one of the transformations — singleton
transformations or run transformations — to reduce the number of active nodes
by at least one. The cost of performing any of the transformations is O(1) in the
worst case. Later on, one application of the transformations together with all
necessary changes to the run-singleton structure is referred to as a λ-reduction.

Each tree in a run-relaxed binomial queue can be represented in the same
way as a normal binomial tree, but to support the transformations used for
reducing the number of active nodes some additional data need to be stored
at the nodes. In addition to sibling pointers, a child pointer, and a rank, each
node should contain a pointer to its parent and a pointer to its occurrence in
the run-singleton structure. The occurrence pointer of every nonactive node has
the value null; for a node that is active and in a run, but not the last in the
run, the pointer is set to point to a fixed run sentinel; and for all other nodes
the pointer gives the occurrence in the run-singleton structure. To support our
framework, each node should store yet another pointer to its counterpart in the
upper store, and vice versa.

Let us now consider how the priority-queue methods can be implemented.
A reader familiar with the original paper by Driscoll et al. [DGST88] should
be aware that we have made some minor modifications to the find-min, insert,
delete-min, and delete methods to adapt them for our purposes.

A minimum element can be stored at one of the roots or at one of the active
nodes. To facilitate a fast find-min operation, a pointer to the node storing a
minimum element is maintained. When such a pointer is available, a find-min
operation can be accomplished at the worst-case cost of O(1).

An insert operation is performed in the same way as in a worst-case efficient
binomial queue. As pointed out in Section 4.2, even if some of the joins are
delayed, there can never be more than blog nc+1 trees. From our earlier analysis,
it follows that an insert operation has the worst-case cost of O(1) and requires
at most two element comparisons.

In delete-min and delete operations, we rely on the same borrowing technique
as in [DGST88]: the root of a tree of the smallest rank is borrowed to fill in the
hole created by the node being removed. To free a node that can be borrowed, a
tree of the smallest rank is repeatedly split, if necessary, until the split results in
a tree of rank 0. In one split step, if x denotes the root of a tree of the smallest
rank and y its youngest child, the tree rooted at x is split, and if y is active, it is
made nonactive and its occurrence is removed from the run-singleton structure.
Note that this splitting does not have any effect on the pointer indicating the
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location of a minimum element, since no nodes are removed.
A delete-min operation has two cases depending on whether one of the roots

or one of the active nodes is to be removed. Similarly, a delete operation has two
cases depending on whether the given node is a root or not. Next, we consider
the two forms of deletions, deletion of a root and deletion of one of the inner
nodes, separately.

Let z denote the node being deleted, and assume that z is a root. If the tree
rooted at z has rank 0, z is simply removed and no other structural changes
are done. Otherwise, the tree rooted at z is repeatedly split and, when the
tree rooted at z has rank 0, z is removed. Compared to above, each split step
is modified such that all active children of z are retained active, but they are
temporarily removed from the run-singleton structure (since the structure of
runs may change). Thereafter, the freed tree of rank 0 and the subtrees rooted
at the children of z are repeatedly joined by processing the trees in increasing
order of rank. Finally, the active nodes temporarily removed are added back to
the run-singleton structure. The resulting tree replaces the tree rooted at z in
the root list. It would be possible to handle the tree used for borrowing and the
tree rooted at z symmetrically, with respect to treating the active nodes, but
when the delete-min/delete method is embedded into our two-tier framework,
it would be too expensive to remove all active children of z in the course of a
single delete-min/delete operation.

To complete the operation, all roots and active nodes are scanned to update
the pointer indicating the location of a minimum element. Singletons are found
by scanning through all lists in the singleton table. Runs are found by accessing
the youngest nodes via the run list and for each such node by following the
sibling pointers until a nonactive node is reached.

The computational cost of a delete-min/delete operation, when a root is
being deleted, is dominated by the repeated splits, the repeated joins, and the
scan over all minimum candidates. In each of these steps a logarithmic number of
nodes is visited so the total cost of these operations is O(log n). Splits as well as
updates to the run-singleton structure do not involve any element comparisons.
In total, joins may involve at most blog nc element comparisons. Even though
a tree of the smallest rank is split, after the joins the number of trees is at most
blog nc + 1. Since no new active nodes are created, the number of active nodes
is still at most blog nc. To find the minimum of 2blog nc + 1 elements, at most
2blognc element comparisons are to be done. To summarize, this form of a
delete-min/delete operation performs at most 3 logn element comparisons.

Assume now that the node z being deleted is an inner node, and let x be the
node borrowed. Also in this case the tree rooted at z is repeatedly split, and
after removing z the tree of rank 0 rooted at x and the subtrees of the children
of z are repeatedly joined. The resulting tree is put in the place of the subtree
rooted earlier at z. If z was active and contained the current minimum, the
operation is completed by updating the pointer to the location of a minimum
element. If x is the root of the resulting subtree and a heap-order violation is
introduced, node x is made active and the number of active nodes is reduced
by one, if necessary, by performing a single λ-reduction.
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Similar to the case of deleting a root, this case has the worst-case cost of
O(log n). If z did not contain the current minimum, only at most blog nc+O(1)
element comparisons are done; at most blog nc due to joins and O(1) due to a
λ-reduction. However, if z contained the current minimum, at most 2blognc
additional element comparisons may be necessary. That is, the total number of
element comparisons performed is bounded by 3 log n + O(1). To sum up, each
delete-min/delete operation has the worst-case cost of O(log n) and performs at
most 3 log n + O(1) element comparisons.

A decrease operation is performed as in [DGST88]. After making the element
replacement, it is checked whether the replacement causes a heap-order violation
between the given node and its parent. If there is no violation, the operation is
complete. Otherwise, the given node is made active, an occurrence is inserted
into the run-singleton structure, and a single λ-reduction is performed if the
number of active nodes is larger than blog nc. If the given element is smaller
than the current minimum, the pointer indicating the location of a minimum
element is corrected to point to the given node. All these modifications have
the worst-case cost of O(1).

4.7.2 Upper-store operations

The upper store contains pointers to the roots of the trees held in the insert
buffer and in the main store, pointers to all active nodes in the insert buffer
and in the main store, and pointers to some earlier roots and active nodes. The
number of trees in the insert buffer is at most log log n + O(1), the number of
trees in the main store is at most blog nc+ 1, and the number of active nodes is
at most blog nc. The last property follows from the fact that the insert buffer
and the main store share the same run-singleton structure. At any given point
in time only a constant fraction of the nodes in the upper store can be marked
to be deleted. Hence, the number of pointers is O(log n).

The upper store is implemented as a run-relaxed binomial queue. In addition
to the priority-queue methods find-min, insert, delete-min, delete, and decrease,
which are realized as described earlier, it should be possible to mark nodes to be
deleted and to unmark nodes if they reappear at the upper store before being
deleted. Lazy deletions are necessary at the upper store when, in the insert
buffer or in the main store, a join is done or an active node is made nonactive
by a λ-reduction. In both situations, a normal upper-store deletion would be
too expensive.

As in Section 4.4, global rebuilding will be used to get rid of the marked nodes
when there are too many of them, but for three reasons our earlier procedure is
not applicable for run-relaxed binomial queues:

1. Due to parent pointers the oldest child of a root cannot necessarily be
detached at a cost of O(1), since the parent pointers of the children of the
detached node must be updated as well.

2. The transformations used for reducing the number of active nodes require
that the rank of a node and that of its sibling are consecutive. To keep the
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old data structure operational, the binomial structure of the trees should
not be broken.

3. The transformations might constantly swap subtrees of the same size, so
it would be difficult to assure that all nodes have been visited if a simple
tree traversal was done incrementally.

Our solution to these problems is repeated splitting. In one rebuilding step,
if there is no tree of rank 0, a tree of the smallest rank is split into two halves;
also if there is only one tree of rank 0 that contains the current minimum, but
that is not the only tree left in the old structure, a tree of the smallest rank is
split into two halves; otherwise, a tree of rank 0 — other than a tree of rank
0 which contains the current minimum — is removed from the old structure
and, if not marked to be deleted, inserted into the new structure. That is, there
can simultaneously be three trees of rank 0. This is done in order to keep the
pointer to the location of the current minimum valid. As in a delete-min/delete
operation, in one split step the youngest child of the root is made nonactive if it
is active and its occurrence is removed from the run-singleton structure. With
this strategy, a tree of size m can be emptied by performing 2m − 1 rebuilding
steps. Observe also that this strategy is in harmony with the strategy used
in delete-min/delete operations; in the old structure the splits made by these
operations will only speed up the rebuilding process.

Assume that there are m0 pointers in the upper store when rebuilding is
initiated, and assume that m0/2 of them are marked to be deleted. Rebuilding
is done piecewise over the forthcoming m0/4 upper-store operations. More
precisely, in connection with each of the following m0/4 upper-store operations
eight rebuilding steps are executed. At this speed, even with intermixed upper-
store operations, the whole old structure will be empty before it will be necessary
to rebuild the new structure.

A tree of rank 0, which does not contain the current minimum or is the only
tree left, can be detached from the old run-relaxed binomial queue at a cost
of O(1). Similarly, a node can be inserted into the new run-relaxed binomial
queue at a cost of O(1). A marked node can also be released and its counterpart
updated at a cost of O(1). Also, a split step has the worst-case cost of O(1).
From these observations and our earlier analysis, it follows that rebuilding only
adds an additive term O(1) to the cost of all upper-store operations.

4.7.3 Insert-buffer and main-store operations

The elements are stored in the insert buffer and in the main store. Both compo-
nents are implemented as run-relaxed binomial queues, but they have a common
run-singleton structure. In the main store there can only be one tree per rank,
except perhaps a single rank that may have two trees. All insertions are directed
to the insert buffer, which also provides the nodes borrowed by insert-buffer and
main-store deletions. Minimum finding relies on the upper store; an overall min-
imum element is either in one of the roots or in one of the active nodes, stored
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either in the insert buffer or in the main store. The counterparts of the mini-
mum candidates are stored in the upper-store, so communication between the
components storing elements and the upper store is necessary each time when
a root or an active node is added or removed, but not when an active node is
made a root.

As in a multipartite binomial queue, the priority-queue operations are ex-
ecuted in phases. If n0 denotes the number of elements at the beginning of a
phase, in one phase blog n0c modifying operations are carried out. Compared
to our earlier construction, the only difference is one additional invariant:

5. At the beginning of the phase, if n0 > 0, the input buffer contains at least
blog n0c elements, i.e. borrowing is always possible even if all modifying
operations in the phase were deletions.

Consider now node borrowing, and assume that the new invariant can be
maintained. Since the insert buffer never becomes empty, it has always at least
one tree and a tree of the smallest rank can be repeatedly split as prior to a
run-relaxed-binomial-queue deletion, after which there is a free tree of rank 0
that can be borrowed. In each split step, if the youngest child of the root of
the tree being split is active, it is removed from the run-singleton structure,
but it need not be removed from the upper store. However, if the youngest
child is not active, its counterpart has to be inserted into the upper store or
unmarked if already present in the upper store. Since the size of the insert
buffer is bounded by c1 log n + c2 for some constants c1 and c2, the total cost of
all splits is O(log log n); and because of the upper-store operations O(log log n)
element comparisons may be necessary.

Let b0 denote the size of the insert buffer at the beginning of a phase. To
maintain the new invariant, we modify the preprocessing step such that, if
b0 ≤ 2blog n0c, an incremental separating process is initiated, the purpose of
which is to move a small tree from the main store to the insert buffer. In
this process the trees in the main store are visited one by one, starting from
the tree of the highest rank, until the smallest tree, the size of which is larger
than 2blog n0c, is found. Thereafter, this tree is repeatedly split until a tree is
obtained whose size is between 2blogn0c and 4blog n0c. This work is distributed
such that one modifying operation handles one rank. The last operation in such
an operation sequence moves a tree of the required size to the insert buffer in
its proper place. In the insert buffer there can be at most a constant number of
trees that have a higher rank, so this addition has a constant cost, i.e. it is not
too expensive for a single modifying operation. If no tree of size 2blog n0c or
larger exists, which is possible when n0 ≤ 24, a single operation moves all trees
from the main store to the insert buffer and performs all necessary joins.

Even if all modifying operations in a phase were insertions, at the end of
the phase the size of the insert buffer would be bounded above by 2blogn0c +
4blogn0c + blog n0c ≤ 7blogn0c or, if n0 ≤ 24, by 24 + blog n0c, i.e. the new
tree cannot make the insert buffer too large. If all modifying operations were
deletions, the size of the insert buffer would be bounded below by blog n0c +
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2blogn0c − blog n0c ≥ 2blog n0c, i.e. the insert buffer cannot become too small
either. Note that there can only be one active uniting process, which is initiated
if b0 ≥ 8blog n0c, or one active separating process, which is initiated if b0 ≤
2blogn0c, but not both at the same time. When in an active uniting process
a join is done, a lazy deletion is necessary at the upper store; and when in an
active separating process a split is done, an insertion may be necessary at the
upper store. Hence, these incremental processes can only increase the cost of
modifying operations by an additive constant.

An insert operation described for a run-relaxed binomial queue requires two
modifications in places where communication between the insert buffer and up-
per store is necessary. First, after the creation of a new node its counterpart
must be added to the upper store. Second, in each join the counterpart of
the loser tree must be lazily deleted from the upper store. Even after these
modifications, the worst-case cost of an insert operation is O(1).

In a decrease operation, three modifications will be necessary. First, each
time when a new active node is created, an insert operation has to be done
at the upper store. Second, each time when an active node is removed, the
counterpart must be deleted from the upper store, which can be done lazily in
a λ-reduction. Third, when the node accessed is a root or an active node, a
decrease operation has to be invoked at the upper store. If an active node is
made into a root, no change at the upper store is required. Even after these
modifications, the worst-case cost of a decrease operation is O(1).

A delete-min/delete operation always begins with an invocation of the pro-
cedure that frees a tree of rank 0 to be used for filling in the hole created by
the node being deleted. The two forms of deletions are done otherwise as de-
scribed for a run-relaxed binomial queue, but now the update of the pointer
to the location of a minimum element can be avoided. A removal of a root or
an active node will invoke a delete operation at the upper store, and an in-
sertion of a new root or an active node will invoke an insert operation at the
upper store. A λ-reduction may invoke one or two lazy deletions and at most
one insertion at the upper store. These lazy deletions and insertions have the
worst-case cost of O(1). Node borrowing has the worst-case cost of O(log log n),
including O(log log n) element comparisons. Only at most one real upper-store
deletion will be necessary, which has the worst-case cost of O(log log n) and
includes O(log log n) element comparisons. Therefore, as in the original form,
a delete-min/delete operation has the worst-case cost of O(log n), but now the
number of element comparisons performed is at most log n + O(log log n).

4.8 Concluding remarks

We provided a general framework for improving the efficiency of priority-queue
operations with respect to the number of element comparisons performed. Es-
sentially, we showed that it is possible to get below the 2 log n barrier on the
number of element comparisons performed per delete-min and delete, while
keeping the cost of find-min and insert constant. We showed that this is pos-
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sible even when a decrease operation is to be supported at the worst-case cost
of O(1). From the information-theoretic lower bound for sorting, it follows that
the worst-case efficiency of insert and delete-min cannot be improved much.
However, if the worst-case cost of find-min, insert, and decrease is required to
be O(1), we do not know whether the worst-case bound of log n+O(log log n) on
the number of element comparisons performed per delete-min and delete could
be improved.

The primitives, on which our framework relies, are tree joining, tree splitting,
lazy deleting, and node borrowing; all of which have the worst-case cost of
O(1). However, as already indicated in Section 4.7, it is not strictly necessary
to support so efficient node borrowing. It would be enough if this operation
had the worst-case cost of O(log n), but included no more than O(1) element
comparisons. All our priority queues could be implemented, without affecting
the complexity bounds derived, to use this weak version of node borrowing.

We used binomial trees as the basic building blocks in our priority queues.
The main drawback of binomial trees is their high space consumption. Each
node should store four pointers and a rank, in addition to the elements them-
selves. Assuming that a pointer and an integer can be stored in one word,
a multipartite binomial queue uses 5n + O(log n) words, in addition to the n
elements. However, if the child list is doubly linked, but not circular, and if
the unused pointer to the younger sibling is reused as a parent pointer as in
[KT99], weak node borrowing can still be supported, keeping the efficiency of
all other fundamental primitives the same. Therefore, if the above-mentioned
modification relying on weak node borrowing is used, the space bound could be
improved to 4n + O(log n). In order to support lazy deleting, one extra pointer
per node is needed, so a two-tier binomial queue requires additional n+O(log n)
words of storage. A multipartite relaxed binomial queue needs even more space,
7n+O(log n) words. As proposed in [DGST88], the space requirement could be
reduced by letting each node store a resizable array of pointers to its children.

These space bounds should be compared to the bound achievable for a dy-
namic binary heap which can be realized using Θ(

√
n) extra space [BCD+99,

KM01]. However, a dynamic binary heap does not keep external references valid
and, therefore, cannot support delete or decrease operations. To keep external
references valid, a heap could store pointers to the elements instead, and the
elements could point back to the respective nodes in the heap. Each time a
pointer in the heap is moved, the corresponding pointer from the element to
the heap should be updated as well. The references from the outside can refer
to the elements themselves which are not moved. With this modification, the
space consumption would be 2n+O(

√
n) words. Recall, however, that a binary

heap cannot support insertions at a cost of O(1).
A navigation pile, proposed by Katajainen and Vitale [KV03], supports weak

node borrowing (cf. the second-ancestor technique described in the original pa-
per). All external references can be kept valid if the compartments of the el-
ements are kept fixed, the leaves store pointers to the elements, and the ele-
ments point back to the leaves. Furthermore, if pointers are used for expressing
parent-child relationships, tree joining and tree splitting become easy. With the
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above-mentioned modification relying on weak node borrowing, pointer-based
navigation piles could substitute for binomial trees in our framework. A navi-
gation pile is a binary tree and, thus, three parent-child pointers per node are
required. With the standard trick (see, e.g. [Tar83, Section 4.1]), where the
parent and children pointers are made circular, only two pointers per node are
needed to indicate parent-child relationships. Taking into account the single
pointer stored at each branch and the two additional pointers to keep external
references valid, the total space consumption would be 5n + O(log n) words.

It would be interesting to see which data structure performs best in practice
when external references to compartments inside the data structure are to be
supported. In particular, which data structure should be used when developing
an industry-strength priority queue for a program library. It is too early to
make any firm conclusions whether our framework would be useful for such a
task. To unravel the practical utility of our framework, further investigations
would be necessary.

In this paper we studied the comparison complexity of priority-queue oper-
ations. A similar question with respect to the number of element comparisons
required by all dictionary operations was answered in the affirmative to be
log n+O(1) by Andersson and Lai [AL90]. Still, the trees of Andersson and Lai
achieve this bound only in the amortized sense. The existence of a dictionary
guaranteeing this bound in the worst case for all dictionary operations is an
open problem.
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Chapter 5

Conclusion

A study of the theoretical and practical efficiency of priority queues was pre-
sented and some conclusions can be drawn on the basis of the presented work.

The experimental evaluation of in-place d-ary heap showed that no single
heapifying strategy has the best performance for the different types of inputs and
ordering functions used, but that bottom-up heapifying has a good performance
for many of the used inputs and ordering functions.

The experiments with navigation piles showed that when element moves are
expensive they can be an alternative to binary heaps. It was possible to replace
the second-ancestor technique used in [KV03] with the more simple first-ancestor
technique, and it was also possible to transform a static navigation pile into a
dynamic navigation pile in a new and simpler way than the one described in the
original paper.

It was possible to create a framework for reducing the number of element
comparisons performed in priority-queue operations. The framework gives a
priority queue which guarantees the worst-case cost of O(1) per find -min and
insert , and the worst-case cost of O(log n) with at most log n + O(1) ele-
ment comparisons per delete-min and delete . Here, n denotes the number
of elements stored in the data structure prior to the operation in question,
and log n equals max {1, log2 n}. Furthermore, a priority queue that provides
decrease (also called decrease-key), in addition to the above-mentioned opera-
tions, was created. This priority queue achieves the worst-case cost of O(1) per
find-min, insert , and decrease ; and the worst-case cost of O(log n) with at most
log n + O(log log n) element comparisons per delete-min and delete .

5.1 Further work

For navigation piles the following topics could be of interest: 1) To extend the
pointer-based navigation pile to support the delete operation (it is possible for
pointer-based navigation piles to support delete because it guarantees referential
integrity); 2) To use the pointer-based implementation of navigation piles to
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create a data structure supporting insert at a worst-case cost of O(1); 3) To
implement a dynamic navigation pile using the new and simpler way of making
a static navigation pile dynamic.

Furthermore, it could be interesting to explore the practical efficiency of the
priority queues described in the paper “A framework for speeding up priority-
queue operations” through an experimental study.

5.2 Related work

In connection with the study of the efficiency of priority queues other interesting
subjects were encountered, this resulted in the following reports (which are all
available through the CPH STL website [Dep06]):

Amr Elmasry, Claus Jensen, and Jyrki Katajainen. Relaxed weak queues: an
alternative to run-relaxed heaps. CPH STL Report 2005-2.

Amr Elmasry, Claus Jensen, and Jyrki Katajainen. On the power of structural
violations in priority queues. CPH STL Report 2005-3.

Claus Jensen, Jyrki Katajainen, and Fabio Vitale. Experimental evaluation of
local heaps. CPH STL Report 2006-1.
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Appendix A

Source code

The source code is included on a CD-ROM which is a supplement to this M. Sc.
thesis (the source code is also available for download through the homepage of
the Performance Engineering Laboratory at http://www.diku.dk/forskning/
performance-engineering/Perfeng/theses.html). Source code which is not
written in connection with this thesis is included on the CD-ROM, this is done
in order to make it possible to carry out the tests and benchmarks again, al-
though this may not be possible in other environments than the ones where the
tests and benchmarks originally were carried out. The source code not written
in connection with this thesis consists of the benchmark tool Benz, a small part
of the Boost library from which the static log2 function is used and the source
code related to [San00]. The source code for the implemented algorithms as
well as the program tests and some benchmark drivers are written in the C++
program language, the benchmarks themselves are written in the Python pro-
gram language. The following is a description of where to find the source code
located on the CD-ROM.

A.1 Source code associated with Chapter 2

The folders contain the source code for seven heap implementations. The seven
implementations are contained in the folder Program which can be found fol-
lowing the path:

CPHSTL/Report/ In-place-multiway-heaps/
This is a list of the names of the implementations used in the Chapter 2 and
the folder names:

Top-down basic: “Top-down”
Top-down one-sided binary search: “Binary-search”
Bottom-up basic: “Bottom-up”
Bottom-up two levels at a time: “Two-Level-Bottom-up”
Bottom-up binary search: “Bottom-up-Binary-search”
Bottom-up exponential binary search: “Exp-Binary-search”
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Bottom-up move saving: “Bottom-up move-saving”

A.2 Source code associated with Chapter 3

The folders contain the source code for three navigation-pile implementations
and one heap implementation. The four implementations are contained in the
folder Programs which can be found following the path:

CPHSTL/Report/Experimental-Navigation-piles/
This is a list of the names of the implementations used in the Chapter 3 and
the folder names:

Compact pile: “Packed Index based Navigation piles”
Index pile: “Index based Navigation piles”
Pointer-based pile: “All Pointer based Navigation piles”
Referent heap: “Binary heap using reference”

The compact pile implementation uses a resizable bitarray as a utility func-
tion, the source code for implementation of the resizable bitarray can be found
in the following folder:

CPHSTL/Program/Resizable bitarray
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